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Abstract. We establish existence of a dense set of non-linear eigenvalues, E, and
exponentially localized eigenfunctions, uy, for some non-linear Schrodinger
equations of the form

Eug(x)=[(— 4+ V(x)ug] (x) + dug(x),

bifurcating off solutions of the linear equation with 2=0. The points x range
over a lattice, Z%, d=1,2,3, ..., A is the finite difference Laplacian, and V(x)is a
random potential. Such equations arise in localization theory and plasma
physics. Our analysis is complicated by the circumstance that the linear
operator — A+ V(x) has dense point spectrum near the edges of its spectrum
which leads to small divisor problems. We solve these problems by develop-
ing some novel bifurcation techniques. Our methods extend to non-linear wave
equations with random coefficients.

0. Introduction. Motivation, Results, and Basic Ideas

The purpose of this paper is to construct infinitely many time-periodic solutions to
some non-linear, partial difference equations which can be viewed as the equations
of motion of Hamiltonian systems with infinitely many degrees of freedom.
Physically, these systems describe infinite arrays of coupled anharmonic oscil-
lators with the property that when the anharmonic (non-quadratic) terms in the
Hamilton function are neglected the frequencies of the oscillators are non-
resonant, in a suitably strong sense to be made precise later on. We propose to
show that from infinitely many periodic solutions of the unperturbed system of
harmonic oscillators periodic solutions of the perturbed system of coupled
anharmonic oscillators bifurcate.

The main difficulty encountered in such an attempt is that the spectrum of
frequencies of the unperturbed system is dense in some interval I SIR. This makes
standard bifurcation techniques inapplicable and has motivated us to develop
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some novel techniques. The basic fact about the unperturbed system that enables
us to carry out our construction successfully is that two or more different harmonic
motions corresponding to nearly degenerate frequencies involve degrees of free-
dom in nearly disjoint regions of phase space.

We proceed to discuss some examples of non-linear equations that we are able
to analyze. The first example is a non-linear Schrédinger equation:

)

i%(xs O =(—A+Vx)p(x, t)+ W(lpl) (x, Hp(x, t). (0.1)

Here x denotes a point in the simple, (hyper-) cubic lattice Z*, v=1,2,3,...;t, the
time variable, is real; 4 is the finite-difference Laplacian, i.e.
(Ap) (x)= | ZI 1 v(y). (0.2)
yily—x|=
V(-)is a random potential, more precisely {V(x)},.z. are independent, identically
distributed (i.i.d.) random variables. The distribution, do(V), of V= V(x)is givene.g.
by

I
dQ(V)——-l/v 1% 0.3
g
or by
1
do(V)= EX[-g/z.c/z](V)dVa (0.3
etc., where { is a measure for the disorder in the system. Finally,
W[yl (x)= ZZ Wi(lx—y) v, (0.4)
y/
where W is a positive, non-zero, exponentially decreasing function, i.e.:
0< W(x —y|)<conste "wIx~l (0.44

for a certain my, >0.
The linear Schrodinger equation

S (0 =(H) (x.1) 0.5)

with
H'=—A+V

was introduced by Anderson [1] to model the dynamics of a quantum mechanical
particle, the electron, moving in a disordered (random) background. This model is
important in the theory of electrical conductivity in disordered metals. The long-
time behaviour of the wave function of the electron may be characterized by its

spread -
r¥(t)= ZZszl(e”’H w) ()7 (0.6)

Anderson argued [1] that if the disorder, {, in the distribution of the potential V' is
large enough, or if the energy of i is close to the edges of the spectrum of H°, and if
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y(x) is rapidly decreasing, then
r2(t) < const < oo (0.7)

for all time. In one dimension (v=1), (0.7) is known to hold for arbitrary disorder
{>0and all energies [ 2]. In higher dimensions (v = 2), (0.7) was proven in [3], for {
large, or for encrgy ranges close to the edges of the spectrum of HC. In fact, much
more is known: For v=1, the spectrum, o(H®), of H® is simple, dense and pure-
point for arbitrary {>0, [2]. For v=2,

o(H)N[(— o0, — E (O)U(E ), )] (0.8)

consists of simple, dense and pure-point spectrum [4, 5]. Here 0= E ({) < oo, and
if { is large enough, the entire spectrum of H® is simple, dense and pure-point.

The eigenfunctions of HY associated with eigenvalues in the set (0.8) are
decaying exponentially fast in |x|.

These properties can be used to prove (0.7). They are interpreted, physically as
localization: If one prepares an electron with sufficiently small energy in some
bounded region of a disordered background it will stay inside roughly the same
region for all time.

The problem with Anderson’s model is that it completely ignores the
interactions between different electrons. Suppose {1, (x)} are eigenfunctions of H’
localized near points z;€ Z*, where {z;} is an infinite array of points of positive
density, ¢°. (That such a family of eigenfunctions of H exists, for almost every
random potential V, is one of the basic results of [4].)

We recall that electrons are particles with spin + obeying Pauli’s exclusion
principle. Thus, given a density, ¢ < 20°, of electrons, we can fill every eigenfunction
(“orbital”) . of H® with zero, one or two electrons, as long as electron-electron
interactions are neglected. Suppose now that some orbital v, is filled with two
electrons with anti-parallel spins. We now gradually turn on all electron-electron
interactions and ask whether the electrons, initially in statc vy, , remain localized
near z,. It is clear, intuitively, and has been verified in special situations in an
approximate treatment [6], that the electrons in other orbitals vy, i 0, enhance
the localization of the two electrons in v, . However, the repulsion between the two
electrons initially in y, tends to delocalize them. The electron-electron repulsion is
described by a Coulomb potential. However, in a solid the Coulomb potential
tends to be screened, and we therefore describe the clectron-electron repulsion by a
potential, W, of exponential decay. In order to study the delocalizing effect of the
electron-electron repulsion on the electrons initially in 1, , we consider a Hartree
approximation [7]. The state of the two electrons, after the electron-electron
repulsion has been turned on, is described by a symmetric wave function,
u(x{)u(x,), where u(x) solves the non-linear eigenvalue problem corresponding to

(0.1),

(—A+V(x)+ AW(u) (x))u(x) = Eu(x) 0.9)
and u can be chosen to be real, with
full3= ZZ (u(x)*=1. (0.10)

/4 is proportional to the square of the electric charge of the electron.
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One purpose of this paper is to construct solutions, u,, of (0.9) corresponding to
some non-linear eigenvalues E, and obeying (0.10), with the property that

lim [lu, =y, ., =0 (0.11)
210

and

AL0

where E, is the eigenvalue of H® corresponding to the eigenfunction v, . This
result is interpreted, physically, as supporting the idea that Anderson localization,
as described by (0.7) and (0.8), is stable under turning on electron-electron
repulsion.

Another physical motivation for the study of a non-linear Schrdédinger
equation similar to (0.1), but with 2 <0, is found in plasma physics. If y is replaced
by the electric field E, and W has finite range, e.g. W(x—y)=4,,, then (0.1) is a
limiting case of the Zakharov equations describing the propagation of the electric
field through a plasma, in the presence of a disordered background [8]. Our
methods can be used to construct an infinity of stationary (standing wave)
solutions for that system.

