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A Power Counting Theorem for Feynman Integrals
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Abstract. A convergence theorem is proved, which states sufficient conditions
for the existence of the continuum limit for a wide class of Feynman integrals on
a space-time lattice. A new kind of a UV-divergence degree is introcduced,
which allows the formulation of the theorem in terms of power counting
conditions.

ί. introduction

Feynman integrals on a cubic, four-dimensional lattice have a very specific
structure. In momentum space the integration domain is the Brillouin zone (BZ),
hence compact for every non-vanishing lattice spacing a. Instead of being rational
the integrand is a periodic function. If none of the propagators has vanishing mass,
and so we will assume throughout this paper, a Feynman integral is absolutely
convergent for every finite lattice spacing. We want to discuss the behaviour of such
inegrals if the cutoff is removed, i.e., if the lattice spacing a tends to zero.

There exists the well known power counting theorem of Hahn and Zimmermann
[1] which states sufficient conditions for the absolute convergence of ordinary
Feynman integrals. Convergence depends on the behavior of the integrand in
various sections of the integration domain where some or all integration momenta
get large. This behavior is described by use of UV-divergence degrees of the
integrand with respect to so-called Zimmermann subspaces, i.e., special classes of
affine subspaces of the integration momenta. If the divergence degrees with respect
to all these subspaces are smaller than zero, the Feynman integral will be absolutely
convergent. Unfortunately, this power counting theorem assumes a rational
structure of the integrand and hence does not apply to diagrams with a lattice cutoff.
Similar problems occur in connection with Weinberg's power counting theorem [2].
In fact, it is meaningless to discuss naively large momenta on the lattice, the
integrand of a Feynman integral being periodic. Actually, if convergence holds,
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only a neighborhood of zero momentum in the Brillouin zone should contribute to
the continuum limit. Other contributions should vanish.

At first sight it seems reasonable to assume existence of the continuum limit of a
lattice Feynman integral if the naive α-»0-limit of the integrand is integrable. A
simple counter-example shows that this is not so. Consider the one-dimensional
integral

π/a

Γ
I(q;μ,a)= dt

. ta
-sin —
a 2 [ Ί qa ~ taλ (2 . ta\2

 Ί qa (2 . qa
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The formal continuum limit is given by

, t2q2

dt -τ^-~

which is absolutely convergent, whereas expanding cos2(qa/2) yields

si

ϊ(q;μ,ά) = - dt

i n 4 - 1 - c o s 2 -

for small a, i.e., /is (linearly) divergent. This example shows that "continuum UV-
degrees" do not suffice to control continuum limit behavior of Feynman integrals
on the lattice. This means we have to take into account the lattice structure more
carefully. This can be done by introducing a new kind of UV-degrees which we shall
call "lattice UV-degrees." It will be shown that they are suited to describe correctly
the leading term in a small a expansion of Feynman integrals. In some sense, these
degrees describe the behavior of Feynman integrals at large momenta and small
lattice spacing simultaneously. Using them, we formulate a power counting
theorem on the lattice which states existence of the continuum limit if all lattice UV-
degrees are smaller than zero. In a forthcoming paper this theorem will be used to
construct a general renormalization procedure for lattice field theories.

This article is essentially divided into two parts. The first part is devoted to the
lattice power counting theorem. In Sect. 2 we introduce the notion of a lattice UV-
degree for functions containing a wide class of Feynman integrands on the lattice.
We show that almost all properties one does expect of a degree are satisfied. In
Sect. 3 the power counting theorem is formulated, and the first steps of the proof are
done in Sect. 4. As will be seen the numerator of the integrand causes some technical
problems, but the integral is always bounded by a sum of generalized continuum
Feynman integrals. These are integrals which have a structure similar to Feynman
integrals in the continuum, but with a sharp cutoff and a more complicated
numerator. Hence it is necessary to have a theorem which states the cutoff
dependence of such integrals. Such an auxiliary power counting theorem is
formulated in Sect. 5, and in Sect. 6 it is shown that the numerator of a lattice



A Power Counting Theorem for Feynman Integrals on the Lattice 83

Feynman integrand admits an estimate which allows application of this auxiliary
theorem to complete the proof of the power counting theorem in Sect. 7. The second
part of this paper is devoted to the proof of the auxiliary power counting theorem.
Section 8 contains technical lemmas, and in Sect. 9 the proof is given by induction
on the number of loops.

2. UV-Degrees on the Lattice

We shall consider momentum space-integrals of the general form

π/a

ϊ(q;μ,a)= I d"k,...dAkm ^ Z ^ ^ , , (2.1)

— π/a

where

C(k,q;μ,a) =

and the Qt are linear (q represents the external momenta and k the loop momenta).
V and η are functions to be specified below. As explained in the introduction, to
discuss the behavior of the integral when the cutoff is removed, it does not suffice
to consider the continuum limit of the integrand only. We will now define special
classes of functions and for them a generalized notion of a UV-degree. These
degrees allow a generalization of the old power counting theorem [1] which can be
applied to diagrams with a lattice cutoff.

We shall consider functions of the lattice spacing a > 0, of "external" momenta w
and "internal" momenta u.

Definition 2.1. For arbitrary m eZ, we define cβm to be the set of functions Fin real
variables (w, w) = (u1,..., uh), (wί,..., ws) and a > 0 of the form

1 V(u, w;a) = (I/OF(ua, wa) ,

2. FeC00 .

^ is defined as the set of functions which are finite sums of functions in some (€m.

C00 is the set of infinitely often differentiable functions. To simplify the notation, we
shall use multi-indices. Set No = Nu{0} = {0,1,2,...}. For beNg and ueR" define

bl = b1l...bn\ , «* = ! # . . . i # , \b\=Σ bt
i = l

The well known definition of a UV-degree of polynomials is given in Appendix C.
We now define the lattice version of a UV-degree of a function Ve c€m with respect to
internal momenta u.
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Definition 2.2. Let Ve ^m be of the form (2.2) and ru the largest non-negative integer
such that

~-rF(u,w)\ Ξ O for all beNs

0 , | f t |<r t t . (2.3)

ίw& Jw=o

Then the UV-degree of V with respect to (w) is defined by

The UV-degree of a function Ve^m with respect to internal momenta u is
determined by the asymptotic behavior of V for small external momenta w. Note

that always degr^F^m. With respect to all variables, degr^F=m, the set of
complementary variables being empty. If for all b

dbF(u,w)
= u ,dwb

we set degru

AF= — oo. Note that, contrary to the definition of a polynomial degree,
we never fix external momenta.

This form of a degree will be useful later in many circumstances, e.g. in prov-

ing convergence of renormalized Feynman integrals. An equivalent, even

simpler definition is the following. Let Ve^m for some meZ. Then 5,-^degr^Fif

and only if

/ 1 \

- 1 ) , Λ-+00 , (2.4)

where A(u, w;α)φθ (A is a polynomial in w and C00 in u).
As can be seen from (2.4), the UV-degree of Fwith respect to u is determined by

the behavior of Ffor large u and small a simultaneously. There may be high powers
in λ not occurring in the large u behavior of the leading term of a small a expansion
of V. For example, let

(2
V(t9q,a) = - s i n ^

taY\
—
2/ 1

Γ 2
cosz

L
qa

y
—cos z

ta]
— - ί2

\-\ -\a
sin

ta

~2/

\2

!
cosz

qa ,

2 !

β

\a
sin

qa

2

as in the introduction. Then degrf

AK=4, but lim V(λt,q;a) = λ2t2q2. The leading

term does not show the correct asymptotic behaviour of Fif / and I/a tend to infinity
simultaneously.

If Fin Definition 2.2 is a homogeneous polynomial in u, w of degree m0, then

w) and degrMF=m0—rM =

where d=mo—m. In this case the lattice degree reproduces the old polynomial
degree up to a constant which counts inverse powers of the lattice spacing. Every
additional factor a in V decreases the lattice degree by one, i.e., improves the
continuum limit behavior.

We now generalize Definition 2.2 to functions in <€.



