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Abstract. It is shown that for non-vanishing lattice spacing, conventional
infrared power counting conditions are sufficient for convergence of lattice
Feynman integrals with zero-mass propagators. If these conditions are supple-
mented by ultraviolet convergence conditions, the continuum limit of such a
diagram exists and is universal.

1. Introduction

In a recent paper [1] we have proposed a convergence theorem, which states
existence of the continuum limit for a wide class of Feynman integrals with a lattice
cutoff if certain ultraviolet (UV) power counting conditions are satisfied. What is
counted are lattice divergence degrees in Zimmermann subspaces, ie. in affine
subspaces of the integration momenta. To avoid infrared (IR) singularities, we had
assumed all propagators to be massive. In the present article we extend the
considerations to integrals containing zero-mass propagators. While the lattice
provides a UV-cutoff, IR-singularities are expected to be quite the same as for
continuum diagrams. As will be shown, IR-power counting conditions similar as
for continuum diagrams [2—5] are sufficient to guarantee the convergence of lattice
Feynman integrals, at least for non-vanishing lattice spacing. If these conditions
are supplemented by the UV-power counting conditions of [1], the continuum
limit of the Feynman integral exists and coincides with the formal limit, i.e. it is
given by the integral resulting from the a — 0-limit in the integrand.

This article is organized as follows. At first, in Sect. 2, the notion of an IR-degree
is introduced in a form which is similar to the definition of a UV-degree in [1].
The power counting theorem for Feynman integrals with zero-mass propagators
is formulated in Sect. 3. As in the massive case, the denominator of a Feynman
integrand can easily be treated, whereas the numerator must be estimated in such
a way that UV- as well as IR-power counting conditions are taken into account
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(Sect. 5), and such that the corresponding estimates have a well defined cutoff
behavior. This behavior can be determined using the auxiliary theorem stated in
Sect. 4. Applying the auxiliary theorem and using the estimate of the numerator,
the proof of the power counting theorem is given in Sect. 6. Finally, the last two
sections are devoted to the proof of the auxiliary theorem.

2. IR-Degrees on the Lattice

Throughout this paper we will use the notations, definitions and statements of [1],
especially the function classes %,,, ¢ and %,,%° and . We shall use multi-indices
to simplify the notation. Set Ny =Nu {0} ={0,1,2,...}. For beNj, ucR" define
bl=by!--b,l, ub=ult-ubr, |b|=73 b,
i=1

We now define an IR-degree for functions in 4, depending on variables u (“internal”
momenta), v, g (“external” momenta) and the lattice spacing a.

Definition 2.1. 1. Let meZ and V(u,v,q; a)e%,, of the form
1
V(u,v,q;a)= ﬁF (ua,va, qa). (2-1)

For given q let s, be the largest non-negative integer such that

aC
( F(ua,va,qa)> =0 invand a>0, forall ceNj, |c|<s,. (2-2)

ou’ u=0
Then the IR-degree of V' with respect to u is defined by
degr,,V =s,. (2-3)
2. Let Ve¥, V= Z Vi, V€%, for some m;eZ, m; #m, for i # k. Then we define
- degr,,, V = min degr,, V. (2-4)

iel

An equivalent definition is the following. For Ve®, s, =degr,, V if and only

if
V(iu,v,q;a) = B(u,v,q;a) 2> + O(A**1), A—0, (2-5)

where B(u,v,q;a) %0 in u,v, a, for fixed ¢ (B is a polynomial in u and C* in v).

It is important to note that this IR-degree may depend on the external momenta
g. Following common use, we write all momentum variables which are not fixed
as subscript in degr, e.g. u,v in (2-3). If 0°F(ua,va,qa)/0u‘|,-, =0 in v and a for
all ceN§, we set degr,,V =+ co. If V(u,0,q;a)%£0 in u,v,a and independent of
u, then degr,, V' =0.

From the definition of an IR-degree, we easily get

Lemma 2.1. Let Vy,...,V,€%. Then

alv

14
1. degr,, > V;= min degr,,V,, (2-6)
— = i=l,.,p

.....
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p
2. degr,, H V.= Z degr,, Vi, (2-7)
i= 1 -
al
3. degruha V= degr,, V-1, (2-8)
al
4. degru,va ;V =degr,, V. (2-9)

Next, we consider functions in the classes €5, and %, i.e. functions in %,, and
% whose continuum limits exist. Every Ve®5, has an expansion for small lattice
spacing a of the form

1
V(u,v,q;a) = a—mF(ua, va, qa) = P(u,v,q) + R(u,v, q; a),

where the continuum limit P of V' is a homogeneous polynomial in u,v,q and R
vanishes for ¢ = 0. In general,

degrulv P g degrﬁ\p V> (2‘10&)

where the IR-degree of a polynomial is defined in Appendix A. In particular, with
respect to all momentum variables u, v and ¢

Vo if P(u,v,q) #0. (2-10b)

In Sect. 5 we will state a general estimate on the remainder R which respects the
IR- and UV-properties of the function V and allows to determine the cutoff behavior
of Feynman integrals having R as the numerator of the integrand, by application
of an auxiliary theorem stated in Sect. 4, which is a generalization of the auxiliary
power counting theorem in [1] to diagrams with massless propagators.

The integrand of a Feynman integral on the lattice belongs to the function
class # [1]. For Fe% an IR-degree is defined as follows.

degr,,, P = degriz;

uvrg

Definition 2.2. Let FeZ,
V(u,v,q; 1, a)

F ; = . 2-11
(u, v, q; 1, @) Clu.v.q: 1.0) (2-11)

Then the IR-degree of F with respect to u is defined by
degr,, F =degr,, V —degr,, C (2-12)

Recall that the denominator in (2-11) is of the form

n /Al
c=11 (”‘fz;“) + u?), W20, -13a)
i=1

where the four-vectors [; # 0 are given by

L(u,v,q) = Z byv, + Z Conlhy, + Z di Gy (2-13b)
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The IR-degree of the denominator is already determined by the IR-degree of its
continuum limit:

@aw(ﬂ ta) + 1 ) =digr_a|u(li2 +uf)

0 if u?>0 or (by,....b)#0 or Y dyg#0
k=1

2 if u?=0 and (byy,...,by)=0 and Y duq,=0. (2-14)
k=1

L.
degr,, D (”( a) ) Z degru|v<” 22 9) + U )

and for every Fe %,

Note that

degr hm F(u7 A ‘1§ H, a) g degrmu F(u’ v, qs :u’ (1). (2' 1 5)
—=" o Pt =

ulv

Finally, as a corollary of Lemma 2.1, we state

Lemma 2.2. Let F,F,,...,F,e%. Then

p
1. degr,, > F;> min degr, F,, (2-16)
=1 i=1,..., p
p p
2. degr,, [[ Fi= Y degr,,F; (2-17)
— =1 i=1
al
3. degralv%—,F = degr,, F —|l|, (2-18)
al
4. degrmngdegrva. (2-19)

3. The Power Counting Theorem for Feynman Integrals with Massless Propagators
We consider

. T/a

I(q’ﬂaa): I dAkl“‘d‘tkmF(kaq;:u’a)’ (3'1)

—mn/a

where
F(k,q;p,a) = V(k,q; 1, a)/C(k, q; p, a)e F,

n A Lk, g)a
Clk,gs @)= [] [%-ﬂt,{l, ui 20

i=1

(vanishing masses are allowed). Furthermore, let ¥ be a natural set of four-

momenta containing [,,..., 1, [1]. At first, we repeat the definition of UV-divergence
degrees [1] and then define IR-divergence degrees.
1. Let

u1=li1,...,ud=l,~d, Ul=lj1""7vm-‘d=ljm—d (3'2)
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be an arbitrary basis of & with respect to k', 1 <d <m. By fixing v,...,0,,_4, ON€
defines a class H of affine subspaces of the space of integration momenta k.
(u) = (uy,...,uy) is called the parametrization of H, and (v)=(vy,...,v4) are
the complementary parameters of H. As in [1], we define for F(k, q; 1, a)e F,
degry 1(g; p @) = 4d + degr, F (k(u,v,9). q: p, @) (3-3)

The set of all such H, for all bases (3-2), is denoted by #VV (this is the set # of
Zimmermann subspaces of [1]. Here we write #YV to distinguish this set of
subspaces from the set #™® defined below).
2. Let M ={l;|uy;=0;i=1,...,n} = Z. For every basis (3-2) such that

Lisooosl el (3-4)
and d = 1, we define a subspace H as above. The set of all these H is denoted by
AR Obviously, #™ = #YV. For He #™ we define the IR-divergence degree

degry I(g; i, a) = 4d + degr,, F(k(u, v, ), q; 1, a). (3-5)

We now state the power counting theorem which applies to lattice Feynman
integrals with massless propagators.