The interpretation of (0.1) as a Hamiltonian mechanical system and further
physical applications of the non-linear Schrodinger equation, e.g. to classical spin
wave theory, have been discussed, for example, in [9].

We proceed to discussing a second example. Consider a non-linear wave
equation

2

%;;(x, £)— [(4—Q3)u] (x, 1)+ W(u)(x,1)=0, (0.13)

where u is now a real function on Z, A is still given by (0.2), Q2=Q3(x) is a
multiplication operator such that {Q3(x)},.zv are iid. random variables, and
Q2= M +2v has distribution

do(M)=NO(M)e ™MI"LdM | a=1, (0.14)

where N is chosen such that | do(M)=1 or a distribution similar to the one in (0.3).
[Here (M) =0, for M <0, 6(M)=1, for M =0.

Wiu) (x)=, Wi(lx — yhu(y)?, (0.15)
y
where W(|x|) decays exponentially in |x|.]
Clearly, (0.13) are the equations of motion for an infinite array of coupled,

anharmonic oscillators. Our purpose is to construct time-periodic solutions to
(0.13), using the following ansatz:

u(x, )=(1071"""?v) (x, wt), (0.16)

where @>0 and v belongs to [2(Z’ x [ —n, 7)), i.e.

i (3, o2y =1 0.17)

xeZv
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Moreover, v is required to be odd and periodic in ¢, with period 2, i.e.
(x, — )= —v(x, 1), v(x,—m)=v(x,n)=0. (0.18)

Finally, 07 is the Laplacian with periodic boundary conditions on the space
I*([ — =, =]). Its odd eigenfunctions are given by sin(nt), n=1,2,3, ..., correspond-
ing to the eigenvalues n?.

Our ansatz (0.16) will provide us with a periodic solution, u(x, t), of (0.13) with

. 2m, . - .
period — if the function v satisfies the equation
)

[ — A+ Q3+ AW (o) ]tw=w?v, (0.19)

for an arbitrary >0, where
=012, (0.20)

Solutions of (0.19) satisfying (0.17) and (0.18) give rise to solutions of (0.13) of
2 . . .
period g which are odd in t and localized in space, i.e. square-summable over Z".

[We note that by rescaling v in (0.19) we can fix the value of / at 1 at the price of
varying .

f dl( Y ou(x, t)2>.

-7 xeZ'
But we prefer to vary 4 and impose (0.17).]

Our ansatz (0.16)-(0.18) has converted the original problem of constructing
time-periodic solutions to (0.13) into a non-linear eigenvalue problem (0.19)
analogous to (0.9). We propose to cope with this problem as well as with (0.9) by
using some novel bifurcation techniques. The main goal of this paper is to expose
those techniques.

Next, we summarize our main results in the form of several theorems. We begin
by recalling the main results for the linear eigenvalue problems

(—A4+Vu=Eu, (0.21)
(—A+Qu=w?u, (0.22)
underlying (0.9) and (0.19), respectively.

Theorem L [4,5]. Let do be as in (0.3), (0.14), respectively. Then for every dimension
v=1,2,3,... and arbitrary { >0, there are constants E(v,() and w(v,() such that

o(—A+V)n{E:|E|>E,(v,{)}
and
o(— A+ Q)N {w:w*>wi, )}

are simple, dense pure-point spectra, with probability 1 (w.p.1) with respect to V, Q3,
respectively.

If v=1, or if {is large enough, then the spectra of —A+V and — A+ Q3 are
simple, dense pure-point on [ —2v,2v]+suppdo, [0,4v]+suppdp, respectively,
w.p.1.
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Remark. If do is as in (0.3') Theorem L remains true for { large enough, and for
arbitrary { when v=1.

For proofs and background material see [3-5]. (The simplicity of the pure-
point spectrum of — 4+ V and of — A +QF has been proven in the second paper
quoted in [5].)

It is expected, though not rigorously established, that, for v > 3, the portions of
the spectra of —A+V and —A+Q3 in the intervals (—Ey(v,{), Eq(v,{),
[0, w3(v,{)), respectively, arc absolutely continuous with 0<Ey(v,{)< E (v,0).
0<wy(v, )= w,(v,{), for { sufficiently small.

The purpose of this paper is to prove the following non-linear versions of
Theorem L.

Theorem NL 1. If W(|x|) decays exponentially in |x|, then there exists some constant
E,(v,)Z E(v,{) such that for almost every V, for every (simple) eigenvalue, E, of
— A+ V, with |Ey| > E(v,{), corresponding to an eigenfunction uy(x), there are a set
A CR containing 0 as an accumulation point and a family (u,, E;), . , of solutions of
the non-linear Schriodinger equation (0.9), with |u,||, =1, for all L€ A, such that

lim [, — 1o, =0. (0.23)
hed

The set &§={E,},., is a Cantor set with the property that
28, —UEN(Eg—¢, Eg+ &)

tends to O faster than any power of ¢, as k— co, for some sequence &, whichtendsto 0,
as k—oo. Here | denotes Lebesgue measure.

Remark. The minimal and maximal elements of 4 and the Lebesgue measure of A
are not controlled explicitly, because A is obtained in a not fully constructive way
(see Sect. 2).

We have, however, an alternative fully constructive result on the existence of
solutions of the non-linear eigenvalue problem (0.9), (0.10) summarized in the
following theorem.

Theorem NL 2. Consider the distribution (0.3), and suppose that W(|x|) is of finite
range. Then there exists a constant E1(v, ) Z E (v, {) such that for every 2> 0 there is
a set, (2), of potentials, V, of full measure with the property that for Ve C(2), the
non-linear Schridinger equation (0.9), (0.10) has infinitely many solutions, and the
corresponding eigenvalues form a dense subset of

(E:|E[> Ey(v,0))

Remarks. (1) Our methods presumably enable us to show that the density of states
of solutions to (0.9) and (0.10) is strictly positive on {E:|E|> E'(v,{)}, but we have
not checked all the details.

(2) While Theorem 1 shows that from every solution (1, E,) of (0.21) with |E,|
> E,({), a solution of (0.9) bifurcates, Theorem 2 shows that when one starts from
certain solutions of (0.21) one can construct solutions of (0.9) for arbitrarily large
values of A.