A Power Counting Theorem for Feynman Integrals on the Lattice 85

Definition 2.3. Let F e ^ , V= £ Vh FiG#W ifor some m{eZ, m ^ w k for z + fc. Then
we define / e /

degrw

AF; . (2.5)
iel

By Definition 2.3, the UV-degree is uniquely defined for every VeΉ. Again,

<5M = degr*F if and only if V shows a behavior (2.4). The lattice degree defined in
this way has quite similar properties as the usual degree of a polynomial. Using
(2.4), we get

Lemma 2.1. Let F, F 1 ? ..., Vpe^ be functions in variables (u, w) and a>0. Then

1. clegr^ Σ F j ^ max degr-F; , (2.6)

P

2. degrί Π ^ Σ &&& (2 7)

fie
3. degrM

A-— F ^ d e g r u

A F — \c\ , (2.8)
duc

4. degr; — F^degr^F . (2.9)

Note that the second statement is an inequality, whereas the analogous property
of polynomial degrees is an equality.

We further restrict the function classes ^m and (€. Until now we have not made
any assumption about the behavior of functions in ̂  for small lattice spacing a. We
now assume existence of the continuum limit.

Definition 2.4. ^c
m is the set of functions F defined by

a) Ve^m ,

b) lim V(u, w a) exists.
α->0

(€Q consists of all finite sums of functions in some c€c
m.

This roughly defines the class of functions to which numerators and de-
nominators of Feynman integrals belong. In particular, they are assumed to be
infinitely often differentiable, and their continuum limit exists. Before defining the
exact form of Feynman integrals to which the power counting theorem will be
applicable we state some important properties of the class (€c

m. If Ve^c
m is

independent of momenta w, then

degr-F(w, w;a)^(

If in addition lim V(u, w;α)φθ, we have



T. Reisz

Every VE^c

m has an expansion for small lattice spacing a of the form

. 1
( , ) ( , ) μ w \ ά ) . (2.10)

The continuum limit P of Fis a homogeneous polynomial of order m. In general,

degr^gdegr-K . (2.11)

As shown by the example considered above, degruP<degr-F cannot be excluded.
However, with respect to all momenta u, w,

if

In this special case the lattice degree is determined by the continuum limit. In
general, "lattice effects" are described by the remainder R(u,w, a). As can easily be
seen, R admits an estimate

where /is a finite set and Qi are polynomials satisfying degrMβf ^degr*F+/?. This
means every additional power of u in Q{ (with respect to degrM

AK) is accompanied by
a power of a. Unfortunately, (2.12) depends on the partition of (w, w) into internal
and external momenta. Later we will derive a much more general inequality which
allows determination of the cutoff dependence of Feynman integrals having such a
V as the numerator of the integrand.

We now define a class of Feynman integrands on the lattice. To this end we
choose momentum variables (wx,..., uh) and (wί,..., ws), where u{ and Wj are four-
momenta. The following considerations can easily be extended to other dimensions.

Definition 2.5. £F is the set of functions F in momentum variables (wl5...,wΛ),
(w1,..., ws), masses μ = (μ1,μ2,...) and a > 0 of the form

F=~ (2.13)

and the following properties:

1. Ve^c is of the form V(u, w μ, a) = Σ Pί(μ)Vi(u,w;a), I a finite set and
iel

, m^eZ. For every iel, Pt is a polynomial in the masses μ.1

2. C is a product

C=h htt
i = l

where n e N o = {0,1,2,...}. The "line momenta" / φO are of the form

h s

li(u,w)= ^ CijUj+ X dikwk ,

1 The mass dependence of the numerator is important if Feynman integrals containing massless
propagators are to be renormalized. Then it will be necessary to introduce auxiliary masses
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where cu, dik are real constants, and

a
where

f ?.(/. ί Zφ0)>0 for kei-πla.πjaf ,

^ 2π-periodic in every component of \{a ,
and

lim ei(li;a) = li> .

With respect to addition and multiplication, the set of functions #" is closed.
Furthermore, 3F is invariant under differentiation. We always assume that every
βidi a) is periodic in lt with the BZ, and et should have only one zero in the BZ,
located at vanishing momentum. Especially, naive fermions are excluded, their
propagators having more than one pole. If we would drop this condition, our
general assumptions about the form of the numerator would not be sufficient to get
convergence of a Feynman integral in the continuum limit.

For F= V/Ce^ we define

C . (2.14)
Note that

i 7 [2 if (c i i 5 . . . 9 c i Λ ) + 0 ,
degr^(βj(/j α) + μf) = <

ί

hence for F=VI

where nu is the number of line momenta /f, / G {1,...,«}, which are dependent on u. In
particular

degru- Π [eάh a) + tf] = Σ άcgr^ih a) + μj] . (2.15)
i = 1 i = 1

In this special case Lemma 2.1.2 is an equality, i.e., the UV-degree of the
denominator is already given by the polynomial degree of its continuum limit. As a
consequence, for every Fe #"

degrMlimF(w, w;μ,a)^degr*F(u, w;μ,a) . (2.16)

The UV-degrees of functions FeϊF have "typical" degree properties. They are
direct consequences of Definition 2.5 and of Lemma 2.1, and are listed below,
although we do not make use of them in this paper. Nevertheless, they are of
importance, especially in proving convergence of renormalization schemes [4],

Lemma 2.2. Let F,Fl9... ,Fpe &. Then

degrί X F,£ max d e g r ^ , (2.17)
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2. degrj Π * ^ Σ de8Γί*Ί ( 2 1 8 )
i = 1 i = 1

3. degr^l^F^degr^-kl , (2.19)

4. degrί — F ^ degr F . (2.20)

For instance, to prove 3, let F e # \ Then

d du du

du C

hence

δF (-— dV -— dC
degr- --^max degr-C —, degr-K ^ - -2degr-C

du \ du du '

^ degru- V - degr-C - 1 = degr-F - 1 .

The assertion now follows by induction on the number of derivatives.

3. The Power Counting Theorem

We consider Feynman integrals

ΐ(q,μ,a)= */ d*kί...d*kmF{k,q;μ,a) , (3.1)
— π/α

where
F(k, q;μ,a)= V(k, q μ, a)/C(k, q;μ,a)e^ .

We assume periodicity of the numerator Ve c€c with the Brillouin zone [ — π/a, n/a]4

in all internal momenta kγ,..., km. An important notion is given by the following

Definition 3.1. Let <£ be a set of four-vectors lu

<£ is called natural with respect to &, if the following conditions hold:

1.
Q J E Z f o r a l l i=l,...,N; j=l,...,m,

( Q 1 ; . . . , C ι m ) Φ θ forall

2. If the four-momenta
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are linearly independent, then

m

kj= Σ Ajik'i with AβeZ .
1 = 1

This condition is natural in the sense that arbitrary independent lt e 5£ could be
chosen as integration momenta, the coefficients CV] always being integer-valued.
For a Feynman integral this condition is ensured if all loop momenta kί,...,km

coincide with momenta of lines up to external momenta [3]. Also, using periodi-
city of the integrand, the integration domain could always be chosen to be
[ — π/a, π/a]4m. As example of the importance of line momenta to be natural consider

π/a

d%d*k2 - - 1 — - - 1 — ί ^ r - 1 ( £ ? + £ 2

2 ) 6 .
% + μ2 % + μ2 (kx -k2 + μ2f (k^+k2 + μ2f

-π/a
4

Here P = £ (4/α2) sin2 (&μα/2) and μ 2 > 0 . All criteria of the power counting
μ = l

theorem below are satisfied except that the set {kι,k2,k1—k2,kί+k2} is not
natural. In fact, if 0 < ε < 1 /2 and e = (1,0,0,0), the integral is divergent in the sector

2π

a
e

π
< —

a

as α->0 where 11/11= / £ /2 for / = (/1?... ,/ 4 )eR 4 . As will be seen below,

naturalness means that line momenta in neighborhoods of poles2 of propagators in
higher BZs can be transformed simultaneously into neighborhoods of the poles in
the first BZ by translation with reciprocal lattice vectors. Under such a transfor-
mation the numerator of a Feynman integrand is invariant. This would not be the
case by other translations. They would produce explicit negative powers in the
lattice spacing destroying convergence.