Theorem 1. Power Counting Theorem. Consider the integral
=N T/a
Hgua)= [ d*ky--d*k,F(k g a), (3-1)
—nja
and suppose the integrand is of the form
Vik, g; u,
kgpma)
Clk,q; p1, )

where Ve%© is (2n/a)-periodic in every component of k, and

- i(li(k, q)a
QK%MQ=ITPL77*J+#?,Iﬁ§Q

F(k,q;p,a) =

i=

Suppose, furthermore, the line momenta l; are contained in a natural set & of momenta
and assume that for every He #™

degry I(g; 1, @) > 0. (3-6)

Then the integral (3-1) is absolutely convergent for every a > 0. If, in addition, for
every He AV we have

degry I(g; 1. a) <0, (3-7)
the continuum limit of I(q; u, a) exists absolutely and is given by
3 T T P(ka q, )
limI(qu,a)= [ d*k,---d*k,, = 3-8
lim 1(g; 1, ) J; : Elk.q.0 (3-8)

! cp. [1] or Sect. 4 below. uy,...,uy,vy,...,0, 6%, and the Jacobian satisfies det[d(u,v)/0k] #O0.
There is at least one basis of & with respect to k
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where
P(k,q, 1) = lim V(k, g; u, ),
a—0
E(k,q, ) = lim C(k, g; u, a).
a—0

Note that vanishing masses are allowed, and that convergence is stated for
given (fixed) external momenta ¢. Furthermore, the integrand is always assumed
to be periodic. As in the massive case [1], if P #0, the set ' = {l,,...,1,} contains
a basis of .# with respect to k (otherwise (3-8) would be UV-divergent). Hence, in
this case it is sufficient to consider .’ instead of .#. Note that

degr, lim F(u,v, g; 1, a) < degr, F(u, v, ¢; jt, a) (3-9)
a—-0
and
degr,, lim F(u, v, q; u, a) = degr,, F(u, v, q; 1, a). (3-10)
=Sl T gegl,

Hence, by (3-6), (3-7) and the power counting theorem of Lowenstein and
Zimmermann [2,3]?, (3-8) is absolutely convergent.

The idea of proof is quite similar to that of the power counting theorem for
Feynman integrals with massive propagators [1]. Again, it will be sufficient to

consider

7 " V(k,g;
Tana= | a8

~n/a n:(l;a) ’
/ [ <T+ﬂi2>

i=1

(3-11)

where Ve%;,, for some myeZ. Without loss of generality we also assume & to be
of the form {l,,...,Iy} for some N = n, and that k,,..., k, belong to .Z.

In the first step of the proof, the integration domain of (3-12) is partitioned in
a way depending on the configuration of the line momenta /,. It is distinguished
between /; in neighborhoods of the poles of propagators and outside of them. A
propagator can be estimated by its continuum limit or some power of the lattice
spacing a, respectively. Again, the numerator causes some technical problems, and
we need an estimation which respects UV- as well as IR-degrees. In the next section
we state an auxiliary theorem which describes the cutoff dependence of generalized
continuum Feynman integrals with zero-mass propagators. Then, in Sect. § it is
shown that the numerator of (3-11) admits an estimate such that this auxiliary
theorem applies to the integrals resulting from the partition of (3-11) explained
above.

4. A Power Counting Theorem for Generalized Continuum Feynman
Integrals with Zero-Mass Propagators

To formulate the auxiliary theorem, we will use the notations of the auxiliary power
counting theorem of [1]. For completeness, they will be repeated here.

2 Or by the auxiliary theorem below
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Let k=(ky,...,k,) (loop momenta) and q=(q,,...,qs) (external momenta),
k;,q;€R*, and let L denote the space of linear mappings I:R*" x R** - R* of the
form

I(k, q) = K (k) + Q(g), (4-1)
K(ky= Y ak; a€eR, i=1,..,m, 4-2)

i=1
Q@)=Y byq;; bieR, j=1,....M. 4-3)

j=1
Elements [,...,l; are called linearly independent with respect to k if their
homogeneous parts in k are linearly independent. {I,,...,l} < .# < L is called a

basis of .# with respect to k if every le.# has a unique representation

Z i(k q) + Q(q), (4-4)

where c,eR;i=1,...,s and Q is linear. We define rank, .# =s.

Let % < L be a finite subset

{l(kq Z Clj ]+Q q)il_l N}; (4-5a)
where
rank(C;;) =m
(Ciss-. s Cip) #0 forall i=1,...,N, (4-5b)

£ A i+,
so that rank, & =m. Let 4" < .. We consider the behavior of the integral
Z(4k,q)
"E(k,q, 1)

e
g = | d*k;--d*k (4-6)

for large 4. Here
E(k g, u) =[]0k, +pui), w20, neN={1,2,...}, (4-7)

N
and [ | means the product over all ;,e.#". Note that vanishing masses are allowed.

N
The integration runs over all keR*" constrained by IZ(k,q) < A%,i=1,...,N. The
numerator is of the form

Z(4,k, q)=min<min|M (k, q)]'min A~ 7| C,,(k, Q)|> (4-8)
iel jedJi leK,

where I,J;, K; are finite sets, p;eN,={0,1,2,... }, and M;;, C; are polynomials.
I subscripts the set of all & = %, (including ¥ = )), where

Fo={leN ;=0 (4-9)

In the following, a function which is of the form (4-8) will be called a nominator
function.
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Next, we define the sets #UY and #'® as in Sect. 3, but instead of (3-4) we
now let [, ,...,[,,e %, for defining #™, and & is given by (4-5). Note that we do
not assume £ to be natural here.

We now refine the notion of ordered sequences of Zimmermann subspaces as
defined in [1], Sect. 5.

Definition 4.1. Let
u® L u®, M T (4-10)

be an arbitrary basis of ¥ with respect to k. A sequence H,,..., H, of subspaces
in #VY is called ordered in u with respect to the basis (4-10) if
1. Hy,...,H, is ordered with respect to the basis (4-10), and

. . 4-11
2. The parameters of every H; are contained in (u),...,u®). @10

This notion will be very useful below when we define an “admissible” numerator
Z (4, k,q). To this end, we first introduce sets %, and %, defined as follows.

1. % is the set of all pairs (H, %) such that

a. HeAW, ¥ < %,.
b. The complementary parameters of H contain a basis of & with respect to k.

(4-12)

2. U, is the set of pairs (H, %) such that
a. HeA#™, 9 < ¥,.
b. The parameters of H are contained in a basis of &% with respect to k.

(4-13)
A set of two maps
U,—~Z, (H¥)-0H, %), (4-14a)
and
U,~Z, (H,Y)-pH, ) (4-14b)

is called a degree set. In connection with the following definition it generalizes the
notion of a UV-set as defined in [1].

We want to state the cutoff dependence of the integral (4-6). We assume that
the numerator Z(4, k, q) is admissible with respect to a given degree set:

Definition 4.2. Suppose 6(H, &), p(H, <) is a degree set. A nominator function
Z (A, k, q)is then called admissible with respect to the degree set, if for every & = &,
there is an iel, so that for every basis (4-10) of & with respect to k, where u'™), ..., u®
is a basis of & with respect to k, the following conditions hold.

1. M;(k,q) = M;;(u, q) for every jeJ,, ie. the polynomials M;; depend only on the
basis of & and on the external momenta ¢>.

2. For every sequence H,,..., H, of subspaces of #™® which is ordered in u with
respect to the basis (4-10), there exists jeJ;, so that*

3 If this holds for one basis of %, it holds for any other basis of % also
4 For the definition of degr,see Appendix A
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degr, .,

Here (x,) denotes the parameters of H, and (x,, w,) = (u,v).

3. For every sequence K,,..., K, of subspaces of #VY which is ordered in v with

respect to the basis (4-10), there is a leK;, so that

M;zpH, ) forall g=1,...,1. (4-15)

degryglzg Cy—py<é(H, &) forall g=1,...,5s, (4-16)
where (y,) denotes the parameters of H, and (y,, z,) = (u,v).

The notion of an admissible numerator with respect to a given degree set
generalizes the idea of an ultraviolet set of [ 1]. It enables us to control the ultraviolet
as well as the infrared behavior of the integral (4-6).

We now define IR- and UV-divergence degrees for integrals of the form (4-6)
with a numerator Z(4, k, q) which is admissible with respect to a given degree set
(4-14). For He#'YY, parametrized by (v) = (v,,...,v,), a UV-divergence degree is
defined by

o(H) = degry 7, = 4d + 5(H) — degr, E(k, g, 1), (4-17)
O0(H) = m;x o(H, ). (4-18)

The maximum is over all & with (H, ¥)e%,. Furthermore, for a basis
Uy =l =1l, wi=h, W, =1, (4-19)
we define for every He#'R, parametrized by (u) = (u,,...,u,), an IR-divergence

degree by

r(H) = degry 7, = 4r + p(H) — degr,, E(k(u, w, ), g, 1), (4-20)
p(H) = m;np(H, ). 4-21)

The minimum is over all & with (H, ¥)e%,.
The following theorem states the cutoff dependence of integrals (4-6) if a degree
set is given with respect to which the numerator Z(4,k, q) is admissible.