Analogues of Theorem 1 and 2 can be proven for the non-linear eigenvalue
problem (0.19), (0.17), with proofs very similar to those of Theorems 1, 2.
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Theorem NL 3. If W(|x|) decays exponentially in |x|, then there exists a constant
(v, Q) Z 0 (v, ) such that, for almost every Q, for every eigenvalue wi >, () of
— A+ Q2 with the property that

n*wj is not an eigenvalue of — A+ Q3 (0.24)

Joreveryn=2,3, ..., there are a set A CR containing 0 as an accumulation point and
a family (v;,w,);. 4 of solutions to (0.19), (0.17) such that

lim 10, ~ ¢, =0, (025)
JeA
where
vo(X, ) =ug(x)t ™ ' sint, (0.26)

and u, solves (0.22) — or, equivalently v, solves (0.19),(0.17), for A=0- with ®? = w2,

The set O ={w,},. ,is a Cantor set, and there exists a sequence (g,) tending to 0,
as k— oo, such that 2¢, — (ON[wy— &, 0o+ ¢, ]) tends to O faster than any power of
&

Theorem 3 is the exact analogue of Theorem 1. Similar to Theorem 2 there
corresponds a result, Theorem 4, for the non-linear eigenvalue problem (0.19),
(0.17) which holds for all A>0 and whose proof is completely constructive; see
Part I1L

Remarks. (1) Results analogous to Theorems 3 and 4 can also be proven for
wave equations of the form

A2
¢

Ql—z(x, 0 — (A u) (x, 1)+ W(u) (x, Du(x, 1) =0, 0.13Y

o

<

where W is as in (0.13), and

(Au)(x) =3 J (u(y) —u(x)), (0.27)
5
where the J  are positive, symmetric independent random variables, with J, =0 if
|y —x|>1,, for some finite /. For 4, a result similar to Theorem L is available, and
the methods of the present paper can be used to analyze (0.137).
The construction of a perturbation theory for periodic solutions of continuum
equations of the form

2y

joS)

2 (3, 1) — Au(x, )+ Aud(x,1)=0, (0.28)

jo5}

where xe[ —=, =], presents problems due to the density of the spectrum of the
d’Alambertian which looks similar to ours. However, it appears that this problem
requires an improvement of our methods, because after the transformation (0.16)
the eigenvalues of the linear part are all of infinite multiplicity.
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(2) We think it would be very interesting to generalize these results to quasi-
periodic solutions. In fact, KAM methods tend to work only for finite dimensional
hamiltonian systems and the radius of analyticity in the coupling constant of the
perturbed tori tends very rapidly to zero as the dimension tends to infinity. On the
basis of this work, our guess is that for some class of infinite dimensional
Hamiltonian systems it may happen that though the radius of analyticity in the
coupling is zero, nonetheless there is a “substantial” set of (real) coupling constants
for which the tori still exist. In other words it may be that as we vary the coupling,
tori cease to exist and are born again intermittently, an infinity of times. The
problems involving quasi-periodic solutions are certainly harder than thosc
analyzed in this paper, though not hopelessly, difficult. Some rather conventional
steps in this direction have already made in [9, 10].

(3) Thelast open problem we would like to mention, would be to establish non-
linear localization for an equation like the non-linear Schrodinger equation (0.1).
The goal would be to show that, for { large enough, solutions (x, t) of (0.1) with
initial conditions of compact support have the property that

rr=3 IxPlplx,?

xeZ”

grows less than linearly in ¢, as |t| — co, corresponding to subdiffusive behaviour, or
is bounded by D({)t|, as |t|— oo, with D({)—0 rapidly, as {—oo. See also [9] for
some discussion of this problem, and [11] for a result in one dimension.

Our work is organized as follows:

Part I. Proof of Theorem NL1.

Section [. Strategy for the proof of Theorem NL1.
Section 2. The gap set.

Section 3. Bounds on the pole-subtracted Green function.
Section 4. Proof of Theorem NL1.

Part 11. Proof of Theorem NL2.

Part I11. Anharmonic oscillators with random masses.

In the present publication only Part I is contained. The second and third parts
will appear elsewhere.

Part L. Proof of Theorem 1
1. Strategy for the Proof of Theorem 1

Let (uy, E) be a solution of the linear cigenvalue problem (0.21), as specified in
Theorem 1 [i.c. with |Ey|> E (v,{)]. We propose to prove that, for all ¢, >0, there
exist a subset A of the real line containing 0 as an accumulation point and a family
(u;, E;), 4 of solutions of the non-linear eigenvalue problem (n.l.e.v.p.) (0.9), (0.10)
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such that & ={E,},. , is a Cantor set with the properties specified in Theorem 1,
and

lu, —ugll,<eq, Vied. (1.1)

This is the contents of Theorem 1.

The formal proof of this result is begun in Sect. 2. Here we sketch the main
ideas. Given u,, we choose the origin 0 € Z" in such a way that u, is localized near 0,
in the following sense.

We shall analyze the behaviour of u,, and of u,, inside cubes A » 4, defined by

Aj={x:x|Sd}}, A;={x:|x|<4d}, (1.2)

where |x|= max |x*, and
1<osy

dj:exp(ﬁ(%)j)a j:192739, (13)
where >0 some constant to be fixed later; see also [4]. We define annuli 4; by
A=A, )\ ;. (1.4)

Let GY(z; x, y) be the Green function of the operator HY which is the restriction
of — A+ Vtol,(A), Aasubset of Z", with 0 Dirichlet data at the boundary 04 of A.
It is shown in Sect. 3 of [4] that, for j>k, where k is a finite random integer

depending on (Eq= Eq(V), V), and for x and y in 4;, with [x—y|= EQST-!,

1G5 (Egs x, y) Sexpl—m'(Eq) |x —y[], (1.5)

for some m'(E,)>0; [m'(Ey)~In|E,|, for |E| large]. Inequality (1.5) — which is a
rather deep fact about the operator H°= —A+V - has two important
consequences:

(i) The eigenfunction u, has uniform exponential decay outside A;,

() =expl—m(Eo)[x[],  x¢ Ay, (1.6)

where m(E,)=cm'(E,), for some purely geometrical constant ¢ >0.

(i) Eigenvalues of H° corresponding to eigenfunctions localized outside A4, do
not resonate with E, in the following sense: If (E, u) are such a pair of eigenvalues
and cigenfunctions of H® and if |E—E, ~e """, j>k, then u is localized in an
annulus 4; separated from A; by a distance ~d;—4d;=d,, for f large enough.

The dense set of eigenvalues of H in an open interval around E,, can thus be
grouped in two subsets: Eigenvalues corresponding to eigenfunctions of H°
localized inside Ay, and eigenvalues corresponding to eigenfunctions localized
outside 4. The first subset, E,, ..., E,, is finite, and there is a gap 4; such that

\E,—Eo|= A, for i=1,...n(k). (1.7)

The second subset is infinite, but its elements do not resonate with E,, in the
sense made precise in (ii), above.

In order to construct a solution of the n.Le.v.p. (0.9), (0.10), we shall use a
deformation technique in the parameter /, yiclding nl. eigenvalues E,, E, ,,

i=1,...,n(k),corresponding to E,, E,, ..., E, 4, respectively, and we shall keep | 4] so
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small that ReE; ;, does not cross ReE,, for all i. The eigenvalues in the second
subset are dense around E,, but, thanks to property (ii) above, they do not collide
with E,, if 2 is permitted to make excursions into the complex plane, as we shall
describe. By taking Im / to 0 at suitable values of Re A (values constituting the set A
introduced in Theorem 1), we shall obtain solutions of the n.le.v.p. (0.9), (0.10).

We now make these ideas somewhat more precise: We shall construct a
connected, open set

P(Ey, V)E{(4,0)eR?:6>0}, (1.8)
(sec Fig. 1), and a family (E; ;,u, ;) of solutions of the following nl.c.v.p. which
depend smoothly on (4,0)€ P(E,, V):

LA+ V+(+ i)W (luy D, o=E, s1; 5, (1.9)
g sl2=1.
We shall further constrain the solutions u;_, of (1.9) to belong to a subset %; of
[,(Z") defined as follows:

U= {u rmax |u(x) ~ uo(X)| S oo, Ju(y)|Se MV, vy A,;} : (1.10)

xe Ay

m(E,) My
2 72

where M:min{ }, with my, the decay rate of W(|x— y|).