Before defining UV-divergence degrees of Feynman integrals in Zimmermann
subspaces, we have to introduce the notion of a basis of a set of line momenta. Given
variables k = (kί,..., km) (loop momenta) and q = (q1,..., qM) (external momenta),
ku qj e R4, let L denote the space of all linear mappings /: R4 m x R 4 M -+R 4 of the
form

l{k,q) — K{k)-\-Q{q) , (3.2)

m

= £ atki flfeR , i=l,...,m , (3.3)

M

= Σ bJ<lJ ^ e R ' J=U...,M (3.4)
J = l

in the four-momenta ku...,km and qι,...,qM ^ a n d Q is said to be linear in k and q,
respectively.

l(η(ka)
A "pole1' of a propagator 1 / \ + μ2 denotes a zero of the ^-function

/ V cr I
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Let J ' c L b e a n arbitrary subset. Elements lu... Jse<Jί,

m M

h(k,q) = Σ aijkj+ Σ buaj ' i=ί, ,s , (3.5)

are called linearly independent with respect to fc if their homogeneous parts in k are
linearly independent. Furthermore, {/ l5...,/s}cjf is called a basis of Jί with
respect to fc if lx,..., ls are linearly independent and every le Ji can be written as

l(k,q)=Σ cMk9q) + Q(q) , (3.6)
i = 1

where c feR, /•=!,. . . , s and 2 is linear. In this case we define rank^.^Ξ^.
We now define UV-divergence degrees with respect to Zimmermann subspaces.

Let if be a natural set of four-momenta3 and

Uί=lh,...,ud = lid ,

be an arbitrary basis of if with respect to k, l^d^m. By fixing vl9... ,vm-d we
define a class //of affine subspaces in the space of integration momenta R 4 w. His
called a Zimmermann subspace, (u) = (ux,..., wd) is called the parametrization of //,
and (v) = (v1,..., ί;m-d) are the complementary parameters of//. For F e #" we define

degr^/(^; μ, α) = 4 J+degr-F(A:(w, z;, ̂ ), ̂  μ, α) (3.8)

(ι;,# represent the "external momenta" of H). The set of all Zimmermann
subspaces, for all bases (3.7), will be denoted by ,ff. Note that Jί? depends on the set
5£ of four-momenta. Now we state

Theorem 1. Power Counting Theorem. Let

ϊ(q;μ,a)= "f d*kx ... d*kmF(k,q; μ,a) (3.1)
— n/a

and FeϊF of the form

F(k,q\μ,ά)=— ,
C(k,q;μ,ά)

where VG^C is (2π/a)-periodic in every component of ku ... ,km, and

C(k,q;μ,a)=Tl [eMk,q);a) + μn , μj>0 .
i = ί

Let ^ be a natural set of four-momenta and {/t ,...,/„} <Ξ if. If for every He 3tf,

(3.9)

3 Actually, property 1 in the definition of naturalness would be sufficient to define UV-degree of
Feynman integrals. However it is convenient here to assume if to be natural, this being an
important assumption of the power counting theorem
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the continuum limit of I(q; μ, a) exists and is given by

(3.10)

- oo

where
P(k,q9μ) = lim V(k,q;μ,ά) ,

E(k,q, μ) = lim C(k,q;μ9a) .

If P φ 0, the set if ' = {/i,..., 4} contains a basis of i^ with respect to k [otherwise
ω(H) ^ 0 for some HeJf]. Hence, if ^£ is natural so is ^£'. In this case the theorem
can be formulated using ^£' instead of if'. The continuum limit (3.10) is absolutely
convergent according to (2.16) and the power counting theorem of Y. Hahn and W.
Zimmermann [1] (or by Theorem 2 below).

As an example for the importance of (3.9), let us look at (1.1) in the introduction
again. Only one subspace must be considered, and the corresponding divergence
degree is equal to one. Hence the theorem cannot be applied, and as we have seen,
(1.1) is in fact divergent in the limit of vanishing lattice spacing a.

To prove the theorem, using Definition 2.3, it does suffice to assume Ve^c

mo for
some m0 £ Z. Hence let us consider

π/a

(3.11)

Π

Ve ^ίno ,m0EZ. Without loss of generality we assume S£ — {4,..., /#}, N an integer
greater or equal to /?, and that k1,..., km are contained in j£\ By naturalness of ^y

this is always possible to arrange by a linear transformation.

4. Proof of the Power Counting Theorem : First Steps

The proof idea is as follows: The integral (3.11) will be written as a sum of integrals
over various sections in momentum space. The division of the integration domain
will be done in dependence on the configuration of line momenta /f. For every
propagator we distinguish line momentum in neighborhoods of the poles and
outside of them. As will be seen, a propagator can then be estimated by its
continuum limit or by some powers of the lattice spacing α, respectively.

For /eR 4 define

0 if | |/-(2π/fl)z||<(π/a)c for some z e Z 4

1 otherwise , ( 4 l l )

where ε is a small positive constant which will be chosen below. Using Heavisides
Θ-function, Θ(x) = l if xgO and Θ(x) = 0 if x<0,

(4.2)

reZ 4
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Doing so for every propagator, (3.11) can be written as

ϊ(q',μ,a)= £ ^/ J z (g;μ,α)

where for every "sector" J,z = (zi\ieJ), we have

π/a

(4.3)

— π/α Π

Θ
(π

s — 1
H

2π

a
zί •π (4.4)

i e J

and for every / the sum ]Γ runs over finitely many configurations z. We have to
z

estimate the contributions of all integrals (4.4) for small lattice spacing a. To this
end, we make an appropriate transformation for each integral (4.4). As a
consequence of naturalness of the set if of four-momenta, for small enough ε > 0
and for every J, z, there exists a translation

Z7Γ

δ

so that

Z7Γ
;-\ δi , <5, e Z 4 , ; =

0 J J

2π
/£—>/£ H z t f o r a l l (4.5)

This is shown in Appendix D. By (4.5), all line momenta at poles of propagators in
higher BZs are shifted into neighborhoods of the origin in the first BZ, leaving
V(k,q;a) and all ηt invariant. Consequently

IJz(q;μ,a)=
V(k,q;a)

v m „

Π
i = l

(4.6)

ieJ iφj

where

j=i,...,m / = ! , . . . , 4 } .
(4.7)

Now, in every integral (4.6) the propagators can easily be estimated, using their
properties listed in Definition 2.5. Again, for small enough ε, there is a constant α,
so that

1 α
(4.8)~
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whenever ||/j|| <(π/a)ε. This can be seen by an expansion of ηt at vanishing
momentum. Furthermore, there is a constant y>0 such that, if ||/f — (2π/a)z\\
^(π/a)ε for all z e Z 4 , then

^A ^ya2 (4-9)

a2 + μ i

Hence, the denominator in every integral (4-6) is bounded by a product of
continuum propagators and explicit powers of the lattice spacing a. If it would be
possible to estimate the numerator V(k,q\d) by its continuum limit, (4.6) would be
bounded by a rational function to which the power counting theorem of Hahn and
Zimmermann could be applied (in a somewhat generalized form to determine the
cutoff behaviour). Unfortunately, this will not be possible, as we have seen in the
introduction. Another possibility would be to expand V at small lattice spacing a,

P being the continuum limit of Fand R a Taylor remainder, and to estimate R by a
polynomial. But this estimate is too rough, the conditions (3.9) will not be sufficient
for convergence of this estimate. This is because we have a lot of Zimmermann
subspaces and for every such space a corresponding lattice degree of the numerator
V. For a fixed space we will get an estimate of the form (2.12), but now we need such
an inequality which respects degree properties of all Zimmermann subspaces
simultaneously. This is not possible in general.

