
Communications in
Mathematical

Commun. Math. Phys. 116, 417-448 (1988) S f S ^

© Springer-Verlag 1988

The N7/5 Law for Charged Bosons

Joseph G. Conlon1*, Elliott H. Lieb2** and Horng-Tzer Yau2***
1 Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
2 Departments of Mathematics and Physics, Princeton University, P.O.B. 708, Princeton, NJ 08544,

USA

Abstract. Non-relativistic bosons interacting with Coulomb forces are unstable,
as Dyson showed 20 years ago, in the sense that the ground state energy
satisfies Eo ~ ~ AN115. We prove that 7/5 is the correct power by proving
that Eo ^ —BNΊI5. For the non-relativistic bosonic, one-component jellium
problem, Foldy and Girardeau showed that Eo 5Ξ — CNp1/4. This 1/4 law is
also validated here by showing that Eo ^ — DNp1/4. These bounds prove that
the Bogoliubov type paired wave function correctly predicts the order of
magnitude of the energy.

I. Introduction and Background

Twenty years ago Dyson and Lenard [5] proved the stability of ordinary
non-relativistic matter with Coulomb forces, namely that the ground state energy,
£ 0 , of an JV-particle system satisfies Eo ^ — A1N for some universal constant Aγ.
In ordinary matter, the negative particles (electrons) are fermions. At the same
time, Dyson [4] proved that bosonic matter is definitely not stable; if all the
particles (positive as well as negative) are bosons then Eo ^ — A2N

ΊI5 for some
A2>0. Dyson and Lenard [5] did prove, however, that Eo ^ — ̂ 43iV

5/3 in the
boson case, and thus the open problem was whether the correct exponent for
bosons is 5/3 or 7/5 or something in between.

In this paper we prove that the NΊ/5 law is correct for bosons by obtaining a
lower bound Eo ^ — A4N

Ί/5. As is well known, the bosonic energy is the absolute
lowest energy when no symmetry restriction is imposed.

It may appear that the difference between 5/3 and 7/5 is insignificant, especially
since bosonic matter does not exist experimentally, but that impression would fail
to take into account the essential difference between the ground states implied by
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the two laws. The — A3N
513 lower bound can be derived by using a semiclassical

estimate which leads to a Thomas-Fermi type theory. This estimate is the same
as that used by Lieb and Thirring [15] to give a simple proof of the stability of
matter in the fermion case. Correlations are unimportant in this estimate. The NΊ/5

law, on the other hand, is much more subtle. To get the upper bound, — A2N
Ί/5,

Dyson had to use an extremely complicated variational function which contains
delicate correlations. It is the same kind of function proposed by Bogoliubov [1]
(see also [10] for a review) in his theory of the many-boson system and in which
particles of equal and opposite momenta are paired. It is also very similar to the
Bardeen-Cooper-Schrieffer pair function of superconductivity. Since this kind of
wave function plays such an important role in physics, it is important to know
whether it is correct, and in proving the NΊ/5 law for the energy we are, in a certain
sense, validating this function.

The Hamiltonian to be considered is

HN=-YAi + Y βiβAXi-xA-1, (1.1)

which is relevant for N charged particles with coordinates labeled x^ .-^x^eR 3 .
The charges satisfy et= ± 1 , all i and h2/2m = 1. The neutral case is ] ^ = 0. In
Sect. II we shall prove the JV7/5 lower bound for HN which is stated precisely in
Theorem 1.2 below. The neutrality condition is not imposed in this theorem. If,
however, the system is very non-neutral, with JV_ negative and N+ positive particles
with N _ -f N + = N and N + »iV_, we expect that the bounds (1.7) and (1.8) are
not optimal. One should have Eo ̂  — A5N

ΊJ5 instead; this is indeed true but, for
simplicity of exposition, this generalization is deferred to Sect. V, Theorem 5.1.

A closely related system that we shall consider in Sect. Ill is jellium. In this
case there is a domain A, in which there is a fixed constant density, ρB, of positive
charge called the background. There are also N negative particles of charge — 1
and the jellium Hamiltonian is

HίΛ=-jti{Δi+V(xι)}+ Σ JXi-XjΓ' + M/Mdx, (1.2)

where V(x) = ρBJ|x — y\~1dy is the potential generated by the background. We
A

do not restrict ourselves to the neutral case, N = pβL3, in Sect. III. As boundary
conditions we can take either ψeL2(R3N) or else ψeL2(AN) with Dirichlet Boundary
conditions. Clearly Eo for the former is less than Eo for the latter. In the physics
literature one usually imposes neutrality and takes A to be a cube, φeL2(ΛN) with
periodic boundary conditions and, in addition, the potential is replaced by an
interaction solely among the negative particles in which the fc = 0 Fourier
component of the 1/r potential is omitted. It is not a trivial matter to show
rigorously that this periodic problem is the same, in the thermodynamic limit, as
the more physical problem (1.2) which we consider here—even in the neutral case.
Here, again, the bosonic energy is the absolute lowest.

Let us briefly review what is known rigorously about these two problems.

A. Jellium. Foldy [7] was the first to apply Bogoliubov's method to the neutral
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bosonic jellium problem (with the periodic boundary conditions mentioned above)
and obtained, for large pB and in the thermodynamic limit,

£ O ^ - 1 . 9 3 3 Λ ^ 4 . (1.3)

A proof of (1.3) was, and is lacking, but later, Girardeau [8] proved that (1.3) is
an upper bound to Eo (for large pB and with the same conditions). Another
non-rigorous derivation of (1.3) that does not use Bogoliubov's method was given
by Lieb and Sakakura [13]. In Sect. Ill we shall derive the following lower bound
for the real problem (1.2).

Theorem 1.1. With HJ

NΛ given by (1.2) on L2(R3 7 V), the ground state energy satisfies,
for all N and A

E^-A6NPy\ (1.4)

for some universal constant A6. A bound for A6 is given in (3.19); In the limit pB -> oc
we can take A6 = 8.57.

Theorem 1.1 is generalized in Theorem 3.1. Note that our lower bound (1.4)
is close to the upper bound (1.3) (with a factor about 4.5).

The existence of the thermodynamic limit for jellium was proved by Lieb and
Narnhofer [12]. This limit will not concern us here, but a useful result in the
appendix of [12] contains a lower bound to the potential energy terms in (1.2),
and hence to the ground state energy of (1.2) for all N. This bound is

Eo^ -(0.9)(4π/3)1/3Npι

B'\ (1.5)

A result similar to (1.5) is given in [3].
It is not easy to give a heuristic derivation of the pj/4 law. Dyson [4] gives

one, but we prefer the following point of view. The reason that Eo < 0 is that the
negative particles stay away from each other. If λ is the correlation length (i.e. the
radius of a ball surrounding any one particle in which there is, on the average, an
absence of one particle) then the potential energy, P, is roughly P « — N/λ. On
the other hand, let us study the kinetic energy, K. Most of the particles will be in
the zero momentum state. A correlation length λ can be achieved by decomposing
A into n = (L/λ)3 boxes of size λ. If there is one single particle wave function in
each box, with Dirichlet boundary conditions, its kinetic energy will be λ~2 and
thus K = nλ~2 = L3λ'5. Minimization of K + P = -Nλ"1 +L 3 λ~ 5 with respect
to λ (recalling N = pBL

3 for neutrality) yields λ4 = 5/pB and Eo = — ̂ Nλ'x =

— f N(pB/5)ι/4r. In addition we learn that K/P = — 1/5, which is very different from
the usual virial theorem value — 1/2.

The difficulty with the above argument is its apparent inconsistency. If we put
n particles into boxes, as stated above, then K will be nλ~2 but also P will be
— nλ~ι, not Nλ'1. Nevertheless, it is true that the Bogoliubov pair wave function
has the properties Kπnλ~2 and P = — Nλ~x mentioned above. How it achieves
this is not easy to understand; one must, apparently, study the problem in
momentum space.

If the kinetic energy were |/?|α with 1 ̂  α < 2, instead of p2, we would predict,
by the same argument, that Eo would then be of the order —Npll{2*a) and
λ~pB

 1 / ( 2 + α). This conclusion does indeed agree with what is obtained from an
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appropriately modified Bogoliubov function. When α = 1 (the relativistic case) we
get —Npβ/3 which agrees with the lower bound (1.5).

B. The Two-Component System. For simplicity let us consider the neutral system
with N bosons of each charge. In [5] and [15] it is proved that Eo ^ — A3N

5I?>.
Indeed, if one kind of particle is infinitely massive then the JV5/3 law is correct—as
proved by Lieb [9]. Moreover, the N5/3 upper bound in [9] is very simple and
semiclassical—correlations are unnecessary.

The NΊ/5 result for particles all of finite mass is subtle. For (1.1) Dyson obtained
(for large N and Yjei = 0)

E0S -5.001 x 10~7JV7/5. (1.6)

Surely, the coefficient in (1.6) is too small. Our lower bound for the energy, proved
in Sect. II, is the following:

Theorem 1.2. Let HN be given by (1.1) with et = + 1. Neutrality is not assumed.
Then, on L2(R3N)

HN^ -0.30N715 (1.7)

for sufficiently large N.
Generalizations of Theorem 1.2 are given in Theorems 2.1 and 5.1. The former

is a generalization to the Yukawa potential while the latter treats the nonneutral
case N_ «N+9

E0^-AΊN
ηi5 (1.8)

for some constant Aη.
Let us recall Dyson's heuristic derivation [4] of (1.7) from (1.4). There are two

parts to the energy: (i) a local kinetic energy and electrostatic correlation energy
and (ii) a global kinetic energy needed to localize the system in a region of radius
R. The latter is approximately K g i o b a l «N/R 2 . The former is approximately
l̂ocai ~ — A5NpllA~ with p = N/R3. Here we have taken over the one-component

jellium result (1.4) even though we are considering a two-component system; the
reason is that the electrostatic correlation energy comes primarily from the fact,
as we said, that particles of like charge stay away from each other and therefore
the energy in the two-component and one-component systems are comparable. If
we now minimize E = £ g l o b a l + £ I o c a l with respect to R we find RzzN~1/5 and
E « — NΊ/5. A check on the consistency of this is that the correlation length satisfies
λ « p~ V* = (N/R3)-1/4 = AΓ2/5 « R.