In Fig. 1, oy ~e V4,

We intend to construct solutions to (1.9) along any path y, Uy, Uy, CP(E, V)
with the property that its image, E; ;, (4,0) y,uy,Uys, has piecewise con-
stant real and imaginary parts, respectively. The important property will be
that ;ing E, ;= E must be contained in a certain Cantor set &, which we call “gap

(2. 8)€73
set” and which depends on (E,, V). Energies in & will obey certain non-resonance
conditions; see Sect. 2. The set & is the one described in Theorem 1. It will be
shown that y3={(A(0),)}s.,, where I is a closed interval on the positive J-axis
containing 0, can be chosen such that ReE,; ;=E, Vo€, 1()1{13 A(0)=7eR exists,

lbilm ImE;; s=0, u; s€%, Voel, and limu,,; s=u; exists.
0 010
Finally, (u;, E) is a real solution of (0.9), (0.10).

ImE4

Fig. 1
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Our construction of P(E,, V) will guarantee that, for all (1,0)e P(E,, V), E; 518
a simple and isolated eigenvalue of the linear operator

— A+ V4 A+IW (|, ). (1.11)

In order to construct P(E,, V) we shall integrate certain differential equations
(deformation equations) for (u,_,, E, s) which will guarantee that (1.11) is valid. We
now describe, how these differential equations are obtained. We suppose that
P(E,, V)=0. Let U be a sufficiently small open neighborhood of a point (2, d,),
with UCP(E, V). The pair (u, 4 E, ;) then solves the n.le.v.p.(1.9),forall (4,0)e U
if and only if u, ; is a fixed point of the following non-linear map:

T*%u)= 4—~;~~idz[z (= A+V+E+IO)W ()] u, . (1.12)

Here % is a small circle in the complex plane which encloses precisely one
cigenvalue E, ;(u) of the linear operator

—A+V+(2+io)W(lu]), (1.13)

for every (4,0)e U and every ue N, where N is a sufficiently small neighborhood of
U,,.5, in the sphere

S={u:lul,=1}. (1.14)

The existence of the neighborhoods U and N and the circle 4 follows from
property (1.11), by means of analytic perturbation theory [12]. Furthermore
c(u; 2, 0) is a normalization constant chosen such that T#° maps S into itself.

The important point is now that € is independent of (4, 0) if U and N are chosen
small enough. Therefore, the fixed point equation

T*%(u)=u (1.15)

does not contain the n.l eigenvalue E, ; explicitly anymore, in contrast to (1.9).

There are different ways of trying to construct a solution of (1.15); (various fixed
point theorems, implicit function theorems). We analyze (1.15) explicitly with the
help of a differential equation. Differentiating (1.15) on a solution u=u, ; with
respect to ¢ yields

o )
au,. s ou; s

T 15 %(uy,5)+ DT () [755]

=iQK*XE, ))W(lu; s)u; 5

+ (e 10)QK™(E,, JDW(u ) [OZO] T (116)
where
Q:1~%P3;,,5_%F3;,5 (1'17)
with

Pov=(u,vu, P%=(v,uu
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and

(u,v)= ZZ u(x)o(x).
The operator Q arises from the differentiation of the normalization constant
c(u,, 5;4,0) in 9.
Moreover,

K*z)=[z—(=A+V+(+i0)W(lu, )]

—(z—E; )" 'P (1.18)

This operator can be analytically continued to z=E, ;, for U, N small enough,
thanks to property (1.11).
The operator K*?(z) is called the “( pole- )subtracted Green’s function.”
Finally, DW denotes the (R-linear!) derivative
ow ow

oo

and DT is defined analogously.

All these objects are defined in detail in the Appendix, where the reader also
finds a derivation of (1.16).

Suppose now that, for (4, 0)e P(E,, V), the condition

IQK*(E; J)DWLv]| <|2+i0] ! (1.20)

holds, for v Lu,; with |vll, =1, where | - || is the operator norm of operators acting
on [,(Z"). Let K = K*°(E, ;). Then we may rewrite the differential equation (1.16) in
normal form

ou . e .
_5%(1 =[1—=(A+i0)QKDW(lu, s|) [ Ju; 51~ QK W(|u; su; 5. (1.21)
We remark that the operator which is inverted on the right-hand side is only
. . o ) ) 0
R-linear, and not C-linear. A similar equation can be derived for (—;t—ji'—"-.

The basic problem in proving the bound (1.20) and thus deriving (1.21) is to find
suitable bounds on the subtracted Green’s function K*?(E, ;). Such bounds will
also be used to prove that E, ; is a simple, isolated cigenvalue of

—A+V+(A+i0)W(u, ),

i.e. to derive condition (1.11). In Sect. 3, we shall establish a bound on the integral
kernel, K*?(x, y), of the operator K**(E, ;) for functions ue Uy and for |1 +1d|
small enough. Our bounds will hold, provided

ReE, ;e(Eq—Le V% 1 Eg+ie Vi), (1.22)

where d; has been defined in (1.3), and

, >, Vdic
either ImE, ;=e } (123)

or ReE, ;e %(k, V),
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where %(k, V) is a gap set to be defined more precisely in Sect. 2. Approximately,
the gap set %(k, V) is a Cantor set contained in {E: |E|>E v, ()}, obtained by
deleting from {E:|E|>E(v,{)} an interval of length e 41 around every
eigenvalue of — A + V corresponding to an eigenfunction localized in the annulus
A}, for all j= k. The constant y satisfies 0 <y < and will be defined in Sect. 2. The
integer k is chosen such that E,e G(k, V).

Our construction of solutions u, s to the nlev.p. (1.9) will proceed by

ou,
integrating the differential equation (1.21) and a similar equation for Mrs along a

suitable path in the (4, §)-plane which is obtained imposing conditions on ReE, ;,
or on ImE, ; (see Fig. 1), respectively. Thereby we shall obtain the set P(E,, V)
mentioned in (1.8). The equations along the first curve y, =(X(d),0) are:

d e _
do Uy, 6=1—(A0)+ l())QKDW[']U;.(o).(ﬂ
><QK<l+d5> Wity .55 (1.24)
d
(:l*(g RCE;'(,”’[; =0.

The initial conditions for (1.24) are:
H0)=0 and uy o=u,. (1.25)

By the choice of k, and since Re E; 5 5= E, [by (1.30)], condition (1.23) is satisfied
along the curve y, =(4(J), ). This will enable us to prove bounds on the solution
Uys).5 Using estimates on |[K**°(x,y)| established in Sect. 3, provided u,y ,
remains in the subset %; introduced in (1.10). For such values of J, the first
alternative in (1.23) holds. This enables us to proceed in deforming u, ; by varying
/4 and adjusting 0 in such a way that ImE,; , remains constant; sec Fig. 1. As we
vary 4 and ¢ in this fashion, ReE, ; turns out to sweep over an interval:

(Eo—¢, Eg+e), with g>e Ve (1.26)
for some ¢>1.