A way out is the following. A simultaneous estimate which respects degree
properties can be done for ordered subspace H1,..., Hs, i. e., Hi is a subspace of Hj if
i <j. This means that for every such sequence we get an estimate

\R(u,w;a)\^ap £ \Qb(u,w)\ , (4-10)
beB

where p is a natural number, B a finite set, and the polynomials Qb satisfy

-V+P , 7 = 1,...,.? , (4.11)

(UJ) being the internal parameters of Hj. Doing so for every ordered sequence of
Zimmermann subspaces, we get

\R(k,q;a)\Smina* £ \Qih{Kq)\ , (4.12)

so that for every ordered sequence there exists an iel such that

for all beBi , (4.13)

(u) being the parameters of an arbitrary Zimmermann subspace in the sequence.
Using this and the above estimates for propagators in the integral (4.6), we get
generalized continuum Feynman integrals, i.e., integrals which look like Feynman
integrals in the continuum with a sharp cutoff, the right-hand side of (4.12) being the
numerator. In the next section we will state a theorem which controls the cutoff
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dependence of integrals having this form. Furthermore, we will prove the validity of
an inequality (4.12). Using these two statements it will be possible to complete the
proof of the power counting theorem under the conditions (3.9).

5. A Power Counting Theorem for Generalized Continuum Feynman Integrals

In the present section we state an auxiliary theorem which will be used to complete
the proof of the power counting theorem. Set k = (kx,..., km) (loop-momenta) and q
= (#i , . . . , <7M) (external momenta), ku ^ e R 4 . L again denotes the space of linear
mappings /: R 4 m x R 4 M -+R 4 of the form (3.2)-(3.4) in the four-momenta kl9...,km

and qγ,..., qM. The notion of a basis of a set of line momenta is defined in
(3.5M3.6).

Let ϊ£ czL be a finite subset

fc,?)= Σ Qjkj + Qi(q)\ « = l , . . . , t f j , (5.1a)

where

( C i l > . . . , C i m ) * 0 for all i=l,...,N, (5 .1b)

lf + lj if ί

so that rankfci^ = m [cf. (3.6), especially N^.m]. Furthermore, let <JV' ^^£ be an
arbitrary subset. We consider integrals of the form

λf mmλ-*\P,(k,q)\
Jλ(q,μ)=\ dΛkt...d

4km

 i e l , Λ £ 0 integer . (5.2)
j £{κqμ)

/is a finite set, Pt are polynomials in the components of the four-momenta kl9... ,km

and # ! , . . . , # M , a n d

E(k,q,μ) = n(lϊVc,q) + μ?r , M?>0 , nteN = {l,2,...} . (5.3)

Yl means product over l^eJί. Hence Jί is the set of all l{eί£ appearing in the

denominator of the integrand ofJλ. We always have rank f cyΓ^m. All propagators
are assumed to be massive.

For a finite subset JicL satisfying rankk,y# = m, we define

Λ) d^...dAkmf{k) (5.4)

as the integral over all (kγ,..., km) e R4 m subject to the constraints

I2(k,q)^λ2 for all leM . (5.5)

Jλ is convergent for every finite λ. We examine the behaviour of J λ for large λ. The
cutoff dependence can be described with the help of divergence degrees with respect
to Zimmermann subspaces of the integration momenta. First we make the notions
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more precise. Let

«,=/,„...,«„=/,„, ( 5 6 )

Vl = 'jί J •> Vm - d — 'jm - d

be an arbitrary basis of 5£ with respect to k, so that Ic = k(u, v, q), 1 ̂ d^m. As in
Sect. 3, by fixing υu..., vm-d, we define a class H of affine subspaces in the space of
integration momenta k called Zimmermann subspace. (u) = (u1,..., ud) is called the
parametrization of H. {υ±,..., υm-d) are said to be the complementary parameters of
H. The set of all H, for all bases (5.6) of JSP, is denoted by Jf\ 3tf is the set of all
possible Zimmermann subspaces, and it depends on the set ££.

Definition 5.1. Let
u{1\...,u{m) (5.7a)

be an arbitrary basis of if and Hu ... , i/ s, sg l, a sequence of classes of affine
subspaces in #£ having the following properties:

1. Hi is parametrized by (ι^) = (un,..., uidι) <Ξ {ua\ ..., w(m)}, the remaining w(^'s
in the basis being the complementary parameters of Ht. (5.7b)

2. (ι/y) are contained in (uk) if j<k.
Then the sequence //i, . . . , Hs is called an ordered sequence with respect to the basis
(5.7a).

With respect to the set of polynomials {P^iel} in the numerator of (5.2) we
define

Definition 5.2. The set {δ(H)\HeJίf} is called an ultraviolet-set (UV-set), if
1. δ(H)eZΐor every HeJtf".
2. For every basis (ua\ ..., uim)) ofif and every sequence Hί,..., Hs which is

ordered with respect to this basis, there exists an / e / such that (cf. Appendix C)

ItgτuAvjPi{k,q)-pi^δ(HJ) for all j= 1,...,* . (5.8)

Here (UJ) denotes the parameters of Hj and (ujivj) = (uil\ . . . ,u ( m ) ).

The number of possible bases of ^£ and ordered sequences of subspaces in ffl is
finite. Hence UV-sets do always exist. I f/= {1} consists of one element only, the set
of

δ(H) = degrφΛ (k(u, v, q\ q) -Pί

for every HeJtf*, where (w) is the parametrization of H and (v) are the
complementary variables, is a UV-set. In this case the notion of ordered subspaces is
superfluous. Note that UV-sets as defined in (5.8) are dependent on the external
momenta q, which we have kept fixed. However, for every UV-set {δ(H)\HeJΊf}
one can find a UV-set {δ'{H)\He^}, which is independent of q, where
δχH)^δ(H) for all Hetf.

We now define UV-divergence degrees for integrals of the form (5.2). UV-
degrees of polynomials are defined in Appendix C. Let {δ(H)\HeJ^} be a UV-set.
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Given an arbitrary basis (5.6) of if, we define for Heϊtf, parametrized by
(M) = ( « ! , . . . , « d ),

This definition depends on a given UV-set. The following theorem states the cutoff

behavior of integrals (5.2) for large λ if a UV-set is given.

Theorem 2. Auxiliary Power Counting Theorem. Let {δ(H)\HeJ^} be a ΌY-set and

{ω(H)\HeJ^} the corresponding set of UV-divergence degrees. Then there exist
K(μ, q)>0 and c (μ, q) > 0, so that for all λ > K(μ, q),

1 i/maxω(//)<0

λ~xlogmA if max ω(H)<0 andpt^ 1 for all ieI

λmaxω(H)\ogmλ if max ω(H)^0 . (5.10)

If the momenta q are bounded and the UY-set is independent ofsueh q, then K and c can
be chosen to be independent of q.

The estimate (5.10) can be strenghened if a UV-set is given having max ω(H)

minimal. However, we do not need this in our application, where a UV-set will be
given in a natural way. The theorem is an extension of the power counting theorem
of Hahn and Zimmermann [1]. In general, the numerator is not a polynomial,
instead it is a minimum of a collection of polynomials, and we include the cutoff
behavior of divergent integrals (for λ-* oo). Below we will apply the theorem (for λ
~ 1 /a) in two special cases. If/= {1} a.nάpί = 0, the statement of [1 ] is reproduced. If
all Pi ̂  1 and the limit exists, it is zero. If pt — 0 for all / e / and max ω(H) < 0, then
J>λ(q, μ) converges to Heje

min \Pi(k9q)\

* ^ — " " " E(k9q,μ) '

The proof of Theorem 2 will be given in Sect. 8,9.