Theorem 2. Auxiliary Theorem. Suppose the nominator function Z (A, k, q) of (4-6)
is admissible with respect to a given degree set. Denote the corresponding divergence
degrees by w(H), He#"Y, and by r(H), He #™®. Suppose that for every He #™

r(H) > 0. (4-22)

Then the integral .7 ,(q, p) exists for every finite /. Furthermore, there exist constants
K(u,q) >0 and c(u,q) >0, so that for 1> K(u,q),

I g, w) < cu, q)

1 if max w(H)<0
Henr'"V
A7 og™ A if max w(H)<0 andall p,;=1 (4-23)
HenWV

Amaxiex Vol 1 gom ) if max w(H)=0
HeaVY



582 T. Reisz

The proof of the auxiliary theorem is postponed to Sects. 7 and 8.
We now state a corollary to the auxiliary theorem which will also be needed
later on. Let

N Pk q)
W= [ d*k,--d*k, ,
Silen=] E(k g,

where P(k,q) is a polynomial and E(k, g, ) is given by (4-7). For such an integral
divergence degrees are defined as follows. Let #YY and #™ as above. For
Hes#", parametrized by (v) =(v,,...,v,) and with complementary parameters
(2)=(z4,...52m-4), sO that k= k(v, z, q), we define a UV-divergence degree by

(4-24)

w(H) = degry 7, = 4d + degr,, P(k, q) — degr,, E(k, g, ). (4-25)

An IR-divergence degree for He #'®, parametrized by (u) = (u,,...,u,) and with
complementary parameters (w) = (wy,..., W, _,), so that k = k(u, w, g), is defined by

r(H)=degry 7, = 4r + degr,, P(k,q) — degr,, E(k,q, ). (4-26)

v|z

Corollary. Let
|P(k,q)l
"E(k, q; 1)

%(q’#);f d*ky - d*k (4-24)

Suppose that for every He #™®
r(H)> 0. (4-27)

Then £ ,(q, u) converges for every finite 1, and there exist constants K (u, q) > 0 and
c(u, q) >0, so that for 1> K(u, q)

1 if max w(H)<0
7, < : o Hex? . 4-28
fa(q5 #) = C(:u’ q) AMaXpe [w(H)] IOgm A if  max CU(H) g 0 ( )
HerVV

This is a direct consequence of the auxiliary theorem and is proved in
Appendix B. Both the auxiliary theorem and its corollary will be used below to
determine the cutoff dependence of the integrals into which the lattice Feynman
integrals (3-12) are partitioned, as described at the end of Sect. 3.

5. Bounds on the Numerator of a Lattice Feynman Integrand

We now state an estimate for the numerator of a Feynman integrand (3-11) which
allows an application of the auxiliary theorem of Sect. 4. To this end, let ¥ again
denote a natural set of line momenta and ./# = &.

Define a degree set 2 as the set of the following two maps.

1. For every He#'VY and every & < ./, set 6(H, &)= degr, V, where (v) is the
parametrization of H.

2. For every He#™ and every & = ./, set p(H, %) =degr,, V, where (u) are the
parameters and (v) the complementary parameters of H.
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Theorem 3. Let V(k,q;a)e%b;,, for some myeZ and (ka,qa) be bounded. Then V can

be estimated by
|V(k,Qaa)—P(k>Q)| éapgzb(lgq)a (5'1)
where B is a finite set and peN. For every beB,a’Z,(k,q) is a nominator
function which is admissible with respect to the degree set 9. Furthermore,
P(k,q) = lim V(k, q; a). For every He#'®, the inequality
a-0

degr,, P = degr,, V (5-2)
holds, and for every He #°Y, we have
degruIL P< degr V, (5-3)

where (u) denotes the parameters of H and (v) the complementary parameters.
Every function a?Z, is of the form (4-8) with A replaced by a~?, where all powers
of a are equal to p. If P(k,q)%0,p can be chosen to be 1. If P(k,q)=0, p is the
largest natural number such that lim V(k, g; a)/a? # exists. Note that all the 6 and
a—-0

p of the degree set & are independent of subsets & = . (cp. (3-4) and (4.12)f). The
o are independent also of the external momenta gq. However, the IR-degrees are
not so. The theorem looks like Theorem 3 in [1], the only difference being that
we are now able to control also the IR-behavior.

The proof of Theorem 3 is postponed to Appendix C. We now start to prove
the power counting theorem using this estimation and the auxiliary theorem.

6. Proof of the Power Counting Theorem

At first, the integration domain of (3-11) will be partitioned as indicated at the end
of Sect. 3,

Igra= Y YI,.(gwa) (6-1)

Je{l.n 2

where for every J the sum over z is finite, and for every sector J,z = (z;e6Z*|ieJ),

-~ T/a .
I (gua= | d*k -d*k,— Vi(k, g; 1, 0)
—n/a l_[ ,7 (l a 2

(po(ze-|-2

Here, @is the Heaviside step function, @(x) = 1 for x 2 0 and @(x) = 0for x <0, and

))[] o, (6-2)

i¢J

2n

0 if ”l——z <Z%¢ forsome zeZ*
a a

0.0)= (6-3)
1 otherwise,

and ¢ is a positive constant. If ¢ > 0 is small enough, for every J,z one can find a
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translation k;— k; + (2n/a)d;, j=1,...,m, so that
2
L1, +7”zi for all ieJ. (6-4)

This is a direct consequence of the naturalness of line momenta ([ 1], Appendix D).
Hence

- Vik,q;
L@ wa)= | d*k, - d*k,— ((l j) 9) (H@(—s— I, ||>>‘H@e(l,),
H (’71 ) ieJ i¢J

9y

(6-5)
where

T 2n
=1 (ky,.. m)ER4m _5_7(5j)i§(kj)i

<

:.|.:| ,——A-ﬁ

(5,.)i, j=1,...,m;i=1,...,4}. (6-6)

Using Theorem 3, we write V(k, q;a) = P(k,q) + R(k,g;a) and I, =19+ I¥ , where
P(k,q)

I3, = [ d*k, - d*k,, (H@< S—IHII))‘H@E(L), (6-7)
ﬁ( la) ) ieJ i¢J

g

and

IR = [d#k, o d* kG i) <H@< s—lllll>>l'[@(l (6-8)
e e o\l

R(k, g;a) admits an estimate of the form
IR(k,q; )| = a"bZ); Z,(k, q), (6-9)

where peN, B s a finite set, and for every be B the function a? Z, (k, q) is a nominator
function which is admissible with respect to the degree set 2, defined at the

beginning of Sect. 5.
As an elementary property of the propagators, for small enough ¢ there are
constants o and 7, so that

1 o

= (6-10)
i(la liz + 12
for all ||1;]| < (w/a)e, and
—(,—a)l— <ya? (6-11)
nill; n ﬂiz
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whenever ||[; — (2n/a)z | = (n/a)e for all zeZ*. Let h be the number of elements of
J. Using the bounds (6-10), (6-11), we get the estimates

|P(k, 9)l

lfoz(CI; wa) <19 (g, pa) = o"(ya?)" " [ d*ky - d*kprr s, (6-12)
by g(lfwf)
and
IR (g pa)| < bZBI_ ® (g, u, a), (6-13a)
where
_ _ PZ(k,q)
TO(q, 1 a) = o (pa2)" =" [ d*k, - d*k, o) 6-13b
(g, p,a) = o"(ya®) j, 1 MHU?M?) (6-13b)
4m 5
Ky =1 (ks k) R[] < for all e 2, (6-14)
Ly={lljel} Ulky,... . ky} S 2, (6-15)

d= max <na,4n<1+”i—i”)>. (6-16)
i=1,..., m

To every integral in (6-12) or (6-13) we now apply the auxiliary theorem or its
corollary, respectively. All the integrals are of the form needed, 4 being replaced
by é/a and £ by #;. The corresponding sets of subspaces #YY and #'} are
defined by basis of #; with respect to k. By (6-15), #YY < #YV and #'} < #™®

We first consider the integrals I#). Every integral in (6-13) satisfies the conditions
to apply the auxiliary theorem with the degree set

p(H,¥)=degr,,V, and &(H,¥)=degr,V (6-17)

for He #'} with parametrization (u) = (u"),...,u™) with respect to a basis (u, w) of
%, and for He#YV with parametrization (v), respectively. Remember that the J
and p are independent of the subsets & = .. In the notation (4-20), for every
HeA#'R, parametrized by (u) = (u",...,u™) and with complementary parameters

(“),
degIH 1 ‘(Ibz)(q9 :u’ a) h p (11) dequ|w l I (112 :ulz)
e ——=MW g

= [4r + degr,, V —degr,,, C] +degr, [ [(7 + u?)>0, (6-18)

i¢J
where we have used (3-6). Hence, using the auxiliary theorem, all integrals in (6-13)
are convergent, for every finite lattice spacing a. Furthermore, for every He #YY,
with parametrization (v) = (vq,...,0,)
degry I$)(q, 1, @) = 4d + 6(H) — degr, [ J(FF + 1)

ieJ
=[4d + degr, V — degr, C] + degr, [ [ (17 + u?)
i¢J

<2(n—h), (6-19)

alw
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where we have used (3-7), i.e.
degry IP(q, p,a) <2 —h)—1 forall HenyV. (6-20)
Using the auxiliary theorem, there exist positive K and c, so that for all a < K1,
a. iffn—h>0, IP(qua)<cl@®)y "a 2P ljog"q=calog™a. (6-21)
b. ifn—h=0, IP(q,pa) <calog"a (because of p=1). (6-22)

This means that the remainder I® does not contribute in the continuum limit. If
P(k,q)=0,all I9 3. vanish, and the proof of the power counting theorem is complete.