Defining & as the intersection of 4(k, V) with the interval (E,—¢, E,+¢), we
pick a point (4, 6) such that Re E, ;e %(k, V). At this point, we may deform u;, , by
decreasing d towards 6 =0 and adjusting /2 = A(d) in such a way that Re E, ;remains
constant.

A remark should be added on the initial condition (1.25): Although the right-
hand side of Eq. (1.24) makes sense even at 2= =0, the proof of it may, a priori,
fail, because E, is not isolated. However, if we have a solution of (1.24) with initial
conditions (1.25), then u,;, ; has to be an eigenfunction of (1.9). In fact,if 6 >0 E, ;
turns out to be an isolated eigenvalue of the linear operator (1.11) and the

difference )
Unayo— THs5).5) (1.27)

does not depend on J. By a limiting argument involving imposing Dirichlet
boundary conditions on a box and letting the box 1Z", one can easily see that (1.27)
has to vanish, because u, is an cigenfunction for J =0.
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This concludes our outline of the strategy of the proof of Theorem 1. If the
reader finds it somewhat complicated, he or she may find that the mist will lift in
the following three sections.

2. The Gap Set %(k, V)

In this section we construct the gap set %(k, V) introduced after (1.23). Our
construction relies on the notions and results of [3,4].
Following [3] we define a decreasing family of singular sets

So(E, V)2S,(E, V)2S,(E, V)2..., (2.1)

where
So(E, V)={xeZ":|V(x)—ReE|<2v+2m'(E)}, (2.2)

where m'(E) is a positive function, with m'(E) ~ In|E|, as |E| > cc. Simple probability
estimates show that if { is large, or ReE is large, Sy(E, V) is a subset of Z* of very
small density, and S,(E, V') does not contain an infinite connected cluster.

Let 4 be an arbitrary subset of Z* with the property that An54(E, V)=0, and
let GY(z; x, y) be the Green function of HY. Then simple perturbation theory in 4,
shows that

|G A(E; x, y)| Sexp(—3m'(E) [x—yl) (2.3)

for all x and y in 4.
The singular sets Si(E, V), with k=1, are defined inductively. Given S,, ..., S,,
we define Sy, ; as follows:

S (E,V)=SyE, V)N CF, 2.4)

where {C;} is a maximal family of disjoint subsets of Sy(E, V) satisfying Condition k
(a) diam(C}) = d,, (2.5)

(b) dist(CE, S\ Cp) = 2d1§/4 =2y o, (2.6)

() dist(o(H), ReE)z eV, (2.7)

where “diam” denotes the diameter of a lattice set,

dist(4,b)=minja—b|, d,=exp (AT,

beB
with >0, and C7 is a lattice set such that
dist(Cy, 0C) = 4d, . (2.8)

Let €, be the collection of lattice cubes with sides parallel to the lattice axes and of
length 2™ which are centered at the sites of 2"~ 'Z*. We require that

CieC,y, foralla, (2.9)
for some n(k) determined by

2"0>10d, = 2"0 "1, (2.10)
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If we must work in a finite region B we may similarly define the sets Si(E, V, B),
k=0,1,2,.... See [4] for further details.

Definition. A set ACZ" is called (k, E)-admissible iff

0ANC)=¢ (2.11)
for all j=0,1,...,k, and for all o.
We recall from [3]

Lemma 2.1. If f is sufficiently large then, given arbitrary subsets D, and D, of Z,
with D, C D, and dist(Dy,0D,) = 30d,, there exists a (k, E)-admissible set R with
D,CRCD,. (2.12)

We will need the following probabilistic estimate proven in [4] (Lemma 3.3):
For a given set 4 CZ" and a finite interval I, with In[ — E (), E ({)] =0, we define

B (A ={V:S, _(E,V, 4)=%0,
and Vee® dist(o(H?, ,, E)

zexp[ —d]_,], for some E€l}. (2.13)
Lemma 2.2. For ye(0,1] sufficiently small and |1] <1,
Prob(#(A, 1) | Ald, > . (2.14)

Definition 2.3. The gap set, 9(k, V), of order k is defined as the following set of
energies, E
Gk, V)={EeR:|E|>E(), Vce®,
and Vj=kdist(a(HS, , ), E)=2e 1. (2.15)

The constant >0 is the one introduced in (2.13).
We then have

Lemma 2.4. For almost every V there is a finite integer ky=k(V) such that if
ReEe%(k,, V) then

Se(E, VA, )=0 (2.16)
for every k=k(V). (Here Aj:AJH\Zj, Jj=1,2,3,... are the annular regions
introduced in (1.4).)

Proof. If (2.16) was incorrect, for some V and some E, with Re E € 4(k, V), then by
(213) Ve # (A -4, ), for some I containing ReE. By Lemma 2.2, the probability
for this event is

Prob(#y(4, 1, 1) =d; "

Since .
2. Prob(#(4,- . 1)) <w,
k=1
it follows from the first Borel-Cantelli lemma that, for almost every V, there exists
some finite integer k() such that
Sk—-l(Es VaAk—l):Q)a
for all k=k,(V)if ReEe%(k,, V).
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Lemma 2.5. For almost every V, for every E, in the pure-point spectrum of H®, with
|[Eol > E(0), there is a finite integer k, =k,(E,, V) such that

dist(Eq, o(HY, , ) = 4e ™4 (2.17)
for all j=k,(Eq, V) and all c€6.

Proof. We know from Sect. 3 of [4] that w.p.1 there is a finite k,(E,, V) such that,
for all j=k,(E,, V) we have

dist(a(HY, 1) Eg)<e ™ (2.18)
for some ¢ e % (this follows directly from Lemma 2.2, and Lemma 3.2 of [4]) and
dist(a(HO 3 )1, o(HO,, 4 )= Se ™1, (2.19)

forall ¢, ¢"and aninterval I centered at E,, with |[I| < 1. Thisis shownin (3.10) of [4].
Lemma 2.5 follows from (2.18) and (2.19).
From these lemmas we obtain the following Corollary:

Corollary 2.6. For almost every V and every eigenvalue E, of H® with |Ey|> E ({)
there is a finite integer k,=ky(Ey, V) such that

Eoe%(k,, V). (2.20)
Lemma 2.7. Under the same hypothesis, we have that
Gk, VY(Eq—e Y Eq+e”4)=2e % -—constd}} ;e dis

for some constant independent of j, for arbitrary j=k=k,. (Herel denotes Lebesgue
measure. )

Proof. By definition, the gap set %(k, V) is obtained by excising an interval of length

a7 . . . N .
4e 4~ symmetrically around every eigenvalue of Hf?MJ, for arbitrary c € ¥, with

c¢DAjandallj=k;see(2.15). Given j, the measure of the union of all those intervals
is clearly bounded by

Y #(o(HO e S Y dde T i=4di e (221)
cienA; 0 ! crenAd,; 0
[ DA

By Lemma 2.5 we know that

dist(E, a(HO, , )= 4de” - (2.22)
for all m>k,. Now, let E€(E,—e %, Ey+e %), for some j=k,, but

E¢4(k, V), forsomek=k,. (2.23)
Then there is some n=k such that

dist(E, o(HO, , ))<2e %+,
for some ce ¥, cp A, Hence

dist(Eq, a(H?, , ))<2¢ %1 pe 4.