6. Bounds on the Numerator of a Lattice Feynman Integrand

Having introduced appropriate notions and an auxiliary power counting theorem
being at our disposal, we will now show that the numerator of a Feynman integrand
can be estimated as proposed at the end of Sect. 4. This statement is contained in the
following theorem. It is a consequence of the definition of UV-degrees on the lattice.
Remember we are using multi-index notation. We shall write k = (kί,..., km) and q
= (ai, 5 QM) a s m t n e power counting theorem.
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Theorem 3. Let V(k, q\d)e ($fnof
or some m o e Z , <£ a natural set of four-vectors with

respect to k4', and let ika, qa) be bounded. Then V admits an estimate of the form

\V(k,q;a)-P(k,q)\Sa" £ min \Qib(k,q)\ , (6.1)
beB i e l

where I, B are finite sets, peN, and
1. P(k,q) = lim V(k, q a). For every He Jf, parametrized by (u)

degr.P^degr K . (6.2)

2. Qib are polynomials. For every basis

« ( 1 ) = / i l , . . . , « ( m ) = /im (6.3)

of ££ with respect to k and every sequence Hu ... , Hs of classes of affine subspaces in
&C which is ordered with respect to the basis (6.3), there exists an iel, so that

J j for all j=l,...,s and all beB, (6.4)

where (UJ) denotes the set of parameters of Hr

The statement means that, for every beB, the set of all δ(H) = degr^ V, where (u)
is the parametrization of HeJtf, is a UV-set for the polynomials Qib, which is
independent of q. This allows us to apply the cutoff theorem to the integrals (4.6) in
Sect. 4 to determine their cutoff dependence, as will be seen in the next section. Note
that always p^l. If P(k,#)φθ, then/? can be chosen to be 1. If V(k,q;a) is the
numerator of a Feynman integral, the variables (ka, qa) are always bounded,
because k1,... ,km range over the BZ, and external momenta q are fixed.

In the remaining part of this section Theorem 3 is proved. First of all we note an
extended version of Taylor's theorem.

Lemma 6.1. Let F be a C0 0 -function of the form F(vx,..., vn), vt e Rm\ Let dt e No

= {0,l,2,...}/or every / = 1,...,«, and δi^δk ifi<k. If

, A->0 s = l,...,n , (6.5)

then there exist C00-functions Fb, beN™n, \b\ = δn, satisfying

Fb(vu...,vs-ί,λvs,...,λvn) = O(λδs-δ») , λ-+0 (6.6)

for all s = ί,...,n-\, so that

F(v1,...,vn) = Yjv
b

nFb{vu...,vn) . (6.7)
b

This lemma is an extension of Taylor's formula in the sense that it states the
coefficient functions Fb being C°° if this already holds for F. This allows successive
application of (6.7).

4 It would be sufficient to assume property 1 in the definition of naturalness (existence of a basis).
However, in application of Theorem 3 below, if will be natural
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Proof. By induction on mn. If mn = \, let 6 = ̂ e N 0 and

Fb(vu...9vn) = F .

By Taylor's formula, FheCQO, and (6.6) is satisfied. Assume the statement holds for
all mn^M, where MeN. Let vn = (w1, vv2), w1 eR M , w 2 eR. For / = 0,..., δn — 1 set

AiiPi, ... ,Vn-i, W1) = \ ^ — y r ( t ' i , . . . , Vn-ι, Wί, W2)

l_ 2

and define a function G by

\ 2
i i - l j 1 J 2 I , - - - , Λ - l , 1 , 2 ^ / ^ ^ I 1, , 1 , - 1 , 1

i = 0

The hypothesis of induction can be applied to G and Ax. For, as 2->0 we have

Aι(vί,...9υs-1,λvs,...,λvn-l9λwί) =

G(vί,...,vs-ι,λvS9...,λvn-ι,λwί,λw2) =

Hence, there exist g(vu ... , t ^ - i , w1,w2)eCcc and hitb(vl9..., ί;w_1? w J e C 0 0 for all
k N 0

M , |6 | = δ π - / , so that

and

Writing F in terms of G and ^4/? the assertion follows. •

We shall use the following notation: For s e N , δ = (δs,... ,δn)eNo~s + 1 and
multi-indices b{ e NS\ / = s,..., n let

t i f l*s +• +l*πl=A and

\bs + . . . + \ b ι \ ^ δ s — δi + ΐ f o r a l l i = s,...,n — l

0 otherwise .

By iteration of Lemma 6.1 we get

Lemma 6.2. Let F be a C"°-function of the form i 7 ^ , . . . , vn)9 υ{ e R"\ and δt e N0for
every z ' = l , . . . , « , δi^δk ifi<k. If as λ-^0

F(vu...,vt^uλvu...,λvn) = O(λδt) , t=l9...,n , (6.8)
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then for arbitrary s=\,... ,n there exist functions Fbs . . . ^ e C 0 0 , so that

F(vu...7vn) = X hδls(bs,...,bn)vb

s

s--.vb

n

nFbs...bn(vu- ^n) > ( 6 9)
b s . . . b n

^ . . . b n ( ^ i 9 . . ^ ί - i 5 ^ t J . . ^ ι ; I ι ) = O ( ^ t " a s ) 5 A - > 0 l ^ ί < 5 . ( 6 . 1 0 )

Proo/. If s = n, this is the statement of Lemma 6.1. Assume it holds for some ̂ ^ 2 .
Application of Lemma 6.1 to Fbs^hn in (6.9) yields

Fbs...bn(
Vί' >Vn)= Σ ^-V -^"^...^.^-!...^^^--.,^) >

Inserting this into (6.9) and collecting indices of Fbs_bnCs_^ Cn, we obtain

F(υu...,vn)= Σ Λί| s-i(έ s-i, ..5έπ)^-V ^ r l ^ s - 1 . . .5 n (^i J . . s ^ )

β 1 > l . D

Lemma 6.3. Lei

u{1) = liί9...,u
{m) = Iim (6.11)

Z?e α« arbitrary basis of'if w/ί/z respect to k, andHl9... ,Hsan arbitrary sequence of
Zimmermann subspaces which is ordered with respect to (6.11). Furthermore, let
V(k, q cήe ̂ c

mo, m0 e Z, and (ka, qά) be bounded. Then V admits an estimate of the
form

\V(kyq;a)~P(k,q)\Sap £ \Qh(Kq)\ , (6.12)
beB

where B is a finite set. peN is independent of the basis (6.11) and the sequence of
subspaces. The homogeneous polynomial P is given by P(k, q) = lim V(k, q a), and Qb

are homogeneous polynomials of order p + m0 such that a~*°

where (u/) is the parametrization of H^ for allj=l,...,s and all beB.

If P(k,q)φO, p can be chosen to be 1. If P(k,q) = 0, p is the largest natural
number such that lim V(k,q;a)/apφ0 exists.

Proof 1. We define new sets of variables vu...,vs + 1 as follows:

(us) = (vl9...,vs) ,
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Let V(k,q;a)=F(ka,qa)/am°e(gc

rno and F'(v) = F(k,q). For every Hj in the given

ordered sequence we make a partition (v) = (UJ, Wy), where (UJ) = (v1,..., v3) are the

"internal" momenta and (wj) = (vjjrl,..., vs + 1) are the "external" momenta of Hj.

Set rj = m0 — degr^ F. Then ^ ^ . . . ^ r s and

2. For δeZ define

P'Λι\, . . . ,ϋ« + i) = l im

and set

G(υί,...,vs + ί) = F'{v1 ,...,vs + 1)-Pή0(vu...,vs + ι) .