Thus, let us assume that P(k,q) # 0. For every He #'} with parametrization
(W) =(uy,...,u,) (and complementary variables (w) = (w4, ..., w,,_,) with respect to
a basis (u, w) of &),

degr,, P = degr,, V. (6-23)
Hence, in the notation of (4-26), using (3-6),
degry I9, (9, u, @) = 4r + degr,, P(k, q) — degr,, [ [(? + 1)
- _ T ied

> [4r + degr,, V —degr,, C] +degr,, [ [(7 + u?) > 0. (6-24)
i¢J
Hence, by the corollary to the auxiliary theorem, I9_(g, 4, a) is absolutely convergent
for evey finite a > 0. If in addition (3-7) holds, then for every HeA#VY with
parametrization (v) = (vy,...,0;), (z) being the complementary parameters of H,

Fng I_.(I)z(qa K a) = 4d + degru|z P(ks q) - de‘grvlzl_‘[(l2 + Hi )

<[4d + degr, V — degr, C] + degr, [[ (7 + u?) <2(n—h), (6-25)
1¢J
hence

degry TS (g, p,0) S 201 —h) — 1 (6-26)
for every He#'VY. Again applying the corollary to the auxiliary theorem, there
are constants K and c, so that for all a < 1/K,

a ifn—h>0, IY(qua)<c@) a0 Ulogm"a=calog™a, (6-27)
b.ifn—h=0, I9(qua=<c (6-28)

We thus see that the continuum limit of I(g; 4, a) exists. As in the massive case,
by the naturalness cf line momenta, there is only one sector which contributes in
this limit, given by J={1,...,n} and z=0. Using the dominated convergence
theorem of Lebesgue, we get

o0
lim (g ua)= | d*k, .--d‘*k,,,TM. (6-29)
- w 1@ +2)

This completely proves the power counting theorem for Feynman integrals with
massless propagators.
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7. A Lemma about IR-Behavior

To prove the auxiliary theorem we need a statement about the IR-behavior of
generalized continuum Feynman integrals. The integrals considered in this section
are of the general form

min | M;(u)]
4 4 iel
d*uy---d*u, 10w (7-1)
v
where uy,...,u,eR* # ={l;(u)|j=1,...,w}, and the [;’s are linear combinations
of uy,...,u, in such a way that rank, #" = r. Without loss of generality we assume
the I7 to be mutually different. #” is a subset of #", and for [;,e 7" we assume n;eN.
I is a finite set, and all M, are polynomials in the components of u,...,u,. The
integration domain consists of those u satisfying [?(u) <1 for all L;,e#".

A set #™ of equivalence classes of affine subspaces of (u,,...,u,) is defined as
in Sect. 3 (with #" for &, ¥ for ./ and u instead of k). To make a statement about
the convergence of (7-1), we introduce the notion of an IR-set for the family of
polynomials M>.

Definition 7.1. The set {p(H)|He#'™®} is called an infrared-set (IR-set), if

1. p(H)eZ for all He #™®.
2. For any basis (x;,...,x,) of #" with respect to u and any sequence H,,...,H,
of subspaces in #™ which is ordered with respect to this basis, there is an i€ so that

M;zp(H;) forall j=1,...,¢, (7.2)

7=
I

2 <linw

degr

zj}wj
where (z;) are the parameters of H; and (z;,w;) = (x;,...,X,), j=1,...,L

The integral (7-1) does not depend on external momenta. In (7-2), no momenta
are fixed (in the sense of Appendix A). For this reason we will omit the
complementary variables throughout this section (and only here) once a basis is
given, i.e. we write

degr., M, = degr. , M,
Depending on an IR-set, we define divergence degrees of (7-1) for arbitrary He #™
as follows. Let

wi=1L, Wy =1 (7-3)

Jr—s

Zl=li15"'5zs=l'

is?

be a basis of # with respect to u, where [ ,...,[; €7". Then for He#'™,
parametrized by (z) = (zy,...,z,), we define an IR-degree of (7-1) by

r(H) = 4s + p(H) — degr, [ [ (1} (u(z, w)))™. (7-4)
v
Lemma 7.1. IR-Lemma. Assume that an IR-set is given. Let {r(H)|He#™} be
the corresponding set of IR-divergence degrees. Suppose that for every He #'®,

r(H) > 0. (7-5)

5 cp. the notion of a UV-set in [1]
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Then the integral

min| M, (u)|
g = Sy edtu _
f _lféiqu " d ur H(lj(u)z)nj (7 1)

is convergent.

We now prove the lemma by induction on the number r of four-dimensional
integrations. The idea of proof is similar to that of the auxiliary power counting
theorem of [1]. The integration domain is decomposed into various parts and the
resulting section integrals are split appropriately with the aim to do one integration
in an elementary way and to apply the induction hypothesis to the other
integrations.

The case r=0 is trivial. Hence let r = 1. For every ¢ =1,...,w we define a
sector X; = R* as the set of those u satisfying

Pw<Bw<1 forall i=1,..,w. (7-6)

Next, we make a linear non-singular transformation

r

ti:j; (Ag)iju;; (Ao)yeRs G, j=1,...,r (7-7a)
so that

ty=lg(u) and det(4,)=1. (7-7b)
Define # ;= #"\{l;} and ¥, = ¥"\{I;}. For every ¢ and & < 7", we choose a basis
ZiyeensZgy UiyeeesUp_g 1 (7-8a)
of # ', with respect to (t,,...,t,) such that z,,...,z; is a basis of ¥ with respect to

(tz,...,t,). Then vy,...,0,_;_;€# \ and
u=1u(z,v,t1) = fro(z,0,t,) (7-8b)

is a linear function. Every ;% has a (¢, &-dependent) representation
li(Z, t1)= Z Cijzj+ditl‘ (7‘9)
j=1

Let 5, be the set of all He#™® which are parametrized by a basis of ¥~ with
respect to (uq,...,u,). Set

A= min p(H). (7-10)

He#y

Forevery ¢, =77, let Hy,..., H, be an arbitrary, ordered sequence of spaces of
#R so that

a. for j=1,...,t—1,H; is parametrized by (k;) € .
b. H,is parametrized by a basis (k,) of ¥~ (= &) with respect to (uy,...,u,).
(7-11)

By assumption, for every such sequence there is an i€l, so that

degry M; 2 p(H;) forall j=1,...,t (7-12)
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The set of all these iel is denoted by I(&, ). B
We now give an appropriate estimation for the integral ¢ (Lemma 7.2) which
allows us to apply the hypothesis of induction (Lemma 7.3).

Lemma 7.2. For any 0 <& < 1, the integral (7-1) admits an estimate

FES YOS [ dln g (), (7-13)

c=lgyeyy yeVe) <1

where Y(&, %) are finite sets, y > — 4 and

. 1
L8, )= 4z dt g
o zf(z’,t’l)gjsziny’ TI@GE, )y
4
min ‘Piy(vl’ t,l)’le(Z,)‘
. A0, dbo e . (7-14)
m{s’) T [T G,y
Y\S

where ty=1t,/|[t,]],
12 R0, 1) 2 2 iflie? \ S

L= B(u(z, v, 1,))ifLeW \V . }’”43

Q¢ F)= {(0/1,~~,U'r—s—1)

and for every &, %, u(z',v',t}) = f,, (2, V', t}), where f,,, is defined in (7-8b). For every
iel(¢, &) and every ye Y(¢, &), P, and Ty, are polynomials, and for any affine subspace
of the (z')-variables, parametrized by (Z) say, we have

degr;, Ty, (2") = degr, M, (u(z', v/, 1})). (7-16)

Proof. Applying the transformations (7-7) and (7-8) to ¢ for every ¢ and & and
noticing that

=

Xe={(uy,...,u)eR¥|IF(w) £ 1 for all eW},

&=1
we get
FEY Y Feo (7-17)
€=1!f§~//§
where
_ 1
L.,= d*t d*z,--d*z, -
> zfjél 1I?§52{finy ' H(IJZ)J
4
min| M, (u(z,v,t,))|
. d*v,-d*o,_,_ el , (7-18)
a(cf,y) ' ' [T
d Y\
an

iz ulz o)z} if eV \S
17 = F(u(z,v,1,)) if LeW \V';