By (2.22) it follows that
n>max(j+1,k—1). (2.24)
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By (2.21) and (2.24), the Lebesgue measure of all E€(E,—e %, E,+e~ %) which do
not belong to 4(k, V) is thus bounded by

v
4d?y e~ ""“gconstdee Ay (2.25)
n>max(j+1,k—1)

for j= k.
This completes the proof of Lemma 2.7.

Lemma 2.8. For almost every V, for every eigenvalue E, of — A+ V, with|Ey| = E ({),
there is aninteger k> 2 and a sequence R, CZ of (k— 2+ n)-admissible sets such that :

(i) RO A5+, (2.26)
and

%dfc-2+n§di5t(aRn> 627(—2+11)§%7<—2+n7 (227)

(i) #{E:Eco(HY), dist(E, Eg)<e V& nl =1, (2.28)

(iii) dist(Eq, o(HY ))<e 2™ (2.29)

Proof. A sequence R, of (n—2)-admissible sets satisfying (2.26) and (2.2) exists,
thanks to the Lemma in Appendix D of [3]. Moreover, for k large enough and for
every n=0, the interval

(E:|[E—Eo|<e Vo) (2.30)

contains at least one eigenvalue of Hy and (2.29) holds. This can be shown by
noting that due to the exponential decay of u, we have

H(H?zn —Eo) g, ol 1=\I1 RMoll ‘<e” zm(E“)d"dzvz .
On the other hand, by using the spectral theorem we find
(HR, ~ E)ruol?= 3 = oA~ Eg)

Aea(HR,)

with 9(4)=0 and  o(4)=1. Thus we have
A

dist(E, o(H} ))* < [(Hy, — Eo) g ol > S e 2" F0Mndy

It now suffices to show that there is no subsequence R,;, j€ N, such that the
cardinality of the setin (2.28)is = 2 forevery R, ;. In fact, suppose that the contrary
is true. Then there would exist two sequences (u,;), (v,;) of eigenfunctions of
HO(R,;) with eigenvalues in the interval (2.30). By Lemmas 2.4 and 2.5 and the
results of [4], w,; and wv,; have uniform exponential decay outside
Ay 5: (1.15)-(1.18) in [4]. From this it follows easily that

l-llmu l-hmv
i

n() = U, n(j) =

exist and are non-zero, and (u,v)=0. But u and v are ecigenfunctions of
H°= —A+V with eigenvalue E,, i.e. E, is not simple. This contradicts the
simplicity of the point spectrum of H°.

The results proven so far all hold for a set Q" of potentials, V; of full measure, no
matter how we choose the origin 0 € Z”; (countable union of scts of measure zero
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have measure zero!). This permits us to choose, for each Ve Q" and each eigenvalue
Eqy of —A+V, with |[Ey|> E (), an origin 0e€Z" in such a way that

k(E,, V) is minimal . (2.31)

Finally, we note that the results discussed so far can be extended to linear
operators of the form

— A+ V(i)W (u), (2.32)
where u e, and %; is the set introduced in (1.10), i.e.

U= {uimaX u(x) — up(x)| = g, u(y) S e M, for all y¢Ak}=

xeAj

with k as in (2.30), for a given eigenfunction u, of — A+ V with eigenvalue E,.
For the operator (2.32), we introduce sinuglar sets S;**“(E, V), S;*“(E, V, B) as
above for — A+ V, with only one modification: Condition (2.7) is replaced by

dist(a(H2, + (2 +i0)W(ju)1 ). ReE) 2 de V. (2.33)
Since, for every u e %, W(|u})(x) decays exponentially fast in |x|, we can prove the
following lemma:
Lemma 2.9. If
Vi1

o
R

(2.34)

where |Wii= sup [|W(v))l, and | Al is the norm of the operator A on L,(Z), and

viflell2s1
if the constant f in definition (1.3) of the distance scales d; is chosen large enough,
then, for all j=KE,, V),

SPOUE V. A)=9, (235)
for all E, with ReEe%(k,V) or ImnE=e V%, and every ue ;.

Remark. This lemma permits us to extend Lemma 2.8 to the operator —4 4V
+(A+i0)W(lul), with

wely, A SQIW]) e,
provided we consider a simple eigenvalue E of — A+ V+(A+i0)W(ju|) with

[ReE—E | <e V%1 and ReEec¥(k,V)
or ImE>¢ V¢, This observation is the contents of the following lemma:
Lemma 2.10. Let u €%, and let E be a simple eigenvalue of — A+ V+(A+id)W(lul)
such that either ReE€%(k,V), or ImnEZ=e V%, Let Hy=H%+ (A +id)W(jul)1.
Then there exists a sequence of (k—2-+n)-admissible sets, (R,),¢.1.,.... Such

that _
(1) R,DA, 135, and

%dn § dlSt(aRm a/Tn +k— 2) é%dn )
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(ii) # (E':E'eo(Hg), dist(E E)e V4 ) =1,
(iii) dist(E, o(Hp ))<e 2"

The proof of Lemma 2.10 is a straightforward variant of the proof of
Lemma 2.8, using Lemma 2.9. It is therefore left to the reader. (Some familiarity
with [3,4] is understood, of course.)

3. Bounds on the Pole-Subtracted Green Functions

In this section we fix a pair (uy, E,) solving

(— A4 Vug=Equ, (3.1
with Ve Q' and |Ey|> E({,v). We choose some real 2 and some ¢>0 such that
it id| e VW), (3.2)

with k as in (2.30); see (2.34).
We now suppose to have a solution (E, u) of the n.l.e.p. (1.9) with u € %;, where
9 1s defined in (1.10). Our purpose in this section is to prove an upper bound on
the absolute value of the pole-subtracted Green function, |[K*°(x,y)|, where
K*°(x,y) is the kernel of the operator
K*z)=[z—(—A+V+A+io)W(u)))] ' —(z—E) 'P,, (3.3)

(P, is the spectral projection onto u) at z=E; sce (1.19).
Next, we introduce our notations. Let R, (n=0,1,2,...) be the sequence of
boxes constructed in Lemma 2.10. Let

Hy, = —Ag, + Vg 0 +i0)W(utg, (3.4)

where A is the finite difference Laplacian with zero Dirichlet data on ¢R,. We
define I by the equation

A=A @A g, + g, - (3.5)

If Eg is the eigenvalue of the operator in (3.4) which is closest to E, let

0E,=E—Ey, (3.6)
and
L=Tg, +0E,1x,
_ o o (3.7)
I::H-k:I}R,,+6E111R,,_0En+k1R,,,k'
By Lemma 2.10 we have
PE|<e 2™ (3.8)

Finally, let us define

~

A =H, —JE, (3.9)
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and

Glz)=(z—Hy) ", (3.10)

~

R(2)=C2)~(z—E) 'Py (3.11)

where u is the eigenvector of (3.4) which corresponds to E. The motivation for the
introduction of these modified objects is that in the following it will be convenient
to work with Green functions G, _which have a fixed pole at z=

Lemma 3.1. We assume that the complex eigenvalue E satisfies the following
conditions:
(1) E is a simple eigenvalue of — A+ V4 (L4 ido)W(|ul) with

ReE—E |Se Vi1, (3.12)
and
(2) either
ReEeG(k, V), (3.13)
or
ImE>e V4, (3.14)

then, for sufficiently large f, for every k2k+1, and for arbitrary x and y in Z", we
have

eV x yed;

|X*Y|§Ldk—1

K>,y =q et f .
=d,_,

(3.15)

e MBI otherwise

for some m(E)>(1/4)m(E,)> 0.