In the present paper we begin with the NΊ/5 problem and prove (1.7) in Sect. II.
Our analysis is based on Conlon's paper [2] in which the following was proved
about the two-component system in a box. A symmetric wave function connotes
a function that is separately symmetric in the positive and negative charge spatial
variables, i.e. a bosonic function.

Theorem 1.3. Let Abe a cube in R3 and suppose that φ(xl9..., xN) is any symmetric,
infinitely differentiable, L2(R3N) normalized function with support in AN. Let

f (1.9)
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be the kinetic energy and define yψ by

K(ψ) = Ny2

ψ/L2, (1.10)

where L is the length of A. Let HV

N be the two-component Hamiltonian analogous to
(1.1) but with the Coulomb potential replaced by the Yukawa potential Yv(x) =
|x|~1exp(— v\x\), namely

H ^ ~ Σ 4 + Σ e^jY^Xi-Xj).

The e{ = ± 1 as before and neutrality is not assumed. Then, if y^ ̂  N1/3,

(ψ,WNψ)^-AsN
ΊI5 (1.11)

for some constant A8, which is independent ofv9 N and L.
Theorem 1.3 is proved in [2] by a succession of inequalities that turn the

Bogoliubov ansatz [1] into a rigorous bound (with a different constant, of course).
It concerns the local energy and, being intrinsically quantum-mechanical, has no
classical, analogue. The reason that Theorem 1.3 does not imply the NΊ/5 law,
Theorem 1.2, is the condition that yψ^N1/3 (alternatively, K(φ)^N5/3/L2). We
do not know in advance what the radius, JR, is for an energy minimizer. If, for
example, K(φ) = N513 and R » 1, we could not use Theorem 1.3. Thus, we are faced
with what might be called an infrared problem which our analysis in Sect. II solves.

To get the constant in (1.7) we need a good value for A8 in (1.11). A value can
be deduced from [2], but the constant there is not optimum. It turns out that
restricting γψ ^ N1/3~δ for some δ > 0 is sufficient for the analysis in Sect. II. Under
this condition the following improvement of Theorem 1.3 is possible, and is proved
in Sect. IV.

Theorem 1.4. Assume the hypotheses of Theorem 1.3 except that y^ ̂  JV1/3 is replaced
by yψ ^ N1/3~δ for some fixed δ>0. The parameters v and L can depend on N, but
we assume that N~ιl5vL stays bounded as N-> oo. Then, for sufficiently large N,

(ψ,Hv

Nψ)^ -0.30iV7/5. (1.12)

The analysis in Sect. Ill of the jellium problem, leading to (1.4), uses the JV7/5

result of Sect. II. This may seem a bit odd in view of Dyson's heuristic discussion
in which one uses the jellium result to understand the NΊ/5 theorem. Our procedure
is to bound the jellium energy in arbitrarily large boxes in terms of the energy in
a box of size / = Pβ 1 / 8. In such a box the particle number (with neutrality) is
n — pBl

3 = p | / 8 . But then, by the NΊ/S theorem (with the background being thought
of as N particles in a simple, smeared out state), Ebox ^ — An115 = — ApΊ

B

18 =

*. By adding up the boxes we obtain Eo ^ — ANpB

/4r.

Our work here leads to many questions, of which the following are a few.

Open Problems

(1) Find the correct coefficient in (1.4) for large ρB in the jellium problem. Is
Foldy's constant in (1.3) correct?

(2) Find the correct coefficient AΊ in (1.8) as N-^oo for the two-component
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problem. The bound in Theorem 1.4 is within a factor of 11 of what one would
get heuristically from a calculation using the Bogoliubov function. This is discussed
in Sect. IV. This bound translates into the bound (1.7) of Theorem 1.2. We should
emphasize, however, that Bogoliubov's method does not predict an exact value
for the asymptotic constant in Theorem 1.2. The reason for this is that in the
Bogoliubov method one is forced to work in cubes and, in the Bogoliubov function,
most particles are in the lowest momentum mode of the cube. The size of the cube
can be taken to be the size of the system, namely N~1/5. Thus the energy depends
critically on the lowest eigenvalue of the Laplacian in a cube and this depends on
boundary conditions. The lowest eigenvalue will be uncertain because of the
boundary conditions and will be of order N2/5. The uncertainty in the energy will
be of order iV7/5.

(3) What can be said about the correlation functions at high density? Is
Bogoliubov's ansatz really correct or does it merely give a good account of the
energy?

(4) As shown in Sect. II, the statement Eo ^ — AN115 for the two-component
system is equivalent, via the virial theorem, to - P(φ) ^ 2A1/2NΊ/10K(φ)1/2

for all φ. Here K(φ) is the kinetic energy and P(φ) the potential energy of φ. Now
let us replace p2 by \p\a in the kinetic energy. In the heuristic discussion
above we surmised that the jellium energy should be — Capβ/{2 + a). Then, by the
uncertainty principle argument relating the jellium energy to the two-component
energy given before, we would have (with KglohΛl&NR~a) /^«iV~1/(α"1)(α + 3 ) and
Eo= - AaN

ia2 + 3a~3)/ia2 + 2a~3). This statement about Eo is equivalent, via the virial
theorem, to

2 . (1.13)

We conjecture that these formal calculations are correct as JV-> oo. If so, it is
interesting to look at the α = 1 case (relativistic bosons). In this case, Eo = — oo
for large enough N, which is correct, but (1.13) continues to make sense. Namely,
for α = 1,

1/^ (1.14)

We conjecture that (1.14) is true for large N and we remark that in [3] it is proved
that (1.14) holds with JV1/4 replaced by N1/3. Since the bosonic energy is the absolute
lowest, (1.13) and (1.14) are independent of statistics.

II. The NΊIS Theorem

Our strategy to prove Theorem 1.2 is to decompose R3 into cubic boxes of size
/ = N~ε with ε some small number less than 1/5. This / is large compared to the
expected size of the system, iV~1/5, but we do not know this fact in advance. It
will be necessary to localize HN in these boxes and to control the interaction
between boxes.

The main difficulty in localizing the Hamiltonian (1.1) comes from the
localization of the Coulomb potential. The effects of localization on the kinetic
energy can be easily computed to be of order NΓ2, where / is the cutoff length.
For the potential energy, however, even a small amount of net charge will produce
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enormous potential energies, and therefore charge neutrality must be preserved
very carefully. Our basic strategy is first to replace the Coulomb potential by a
Yukawa cutoff and then, by averaging over all possible box locations, the errors
can be controlled.

For μ > 0, let
yμ(r) = r " 1 e - ' t Γ (2.1)

be the Yukawa potential with range μ"1. For κ> 0 and N a positive integer, let

H&^-ΣΔt + K Σ Wj γM ~ XJ) ( 2 2 )
* - ! l<,κj<.N

be the Hamiltonian of N charged bosons interacting pairwise by the Yukawa
potential with coupling constant K. AS before, et = ± 1 but neutrality is not
assumed. H£ι

N is defined as a quadratic form on L2([0, l~]3N) with Dirichlet
boundary conditions. We shall drop μ or / or K whenever they are equal to
0, oo or 1 respectively. Since the Hamiltonian (2.2) is symmetric under permutations
separately on positive or negative particles, the ground state automatically obeys
Bose statistics, and we shall assume this henceforth. Let

JE& = infspecif& (2.3)

be the ground state energy. Then a trivial scaling yields, for the Coulomb
Hamiltonian in all of R3,

EκN = κ2EN. (2.4)

To fix a partition, let g be a piece wise C1 function on R defined by

g(t) = cos(πί/2), - 1 g ί g 1 (2.5)

and zero otherwise. Then Σ # 2 ( ί + j) — 1 f° r aU ί e ^ Let χ(x) = g(x1)g(x2)g(x3\

with
Then
with x = (x1,x2,x3) and let χuλ(x) = χ(x + u + λ). Here λeZ3 and we[O, 1 ] 3 Ξ Ξ Γ .

Σ ώ W - 1 VxeR3, WEΓ. (2.6)
/eZ3

A function /z which is of central importance in our localization is defined by

Σll(y). (2.7)

Then h depends only on the difference z = x — y and

χ + w)χ2(y + w) = (χ 2*χ 2)(4 (2.

An easy computation shows that

= d 4-2 | ίH-^s inπ | ί | + (2- | ί |)cosπM

(2.9)
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and zero otherwise. Hence h(z) is a C4 function and

\h(z)-ao-a1\z\2\^a2\z\* (2.10)

with α0 = (3/4)3,αx = — (f)2(π2/8) and a2 some constant of order 1.
Let ht{x) Ξ h(x/l).
We now define localized kinetic and potential energies. Let α = (u, caι,..., ocN)e

Γ x Z 3 N b e a m u l t i - i n d e x a n d l e t $doc = $ d u £ ••• £ . If β = ( v , β ί 9 . . . , β N ) i s

another multi-index, denote <3(w — u) Y\ δa.β. by <5α£. (Here, δ(u — v) is the Dirac
i = 1

(5-function and 5αjj8i is the Kronecker delta.) For any / > 0, let

fev..,%)^ΠuM^i, ..,%), (2.11)
fc=l

Then by using (2.6) and (2.7) one has the identity

^ 1

t j f a j j ) (2.13)
1 ̂  i < j ^ N I

Similarly, since for any / G Q ? ( R 3 )

<fX, - Δ(fχ)y = </, - Δ(χ2f)) + </, |Vχ|2/>?

one has the following estimate for the kinetic energy with Co = sup|Vχ|2(x) <

3(π/2)2 (and recalling (1.9)):

C0NΓ2. (2.14)

We emphasize that, definition (2.12), particles in different boxes do not interact.
Hence

:ONI -2

= inf Σ £ £ (2-15)

Here E%ι

σ is the ground state energy of a nσ-particle system with Yukawa cutoff μ
in a box of size / (see (2.2)). The sub-systems need to be neutral.