Q(gay)z{(vlﬁ""vr—s—-l)

Here we have used (7-9) for every l,e.#. We now decompose the polynomials in
the numerator into linearly independent homogeneous polynomials M;, of the
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order o in u
Mi(u) = Z Mia(u)a (7'193)

=0
and furthermore, every M,, is decomposed into linearly independent homogeneous
polynomials Ty(z) in z,

M;,(u) = ;Pmp(v, t)Ty(2), Pigylv,t,) #0 (7-19b)

in such a way that the polynomials P,,, for fixed i, o are linearly independent.
Lemma A.1 in the Appendix states that this is always possible. Hence

M;(u) = ZﬂPiaa(v, t1) Ty(2). (7-19¢)
Using the linear independence of the M, for fixed i and Lemma A.1 again, for
any affine subspace of the (z)-variables, parametrized by (2) say, we get
degr; Ty(z) = degr; M, (u(z, v, t,)), (7-20)
for every Ty in (7-19¢c). Hence, for every &, &,
1

7 g = z d*t, d*z, - d*zem .
¥ o fotatier [%Ll ,izégzj@iny TG )y
v
min lPia,B,(U’tl)T[ii(z)[
. j d*v,---d*o,_,_ <D , (7-21)
QL9 e I_[ ([}2(“(2, v,t))"
VNS

where the minimum has been restricted to I(¢,.%). Let r; = degr, M;(u) for every
iel(¢,%). By definition (7-10) of A,

r—AZ0. (7-22)

i

Substituting
(Zl,...,Zs)=(Z,1,...,Z;)‘”t1 ”’ (vl""svr—s—l)z(vllv'"v:‘—s—~1).Ht1 ”» (7'23)

and writing t; =t,/| ¢{], we get

— 1
Fig =S d*ty e, )" d*zy - dt e
7 yei%,s") zfil Y 1?§5£my 1 I (HER)E
&
min |[£,[|"7 4P, (v, 1)) T, (2)]
. d4 U/ . d4U;._s_ 1€1(8,9) : , (7_24)
n’(g,y) ' ' [T G, v, )

P\

where we have collected indices, and n =4(r— 1) — @gun(lf(u))”f + A. Choose
any He# ,, parametrized by (w) = (wy,...,w,) say, such tﬁat p(H)=A. Then
n=4(r— 1) —degr, [[(F )" + Az 4(b— 1) — degr,, [ [} + p(H) > — 4.
. g (7-25)
Because of (7-22), Lemma 7.2 is completely proved. []
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All what remains to show is the following

Lemma 7.3. There is an ¢, >0 such that the following statement holds: For all
0<e<e, foralll,¥ =V, and all yeY(E, &) there exists a constant c, , ,, 0 that

T S, (7-26)
Combining this statement with Lemma 7.2, the IR-lemma follows directly.
Proof of Lemma 7.3. At first, note that
min [P, (v, 1)) T,y(z')| < min [T (z)]- max [P, (7-27)

iel(¢,9) iel((,9) yeY(&,9),iel((, %)
By [til=1 {vi lforalli=1,...,r —s— 1, the inner integrals in (7-14) can be
estimated by
const

— min |T;,(z')],
& 1€l(E,9)

where L is a non-negative integer. Consequently, for an appropriate constant c, ,,

min |T,,(z)|
fmt ( ) é c . d4z d4 1 iel(&,S) (7-28)
B i llz(z/,t’l)ie2 me H(lz(z tl)

It can easily be seen that for small enough ¢ >0, the integral (7-28) vanishes
whenever one can find [;,e% so that d; # 0 in the representation

Z tl)_ ZC” j+dtl (7'29)
This follows from 2/, ..., z,e%. For, the set of 2’ satisfying z;> < e* forall j=1,...,s
and [2(z,t}) < &% for some [,e.% is empty if d; # 0 and & > 0 is small enough. More

precisely, let (x},...,x;) be a point of the integration domain of (7-28). Then, for
every l,e &%

il = ldsty | = L0 )+ Zl eyl 1 xj 1l = e(1 + slcl), (7-30)
=

where |c| = max, ;|c;;|, hence

Idi
> . . 7-31
8_1+SIC| for all le¥ (7-31)
If there is ;e with d; # 0, set
1 |dy|
O<es= E—,
<8_21+s|c

Then the integration domain is empty. Consequently it is sufficient to discuss only
those & such that d; =0 for all e, ie. I;=1,(z') for all [,e&. In particular, all
integrals (7-28) are constant.

Finally we show that all conditions to apply the hypothesis of induction are



592 T. Reisz

satisfied by (7-28). Let
W=1l,..,29=I (7-32)

be a basis of & with respect to (z') =(2},...,z;) and let H,,..., H, be a sequence
of classes of affine subspaces of (z’) which is ordered with respect to this basis, i.e.

a. H;is parametrized by~(Ej) c {29y forj=1,...,t
b. The (k;) contain the (k,) for j > h. (7-33)

Every basis (7-32) can be completed with w = l;and v,,...,v,__; of (7-8a) to a basis
l

of %" with respect to (u) = (uy,...,u,), u= f,,(z,v,w) (cp. (7-8b)). To every H; in
(7-33) we associate in this way an affine subspace of (1) which is parametrized by
(k;), and we associate a corresponding p(H;)eZ. By construction of I({, &) and by

l Wylgyenes Upg g

ITEEREELI N

degr;j T,(Z)z degr;} M;(z',v,w)); forall j=1,...,t andall iel
(Lemma 7.2), there is i€l (¢, %), so that
degr;j T,(z)z degr;j M;u)=zp(H;) forall j=1,...,1 (7-34)

Hence the given IR-set, restricted to subspaces H of the above form, is also one
with respect to the numerator of (7-28).

Let
Xp =l xp =, yi=h, Y =1, (7-35)

s=p
be an arbitrary basis of ¥ with respect to (z),...,z;), so that z/ =z'(x,y). Let H
be the affine subspace of (z},...,z;) which is parametrized by x,,...,x,, and
Yis--+>Ys—p are held fixed. Then

4p + p(H) — degr, [ [(5(z' (x. )"
g
z 4p + p(H) — degr, [ [ (1} (u(z', v, w)))" (7-36)

>0

by assumption. Hence the hypothesis of induction applies to the integrals (7-28),
and consequently they are convergent. This completes the proof of Lemma 7.3 and
of the IR-lemma. [

8. Proof of the Auxiliary Theorem

The idea of proof is rather simple. The integral (4-6) is divided into a sum of
integrations over appropriate sections. In every sector the numerator is estimated
by one argument of the outer minimum of (4-8). The resulting integrals are of a
form which allows application of Lemma 7.1 and the auxiliary power counting
theorem of [1], giving the desired cutoff dependence.

At first, ., is written as
Ia= ) I (8-1)
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where the sum goes over all subsets ¥ = . = {l,eA"|y; = 0}, and

Vi e Z(Ao k7 Q)
L ,(q, )= dky o d* ke (8-2)
7 I <f!1ny ' n(ljz—'_'uJZ)J
I2 >s mg >
where we have written 7 = %\, and ¢ > 0 is a constant. The mtegratmn domain

is restricted to those k satlsfymg I2(k,q) <¢? for all Le& and 1?(k,q) = ¢ for all
;e . For every & choose a basis

Uy =1l,...,u.=1 (8-3a)
of & with respect to k and complete it by
=1 (8-3b)

to a basis of & with respect to k. We write lizli(u,v, q). Every L,e% has a
representation

1]1:].

L=U;+ Q_i(Q)> U;= '21 éijuj' (8-4)
=
Without loss of generality let the Jacobian for k —u, v be equal to one. Then
_ 7S A /1 k
FAGwE [ duedty [ dtedte, S0 g
1i2§azin.(/’ lf;&zinf/‘ n(l )]

As in Sect. 7 it can casily be seen that there is ¢, =¢0(0,C,r)>0, so that for
0<e<eg,f,,(q,n)=0if Qj # 0 for some [;e.%. In the following we assume that
QJ =0 whenever [;€%, so that ;= [;(u).

By assumptlon the numerator Z(/l k, q) is admissible with respect to the given
degree set. For any % we take the iel of (4-8) which corresponds to % by
Definition 4.2. Then

miJnlMij(ua q)|
g L)< d*u ~--d"’u,’e‘——
ez, 1 TG
&
LS min A~ 7 Cy(k(u, v, ), )|
- | d d*v,_, ek .
Fartnr <H(l?(u, v q))"f>( [T G, q)+u})"f>
T NS

(8-6)

To the inner integral we now apply the auxiliary power counting theorem of [1],
while the outer integral will be estimated by the IR-lemma.