Proof. Without loss of generality we may suppose that |x| <|y|. Let us define
A,=R,.,~R,, A_(=R, (3.16)

and assume that ye A,, while xe 4,, with me {—1,0,...,n}.

The proof makes use of the followmg resolvent 1dentities for the Green
functions in (3.10):

G(2)=G,®C . (2)+(G, DG . )[,G(2). (3.17)

In order to derive an expansion for the pole subtracted Green functions K(x, y; E)
from (3.17), we use the following integral formula for the constant term of a
Laurent series:

~

. 1~ d
R fx.y:E)=f, — G x.y:2) (3.18)

2mi’
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where % is a circle which encloses E and no other point of the spectrum of
H + (A +i6)W(|u|). Tterating (3.17) we find

o 1
K(x,y; E)= i (giﬁ

n+1

-~ 1 dz ~
M AR E B :
X n+1 n+2( >J)+ +2T[i%“¢§k‘1Z‘EGn+](X> )

X ﬁ1+1Gr1+2f;+2 XX ﬁwk—1Gn+k1~:z+an+k+1('=Y)+ s (3.19)

where we used the freedom of deforming the integration path from % to the circles

%, x={2€%:|z—E|=&""* 1, (3.20)
We remark that thanks to Lemma 2.10 we have
sup |G, (2) <2V (3.21)
ZEGnk+1

Let us begin by bounding the terms of (3.19) with k > 2. Inserting the definition
(3.7) of I"*E*Y and I} | into the k'™ term, we get the sum of three terms: the
first ends with

OE,ilp, Guiilin, GMEFY, (3.22)
the second with
Y G (. SRS P [ CATPRI (3.23)
and the third one with
vy Guidin,  Govier (3.24)

Equations (3.22) and (3.23) are small, thanks to (3.21) and the fact that, due to (3.8)
we have

m
*Ed.m k-2

t5E71+k-'II§e ’ (325)
and
i = () >y (3.26)
Moreover, (3.24) is small. This can be seen by noticing the following resolvent
identities:
’Gvn¢k: Gn:‘ k *2®GR,|7;<~RH Pk 72+(’G~n+k> 2®GR,,>,<~R,,7;(,3)1’=:1+I\'— ZGrH-k?
and

an‘—k:Gn +Ik *Z@GR,I—kNR,‘—-k—-2+’G~n+ kf::lrkkf 2(G~n>rk> 2®GR”—I<~R"-1< - z)'
(3.28)
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Ifze¥,, vy, ve0R,,_, and wedR, ., we have
G"+k(u’ w3 Z) = GRn 1~ Rn nc—z(va Wy Z)
X[Gr, o~ rpn Zﬁ.n:kk 208, o~k AW 2)
+LG F" an+ kFerk 20R, o~ Ry AW W2 2) (3.29)
This term is exponentially small thanks to (3.21) and to the exponential decay
of Gg <&, . ,z). This last fact is a consequence of Lemma 2.9 and of
Theorem 1.2 in [3].

Thus, the sum over all terms with k=2 appearing in the right-hand side of
(3.19) can be uniformly bounded by

Ry+ic~Rp k-2

i *ﬂln - el”dnl[\kge~ﬁzdn (3.30)

for a suitably defined m. Moreover, for the term with k=1 we have

“7:1++1an+2( ) = I(F(R,,H 6En+l1R,,+1+5En+21RH . 2) wi 2 V)]
~ - =2 a ,
<e 277 e 2MViig i, (3.31)

Hence it is sufficient to control the first term of the expansion (3.19). Now, the
first two inequalities in (3.15) arc readily proven on the basis of the bound (3.21) on
the norm of G, , ,(z) for ze %, , ;. Moreover, the third inequality in (3.15) can be
verified by using the resolvent identity (3.29) with k =0 and, again, the exponential
decay estimates contained in [3].

4. Proof of Theorem 1

In this section we present our proof of Theorem 1, using the technical estimates
collected in Sects. 2 and 3. Our strategy is the one explained in Sect. 1. Thus we
start from the differential equations

d dA
%“z(a).azm —(U0)+i0)QKDW[ - Ju]~ 1QK< d()( )> Wuz(a),a, 4.1)
d

see (1.30). Our initial conditions are
H0)=0, g o=1u. (4.3)
with E, (=E,, where (1, E,) is a solution of the linear eigenvalue problem
(—A+Vug=Eou,. (4.4)

E, belongs to the gap set 4(k, V) (see Sect. 2), and u, has uniform exponential decay
outside a finite box A,, as described in (1.6). According to (1.23), we must integrate
the system (4.1), (4.2) with initial conditions (4.3) up to values of ¢ such that

ImE;; s=e v (4.5)
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From that point on, we shall treat 1 as the independent variable and integrate

. d .
equations for 77 oy with —ImE,=0, up to values of 1 such that

di
ReE; ;,€%(k, V). At that point, § will be treated as the independent variable
again and will approach 0, with ReE, ;s kept fixed; see Fig. 1, Sect. 1.

We now describe the first of these three steps in detail. The other two steps are
completed by very similar arguments. We start by expanding the right-hand side of
(4.1) in a geometric series. Dropping subscripts 4 and J, we get

du dz
. < dé) (QKWu-l—() +i6)QKDW[ - Ju

y [ f((mia)QKDW[-]u)rQKWu} u>. (4.6)

In order to prove convergence of the series on the right-hand side of (4.6). we bound
the operator norm of the operator QKDW [ - Ju acting on [*(Z"). We assume that

ueUy= {u smax ju(x) — ug(x)| L &,

xeAi

|u(y)l§e_%'” for all y¢/1,—},
see (1.10). Clearly
IQKDW[-Jul|= sup [QKDW[v]ul,, (4.7)

floli>=1
and
|QKDWv]ul? <2 KDW [v]u|?
=2(DWLIZ Y K pIK(x, y)u(yu())]

X0y

=2|DW[v]|AY [Z IK(x, y)u(y)l}2

<2(DW[v]|2 [»Z» K(x, y)u(y))—)z . (4.8)

Let us write and estimate the sum in the brackets as follows:

(z L3y )(z Y e 2™y >1K<x,y)|

xe A ki=Fk xe A\ Ak ye Ax kr=k Ve AR,
M

o M M
S Ade? 41 3 e 2 ae 2

dic

M
~ =5 (x| ~dk)
SHZAEDY e ?

ki=k xeAp) Ak,

M _
— —-di, 2)dy,
+ X ) e T A A le

ki=k ko=ki kit 1

x— V|def 1 —

+ ) )y 3 A ) A le 2 C\(R). (4.9)

ki =k kZ:kl,kl“’l ‘/E
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Let us remark that C,(k)~d?"e?V% - <eV% Hence we got the bound

IQKDWL-Jul < |DWIC,(k), (4.10)

where
DW= sap DWW (4.11)