To complete the localization, one has to relate the potential Yμ(z)/Z{(z) to the
Coulomb potential. Let

/ ^ Ξ Ξ α o l z Γ 1 - } ^ ) / ^ ) . (2.16)
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The coefficient α0 in front of r~x is added for the purpose of normalization. Clearly,
fμι(0) = aoμ. It will be shown in Lemma 2.1 below that fμl has a positive Fourier
transform if μl ^ C 3 for some fixed constant C 3 . Hence by (2.15), (2.4) and (2.20)

2 \ -C0NΓ2-±a0μN + inf Σ K\- (2 17)

Equation (2.17) is the localization estimate which we need to prove Theorem 1.2.
Note that the correction terms are remarkably simple.

Let 1 = N~ε with ε some small number (ε < 1/5) and μ = C3N
ε. Our goal is to

apply Theorem 1.4 in each box.
Let φ be a n-particle wave function satisfying (φ,H%ιφ) ^ 0. Then one has the

trivial estimate (recall definition (2.2))

^ -±(φ,H^nφ)S -iinfspecify. (2.18)

But H%[n can be bounded below by — C5n
513 [see (A.23) which is the stability of

matter bound with Yukawa cutoff derived in the Appendix]. Hence the hypothesis
of Theorem 1.4 is satisfied for each box with Z = N~ε and yxj, = N1/3~ε. We also

/ \7/5

have that £ (nσ)
Ί/5 £ £ nΛ = iV7/5.

σeZ3 VσeZ3 /

Let us now combine Theorem 1.4 with (2.17), temporarily ignoring the
possibility that the particle number in some boxes may not be large. This yields

EN^ -030ao2NΊ/5-ao2C0N
1 + 2ε-C3ao1N1+ε. (2.19)

To eliminate the last two terms as JV-> oo we simply take ε < 1/5.
Despite the aforementioned problem about the particle number in each

box, (2.19) is correct as JV->oo. To prove this, note that in any box we can
use Eσ^-C5n

5J3. However, s u p { ^ ^ / 3 | ^ π σ S N and nσ < Np} <Ξ N2p/3Σnσ =
N1 + 2p/3. If we take 0 < p < 3/5, this shows that boxes with small particle number
can be neglected.

Finally, to complete the proof of Theorem 1.2 we have to eliminate the a^2

factor in the first term in (2.19). This can be done as follows. Note that
a0 = /z(0)3 = (J# 4) 3 with g given in (2.5), and g satisfies \g2 = 1. If g is replaced by
η(t) = 1 for | ί | ^2" a n d *7(0 — 0 otherwise, we would have a0 = 1. But we cannot
do this because j |Vg| 2, the coefficient of the Γ2 term in (2.14), would be infinite.
Since NΓ2 is small on a scale of iV7/5, the remedy is to take g&η and J |V#| 2

finite, but large. As N -> oo, g -+ η and a0 -+ 1. Note that Lemma 2.1 does not depend
on the special choice (2.5) we made for g.

This concludes the proof of Theorem 1.2 and we turn to Lemma 2.1.

Lemma 2.1. Let K:R3 ~>R be given by

K(z) = r~1{e'vr-e-ωrh{z)}

with r = \z\ and ω > v ^ 0. Let h satisfy (i) h is a exjunction of compact support; (ii)
h(z) = 1 -f ar2 + O(r3) near z = 0. Let h(z) = h( — z\ so that K has a real Fourier
transform. Then there is a constant C 3 (depending on h) such that ifω — v^C3 then



426 J. G. Conlon, E. H. Lieb and H.-T. Yau

K has a positive Fourier transform and, moreover,

Σ e^fa - Xj) ^ i(v - ω)N (2.20)

for all X1,...,XNGR3 and ei = ± 1.

Proof. Let F(z) = [h(z)~ 1 — ar2']r~~ί{l 4-r 5 )" 1 . K(z) can thus be decomposed as

K(z) = Yy{z) - Yω(z) - are'"' - (1 + r5)e~-F(z).

The Fourier transforms of the first three terms are 4π/(p2 + v2), — 4π/(p2 + ω 2)
and — 8πα(3ω2 — p 2)(p 2 + ω 2 ) " 3 respectively. For the last term note that F(z) is
of order r2 and r~4 near the origin and near infinity, respectively and Δ2F(z) is of
order r~2 and r~8 near the origin and near infinity, respectively. Therefore, ΔF
and Δ2FeL1(R3) and hence (with" denoting Fourier transform)

for some constant C1. But the Fourier transform of (1 + r5)e~ωr can be shown to
satisfy |((1 + r5)e~ωrf\ ^ 16πω(ω2 + p2)~2 if ω ^ C 2 for some constant C 2 . Hence

We can now put all these Fourier transform together to yield the estimate

Hence K(ρ) ^ 0 for all p if ω — v is large enough. To conclude the proof of Lemma
2.1, one only has to note the identity

Y e eip -N \dp

which implies (2.20) since JK = K(0) = ω - v. •

Lemma 2.1 is applied to (2.16) with v = 0 and the requirement is that μl^C3.
However, our energy bound does not depend on the fact that we started with a
Coulomb potential in (1.1). By the foregoing construction and Lemma 2.1 we have
the following generalization of Theorem 1.2.

Theorem 2.1. Let et = ± 1 and let

H*N=-£Δ,+ Σ e^Y^-Xi) (2.21)

be defined on L2(R3 N) with Yv(x) = | x | " 1 exp( — v|x|). v can depend on N, but suppose
that as iV-» oo, N~2l5v^> 0. Then, for sufficiently large N,

HV

N^ -030N1'5. (2.22)

Proof As in (2.16), we write fμl = a0Yv— Yμht. In order to apply our foregoing
construction, the assumptions of Lemma 2.1 and Theorem 1.4 must be satisfied,
namely l(μ-v)^C3J~1^Nε and iμN'1'5 < oo as JV-• oo. On the other hand,
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the correction terms resulting from the localization (cf. (2.17)) should be of lower
order. Hence we must have Γ1 S o(N1/5) and (μ — v) g o(N2/5). It is easy to check
that μ = max(iV1/5 + ε,2v) and 1 = Nll5μ~1 satisfy all the requirements. •

Returning to the Coulomb case, (1.1), we note the following virial type theorem.

Theorem 2.2 Let the hypotheses be as in Theorem 1.2 and let φ be any normalized
(not necessarily symmetric) function in L2(R3N). Let K(φ) and P(φ) denote the kinetic
and potential energies of φ (see (1.9) and P(φ) = (κφ,γ^eiej\xi — xj\~ιφy). Then

- P(φ) ^ 2A1/2NΊ/10K(φ)112, (2.23)

where A= — N~Ί/5 i

Proof. Replacing φ(xt) by λ^^φ^) we find that λ2K(φ) + λP(φ) ̂  ~ANΊ/5.
Then ~ P(φ)^λ'1ANΊ/5 -\- λK(φ). Optimizing this with respect to λ yields
(2.23). •

IΠ. The p1'4- Law for Jellium

We shall prove Theorem 1.1 in this section by localizing the jellium Hamiltonian
to a box of size 1 = p# 1 / 8. The localized Hamiltonian can thus be estimated by relating
it to Theorem 2.1. In localizing the jellium Hamiltonian (1.2), one should be cautious
about the fact that, after averaging over all translations, the coupling constant in
the two-particle Coulomb interactions changes from 1 to α0 [see (2.9)-(2.16)], while
that of the particle-background remains unchanged. A straightforward localization
as in Sect. II will fail to preserve the charge neutrality. We shall solve this difficulty
by replacing the uniform background charge density, pB, in each small box by a
non-uniform background charge density which depends on the cutoff functions.