Let r0 G No be the largest integer number such that Pro(v1,..., # s + 1 )φO exists. Set

A Γr0 if
_ 0

| r + l if
and r ; = r-3 for y ̂  1. Then

and rQ^f^ ... ^fs. Applying Lemma 6.2 to G yields

where

| g^o-O forall

0 otherwise ,

and ^ . . . b ^ j e C 0 0 . For bounded t;<2 we get

beB

where Ql are (finitely many) homogeneous polynomials of order r0 satisfying

for all 6 e 5. Finally, let

k,q) = Qί(vι,...,vs + ι) forall

Setting/7 = ro—»joeN, (6.13) follows, and as a consequence of (6.14)

\nk,q;a)-P(k,q)\=-±-\G(vιa,...,v,+ιa)\Za' Σ \Qι(k,q)\ • Π
a leL
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Proof of Theorem 3. Let the set of all ordered sequences of subspaces in #P be
indexed by a finite set /. Using Lemma 6.3, Ve^c

mo admits for every /e/an estimate
of the form

\V(k,q;a)-P(k,q)\Za> £ \Qb(k,q)\ ,
beBτ

where Bt is a finite set andp e N is independent of iel. P is equal to the continuum
limit of V, hence is independent of all sequences, and satisfies for every
parametrized by (w),

For every Hj, parametrized by (UJ), in the ordered sequence,

V , for all

In summary, using the inequality and notations of Appendix B, V obeys an
inequality

\V(k,q;a)-P(k,q)\Sapmm £ \Qb(k9q)\^ap £ min \Qih{Kq)\ ,
iel beBi be B iel

where B= ® Bh and for b^(bi)ieIeB, Qib = Qbι. Point 2 in Theorem 3 is satisfied by
iel

construction. •

7. Completion of the Proof of the Power Counting Theorem

Having shown that the numerator of a lattice Feynman integrand admits an
estimate as supposed at the end of Sect. 4, and a theorem being at our disposal which
states the cutoff dependence of generalized continuum Feynman integrals, it is not
hard to complete the proof of Theorem 1. Our starting point is (4.6). Using Theorem
3 we write V(k, q;a) = P(k, q) + R(k, q\a), so that

where

and

π πjw ieJ

Θi-s-Uλ

ίφj

iφJ

P is the continuum limit of V, and R(k,q;a) admits an estimate

in \Qib(k,q)\ .
beB

(7.1)

k) •

(7.2)

(7.3)
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By Theorem 3, for every fixed beB, the set of all δ(H) = dQgτ^V, (u) being the
parametrization of He Jf, is a UV-set for the polynomials Qib.

Using the bounds (4.8), (4.9) on the propagators, we get the estimates

KJ ieJ

and

Σ
beB

where

, ...dΛkm ^f2)
ieJ

( 7 5 a )

ιeI . (7.5b)

A is the number of elements of J, i.e., it is the number of propagators having a
momentum near a pole,

= {(k1,...,km)eR'Un\\\lj\\Sδ/a for all Ije&j} , (7.6)

if, = {/,• |y e / } u { ^ , . . . , £ m } ^ . (7.7)

δ= max (πε,4π(l + ||δi||/2)) (7.8)
i = l , . . . , m

is a constant. To every integral in (7.4) and (7.5) we can now apply the auxiliary
power counting theorem to discuss the small a behavior. All integrals are of the form
needed, where λ is replaced by δ/a and if by if/. The corresponding set Jfj of
Zimmermann subspaces of k is defined by bases of <£3 with respect to k. By (7.7)

JfjCjf. Hence for every J^{l,...,n} the set of δ(H) = UQgτ^V, (u) being the
parametrization of//, for all HeJtifj is a UV-set for the family of polynomials Qίb,
for every fixed beB. It is independent of the external momenta q.

We first consider the integrals Tjb

z\ As a consequence of (3.9), for arbitrary
He^fj, parametrized by (w) = (wi, ...,ud) say, we get

ieJ

uU

-h) , (7.9)

where we have used (2.15). Hence

degrHIjV(q9μ9a)^2(n-h)-l for all He.^j . (7.10)

By the auxiliary power counting theorem, there exist positive constants K&nd c, so
that for all a<K~\

a) if « - A > 0 , T^(q,μ,a)Sc(a2)n-ha~[2{n-h)'1]\ogma = calogma . (7.11)

b) if n-h = 0, W(q,μ,a)^ca\ogma (because of ^^1) . (7.12)
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Thus, the remainder ΊfΣ does not contribute in the continuum limit.
Next, we turn to the integrals 7%. If P(/t, q) = 0, all 1% vanish and the proof of the

power counting theorem is complete. Thus, let us assume that P(k, q) φ 0. For every
j , parametrized by (u) = (uu...,ud),

(7.13)

The set of δ(H) = dεgr uP(k(u, v, q), q), HEJ^J, is a UV-set. Consequently, using
(7.13) and (3.9), we have

q,μ,a) = 4d+degruP(k,q)-degτu Π
ieJ

iφj

and hence

-h)-\ , (7.15)

for every HeJtifj. Using again the auxiliary power counting theorem, there exist
K>0 and c>0, so that for all a<K~4,

a) if n-h>0, 7$z(q, μ,a)^c(a2)n'h - a~[2{n'h)~ί]\ogma = ca\ogma ,(7.16)

b) if H - A = 0 , F}z(q,μ,ά)^c . (7.17)

This shows that in the continuum limit only sectors (J0,z) where / 0 = {l,...,«},
contribute to (4.3), i.e., when the momenta of all propagators are located near the
poles. In fact, for appropriate small ε>0, there is exactly one such sector. For, if
P Φ 0, the set {lί,..., /„} of line momenta contains a basis of if with respect to k. Let
z - (Zi,..., zn) e Z 4 " and k e R 4 m satisfying

Ki(k)=Σ Qjk^—Zi , / = 1,...,« . (7.18)
j = i a

By rank(C l J) = m, this system has a unique solution. By naturalness of if, it is of the

form& = — z j , z l e Z 4 m (Appendix D). For A:e[—π/α,π/β]4m this is possible only if

A=0, i.e., z = 0. Hence, having chosen ε> 0 according to Lemma D.I, for Jo onlyz
= 0 appears in (4.3). The integrand of 7j°o0 and hence of ϊjoQ is bounded by

Π
i = ί

and the integral

(7.19)

(7.20)

Π (lHk,

is convergent by (7.15) and the power counting theorem of [1] (or by the auxiliary
power counting theorem). Using Lebesgue's "theorem of dominated convergence",
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we get

limϊ(q;μ,a) = limϊ?oO(q;μ,a)= ί d*kx...d
Akm „

Π

g ) . (7.21)

Π {lf{k,q) + μt)
ί = l

This completely proves the power counting theorem.

8. Some Technical Lemmas

We now start to prove the auxiliary power counting theorem. The proof idea is
similar to that of the convergence theorem of Hahn and Zimmermann [1].
However, to discuss the cutoff behavior, we need some deeper statements (e.g.
Lemma 8.6). In this and the next section we shall use the notations of Sect. 5.
Especially, if is a set as given in (5.1). In addition, throughout the sequel we shall
use the shorthand notation

Here, / is a finite set, and {Pf} represents a set of polynomials Pu iel. For τ > 0 we
define

D ^ = { f e , . . . , U e R 4 m | / / f t g ) ^ i 2 forall /,-eJSf} , (8.2)

and for J c R 4 m

min A~Pi|Pi(fc)|
74 7. 74 7. i ε /

E(k,q,μ)
X

λf min λ~Pi\Pi(k)\

" ^ | | ) , (8.3)

where χx is the characteristic function

: ί ί. <84)

The present section contains a series of lemmas which will be used to prove the
auxiliary power counting theorem by induction on the number of (four-
dimensional) integrations.

Lemma 8.1. Let I be a finite set and re No = {0,1,2,...}. For every i el let Pt{x, z) be a
function of xeW and a polynomial in variables Zj,j=l,... ,n of degree smaller or
equal to r:

Pt(x,z)= Σ - Σ tήl.iSxH1-^ • (8 5a)
j i = 0 j n = 0
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Let yo,...,yreRbe r + 1 different points, Y= {(zί ,...,zn)\zie{yo,...,yr} for all i
= 1 «} and Ω^RP. If the integrals

J
Ω iel

are convergent for all y{ι) e Y, then so are the integrals

J dxmm\a^u^jin{x)\ ,
Ω i e J

for arbitrary j n , . . . Jin e {0, . . . , r } , and there exists c> 0, depending only onyQ,...,yr,
such that

j dx min ^ ^ . ^ ( Λ : ) ! ^ c £ f Jx min |Λ(^y°)l (8.5b)
Ω ί 6 / yι)erforallze7 β ieI

The number c is independent of the integration domain Ω.