Lemma 8.1. Set

LENS min A~ C;(k(u, v, q), q)]

Fe , U, W) = d*v "~d4vm7r ek, : ~
a1 1) ,;QM ' [1EG @, @) [T G uv,9) + uf)™

T N

(8-7)
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There exist K (u,q) >0 and c,(u,q) >0, so that for all (u,,...,u,)eR*, satisfying
I2(u) < &2 for all ,e S, we have
I 5(gu 1) < ¢y, q)
1 if max, ,uvvo(H)<0
A" tlog™ A if max, _,wvo(H)<0 andifall p,;=1 (8-8)
Araex Mol gom ) if max,,_ v (H) = 0
Sor all 2> K, (u, q), where the ultraviolet divergence degrees w(H) are given by (4-17).
Proof. Let % be the set of all [,e#"\.% which depend only on u and gq. Then
1 1
T T =
L5 (u, )™

o for leT N2 (8-9)

and
1 1
2 27n é 2\n;j
L5 (u, @) + p3 1™ = ()

Hence without loss of generality we assume # ={. For [;6.7 we have

for LieW\Fo)nR (u}>0). (8-10)

lZ 2 2
PN (8-11)
lj £

for any n? > 0. Consequently
min A~ P4 Cy(k(u, v, q), 9)|

LS

Je(quuc d*vy - dbv, —
(@, u, 1) < Ifgeiin.7 1 H(ljg+1,’2)n,. 1—[ (lj?_l_'uj?-)J
T MNP
LT min A~ Cy (k(u, v, q), 9)|
<c d*v,---d*v,_, ek -,
se | dn @+ [T Glog+iF
7 70 (8-12)
where ¢ = c(¢) is a constant. Now let
wi=l,...,w=1,, zy=l,, oosZmer-a =1, (8-13)

be an arbitrary basis of £\ with respect to (vy,...,v,—,). Variable w and constant
z define a class H of affine subspaces of (vy,...,v,_,). The set of all such H, for all
bases (8-13), is denoted by #°YY. Every basis (8-13) of .#\.& can be completed
to a basis of .# with respect to k by adding u,,...,u, of (8-3a). In this way, every
He#'YY is considered as a subspace of (k), where (z) and () are held fixed. This
means #,Y < #YY. To every He#'YY we associate the corresponding §(H,.%)
of the given degree set.

Every sequence H,,...,H,e#Y which is ordered with respect to the basis
(8-13) of L\ & is a sequence of subspaces which is ordered in (w,z) with respect
to the basis (w,z,u) of #. Hence, by assumption, for every such sequence there
exists [eK; so that

degr, |, Cy—py=degr,, .., Cu—pa2d(H, ) forall g=1,....s, (8-14)

Xglyg H
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where (x,) are the parameters and (y,) are the complementary parameters of H, with
respect to (8-13), ie. (x,,y,) = (w,z). This means that the set {6(H, %)/ HeA"}
is a UV-set for the numerator of (8-12) in the sense of [1] which is independent
of u. Furthermore, for any He #Y", parametrized by (x) = (x4,...,x,), we have

g (H)=4e+ 6(H, &) —degr [[(17 + piy —degr, [] (13 + puiy
T MNFo
< w(H), (8-15)
because of d(H,¥) = é(H), where w(H) and 6(H) are given by (4-17) and (4-18),
respectively. Thus, all the conditions are met to apply the power counting theorem
of [1] to (8-12). Hence, there exist K, (i, q) >0 and c, (1, q) > 0°, so that for all

'1 > Ky’(.u’ q)
Fu(qu, 1) < ¢y (1, q)

1 if maxy, o o(H)<0
A~ tog" A if maxy ,ywoH)<0  andifall p;>1, (8-16)
arexner @i logm 4 if  max, e o(H) 20
=S¢y q)
1 if maxy_,uwvw(H)<0
A" tlog™ A if max,_,ww(H)<0 andifall p,=>1.
Amaxpes UV [w(H)] log'” Aif max,,_,uv a)(H) >0 (8-17)

O

Having determined the cutoff dependence of the inner integrals, we now turn
to the remaining integrations.

Lemma 8.2. The integral

mijn | M;;(u, q)]
g = d*u,-dtu, 8-18)
y(q) Iizges;lny ' l_[(ljz (u))n_, (
7

is convergent for every <.
Combined with Lemma 8.1 this means that there are K(u,q) > 0 and c(u, q) > 0,
so that
jl(qs ,U) é C(/l’ q)

1 if max,_,uvw(H)<0
A7 log™ A if max,_,ww(H)<0 andall p,=1 (8-19)
Ararnex oI gem 5 if max,, v o(H) 20

for all > K(u, q), which completes the proof of the auxiliary theorem.

5 uis bounded and {§(H, &)} is independent of u, hence K, and c,, can be chosen to be independent of u
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Proof of Lemma 8.2. We use the IR-lemma of Sect. 7. Every integral (8-18) is of the
form (7-1), where & stand for # =¥  and ¢, for ¢.
Let

zy=l,...,zy=1, wy=I

i o Wes =1, (8-20)
be a basis of & with respect to (uy,...,u,). We define #'® as the set of all
classes H of affine subspaces of (uy,...,u,) which are given by constant wy,...,w,_,
for arbitrary bases (8-20). Every such basis of % can be completed with
Viyeoos Uy €L\S of (8-3b) to a basis of ¥ with respect to k. In this way, every
Hes#'} can be identified with a subspace of (k) and we can associate to H the
corresponding p(H, %).

Every sequence H,,...,H,e#'s which is ordered with respect to the basis
(8-20) of & is a sequence of subspaces which is ordered in (z, w) with respect to
the basis (z, w,v) of ¥. By assumption, there is a jeJ,, so that

degr, |, M;; = degr M;;2pH,, &) forall g=1,...,t, (8-21)

2O x4y
where (x,) are the parameters and (y,) are the complementary parameters of H,.
Hence, {p(H,¥)|He#}} is an IR-set for the numerator of (8-18) in the sense of
Definition 7.1. For every He #'%, parametrized by (z) = (z,...,2,),
ry(H)=4s+ p(H, &) — degr, [ [ [} (u(z,0) ]

4

Xg[yg’)l"'”m—r

2 4s + p(H) — degr. [ [ (5)"

N

>0

by assumption of the auxiliary theorem, where p(H) is given by (4-21). Consequently,
all conditions to apply the IR-lemma are satisfied, and Lemma 8.2 is proved. []

Conclusions

We have generalized the convergence theorem for Feynman integrals with a lattice
cutoff of [1] to lattice field theories with massless fields. Infrared power counting
conditions are sufficient for the convergence of diagrams with finite lattice cutoff.
If these conditions are supplemented by the ultraviolet power counting conditions
of [1], the continuum limit of a lattice Feynman integral exists and is equal to the
formal limit, i.e. the integral over the continuum limit of the integrand. Apart from
the possibility of zero-mass propagators, the general assumptions on the structure
of the lattice integrand are the same as in the massive case [[1]. It should be periodic
with the Brillouin zone in every loop momentum, the propagators should have
only one pole in the Brillouin zone, and the line momenta should be natural. While
the last condition can always be satisfied by an appropriate choice of the loop
momenta, the pole condition is a genuine restriction. In particular, the power
counting theorem does not apply to fermions with propagators having poles on
the boundary of the Brillouin zone. Such propagators would require stronger
assumptions to be made on the structure of Feynman integrands on the lattice,
in addition to the periodicity.
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In a forthcoming paper, following the ideas of Lowenstein and Zimmermann,
the power counting theorem will be used to construct a renormalization scheme
for a wide class of lattice field theories containing massless fields [6].

Appendix A. UV- and IR-Degrees for Polynomials

Let P be a polynomial in variables u,w and g. P can be written as

P(u,w,q) =Y, Q,(w, ) M,(u), (A-1)

where M, are linearly independent homogeneous polynomials and

0,w,q9)#£0 in w (g fixed!).
The UV-degree of P with respect to u is defined by

degr

ulw

P =maxdegr M,, (A-2a)

and the IR-degree is defined by
degr, ., P =mindegr M,, (A-2b)

where degr M, is the homogeneity degree of M,. Note that the degrees defined in
this way depend on the external momenta g. Sometimes for the UV-degree we will
use the shorthand notation

degr, P(u, w, q) = degr,,, P(u, , q).

ufwg

In general,
degr,, P(u,w,q) < degr,,,, P(u,w,q)
and

degr,,, P(u,w,q) 2 degruiwq P(u,w,q).

For “exceptional” momenta g, the latter is a strict inequality. If P is the denominator
of a momentum space Feynman integrand, these momenta destroy the convergence
of the Feynman integral, hence they must be excluded.