Let χΛ be the characteristic function of the big domain, A. For τeZ 3 , />0,
μ > 0 and a = (u, ax,..., aN\ and recalling (2.6), (2.7), et.seq., let

(3.1)

Vβrμ(χ)Ξ ί Yμ(* - y)plBτ(y)dy, (3.2)

vι

Bμ(χ) ^pB\γμ(χ~ yMχ - y)dy< ( 3 3 )
A

Then using (2.11) one has the following definitions of J£(ψ) and M(φ) and
localization estimate:

y viu ( )δ

<I^N τeZ3

- X iΔt + KM)) + Σ ;

 YM - xjMxi - x,)

(3.4)



428 j . G. Conlon, E. H. Lieb and H.-T. Yau

Equation (3.4) may appear to be complicated, but the proof is just a reordering
of indices. Recall Eq. (2.6),

N

Σ Σ

= Σ <Ψ,v'Blt(χj)Ψ>,

i, f Σ
i=i I E z 3

= PsiV1

Bfι(y)dy.
A

For the other terms in (3.4) one can use (2.13) and (2.14).
As in Sect. II, one can use the positive definiteness of fμl (Lemma 2.1) to yield

the bound
g <Φ,HJ

NΛ(a0,pB)φ) + C0NΓ2 + Nμa0. (3.5)

In (3.5) HJ

NΛ(a0,pB) is the jellium Hamiltonian (1.2) but with all the potential energy
terms multiplied by a0. To utilize (3.5) we have to relate the energy of HJ

NΛ(aQ,pB)
to that of HJ^A. By simple scaling this is given by

infspec//^ o Λ (l,p B ) = α 0

2 infspec//^Λ(α 0,p βα^). (3.6)

Let / = pB

 1 / 8 and μ = C6pB

/8. Then the last two terms in (3.5) are of order at most
4'. To complete the proof of Theorem 1.1, one only has to show that

^-cηNPy\
For each fixed τ and multi-index α, consider the localized Hamiltonian

Sn,5Uj Yμ(Xi - x, ) + \\pι^yWι^(y)dy. (3.7)

O u r g o a l is t o e s t i m a t e t h e g r o u n d s t a t e of (3.7). S u p p o s e oc1 = α 2 = ••• = α M = τ
and oLj Φ τ for j > M. Let pιgτ(y) = βB(y) and Vi=Yβ*βB. Then (3.7) becomes

M M

£ (3.8)

Note that, by definition (3.1),

nB^\pB{y)dy^pB. (3.9)

Recall that the density function pφ for an M-particle normalized wave function,
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φ, is defined by

Therefore, if one defines

Dμ(f) = ijf/(x)/(y) Yμ(x - y)dxdy, (3.10)
and

Ω(φ) = (φ,\ -ΣΔJ+ Σ YM-*
\ L 7 = 1 l ^ i < ; ^ M

an easy calculation yields

DU(P0~PB)' (3.11)

Let Q = §pφ — J pB be the value of the total charge in the small box. The following
lemma is needed to bound the last term in (3.11).

Lemma 3.1 Let U = {x\\x\^d} be a ball of radius d and letf:U-+R be a (not
necessarily positive) density satisfying j / = Q. Then

u

Dμ(f) ^ m2ld)ίl +μd + μ2d2β-] ~ \ (3.12)

Proof. Dμ(f) can be written as

Dμ(/) = supj// I -- 1 - ί [ |W ί |
2 + μ2/t2].

h u oπ R3

To prove (3,10) we merely take (with r = \x\)h(x) = otϊorr^d and h(x) = ttde~μ{r~d)/r
for r ̂ d. Then j fh = αβ. The r <d part of the second integral is oc2μ2d3/6. The
r > d part can be calculated by integrating by parts, using ( — A + μ2)h = 0, and
d2hh'\r=d = — 0ί2(μd2 + d). This r > d part is^α 2d(l + dμ). Maximizing with respect
to α yields (3.12). •

Remark. Equation (3.12) is sharp when μ = 0 or μ-> oo with fixed d.

Returning to (3.11), recall that / - pB

 1 / 8 and μ = C6p
1

B

/8. The / x / x / cube fits

into a ball of radius d = 31/2l/2. Applying (3.12) with μd = ̂ βcjl = CΊ we find
that, with C 8 - 3 " 1 / 2 [1 + C 7 + C2/3] " \

Dμ{pφ-pB)^C,{M~nB)
2

Py\ (3.13)

Finally, we have to estimate Ω(φ). For this purpose we introduce a "duplication
of variables" trick. Consider the Hamiltonian on L 2(R 3 M).

2M

Hμ2M=-ΣAi+ Σ Wj γM - xj), (3-14)
7 = 1 1 £ i <Iύ 2M

where et = 1 for i S M and et = - 1 for i > M. Let Φ be a normalized trial function
defined by

Φ(x1,..., x 2 M ) = φ t a , . . . , x M ) φ ( x M + i,..., x2M).

A simple calculation yields

i<Φ,HS M Φ>. (3.15)
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By (A.23) in the appendix,

Ω{φ)^ -|(4.016)(2M)5 / 3. (3.16)

Let us divide the possible values of M into two cases.

(a) M <Ξ Pβ 1 / 3 2 . Here we use (3.11), (3.16) and Dμ(pφ -βB)^0 to conclude that

(φ,H»Mφ)^ - ( 6 . 3 7 5 ) M 5 ^ -(6.375)Mp^ 4 8 . (3.17)

(b) M>p1

B

1/32. Here we use Theorem 2.1, (3.11), (3.13) and (3.15) to conclude
that for large enough pB

<φ,HUΦ>^ ~ C9(pB)M^5 + C8(M -nB)
2p]>\ (3.18)

where C9(pβ)—>-(0.30)22/5 as pβ—• oo. The statement "large enough pB" comes from
the condition in Theorem 2.1 that μM~2/5->0 as M ^ o o . By our assumption
μM~2/5 :§ C6ρB

1/80, and this goes to zero as pB-+co. If, in (3.18), we recall that
nB^pBP = ρB

18 and M>pB

1/32> it is easy to see that the right side of (3.18) is
bounded below by - C1Q{ρB)MpB

IA and that C1 0(pβ)-*(0.30)22 / 5 as pβ-» oo.

Using these results (a) and (b), and summing over boxes, and recalling (3.6),
we conclude that

Eo^~ [Cn(pB)flo"5 / 4 + ColNpX4 (3.19)

with C1 1(pβ)-^(0.30)22 / 5 as pβ->oo. Recall from Sect. II that a0 = (3/4)3 and
Co < 3(π/2)2. Note that (3.19) holds for all N; we did not take the limit JV-» oo in
deriving (3.19). With the bounds just given, the factor [ ] in (3.19) is 8.57 when
p 5-^oo.

This completes the proof of Theorem 1.1. This theorem can be generalized to
the case of Yukawa potentials as in Theorem 2.1. It can also be generalized in
another direction as follows.

Theorem 3.1. Consider the modified jellium Hamiltonian with variable background
charge density

HJN=- Σ { 4 + n χ i ) } + Σ \Xi-xj\~1 +ΊΪP(χ)p(y)\χ-y\~1dχdy>

(3.20)

with V(x) = \p{y)\x — y| ~xdy. The density p satisfies — cc < p(x) ^ pB with pB § 0.
Then the ground state energy satisfies

E0^-Λ9NPy
A (3.21)

and A9 satisfies the same bound as Ab, given in Theorem 1.1.
The proof is an easy generalization of the one for constant ρ(x) — pB in A just

given.

IV. Computation of Constants

Our main goal in this section is to obtain the constant 0.30 in the inequality (1.12).
The calculation will consist of optimizing the methodology of [2]. We shall first
make a heuristic calculation of the ground state energy Eo of the Hamiltonian HN
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in (1.1) by using a modification of Bogoliubov's method, and will return to a
proper proof of Theorem 1.4 later after Eq. (4.23). We find heuristically that
Eo ~ — 0.02SNΊ/5 but we are not conjecturing that this constant is sharp. In the
following we shall closely follow the notation of [2].

Heuristic Calculations. We consider the case v = 2π/L (essentially the Coulomb
case) and introduce periodic boundary conditions on A for the Hamiltonian HN.
Thus we have

< ι ^ i ί ^ > - < ι A , 7 > > + i Σ v(k)l(ψ,A*Akψ)-Nl (4.1)
keZ3

The operator T is the kinetic energy operator, which we write in the second
quantized form (see [10] or [7], for example) as

T = L-24π2Σk2ί4ak + btbkl (4.2)
keZ3

Here L is the length of a side of A. The operators ak9 bk are annihilation operators
corresponding to the two species of bosons and /CEZ3. The charge density operator
Ak is given by

A= Σ <**+kan-b*+kbn. (4.3)
neZ3

The v(k) is just the Fourier transform of the Yukawa potential Yv (with v = 2π/L)
divided by the volume of A. We take this value of v > 0 to avoid the singularity
at fc = 0. Thus v(fc) is given by

+ l ) ] - 1 . (4.4)

In Bogoliubov's approximation one makes the ansatz

Λ ^ Σ [S k * M +T k f M ] . (4.5)
\m\£Dγ

Here, D and y are constants which will be defined later in (4.14) and (4.23). The
operators Skttn, Tk>m are defined as in (2.8) of [2] by

=(a*an+k

k'm~~\-b*bn+k ( , )
(4.6)

fα*αn_ fc ifm = (n,l)
fc"m \-b*bn-k ifm = ( n , - l )

In (4.6) n e Z 3 and ± 1 indicates the charge species; \m\ is defined to be \n\. The
operators αf,b#

n with \n\^Dy are to be thought of as scalars subject to the
constraint

X «*«„= Σ b*bn = ̂ . (4.7)

Hence if \m\ ̂  Dy and |fc| > 2Dy the Skttn and Tfc?m are just annihilation operators.
The expression (4.1) then becomes quadratic in creation and annihilation operators.
One can compute its ground state energy exactly in the case when Dy = 0 but also
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to a good approximation when Dy > 0. We do this by writing (4.1) as

+ 2 Σ v(kU/c(ε/c> Φ) + lower order terms, (4.8)
\k\>DγNδ

where δ > 0 is a small positive number. The expression Ik(ε, φ) is given, for general
ε, by

+ ( Σ Sim+Tk.y( Σ Stm+Tk,m)-N]ψ). (4.9)

The number εk is given by the formula

εk = 8π2fe2[NL2v(fc)]"1. (4.10)

One can compute exactly the ground state energy of Ik(ε, φ). It is given in [2] as

) (4.11)

where

«o= Σ l (4-12)

The right-hand side of (4.11) can be achieved if the numbers an,bn satisfy

a*an = b*bn = - 9 \n\^Dy. (4.13)

n0

We shall take γ to be large, γ ^ Nδ, and fix D to be the finite number

D = n-1{5iny12 = 0.645/π. (4.14)
Then, to leading order of magnitude the ground state energy of the second sum
in (4.8) is given by

where / is the integral

/ = J [l + ? _ (ξβ + 2ξ*)1/2-]dξ. (4.16)
o

Observe that

0 < / < y i ( 4 1 7 )

Numerical values for 7, J are given by

/ = .806, J = π21/4/4 = 0.934. (4.18)
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The integral / can be expressed exactly in terms of elliptic integrals [7]. Since γ is
large n0 is given to leading order as

no = 2 J dx = -^-(Dy)3. (4.19)

Hence (4.15) is given by

- f l o - ( N L y 3 ) 1 / 4 , (4.20)

L
where

B0 = 2(3π2Γ1/4D3l4L (4.21)
The formula (4.20) gives the second sum in (4.8) to leading order of magnitude.