Proof For every iel there exist constants cj^jn(y) such that

<..*.(*)= Σ 4 U ω Λ(^)

Using the inequality of Appendix B, (8.5b) follows, where

c= max \c(ll,Jn(y)\ - Π
j i , . . . , j n , y e Y , ί e /

The following lemma is a direct consequence of Lemma 8.1.

Lemma 8.2. Let I be a finite set and r e N o = {0,1,2,...}. Every polynomial Pt of degree
smaller or equal to r in the components of ku ... ,km can be written as

Pt(k)= Σ pι*(k) ' i e I > ( 8 6 )
α = 0

where Pia is a homogeneous polynomial of order α. Let γ0,..., yr e R be r +1 different
points and Y= {y0,..., yr}. Then there exists c> 0, depending only onγ0,...,yr (but
not on the polynomials PJ, such that

κ* minλ-»|/ tel(*)|

E(k, q, μ)

, (8-7)
E(k,q,μ)

ρ,eY for all iel

for arbitrary sequences (Pίαι)ie/

Proof Since rank fcif = m, the integral

r

ΐ e J α = 0

£(Λ,?,μ)
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is convergent for every finite λ and all fteR, iel. Since y0,..., y Γ e R are different
points and Y={y0, ••• ,yr}, Lemma 8.1 implies that

E(k,q,μ)

λf mini-"
<c V dAk,...dAk

Σ (aW

,6Γ for all iel

Σ J "••• (8.8)
E(k, q, μ)

QiE Y for all iel

for some constant c depending on y0,...,y r only. •

Next we quote

Lemma 8.3 [1]. Let kJeR4 and μ>0. Then

Recall that we are using the Euclidean norm | | / | |= / £ If for / G R 4 . AS a
corollary, we have V ί = 1

Lemma 8.4. If the momenta q are bounded, then there exists c(μ)>0 such that

λ^ min vΓ*|Λ(*OI Y m i n A"Λ |Λ(^)I

j
(8.10)

Excluding small neighborhoods of the poles of the propagators, i.e., regions
where some line momenta vanish, the masses may be set to zero without affecting
the large cutoff behavior:

Lemma 8.5. For τ > 0

1. /A({Λ.}|?)/i,/)« t)g/A({Pί}|?,0,Z>ί t) • (8.11)

2. There exists a c(μ, τ )>0 such that

UiP^qAD^^ciμ^MiP^^D^ . (8.12)

This can be seen from I2/(I2 + μ2) ̂  1 and (/2 + μ2)//2 ̂  1 + (μ2/τ2). We will now
show that the cutoff dependence of Jλ does not change if the poles of propagators
are excluded from the integration domain (Lemma 8.8). This lemma will be used in
Lemma 8.9 to get homogeneous denominators in Jλ. As a preliminary, we state
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Lemma 8.6. Let I be a finite set, r e No = {0,1,2,...} and τ > 0 . Set

ι \ τ ^ \ \ l j ( k , q ) \ \ < , λ ; j = l , . . . , N } . (8.14)

Suppose {/x,..., /s} contains a basis of if with respect to k. Then there exist

d(C, τ) > 0 and c0 (C, μ, r, τ) > 0 such that for all polynomials Pt of degree r i5 con-

strained by Y rt ^ r, we
iel

minλ-^IPiίA:)!
ί ε J

min
(8.15)

Note that cQ and α are independent of external momenta q.

Proof. The set S£ is given in (5.1). First of all assume

Cij = δij , Qi = 0 for every ί=l,...,m . (8.16)

Then Xfτ is the set of all (kx,..., km) e R4 m satisfying || kA S τ for i = 1,..., m and

τ <
m

gτ , i = m +1,...,i* ,

(8.17)

and D\'τ is the set of /c satisfying τ ̂  | | ^ || 5* Λ for / = 1,..., m and

Σ Qjkj (8.18)

To prove Lemma 8.6 we use the following lemma proved in Appendix A.

Lemma A.I. Let I be a finite set, Γ G N 0 and σλ, σ2 compact cubes in R4m, σ2 containing
an open set. Then there exists a constant c(σί, σ2, C, μ, r) >0 such that

min \Pi(k)\
iel

min
iel (8.19)
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for arbitrary polynomials Pt of degree rt , constrained by Σ r(^r, and for all mo-
menta q. id

To apply this lemma we have to find a > 0 and cubes σγ, σ2 having the desired
properties and satisfying

XΓ^σ1 and σ2^Dfτ , (8.20)

where λ = λ + ά. At first, Lemma 8.6 is trivial if Xl'τ = &. Furthermore, if N=m, Xfτ

and Dlτ are independent of q, and Dfτ for λ^2τ contains an open subset of R4 m

which is independent of λ. Hence Lemma A.I is applicable, and for ά = 2τ, Lemma
8.6 follows.

Let iV^m + 1 and Xfτ φ 0. We now proceed to construct appropriate cubes oγ,
σ2 in several steps.

m

i) XT^σu where σx - Π [~τ,τ]4.
i = l

ii) There exists R(C,τ)>0 such that | | β i | | ^ ^ + Λ(C,τ) for every i = m
+ 1,...,ΛΓ. For, setting C = max|C ί ; |, R = Cmτ, and (Λ l5..., km)eXq

λ'\ we obtain

II a 11 =
(8.21)

v r k +n - V c k

Next, we define

+ R(C,τ) , / = w + l,...,iV} . (8.22)

If λ grows, Q is not bounded, hence a cube σ2 contained in Dψ for all values of Q
does not exist. Instead, we construct ά(C, τ) > 0 and a finite set of cubes, so that for
every QeΔ one of them is contained in Df\ where λ = λ + ά.

iii) To this end, we construct numbers b0 (C, τ),. . . , bN_m + j (C, τ) as follows. Set
Z?O(C5T) = 0. If b0,... ,br-1 are given for an integer r, l^r^ iV—m + 1, choose
έr(C, τ) > 0 such that the set of (^ ,. . . , A:m) e R4m, satisfying

Σ Q

contains a compact cube Ωr which itself contains an open set. Such numbers

bo,...,bN-m + ί do always exist, Σ Cijkj = ® being a hyperplane in R4m.

iv) Consider the following subsets of A :

a) /djv-m + i ^A such that \\Qi\\ <bΉ-m + τ for all i = m + l, ...,N.

b) F o r r, l ^ r ^ T V —m, let z t r c / j such that for every i = i

V i + τ or \\Qi\\^br + τ . (8.24)

Obviously, A is the union of these sets. For every r let Kr(C, τ) be a number such
that | | ^ | | ^ ^ ( C , τ ) for all (ku...,km)eΩr. Set βr(C5τ) = max(A:r(C5τ), br(C,τ)
+ R(C,τ)) and I=A + βr. Then for QeΔr, using (8.24), we easily get Ωr^Df\
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v) Let Ω be the finite set of cubes constructed in iv), and ά(C, τ) = max ar.
^ r

We have just shown that for every QeΔ there exists a cube σeΩ which is contained
in Df\ By Lemma A.I, for every σ there is a constant c(σ1, σ, C, r, τ) > 0 such that

min λ~Pι\Pi(k)\
ίel

(by i))

min λ~Pι\Pi(k)\

<c(σ l 5 σ,C,μ,r) L / 4 ^ ... ί/4ytm — ^ - -— (by Lemma A.I)

J Π(/?(^)+?)"J

min λ~Pi\Pi(k)\
±1 - (byiv)) , (8.25)

where co(C, μ, r, τ) = max c(σ l 5 σ, C, μ, r) and X=λ + α. This proves Lemma 8.6, if
σeΩ

(8.16) holds.
in the general case, we make a non-singular transformation

(8.26)

This is always possible because [lx,..., ls} contains a basis {/fl,..., lim} of if (with
respect to k). Under such a transformation, the form of (8.15) does not change.
Every lt e ϊ£ has the form

and C satisfies (5.1b) and (8.16). This reduces the general case to the above situation,
and the lemma is proved. •

We now generalize Lemma 8.6 to arbitrary "sectors" X^. For any ff <^ϊ£, X^
denotes the set of &eR 4 m satisfying

lj{Kq)^ for lje.se , ^ ^

2 for l}

Lemma 8,7, Let I be a finite set, r e N o = {0,1,2,...} and τ > 0 . Then there exist
K(τ)>0 and c(μ, r, τ)>0, so that for arbitrary polynomials Pt of degree i\ in the
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components of ku ... 9km, constrained by Σ ri = r> in every sector X^ and for all
λ>K(τ), the bound ieI

Jλ({Pt}\q9 μ, XI)^c(μ, r, τ)/Γ({Λ}l^ μ, ^ τ ) (8.28)

holds, where λ = λ + K(τ).