We list the most important properties of degr and degr. Let F,F,,...,F,
be polynomials in u, w,q. Then -

degr, F"=n degru‘w (A-3)
degr,, F" =ndegr, F, (A-4)
degr,,, H Fj= Z degr,, F, (A-5)
ji=1 j=1
degr,, [[ F;= ) degr,, F;, (A-6)
—  j=1 =1
degrulw Z F;< _m X degruIW b (A-7)

.....
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degr,,, Zle;'min degr,, F;. (A.8)
— L —=

At two stages of this paper we need the following
Lemma A.1. Let P be a polynomial in variables u,v. P can be written as

P(u,v) =} R, Q,(v), Q,#0, (A-9)

where R, are linearly independent homogeneous polynomials, so that all polynomials
Q, for o with the same degr R, are linearly independent.
Let u= f(@i, %) be linear and homogeneous. Then

degr, , R, (u) = degr, ,, P(u,v) for all o (A-10)

hat =3 111717}

Proof. P can always be decomposed into linearly independent homogeneous
polynomials M, (u):

P(u,v) =Y M, )Q,(v), Q.(v)#0.

For any f let
f=degrt M, =---=degr M,

with n maximal and

Qa19~~~5Qats tén

be linearly independent with ¢t maximal, so that

t
0, = Z CijQs, for all i with t<iZn.
e
Then ’
n t
Z QaJ(U Z (u)Qal(U

where

R, w)=M, (u)+ i ciM

j=t+1

The R, ,i=1,...,t are linearly independent and homogeneous of degree f. Doing
so for all §, the first part of the lemma follows.
Let u = f(ii, %) be linear and homogeneous. Write every R, in a partition (A-9) as

ZS[} @Y, B (@), Vaﬁ(ﬁ)ioa

where S are linearly independent homogeneous polynomials in @ Every V,4(it) is
homogeneous in i@ of degree degr R, — degr S;. Inserting this in (A-9) yields

P(u,v)= ZS,, ZQa 0) V().
The first sum is over all f§ for which « exists with V,,(4) # 0. For every f8

ZQa(U) (@) £ 0,

because of the linear independence of the Q, for « having the same degr R,. Hence



Lattice Feynman Integrals with Massless Propagators 599

degr,, R, (u) = degr,,, P(u,v)  for all o O

Appendix B. Proof of the Corollary to the Auxiliary Theorem

To prove the corollary of Sect. 4, the integral #,, (4-24), will be estimated by a

finite sum of integrals of the form (4-6) to which the auxiliary theorem applies,

and such that the numerators of the integrands are admissible with respect to the

degree set &, consisting of all 6(H,.¥) =degr,, P, HeA#"", and of all p(H,¥) =

degr,,, P, He#™ (cp. (4-24)f). Note that the p and d are independent of ¥ = &,.
We first mention the following fact. Let P(u,v,q) be a polynomial and

P(u,v,q) = ZR W) 0Q,(v,9); Qy(v,9)#0 inwv, (B-1)

a decomposition of P into linearly independent homogeneous polynomials R, in
u. Let
w=Du+Eq, v =Av+ Bu+ Cq (B-2)

be an arbitrary linear transformation, where 4 and D are invertible matrices. Then,
for every partition (v') = (v'V), v?), we get

degr,m,@, 0, < degr,m, @, P for all g. (B-3)
Using the linear independence of the R, this follows directly from
degr, o, Qy(v,q) = degr,m o, Ry(u)Q,(v,q)
< degr, w0, P(u,v, ).
To prove the corollary, let first & < &, be an arbitrary subset (cf. (4-9)). Let
Upyeonyllyy UyyeeeyUpo, (B-4)

be a basis of ¥ with respect to k such that u,,...,u, is a basis of & with respect
to k. Then there exists a decomposition of the numerator P of (4-24) into linearly
independent homogeneous polynomials R,

P(k(u,v,9).9) =} R,)Q,(v,q) with Q,(v,9)#0 inv, (B-5)

so that for every partition (u) = (u™®, u®)
degr,m,» R, = degr,m @, P for all geG. (B-6)

This is proved in Appendix A. A decomposition (B-5) is possible for every basis
(B-4) of . with respect to k, for fixed ¥ < .¥,. Hence, with an appropriate set J,

|P(k,q)| = min Z IRy (k, @)1 Qq(k, q)]-

JjeJ geG

Writing G = ® e, G, and setting for (97)jes€G Ry =R, ., Qo =0, , we get

7 This notation is explained in Appendix B of refs. [1]
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[P(k,q)| = ZGmiJn(leg(k,q)I'Ing(k,q)l)

<y <m1n|RJg(k q) >Z;|ng(k, q)l

geG
<> <min | M (k, q)l)’ICz(k, 9)l, (B-7)
leX JjeJ

where X = G®J and for I =(g,h)e X we have written M ;

a1=Rj, and C;=Q,,.
Let

’ q ’

’
UpyeoisUpy Uy, Uy

be another basis of ¥ with respect to k such that u),...,u, is a basis of .#. Such
a basis is related to (B-4) by a transformation of the form (B-2). Writing
(") = "V, v?) and using (B-3), we have for all C, of (B-7),

degr,m @, C, < degrm @, P forall leX.

Furthermore, by construction, all M, of (B-7) depend on ' and g only, and one
can always find a jeJ, so that for each partition (') = (u'®, u®),

degr w2, M, = degr,m @, P forall leX.
Until now, & is held fixed. Taking the minimum of (B-7) over all ¥ = %, we get
|P(k,q)| < miIn IZX <mijn | M jy(k, q)l)'ICz(k, gl = IZYZ’(k’ q), (B-8)
ie eX; \ JjeJ. e
where
Z(k,q) = mlﬂ(IC,z(k )| min| M;(k, q)l) (B-9)
jeJi

I is an appropriate finite set, Y= ®,;X;, and for ()€Y, we have written
Mk, q) =M (k,q), Cy(k,q)= Cy,(k,q). Every Z, is a nominator function which
is admissible with respect to the degree set &, consisting of all 6(H, %) = degrm
He#YY ((v) being the parametrization of H and (z) are the complementary
parameters) and of all p(H,¥)=degr,,P,He#™ (parametrized by (1) with
complementary parameters (w)). Note that all 6(H, &) and p(H, &) are independent
of ¥ =¥,.
Using (B-8), we get

A Z,(k,q)
< 4l d* ! ) B-10
W [ dk gy s (B-10)

The divergence degrees (4-17) and (4-20) are given by (4-25) and (4-26), respectively.
Thus, all the conditions are met for the auxiliary theorem to apply to every integral
on the right-hand side of (B-10). This proves the corollary. ]

Appendix C. Proof of the Numerator Bounds

In this appendix, Theorem 3 of Sect. 5 is proved. The proof is similar to that of
the corresponding statement of [ 1], and below iwo lemmas are taken over literally.
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However, we have to consider IR- and UV-degrees simultaneously. Consequently,
the proof is more tedious here.
For 6 =(6,,...,9,)eN},deN,d £ n— 1 and multi-indices b; for i =1,...,n, let

1 if b+ + by =0, i=d+1,...n

b by = .
951aa+1s---,by) {0 otherwise,
and

|by|+ - +1bgl =6, — 6+, and

1 if
1 [byl+ - +1bi| £6; =644, i=1,...,d—1

hsa(bys....by) =
0 otherwise.

We state the preliminary

Lemma C.1. Let FeC® be of the form F(x,...,x,), x;€R™, and §,cN, ={0,1,2,...}
such that 6,2 6, if i<k, for all i,k=1,...,n. Suppose

F(Xy,.sXjm 1, A%, A%,) = 0(A%), A—0; j=1,...,n (C-1
Let deN, d £n— 1. Then there exist C®-functions Fy >80 that
F(xq,...,%,)

- b by—q yba b b
= Z h§|d(b13"~9bd)gé;d(bd+ls'--sbn)xll”'de—iyddydd-rll“'ynanl...bn(xl"--’xn)9
bl»-n,bn

where
(rn) = (x,)
(yn—l).= (xn—l’xn)

(yd)= (xd5' ..,X,,).

Proof. By successive application of Lemma 6.1 of [1] to F, we get

F(xl""’xn)z Z g6|d(bd+19'"9bn)ysd:]{“'ygandJrl-nb"('xl""’xn)a (C'3)

byt by

where F, ., eC” and
Fyo (X1 X, 2%, AX,) = 005720, 2-0; 1< j<d.
Applying Lemma 6.2 of [1] to F - yields
Fyoop X)) = 0 hyabys s bg) X xg o V5 Fy o (X155 X,),
e (C-4)
where F by b, EC™ Inserting this into (C-3), the assertion follows. []

From Lemma C.1, we derive a bound on a function Ve®,,, if ordered sequences
of subspaces in #'® and #YV with respect to a natural set % of line momenta
are given.
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Lemma C2. Let ¥ < ¥ and
u®, u®, o pmTn (C-5)

be a basis of & with respect to k such that u'V,...,u"™ is a basis of & with respect
to k. Let Hy,...,H, be a sequence of subspaces of #™ which is ordered in u with
respect to the basis (C-5). Denote the parameters of H; by (z;) and the complementary
parameters by (z;). Furthermore, let K,...,K be a sequence of classes of affine
subspaces of #VY which is ordered in v with respect to (C-5). Denote the parameters
of K; by (w;) and the complementary parameters by (w;).