Next we need to calculate the first sum in (4.8) which is the macroscopic kinetic
energy of the low lying occupied states subject to (4.13). This is clearly given
to leading order of magnitude by

2N 4 π 2

| I | 2 2 N 4 π 2

 f | 2 j

— Σ -γr\k\ = — -jτ ί M dx

U0 \k\^Dy U n0 L \x\SDy

(4.22)
5 ) U U

The total energy of the system then, according to this calculation, is

(4-23)
5 \ L J \ /

If we minimize this expression with respect to Dγ/L we obtain the value — 0.028ΛΓ?/5.

Proof of Theorem 1.4. In the following calculation we shall ignore all terms of
lower order then 7V7/5 since we are only concerned with proving the inequality
(1.12) for N-^cΌ. Let y be the yφ defined by (1.10). We can assume without loss
of generality (by changing A to be a sufficiently large cube) that the δ in Theorem
1.4 is less than £ and that γ ^ Nό. Define μ by μL = m3Lx(N1/10

9 vL) so that μL-» oo
and N~ll5μl< oo as JV-+00. If vL<Λ r l / 1 °, let us write YV = (YV- Yμ)+ Yμ and
write

(ψ9H
v

Nψ> = N- 1/10K(φ) + Pv(φ) - Pμ(φ) + (1 - ΛΓ 1/10)K(φ) + Pμ{ψ). (4.24)

Here, Pv(φ) denotes the potential energy terms in HX

N with the Yukawa potential
yv. Since Yv - 7μ is positive definite, Pv(φ) - Pμ(φ) ^-\(μ- v)N ^ -\μN ^
-^Nίl/10/L. By the uncertainty principle in a box, K(t//) ̂  CN/L2, whence the first
three terms on the right side of (4.24) are at least CN9/10/L2 -±Nll/10/L.
Minimizing this with respect to L, we find that these terms are bounded below by
— C7V1 3 / 1 O» —NΊ/5, For the last two terms on the right side of (4.24) we can
clearly replace N~ J/1° by zero in the limit N -^ oo. Thus we need prove Theorem
1.4 only under the condition v L ^ N 1 / 1 0 and N~il5vL bounded.

By taking A to be four times as big, we can suppose that φ is supported in QN,
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where Q is a smaller cube of size L/4. We can then replace Yv(x) in WN by its
periodic extension

7ί(x)= Σ YΛx + nL), (4.25)
neZ3

because the difference in the two potential energies is at most W(N) = N2L~1e~vL/2

(with the factor N2 coming from the number of interaction terms). Since
v L ^ N 1 / 1 0 , W(N) < Nε/L as JV-»oo for every ε > 0 . As before, we can borrow
N~1/10K(φ)^N9/10/L2 to control W(N).

Using Ŷ  in HV

N, we then have that (4.1) is an identity provided that HV

N is now
understood to contain Y^ and provided (4.4) is replaced by

v{k) = [πL{k2 + (vL/2π)2}]-1. (4.26)

Clearly, v(k) ̂  [πL(\k\2 + I ) ] " 1 . Now we are ready to bound the various terms in

(4.1).
First we bound the potential energy terms for \k\ < NδDy from below by

-±N Σ v(fc) ^ - CN1 +δDy/L. (4.27)
\k\^NδDy

If, as before, we combine a small portion of the kinetic energy with (4.27) we obtain
a lower bound which is lower order than iV7/5.

Next consider terms in the potential energy which have |fe| > NδDγ. We define
SKm, and Tkm again as in (4.6) but this time for all m with \m\ ̂  \k\/Nδ. Let us
assume for the moment that the system is neutral so that the number of negative
particles is N/2. We shall return to the nonneutral case after Eq. (4.68). Since
y ̂  N1/3~δ, Lemma 2.2 of [2] becomes

4π2

^Tφy^—j Σ ίl~CN~δ^k2Ck(φl (4.28)
lλJ-^ \k\>NδDy

and Ck(ψ) is given by

Ck(φ)= f 2-*rΣ<Ψ\stmSk,m + TtmTkJφy, (4.29)

where X is a sum over {2r - l)N1/3~δ/2 g \m\ <{2r+1 - l)Nίβ~δl2. Note that the
\m\

constant 4π2/NL2 in (4.28) is better than that in [2], This is due to the improved
summation procedure in (4.29). Hence we have

< ^ , H ^ > ^ i Σ v(k)h(εkM (4.30)
\k\>NδDγ

where

(4.31)

\ (4.32)

Since the term CN'δ in (4.32) is lower order, we shall ignore it in future
computations.
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Now let a > 1 be a positive number which we shall fix later. We define

no = # {m:\m\SDy},

nr = #{m:ar-1Dy<\m\^arDy}, r= 1,2,3,.... (4.33)

Evidently we have, to leading order,

n^—iDyfa^-^la'-ίl (4.34)

We define Nr9 r = 1,2,..., to be the maximum possible number of particles,
consistent with the given K(\j/\ such that |fc| > ar~ιDy. Thus we have

4π 2iV r(α r" 1i)y) 2L" 2-7V7 2L- 2, (4.35)

which yields
Nr = N[_Aπ2{ar~ι Df] " \ (4.36)

We define No = iV.
The key inequality in [2] is

The term £fe is a constant times the number of particles with momentum n satisfying

\n\ ̂  C|fc|/Λ^. It follows that the expression

Σ (4.38)
k

can be combined with a small portion of the kinetic energy to yield a lower order
term. We shall therefore concentrate on the sum on the right-hand side of (4.37).
The ηr are defined as

ηr = ε/[π rp r], (4.39)
and

pr = 24t if (2ΐ-l)N1/i-δSarDy<{2t+1-ί)N1/3-δ/2. (4.40)

The αr are the positive roots of the polynomial equation (in μ)

1+ ΣN r [ ί/ r N Γ -//]- 1 +N Γ [ ί 7 r iV Γ + μ ] " 1 = 0 . (4.41)
r = 0

We order the roots αr in the following manner: Let α0 be the unique root of (4.41)
which has α0 >η0N0. The roots ocr,r = 1,2,..., are the unique roots of (4.41) which
satisfy ηr_ίNr-1> otr > ηrNr. We define βr(k) by

~j5r(fc) = α r - ( l + ^ ) N r J (4.42)

where αr is determined from (4.41) after setting ε = εfc in the definition, (4.39), of ^ r.
Let us define

i X v(fc)j8r(fc) = BrN(NLyψVL. (4.43)



436 J. G. Conlon, E. H. Lieb and H.-T. Yau

Note that Br is a constant plus correction terms which tend to zero as NLy3 -» oo.
In the following computation (cf. (4.66)), it will be found that NLy3 indeed tends
to infinity, and thus we are able to neglect these correction terms.

If we define B by

B=ΣBr, (4.44)
r = 0

we have that
(ψ,Hv

Nψ}^ -BN{NLy3)1/4/L. (4.45)

We need then to estimate βr and Br, for r = 0,1,2,.... We first consider the
case r = 0. The root α0 of (4.41) is clearly bounded below by the unique positive
root of the equation

N0lη0N0- μy1 + NolηoN0+ μy1 + 1 =0. (4.46)

Hence we obtain
β0^N0{]+η0-[η2

o + 2η0y
2}. (4.47)

Now substituting the values for βo(k) and performing the sum in (4.43) we obtain

B0 = 2{3π2yι/4D3l*l (4.48)

In the calculation for (4.48) we have used the fact that p0 = 1 in (4.39). In fact pr = 1
provided r ̂  Clog TV, since y S N1/3~δ. Note that (4.48) and (4.21) are identical.

Next, we wish to estimate βr and Br when r = 1,2,.... Now αr is bounded below
by the unique root, μ, of the equation

1 + X NjlηjNj -μrX+ NjlηjNj + ηrNrY' = 0, (4.49)
j = o

which lies in the interval ηr_1Nr_1 >μ > ηrNr. Let ocrΛ be the root of the
polynomial equation which is the same as (4.49) except that the terms Nj/(ηjNj — μ),
j = 0,... ,r - 1 are replaced by NJ^jNj - ηrNr)9 j = 0,..., r - 1. Thus αr? λ is larger than
the corresponding root of (4.49). Next, let αr 2 be the root of the polynomial equation
which is the same as (4.49) except that the terms Nj/tyjNj — μ), j = 0,..., r ~ 1 are
replaced by Nj/(ηjNj — αr>1). It is clear that αr>2 is smaller than the corresponding
root of (4.49). We can define the quantities βrΛ,BrUBx and βr^Br^B2 to
correspond to the roots arΛ, αr>2 respectively in exactly the some manner as βr, Br, B
correspond to αr.