Similarly, we can show that for ue%;

QK Wull, < | W C,(k), (4.12)

where
[Wi= sup [W)l,. (4.13)

[lul[2=1
Next we wish to bound the vector (Q K Wu)(x) pointwise. By the definition of Q,
(QK W) (x) = 3 |K(Cx, ))W(phu(y)] + ulx) [| KW, . (4.19)
¥

First, if xe A and ue%;, we get from (4.18) and (4.19),

(QKWMI= X WK I+ ¥ e 2"!Ak1 |w

ye g
x max [K(x, p)|+ [WIC,(RE W] CoR).

ve Ar\ Ak

Second, if 3d, < |x| < 3d, . 1, With k =k, ue %, we get from our bounds on [K(x, y)|,
proven in Sect. 3,

QK Wu(x)| < % VW) fu(y)

ye Ak
m M
-3l fe 2 ¥
ty e W) + W Ci (ke 2
y k
<k wye 2™

where
Calk, W) di¥e?V' ™ 1 <et &,

Similarly, using (4.10) one can get a bound of the following form:

(4 +i5) QKDW[% (L +i5)) QKDW[-]u))’QKWu}u(x)

[DW|Calk ) if xed
C kW = M s otherwise (4.20)
5

for every 4,0 such that

[A+id| < Imin(|W| ™ IDW|~)C (k). (4.21)
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d : .
Finally, let us bound £ In Appendix 1 we show that the second equation in

(1.24) can be written in the following way:

42 o
5= [25(1; W(u)u)lm<a(3 >+251 <75 Wiu )u>

+ Au, DW [g 6:‘ )] [(u, W(uu) — 26(u, W(uyu)

(a o]\
xIm(Z) >+2alm<5%,W(u)u> <u DW[ )] ﬂ . 422

One can readapt the estimates which led to the inequalities above, to find

Al = Cé(l;) s
ou
00,

where Cy(k) ~ d?> eV %1 < ¢V Thus if we change our definition of 4,4 and W by
a constant factor so that:

(4.23)

Colk),

(g Wug)up)=2, (4.24)
and we replace (4.21) by the stronger condition
|40l Sgmin(| W]~ |DW| ™ Hmin(C, (k)™ ', Co(k) 1), (4.25)
we get
dz
< 4.
75 <1. (4.26)

We have thus proven the following lemma:

_ 2v S R
Lemma 4.1. There is a constant C,(k, W)~d Y v vgeV -1 sych that as far as
Uy ). 56 and solves Eq. (1.24), we have k

il@_(f?_)ﬁ_(x) < {C7 if xedy
do C7e<%|x! otherwise .

(4.27)

In particular, Eq. (1.24) admits a solution (A(0), u,)s) with u, s parametrized by
3e[0,60C5 1. Finally, if §ze V" we have ImE, ;) ,<e V-

For what concerns the proof of the last statement, it follows from (4.24), (4.25)
and the following calculation:

d
5 —ImE;; s=(u, Wuu)+20 Re <d5 (u)u)

+25<“ DW[Z(S] >
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This completes our analysis. In particular, Theorem NL 1 is now proven. The
proofs of Theorems NL 2 through NL 4 will appear in a forthcoming article.

Appendix

In this appendix, we derive the deformation equations (1.16) and (4.22). We refer to
[13] for a general discussion of deformation equations in an abstract setting.

As explained in Sect. 1, our aim is to find solutions of the following fixed point
equation:

g—;"a(u;.,a)zuz,a (A1)

on S={u:lul,=1}.1fu, ,is a solution, we can define the map 7 **(u) for u near
u;, 5 by

clu, 1,05 up) 1
_ I I A2
ni gz A—=V—(A+i0)W(|ul) o A2

T ()

where u, is a vector not orthogonal to u, ; and c(u,2,0;u,) is a vector not
orthogonal to u, ; and c(u, Z,0;u,) is a normalization constant. Note that the
operator .7 *?is not analytic in u. Hence it has derivatives only in the real sense, i..
in the decomplexified space [*(Z; C€)®. The (R-linear!) operator D of differentiation
can be defined as in (1.19). Having to work on the decomplexified space I(Z; €)%,
let us remark that the imaginary unit i is no more a number in the field of our vector
space, but has to be interpreted as the matrix

(0 —1
l=<1 0) (A3)

acting on [X(Z, O =1(Z; R)®il*(Z;R).

To derive (1.16) we have to differentiate 7 *°(u, ) with respect to 6. We remark
that the integrand in (A 2) is still analytic with respect to z, and so arc its derivatives
with respect to 0 and u.

We have

do do

The two partial derivatives appearing here can be computed in the same way;
hence we shall compute only the second one. If v is a vector we have

dz 1
X — R O
D‘/ (u}.,é)[v] (Dc)(u),57;>5>u0) [v](iznl Z+A—V*()\,+16)W(|u;”5l) uo

E - 1
2ni 24+ A—V—(A+i0)W(lu, 4)

q ~ du,
=T, ) =T 50 (“z.a)+D<0/_)"é(”/1,a)|: ;'6i|'

+ C(ui. P2 )”s 5; uO) § D W[U]

1
X Pra— Uop -
2+ A=V—(+i8)W(lu,_,))
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One can now make the choice u,=u, ; so that ¢c=1, and

(z4+A=V—(A+i0)W(u; o) ug=(z—E, su,.

By using the residue theorem, we can calculate the second integral and obtain

§ fiz—(K( )+ J)1'5">Dw[v] ﬂ%*u,.,a:K(E;,,a>DWEvJuz-a~

¢ 2mi 2,0 20

Finally, it is easy to calculate the derivative of c(u; 4 4,0) at u=u, ;. We set
T H¥n)=c" T *°u). Then

Dc(u, 2,6) [v]=D[(Re.7 **(u),Re.7 *¥(u))+(Im.7 *°(u), Im T *°(u))] /2
=— %3/2 [2(Re T *%u), Re DT **(u) [v]) + 2(Im T **(u),
ImDJ **(u) [v])],

and, at u=u, ;5 we have
De(uy, 2 0)u; 5= =3[Py, ,+PC, IDT ") [0]],—, ,-

This proves (1.16).
Let us now prove that the second equation in (1.24) can be written in the form

(4.22). We have
d d .
s ReE, ;) 5= a5 Uz, 00 L= A+ V+ AW (5, 511455, 5)

_di

d5 l:(u; o Wllu, shu;, s)

; \
+2Re (”Lé, [—A+V+) W(|u)”a|)] M)

o[ o

ou
+2Re <?*— [=A+V+iW(lu, sl)u, 5>

+/1<u; ,,,DW[a»gé"JuM).

Omitting the subscripts and using the eigenvalue equation fulfilled by u, ; as well

as the equations
ou Ju
R R =0
e( ) e(ﬁé > |
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we get

~ReE—

{(u,Wu)Jrz[—la(;L )

EOIR D)

2] oG ) + £ 40w 5]
{(u Wit) + 26 Im <gz Wu>

—26 (u, Wis) Tm (22‘ ) 42 <u,DWB'ﬂ u)}

ou ou
-1—251m(a(5 ) 20 (u, Wu)Im(aé )

&.[&.
=%

+

=7
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