Consider a function V(k,q; a)e%by,, for some myeZ and assume that (ka, qa) are
bounded. Then V admits an estimate of the form

\V(k,g;0) = P(k,g)| <a” Y f(bu---,bt)IZ'i‘“-Zﬁ"I'IZX|sz1,..b,(k,Q)|, (C-6)

by-b,
where
L if |by|+ - +|bf=degr, V, foral i=1,...t
b= B -7
fs,-,b) {0 otherwise. (©7)

X is a finite set and peN is independent of the sequences and the basis. Qpy,.., are
homogeneous polynomials, and P(k,q) =lim,_,, V(k, g; a), satisfying

degr, , P = degrfglzg V forall g=1,....t,

O z4lz,
degr, , P<degr, V forall g=1,..5s (C-3)
and
degrwawg O, ., = degr, V+p, forall g=1,...,s. (C-9)
Note that for f(b,,...,b,)#0
degrz‘qlzgf(bl,...,bt)z’{l egh = degr, . V, g=1....t (C-10)

The polynomials f(b,,...,b,)z5 ---z> depend only on the basis of &, i.e., they are
the same for all bases (C-5) with the same collection u‘*,...,u" and arbitrary
v, ..., o™~ ", The integer p can be chosen to be 1 if P(k,q)#0. If P(k,q) =0, p is
the largest natural number so that lim,_,, V(k, g; a)/a? % O exists.

Proof. 1. Write V(k,q;a) = F(ka,qa)/a™ and F’'(x)= F(k(u,v,7-q),t-q) for fixed g
and variable t8. We define variables (x) = (x,,..., X;+,+1) as follows

(wy)=(xy)

(Wz).z (x1,x2)

(ws)'= (x15' "’xs)
0,0 =155 Xg11) (C-11)
(Zt).= (xs+25""xs+t+1)

(ZZ)‘= (xs+t’xs+t+1)
(1) = Xgqr41)-

8 We write t instead of a to avoid misunderstandings
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ForH;,j=1,...,t,8t(z;) = (Xy4142-js- > Xs4,+ 1) (“internal” momenta of H;) and
(z))=(X1,.-.»Xs1,4+1-;) (“external” momenta), so that (z;,z;) = (X1,..., Xs4,41)-
Define rs+,+1_j=@fﬂzjV for all j=1,...,t. Similarly, for K;,j=1,...,s, set
(wj)=(x1,...,x) and (W;) = (X4 155 Xs4¢41), 80 that (wj, wj)=(xX1,..., X1 041)-
Define r;=my— degrw V for all ]—1 ,s. Then, by definition of the IR- and
UV- degrees Fi=T, 2 > - ZFsys, and

F(Xy,.Xj AXji1se s AXgirs1) = 0(A7), A-0; j=1,...,s+t (C-12)
2. As in [1], define for 6eZ

F'(Axqy,...,Ax, )
Py(xy,.. s+t+1)_h . : T Tirs >

(C-13)

G(Xpse s Xgqrs 1) =F (X150 s Xghp01) — Pmo(x1> s Xgtr+1)-

Let roeN, be the largest integer such that P, (xy,...,X4+,4,) % O exists. Then
G(X1yee oy Xjy AX i gseeos AXgrraq) =0(A7); 450, 0= j<s+1,
where f;=r;for all j=1,...,s+¢ and

. To if my<r,
r0= .

ro+1 if my=r,,
and hence 7y =7, = - Fsir. We now apply Lemma C.1 to G with d=s+1,
n=s+t+1,(y)= (x,, xs+,+1) i=s+1...,s+t+1:

G(xl, s+t+1)_ Z f(bs+2’ . s+t+1)ys+2 yss;rtlill

bs+2 bs+t+1

Y b bs b
Z h(bl}""bs+ l)xll"‘xssyss_:llFbl,”bs“*_l(xla~--’xs+t+l)a
bybsiy

where

1 if|b|+ - +|bgsyr | =F_y, i=s+2,...,s+t+1
0 otherwise,

7(bs+2,...,bs+,+l)={

byl 4 4 1bysy| =Fo—Fyy and

1
byl + -+ |bj|SFy—7F; forall i=1,...,s

h(by,....bysq) =
0 otherwise,

eC®. For bounded (ka,qa) and t=1, using (y;) =(z54,4,-;) for
i=s+2,...,s+t+1, we get
IG(xla S+t+1a)|t lsaf0 Z f(bls . abt)|zl;1'”2?l,1§|le1 ‘bt(k’q)|’
by-by e
where f(by,...,b,) is defined in (C-9) and X is a finite set. Q), . , are polynomials,
satisfying

degr,, \, Qp,..b, S Fo—Fg=(fo— 0)+denggV, g=1,...,s. (C-19)

9lWg
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Finally, note that

Pl @)= 1im sV 5= Pyl
Then

degr, |, P 2%,y 1-,=degr V, g=1,...,t,

it =5t 14
g'cg 24124

(C-15)

degr ngmo—fg=degrwgV, g=1,...,s,

wglw,

and
1
|V(kaq,a)—P(k,‘1)| =W IG(xlaa‘--sxs+t+la)|r=1

< Y fby.. b2 Y10y, (),
by--by lex

where p=7F, —myeN. [J

Proof of Theorem 3. Using Lemma C.2, the proof of straightforward. We have to

show the validity of an estimate

[Vik,q;a) = P(k,q)| = a"bZBZb(k, 9, (C-16)

where every a?Z,(k, q) is a nominator function which is admissible with respect to
the degree set 9, defined at the beginning of Sect. 5.
At first, let & < . (cp. (3-4)) be a given subset and

uD, L, L pm (C-17)

a basis of £ with respect to k so that uV, ..., u® is a basis of & with respect to
k. Let H,,...,H,e #™ be a sequence which is ordered in u with respect to the
basis (C-17), and K,,...,K,e#Y¥ a sequence which is ordered in v with respect
to (C-17). Using Lemma C.2, Ve%,,, can be estimated by

|V(k,q;a) — P(k,g)| = ale'Mj(u)lgrlel(ka 9l (C-18)

where P(k,q) =1lim,_, V(k, q; a), peN is determined by the function ¥, and J, X are
finite sets. M; and @ are homogeneous polynomials satisfying

degr,

T8 7,z

where (z,) are the parameters of H, and (z,, z,) = (u,v), and

Mjgdegrfglng forall g=1,...,t andforall jeJ,

degrwgl,_quﬂgdegrwg+p forall g=1,...,s and forall jeJ,leX,

(w,) being the parameters of K, and (w,, w,) = (u,v).
We now make an estimate of the form (C-18)

a. For all sequences of subspaces of #UY which are ordered in v.
b. For all bases (C-17) of £ with fixed u,...,u®, i.e. for given (u) we consider
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all possible choices of (v) such that (C-17) is a basis of #. Note that by such changes
of the basis the IR-degrees degr, . V do not change®.

Zylzg

We get
[V(k,g;a) — P(k,q)| = a”lzyle(u)ImiKn 1Qu(k.q)l,

where Y,K are finite sets. For every basis (u,v) of ¥ with given (4) and every
sequence K,...,K,e#Y" which is ordered in v with respect to this basis, there
is an ieK, so that the polynomials Q;, satisfy

degr, |, Oy <degr, V+p forall g=1,..,s andforall leY.

wglw

(w,) are the pararpeters of K, and (w,) the complementary parameters.
Next, we consider

a. All sequences of subspaces of #™ which are ordered in u,
b. All bases (C-17) such that uV,...,u®™ is an arbitrary basis of <. By the

corresponding changes of a basis, the UV-degrees degr% V do not change?®.
We get
|V(k,g;a) — P(k,q)| < a” ), min|M;,(u, q)l'rlnli(n [Cin(k, q)1, (C-19)

beB jeJ

where B, J, K, are finite sets and M, C;, are polynomials. For every basis (C-17)
of # such that u™),...,u® is a basis of %, the polynomials M}, depend only on
u and the external momenta g. Furthermore, for every sequence H,,..., H,e #™
which is ordered in u with respect to (C-17) there exists jeJ, so that

@zglzg
where (z,) are the parameters of H, and (z,,z,) = (u4,v). For every sequence
K,,...,K,e#"" which is ordered in v with respect to (C-17) and for every beB
there is [e K, so that

M, = degrfglgg V forall g=1,...,t andforall beB,

degrwglwg Cp= degrﬁg V4+p forall g=1,...,s.

9 A change of basis

u® Ly u®, L u®
-
o, pmTn My
is given by
u=u

v'=Au+ Bv+ Cq,
where B is an invertible matrix.
10 We have
u'=Du+Eq

’

V=,

where D is invertible. The change of the basis of & depends on the external momenta g, hence the
polynomials M, are dependent on u and ¢
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(w,) are the parameters of K, and (w,, w,) = (u,v). This means that, taking on the
right-hand side of (C-19) the minimum over all & < ., we get an estimate of the
form (C-16), where all functions a”Z,(k,q) are nominator functions which are
admissible with respect to the degree set £. This proves Theorem 3.
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