We calculate arΛ. To do this we write the corresponding polynomial equation
in the form

Nr[ηrNr - μ] " 1 + 1 + hrΛ/(2ηr) = 0, (4.50)

where hrl is given by the equation

hrΛ = 1 + 2Σ ίηj/ηr + NJNj ] ~ι + [ ^ - NJNβ ~ K (4.51)
j = o

From (4.50) it follows that

βrΛ =(1 + ηr)Nr-arΛ = JVr[l + 2*/A,iΓ'• (4-52)
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We wish now to fix the values of a and D in an optimal way. We do this by
making the approximation hr?1 ̂  1 and optimizing the value of B1 based on this.
With this approximation we have, then, an approximate value for BrΛ obtained
by summing (4.52),

Ί 1 / 4

BrΛ~\J[π{ar-ιD)Y2 1
—

Summing (4.53) from r = 1,..., oo we have

(4.53)

£ BrΛ ̂ (3π2r^π-2JD-5^g(a)9 (4.54)

where g(a) is the function of a given by

g(a) = (a3 - l ) 1 / 4 α 5 / 4 [ α 5 / 4 - I ] " 1 . (4.55)

We shall take a = 2, which is close to the minimum for g, and the corresponding
value for g is g(2) = 2.81. From (4.48) and (4.54) we then have

f 2.81π~ 2 JD- 5 / 4 ] . (4.56)
r= 1

The value of D is chosen to minimize the right side of (4.56). This yields the value

D = (l/π)[14.05J/12/]1/2 - 1.16/π. (4.57)

It is of some interest to compare this value of D with the value of D given in (4.14),
namely D = .645/π, which was used in the previous heuristic calculation. With D
chosen as in (4.57), Eq. (4.56) yields

r = l

(4.58)

Having fixed a and D we obtain an upper bound for B. The expression hrl is
given from (4.51) and (4.34), (4.36) as

It is easy to see from (4.59) that

l<hrΛ<5/3. (4.60)

If we use the lower bound in (4.60) we obtain from (4.50) an upper bound on αr>1,

α r ι l < ηrNr + (1 + ίβηrΓ'N, = »/PJVr[l + 2(1 + 2 ^ ) ^ ] g 3ί?rNr. (4.61)

We may now use the upper bound (4.61) to obtain a lower bound on αr 2 I n view
of (4.61), oίr 2 is bounded below by the root of the equation

NrlηrNr-μΓ1 + 1 +KJ(2ηr) = 0, (4.62)
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where hr2 is given by the equation

Ki = 1 + 2 X1 lηj/η, + NJNJ'1 + \_n.JΆr - 3JVr/JV7.]"\ (4.63)
j = o

If we express /ir 2 in a similar fashion to (4.59) it is easy to conclude that hr2 < 5/3.
We conclude then that

^ (4.64)

Hence from (4.58) we have

(4.65)

Thus (4.45) and (4.65) yield a lower bound on the energy, (ψ,Hv

Nφ}, of the wave
function, φ, in terms of y = y^ and L.

To obtain a lower bound on the energy in terms of N alone, we have to use
the fact that y,L and N are not really independent when the energy is negative
and when the hypotheses of Theorem 1.4 are satisfied. To see this let us divide the
kinetic energy into two parts. One part is estimated by using the definition of y
as Ny2/L2. The other part is put together with the potential energy and use is made
of (4.45). In all, then, we have for any x,0 < λ < 1, the inequality

L

3/4

(4.66)

The factor (1 — λ)~1/4 in (4.66) is obtained by applying scaling to (4.45). Minimizing
(4.66) with respect to y/L yields

(φ,Hv

Nφ)^ -(5β){3β)3/5B8/5NΊ/5λ-3/5{\-λy215. (4.67)

The maximum value of h(λ) = / 3 / 5 ( l — λ)2/5 for 0 < λ < 1 is obtained at λ = 3/5
with /z(3/5) = .510. Hence (4.67) yields

(φ,Hv

Nφ}^-Q30NΊ/5. (4.68)

We have proven (4.68) under the assumption that HV

N is the Hamiltonian of a
neutral system. However for the argument of Sect. II to be valid we need to know
that (4.68) holds even for nonneutral systems. The neutrality assumption entered
in our calculations only in the inequality (4.28) and it did so in the following way.
The estimate in Lemma 2.2 of [2] leads to a denominator 2 max(iV+, N_) instead
of N in (4.28). It is only when N+ = iV_ = N/2 that we get (4.28). If the system is
not neutral and the ratio of negative particles to the total number of particles is
given by

(

then the coefficient 4π2/NL2 of the sum in (4.28) must be decreased to
4π2/(l + ξ)NL2, which in turn leads to the inequality

(φ,Hv

Nφ)^ -0.30(1 +ξ)2/5NΊI5. (4.70)

The inequality (4.70) gives an NΊ/5 lower bound for a nonneutral system which
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has a slightly larger constant than the constant 0.30 for the neutral case. We wish
to show that the constant 0.30 still holds for the nonneutral case in the situation
where we apply this inequality in Sect. II. The Hamiltonian HV

N can be written as

IΓN=W*N + H%9 (4.71)

where W^ is the JV-body potential energy obtained from the function

ω

r-1(e'vr-e'ωr) = je-urdu. (4.72)
V

We choose ω — v + JV1 / 5. The inequality (4.70) applies to H^. In fact, the inequality
becomes better since ω > v, which implies that v(fc) becomes smaller. Our bound
(4.70) is monotone in v(fe).

To bound WV

N from below, let us suppose the particles are fixed at points
xl9...,xN with the negative particles being at xhi = 1,...,iV_. We define a density
p(x\ by

p(x)= Σeiδ(χ~xi) ( 4 - 7 3 )
i = l

It is clear that

WV

N = -] du$ eulx~yl p(x)p(y)dxdy - | 7 V 6 / 5 . (4.74)

The following lemma and proof is due to Federbush [6,3]. It can also be proved
by the method of Lemma 3.1.

Lemma 4.1. Let A a R3 be a cube of side length L. Letf:Λ -> R be a (not necessarily
positive) density with Q = j fdx. Let μ Ξg 0. Then there is a constant C 1 4 independent

A

of μ, /, L such that

Dμ(f)^^f

Proof. Assume feL2(Λ) and write

where g is any function in L2(R3) and where g = ( — A -f μ2)h. Let H be a C00

function with H(χ) - 1 for |x| g 2 and H(x) = 0 for |x | ^ 3. Finally, take h(x) =
H(x/L). Π

From (4.70) to (4.74) and Lemma 4.1 we conclude that

(ψ,H'Nψy ^ C1 4vL(l + v 2L 2)" 2^ 27V 1 1 / 5 - |/V6 / 5 -030(1 + ξ)2/5NΊ/5. (4.75)

The inequality (4.75) shows that (4.68) holds for large N, even in the nonneutral
case, provide vLN~1/5 < oo as N-+ oo. (Recall that, as stated in the beginning, it
is only necessary to prove Theorem 1.4 when vL > Λ^i;i °.) This concludes the proof
of Theorem 1.4.
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V. The Nonneutral Case

Consider the Hamiltonian HN of (1.1) and its generalization HV

N of Theorem 2.1
or (2.21) acting on JV_ negative particles and N+ positive particles with
Λf- ^N + ,N_ + N+ = N. Our goal here is to generalize Theorems 1.2 and 2.1 as
follows.

Theorem 5.1. Let HV

N be as in Theorem 2.1, and let there be N _ negative and N +

positive particles with N_ SN+. The parameter v can depend on N_ and N+ but
we suppose that NZ2/15v^0 as ΛΓ_-^oo. (Note the difference from Theorem 2.1.)
Then

HV

N^-A5N
ΊJ5 (5.1)

for some constant, A5.
The proof follows the same lines as in Sect. II. One must modify it in two

respects, however. First, it is necessary to prove that the interaction energy depends
only on the number of negative particles. Second, we need to localize the kinetic
energy in a somewhat different way than in Sect. II. Basically we only want to
localize the kinetic energy of a positive particle if it lies in a box containing a
negative particle. If we were to localize the kinetic energy of all positive particles,
the cost in energy would be proportional to the number of positive particles and
this of course could be much larger than NΊJ5.

We solve the problem of the interaction energy in Lemma 5.3 below, but first
we require the two preliminary Lemmas 5.1 and 5.2. The first is independently
interesting.

Lemma 5.1. Suppose that K and L:R 3->R+ are two nonnegative functions (not
necessarily symmetric) that satisfy the following (5.2), for some fixed, positive integer s,

sL(x)^K(y) whenever \x\^\y\. (5.2)

Let x1,...i xN_ and y1,..., yN + be points in R3 that satisfy

ΣKiyj-x,)- £ L(yj-yk)>0 (5.3)

for each j = 1,.. .,N +. Then N + ^CsN_, where C is some universal geometric
constant (60 will suffice).

Proof. We shall use the following geometric fact. There exists a finite set of closed,
solid, circular cones in R3, each with apex at the origin and each with solid angle
π/3 such that their union is all of R3. The minimum number of cones required for
this is some integer C, and it is easy to see that C g 60. Denote these cones by
B1,...,BC. Let Y denote the set of y{ points.

Now, without loss of generality, assume xx =0 . Let Yx = {j^l^e^i} be the
points in Bl9 and let Z1 be those s points in Y1 which are closest to x1. (If there
is an ambiguity, make an arbitrary choice; if Y1 has fewer than s points then
Z1 ΞΞ yt.) Next, apply this process to the remainder Y\Yt and thereby obtain Z 2

with respect to B2. Continuing in this way we obtain Zl9...,Zc and Yl9..., Yc.
c

Let Z = [j Zj, whence Z has at most sC points.
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Take yjφZ and consider the contribution to the left side of (5.3) coming from
x1 and Z. This contribution is

We claim that A^Q. If y}eBa then the second sum in Aj is not less than
Σ L ( y j - y k ) . B u t \yj~yk\

2 = | y / + \yk\
2 -2y y k ^ \yj\

2 + \yk\
2 - \yj\ \yk\ ̂  | y / ,

yueza

since |j; fc | ^ |y7 |. Thus, \yj — yk\S\yj\ and thus sL(yj — yk)'ϊtK(yj). Given that
yJ G5α,Zα has 5 points and thus Aj rg 0.

If we now remove xx and Z from the system we obtain a reduced system with
a new N_ = N_ — 1 and with a new N+^N+ — sC, and that satisfies (5.3) for all
y} in the new system. The construction can now be repeated with x2 and then x 3

and so on until we obtain a final system with N _ = 0 and a final N +^N + — sCN_.
This clearly cannot satisfy (5.3) if N + > 0. •

Lemma 5.2. Lei K:R3->R+ be given as in Lemma 2.1 by

with γ = |χ | αnd ω > v ^ 0. /ίere we assume only that h:R3 —»R satisfies (i) — H ^
h{χ) = 1 / o r α ^ x α ^ some finite H^O; (ii) /i is continuous in some neighborhood of
x = 0. 77ze/7 ί/zere is α positive integer s such that

sK(x)^K(y) whenever \x\^\y\. (5.4)

The integer s depends only on ω — v = p and on h. For fixed /z, s is a nonincreasing
function of p.

Proof. For (5.4) we can restrict our attention to the case v = 0, ω = p because
multiplication of this K by e~vr only makes inequality (5.4) stronger. There is an
R>0 such that h is continuous in BR = {x\ \x\ <Ξ R}. Since K(x)^r'1{l -e~pr},
which is decreasing in r and since K(x) g r~ι {1 + He~pr), we have that K(y)/K(x) g
(1 + He~pr)l(\ — e~pr) with r = |j/|. The maximum of this ratio for r Ξ> # occurs at
r = î  and is sx = ( 1 + i ί ί Γ p Λ ) / ( l - e ~ p R ) . Thus ^ ^ ( ^ ^ ^ ( x ) when \x\^\y\ and
|y| ^ R. On the other hand, when |x| g |y| ^ JR, consider the function F^(x,y) =
K(y)/K(x) defined in the closed set T= {(x,y):\x\ ^ \y\ ̂  ,R}. There are 2 cases.
Case (i): /z(0) = 1. Then K is continuous on BR with K(0) = p. Moreover, K(x) ^
r~1{\ — e~pr) on 5 K . Thus FR{x,y) is continuous and so has a maximum on T.
Case (ii): h(0)< 1. Then |x|X(x) is a continuous function on BR and it is never
zero, so | x | X ( x ) ^ ί for some ί > 0 . Hence, FR(x,y)^Γί\x\K{y)^Γ1(l + H).
Thus, (5.4) is satisfied for any integer s ^max{s 1,maxΓF j R(x, y)}. To prove the
monotonicity of s, consider K(x) with v ^ 0 and ω = v H- p. Let F (x, y) = K(y)/K(x).
Since sgrl, we only consider x,y such that F(x,y)^.l. Hence (dF/dp)(x,y) =
ί(dK/δp)(y) - F(dK/δp)(xU/K(x) = - l\y\K(y) - e"v|J" - |x|X(^) + Fβ-v |x |]/X(x).
One concludes that (dF/dp)(x,y) ^ 0 if | x | ^ | y | and if F(x, j ;)^l . Hence s is
monotone in p. •

Lemma 5.3. Suppose v, p, / ̂  0 and let
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with ftz(0) = αo,/ιz(x) = h(x/l) and with h(x) given by {2.8). This f is a generalization
°ffμι given in (2.16). Given xl9...9xNeR3 and et= ± 1, let iV_ (respectively N + ) be
the number of e{ which are — 1 (respectively + 1). Assume that N_ ^N+. Finally,
suppose that pl^. C 3 (which is defined in Lemma 2.1 and which depends only on h),
so thatfέϊQ. Then there is a constant C 1 3 depending only on h and not on v, p, /,
such that

Σ
Proof. Let W denote the left side of (5.5). Combining Lemmas 5.1 and 5.2, there
is an 5 (which depends on h and on pi (by scaling)) so that whenever N + ^ CsN_
we can eliminate N + — CsN _ positive particles without increasing W. Thus we
can assume N + rg CsN _. Furthermore, this 5 can only decrease when pi increases,
so we can take s to be the value it has when pi = C 3 (which depends only on h).
Thus s depends only on h. Now since / ^ 0, we have W^ —j(N + -f JV_)/(O) =

V_. D

We return next to the problem of localizing the kinetic energy similarly to
Sect. II. For any α = (w,α l 5...,α i v)GJΓ x Z 3 " we define φ[ as in (2.11). We adopt
the convention that the negative particles are labelled 1,...,ΛΓ_ and the positive
particles are labelled N"_ -f 1,...,JV. Let Sa be the αz which correspond to the
negative particles,

5α = {α1,...,αΛΓ_}. (5.6)

We denote by Sa the set of nearest neighbors in Z 3 of Sα, so

Sα = {mGZ3| |m - α£| ̂  ^ 3 for some α ^ S j . (5.7)

Let JVα be "the number of positive particles which lie in a box occupied by a
negative particle" and Na "the number of positive particles which lie in the same
box as a negative particle or a nearest neighbor of such box." By this is meant

N.\xjeSa}. (5.8)

The definition oϊSa9 Sa9 Na9 Na depend only on αeZ 3 ] V . Finally we define the kinetic
energy operator Ta (which also depends only on α) to be the kinetic energy of the
negative particles plus the kinetic energy of "the positive particles which lie in a
box occupied by a negative particle," namely

Ta=Σ-Δt+ Σ -Δj (5-9)

We then have the following lemma:

Lemma 5.4. Let Co be the constant in (2.14). The kinetic energy is bounded below
(recalling the definition of J doc before (2.11)) as

<<A, Tψ} ̂ iμa(φl Txφ
ι

a) - C0/-2[N_ + 27jNJ |^ | | 2 dα]. (5.10)

Proof. We use (2.14) to bound (ψ, — Δtψy below for i^N^, namely

.Σ
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Now suppose i > N_ and consider a fixed α. Then we have the inequality

ijrfxilViCc^ί^//)^)!2 ^JrfxilViX^ί^i/OI2!^!2 + J^iX^ί^i/OIv^i^ (5.11)

Now use the fact that

IV^fc/DI2 ύ C0Γ
2 Σ 9(λ - attest/I), (5.12)

/eZ3

where g(z) is the function g(z) = 1 if \z\ ^ yj3,g(z) = 0 if \z\ > ^ / ϊ Hence we have

for all i> N-,

i < ^ , - ΔM ^ ί ft ^ M ) l V^|2rfx + C0/~2 £ ^μ - αz ) || ̂ . .^ αv||
2,

J = l /eZ 3

(5.13)

with A being in the zth position in the last sum. For i> N _ let Tj, be the ith term
in the kinetic energy Ta in (5.9), namely T\ = — zjf if a^S^, and Γ^ = 0 otherwise.
We have then from (5.13)5

\ Σ <Ψ'«,rj[>ί Σ lf\xi,(xj/m^\2dx + nc0i-
2 £ \\φι

a\\2. (5.i4)
α ( e Z 3 α ^ e Z 3 i = l α ί e S α

The number 27 is the number of nearest neighbors of a point in Z 3 . If we sum
(5.14) with respect to all α; for j Φ ί, and then sum over i, and then integrate over
UEΓ, we obtain the inequality (5.10). •

The following lemma is also needed for the proof of Theorem 5.1.

Lemma 5.5. Let φι

a be the localized wave function (2.11). Let V% he given by (2.12)
and Ta by (5.9). Assume that 1 :§ μ^ N2!15. Then there is a constant C = C{μl\
depending only on μl such that, with the notation of (5.8), there is the estimate

^ l T ^ + (ψlV^y~2ΊC0Γ
2NA^ (5.15)

Proof. We analyze the left side of (5.15) similarly to (2.15). Since there is no
interaction between boxes, the left-hand side of (5.15) is bounded below by

(5.16)
σeZ" J

where Eσ is the ground state energy of the following Hamiltonian, Hσ, depending
on σ. There are three cases: σeSa, σeSα\Sα and σφSa. If σeSa and nσ of the z, 1 g z ^ JV,
have αf = σ with n~ of these satisfying / ̂  iV_, then //σ is the Hamiltonian

tiσ = ^ι + K Z / C Q / Π^ (5.17)

acting on nσ particles in a box of size /, n~ of which are negative, n^ positive. Here,

Vμ = Σ e i ^ ^μ(χi — x7-) Ή σ^Sa\Sa, then n~ = 0 and H σ is the Hamiltonian

2 n σ (5.18)

acting on nσ positive particles in a box of size /. If σφSa then Hσ is

H σ = F " (5.19)

acting on nfl positive particles.
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We estimate the ground state energies Eσ. In the case of (5.19) we clearly have
Eσ ^ 0. In the case of (5.17) we use (4.75). Taking into account the factor \ in (5.17),
which gives a factor 2 1 / 4 in the NΊI5 law (cf. (4.66)), and with τ = μl, (4.75) reads
(with v = μ and ω = 2μ instead of ω = μ + N1'5)

Hσ = C14μτ(l + τ2y2(n: - n'σf - \μnσ

-(0.30)2^nσ[mϊix(2n:,2n;)V/5 -2ΊCoμ
2τ-2n:. (5.20)

The quantities in (5.20) satisfy n~ ^ N_, τ is fixed, 1 rg μ ^ N2!15 and n* is arbitrary.
We minimize the left side of (5.20) with respect to n£. One can show that

Hσ £ - ^ ( τ ) [ μ 2 n ; + μ3 + (nσ" ) 7 / 5 ] (5.21)

for some A depending only on τ.
To bound (5.18), one simply notes that in this case

for some B(τ) independent of nσ. By using the fact that 1 ̂ μ^N2!15, one has
Hσ^ -D(τ)N2J5.

Now, putting together the bounds for (5.17), (5.18) and (5.19), we conclude that
for some F(τ)

(2)

where the first sum is over Sa and the second is over Sa\Sa. The number of points
in Sx is iV_ while the number of points in Sa is at most 27 ΛΓ_. Using the facts

( i )

that μ ^ N2!15, £ n ~ = AT _, and the convexity of n -» n 7 / 5, the lemma is proved. •

of Theorem 5.1. Step 1. Starting with v, we define μ = N2J15, and
l = C3NZ2/15> where C 3 is given in Lemma 2.1. As in Sect. II we write a0Yv =
f + 7μ/zj, with f = a0Yv~ Y^ht as in Lemma 5.3. By Lemma 5.3, the contribution
to the potential energy from / is bounded below by — C 1 3 (μ — v)N_ ^
— C13N

ίJ115 for large N. This can be neglected compared to NΊJ5.
Step 2. Lemma 5.4 is used to localize the kinetic energy. The term — C0l~

2N-
in (5.10) can be neglected since Γ2 = {C?>y

2N4!15.
Step 3. The first and third terms on the right side of (5.10) is combined with

the Yμhx part of the potential energy. We localize this potential energy as in (2.13).
The first and third terms of (5.10) plus the localized potential energy is just the
left side of (5.15). To prove the theorem we merely have to sum the right side of
(5.15) over α, but this is exactly — C(C3)NΊJ5 by the normalization condition on
φ. •

Appendix: Thomas -Fermi Theory and the Stability of Matter

with Yukawa Potentials

Our main goal here is to establish a lower bound to the energy and an upper
bound to the kinetic energy for quantum mechanical particles interacting with
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Yukawa, instead of Coulomb potentials. We consider N movable particles with
charge — 1 and coordinates x 1 ? . . . jX^eR3 and K fixed particles with coordinates
Rx,..., RκeR3 and charges z1,...9zK'§:0. The movable particles will be considered
to be fermions with q spin states, so that q = N corresponds to the boson case.
The Hamiltonian is

H=-t{Δt+v(Xi)}+ Σ Yμ(xt-χj)+u> (A 1)

with

U= Σ zιZjYμ(Ri-Rj). (A.2)

Yμ(x) = \x\~1 Qxp{ — μ\x\} is the Yukawa potential. It is positive definite and

satisfies
(-Δ + μ2)Yμ = 4πδ. (A.3)

The energy is

E = i n ϊ { ( φ , H n φ ) \ | | ι A I | 2 - l a n d a l l R U . . . , R K } . (A.4)

The method of [15] will be used, which means that we first have to examine the
Thomas-Fermi (TF) functional

δ(p) = U~2/3y ί P5/Hx)dx - ί V(x)p(x)dx + if f p(x)p(y) Yμ(x - y)dxdy + U (A.5)

and corresponding energy

ET F = inf{<f (p) I P G L 5 / 3 nL 1 } . (A.6)

Notice that in (A.6) we do not impose Jp = 2V. This constraint could easily be dealt
with, but it is not needed in this paper.

One of our results will be that EτF — U is a monotone decreasing function of μ.

A. The Thomas-Fermi Problem. By the methods of [14], a minimizer exists for
(A.6) and satisfies yg~2 / 3p(x)2 / 3 = max(0(x),O) with

φ(x)=V(x)-(Yμ*p)(x). (A.7)

Lemma A.I. φ(x) ̂  0, all x, and therefore the TF equation becomes

2 3 2 l = φ(xl (A.8)

Proof. Let B = {x\φ(x) < 0}. On B,ρ{x) = 0 and RtφB, all i (because φ(Kf) = oo).
Therefore — Δφ = ~μ2φ^0 on B, so φ is superharmonic on 5. Since φ = 0 on
55, φ ̂  0 on J3 which implies that 5 is empty. •

Lemma A.2. Let zί9...,zκ^.O and z 1 , z 2 , . . . , z j K >0 be two sets of charges with
z1 ^zλ. Then, for all x, φ(x) ̂  φ(x).

Proof Let ψ = φ - φ and JB = {x|^<0}. Clearly, R^B. On B,p^P so ( - 4 +
//2)^ = 4π(p — p) ̂  0. Thus ^ is superharmonic on B and again 5 is empty. •

Lemma A3. Let zx,...,zM>0 and zM + 1,...,zK>0 be two sets of charges located
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at R l 9 . . . 9 R κ . Then

E{zl9...9zκ)>E(z1,...9zM) + E(zM + 1 , . . . , z κ ) . (A.9)

Proof. This is Teller's theorem for the Yukawa potential and is proved as in [14]
using Lemma A.2. •

Lemma A.3 is given in [16, p. 237].
Next, we turn to the question of monotonicity with respect to μ.

Lemma A.4. Suppose μ1 > μ2, with given fixed charges zt > 0 and locations R(. Then

Φi W = Φi (x\ for all x

Proof. Let ψ = φ2~φ1 and B = {x\φ(x) < 0 j . Then ( - A + μf)φi(x) = ΣZAX ~
Rj) — pi{x). By subtracting these two equations, and using the fact that px > p2 on
B, we find that — Δφ > μfφ1 — μjφ2>0. Again, B is empty. Q

Let us define

Nc = Jp, (A. 10)

where p is the solution to (A.8). Nc is the maximum negative charge for the TF
system (A.5).

Lemma A.5. If μ1 > μ29 with fixed zi and Rh then

N\^NC

2 and E]F'-Ό\^EΎ

2

F -U2. (A.ll)

Proof. N\ ̂  Nc

2 is a trivial consequence of Lemma A.4 and (A.8). By multiplying
(A.8) by p and integrating, we have that

E - 1/ = -f J Vp-^\\p{x)p{y) Yμ(x - y)dxdy. (A. 12)

Since μ1 > μ2,Pi{x) ύ Pi(x) a n d Yμi(x) < Yμ2{*\ for all x. This, together with (A. 12),
proves the lemma. Π

Let us now compare the Yukawa TF problem with the Coulomb TF problem,
K

which corresponds to μ = 0. For the Coulomb problem Nc = Z = ̂ Zj [14]. By
1

Lemmas A.3 and A.5 we have that

K K

^ ^ 2^ ^ l Z j i = L ^Coulomb\Zj) {ΆΛ3)
7 = 1 J=l

The latter inequality follows from the fact that U = 0 for an atom. For the TF
Coulomb atom [14], EΎ¥(z) = - (3.679)y ~x q2/3zΊ/3. Thus, for the Yukawa problem,

EΎF^ -(3.679)7 " ^ 2 / 3 Σ Z T ( A 1 4 )
7 = 1

Another lower bound for ET F 'a t o m(z) can be obtained by dropping the ppYμ term
in (A.5). The resulting minimization problem is trivial: q ~ 2 / 3 yρ(x)2β = V(x) = z Yμ(x)
for an atom. Since J Y5J2 = 4π(2π/5μ)1/2, (A. 13) implies

EΊ¥^-4qμ-ll2y-3l2(2π/5)3'2 f zf2. (A.15)
7 = 1
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B. The Quantum-Mechanical Problem. Returning to the Hamiltonian in (A.I), we
want to find a lower bound to (φ,Hφy for any normalized N-particle function,
φ. The one-particle density of φ is defined by

pψ(x) = N\\φ{x,x2,...,xN)\2dx2--dxN, (A. 16)

and (φ,Hφy will be bounded in terms of pφ.
To bound the particle-particle energy we use the trick in [15]. Consider (A.5)

with q = l,K = N,7 = ό (arbitrary), Rt = x• and zi — 1 for i — 1,...,N. Then,
inserting pψ in (A.I) and using (A. 14),

Σ Yβ(xt - xj) * iΠpψ(x)pΨ(y) Yμ(x ~ y)dxdy - f <5 JpJ/3 - 3 . 6 7 9 ^ . (A.17)

To bound the kinetic energy, we use the bound in [15] (recall that q = N for
bosons):

(A. 18)

In [15], the constant K3 is given as |(3π/2)2 / 3 = 1.69, but this constant was
subsequently improved. The best bound at present is in [11] where it is shown
that we can take K3 = 2.7709.

Combining (A. 17), (A. 18) we have the following bound for any normalized φ

(φ,Hφy ^ S'ipψ) ~ (3.679)N/δ, (A. 19)

with q = 1 and y =^K3N~213 - δ in (A.5). We choose

/ 2 1 \ (A.20)

which implies that γ > 0. Using the bound (A. 14) we obtain

Theorem A.l. With H given by (A.l)9 the following holds for all normalized φ:

L
with K3 = 2.7709.

The final task is to apply Theorem A.I to HN in (1.1). Suppose that K
particles have e{ — + 1 and M particles have et = — 1 with K + M = N. By
ignoring the positive kinetic energy of the positive particles, (A.21) can be used with
(N,K)->(M,K). Alternatively, the roles of positive and negative particles can be
interchanged, so we can also replace (N, K) in (A.21) by (X,M). The two bounds
can then be averaged and an expression of the form ^(K2/3 + M2/3)(K1/2 + M 1 / 2 ) 2

is obtained. However, given that K + M = N, K2/3 + M 2 / 3 has its maximum at
K = M = N/2. So does Kί/2 + M 1 / 2 . Thus we have

Theorem A.2. With HN given by (7.2), the following holds for all normalized φ.

(A.22)

A virial type theorem, analogous to Theorem 2.2, can be obtained from (A.22).
Another application is the following.
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Theorem A.3. Suppose φ is normalized and (φ,HNφ) ^ 0. Then

K{φ)S4-016N5/3>. (A.23)

Proof. 0 ^ K(φ) + P(φ) = ±K(φ) + <φ,HNΛ/2φ} where # N > 1 / 2 is given by (1.1) but
with Ai replaced by \A{. By scaling, the analogue of (A.22) is (φ,HN 1/2ψ) έ
-2(1.004)ΛΓ5/3. Π
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