The set Dqτ is defined in (8.2). The constants i^and c are independent of external
momenta q. In general we suppress the dependence on the incidence matrix C. On
the contrary, mass dependence will be written explicitly, since non-vanishing masses
are important to avoid IR-singularities.

Proof. Let ff c if be an arbitrary subset and X# the corresponding sector. If <f = if,
the statement is trivial. Hence let [f φ if. By an appropriate renumbering, Xτ

y is the
set of ke R4 m satisfying

lj{Kq)^ for y = l , . . . , α ,

lf(k,q)^τ2 for y = α + 1, . . . , N ,

where α e N 0 . Let us write lj{kiq) = Kj{k) + Qj(q) for every7= 1,..., TV. Renumber-
ing again, one can find b^ot + l and a,y,l^a^yt^a, so that the following
conditions hold.

1. K={Ka + u...,Kb} is a basis of {Ka + U ... ,KN}.
2. It c a n be c o m p l e t e d by K={K1,... ,i£α} to a basis of { i£ 1 ? . . . ,KN}.
3. F o r every j8 = l , . . . ,7,

and 7 is maximal.
Then, for β = y +1,... ,N,

Kβ = Kβ(K,K)= Σ dβiK^ t ffii^i ( i ί ( ί + i) W Φ O , dβi,fβieR

Define

and for any X let Z ^ l be the set of all K=(Ka + u ... , ^ ) e R 4 ( b " a ) such that

^ τ

Using ^, K as new integration variables in Jλ({Pi}\q, μ, ZJ^), we get

7 j F ? i e l

where

E2(k(K,K),q,μ)

(8.30)

1,..., N} .
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d<f is the Jacobian of (k1,..., km) with respect to (K, K). We can now apply Lemma
8.6 to the inner integral in (8.30). For, the set of momenta

q) , 7 = α + l , . . . , JV (8.31)

contains a basis of {/y + 1 , . . . ,lN} with respect to K. Hence there exist K#>(τ)>0 and
c>(μ, r, τ)>0, so that

min λp*\Pi(k(K9K))\ f min
dR -

E2(k(K,K),q,μ) J_ E2{k{K,K\q, μ)

for all polynomials P, of degree rh ^ r ^ r , where λ = λ + K#>(τ) and

Consequently

E(k(K,K),q,μ)

min λ~pήPι(k)\

E(k9 q, μ)
Dq'τ

Setting i^(τ) = max Ky(τ) and using

(8.33)

for λ>K(τ) and I=λ + K(τ), one can find c(μ,r, τ)>0, so that

iel

E{k,q,μ)
Dqτ

= c(μ,r,τ)Jx({Pi}\q,μ,D9 r) . D (8.34)

As a corollary, we get

Lemma 8.8, Let I be a finite set, r e N o = {0,1,2,...} and τ > 0. Then

1. J^P^lq, μ, Dq>τ)^Jλ({Pi}\q, μ) . (8.35)

2. There exist K(τ)>0 and c(μ 5 r,τ)>0, so ίλαί /or α// λ > AΓ(τ) and all
polynomials Pt, iel, of a degree r x in the components of kλ,..., fcOT, constrained by

Σ rί = }\ w e have

Jλ({Pi}\q, μ)^c(μ,}\τ)Jχ({Pi}\q, μ,Dq'τ) , (8.36)
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Proof. The first statement is trivial. To prove 2, wirte R 4 m = u ^ Z > . If
^> is a set of measure zero, hence

Using Lemma 8.7, there exist K(τ)>0 and co(μ, r, τ)>0, so that for λ> K(τ) and
every ^f^5£,

M μ, Xτy) ^ co(μ9 r, τ)/χ({Λ}k, μ, Dqτ) ,

where λ = λ + K{τ). The right-hand side is independent of £f. Summation over £f
then proves the assertion. •

Using Lemma 8.8, we state the important

Lemma 8.9. Let I be a finite set, r e N 0 = {0,1,2,...} and τ > 0 . Then
1. There exists c1 (μ, τ) > 0 such that

Jλ({Pi}\q = 0,μ = 0,Do>τ)Sc1(μ,τ)JΛ{Pi}\q = 0,μ) . (8.37)

2. One can find K(τ) > 0 and c2 (μ, r9 τ) > 0, so that for all polynomials Pt of degree

rh constrained by ^ η ^ r , and for all λ> K(τ), we have
iel

} 0,μ)^c 2(μ,r,τ)/ I({Λ}|g = 0,μ = 0,Z)0'τ) , (8.38)

where λ = λ + K(τ).
3. Let q be bounded. Then there exist R>0 and c3(μ) > 0, so that for all λ> R

{ 0,μ) , (8.39)

where λ = λ + R.

Note D°<τ = Dq>τ\q=0, and Dqτ is defined in (8.2). If all masses are positive,
external momenta do not have any influence on the cutoff dependence of Jλ.

Proof 1.

i} |^ = 0,μ,/)o t) (by Lemma 8.5)

) (by Lemma 8.8) .

2. Using Lemma 8.8, there exist K(τ)>0 and c2(μ,r,τ)>0, so that for all
λ>K(τ),

where λ = λ + K(τ), and we have used Lemma 8.5 again.
3. For q in a bounded region we get by Lemma 8.4

minλ-p i |/>

i(fc)|

E(k,O,μ)~
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if is given in (5.1). Choose R^ max || (?*(#) || independent of q and X=
i = ί,...,N

Then for every/= 1,..., N and all k in the integration domain we have

\\lj(k, 0)|| <£ | | / ,(*, 9 ) | | | X

Furthermore, for Λ, > i? the estimate

min A'^IPi^X^rf min (I)
iel iel

h o l d s , w h e r e <i is a c o n s t a n t . H e n c e , s e t t i n g i ? = {/ f(fc,0)|z = l , . . . , JV} a n d
c3(μ) = c'(μ)d, we get

{Λ}|^ = 0,μ) . D

Finally, we state the following elementary

Lemma 8.10. Let P be a polynomial in variables (u) = (uι,..., ua), (v) = (uι,..., vb)
and q, and let W(v9q) = (Wί(v,q),...9Wa(v9q)),R(v,q) = (R1(v9q)9...,Rb(v,q)) be
linear functions, and ρ>0. Then

W(p9 q\ R(v, q)9 q)^άzgτu]vP(u, υ9 q) . (8.40)

Proof. Write

W(v9 q\ R(v9 q\ q) = % SΛ(R(v9 q\ q) • Ta(ρu+ W{v9 q)) ,

Ta being linearly independent homogeneous polynomials and SΛ in v not identically
vanishing polynomials. Then

degru[vP(ρu+ W(v9 q\ R(v9 q)9 g)^max degruΓα(w)^degru|ι;P(w, v9 q) . D

9. Proof of the Auxiliary Power Counting Theorem

Consider now the integral

Sλ(q9μ)=\ d^.-.d4^^—- , (9.1)
J E(k9 q9 μ)

where the external momenta q are fixed or at least bounded, and E(k, q, μ) is given
in (5.3). We prove the auxiliary power counting theorem by induction on m. For
m = 0 nothing has to be shown. Given some natural number m0, we assume the
theorem is valid for m<m0 and proceed to show that it then also holds for m = m0.
Let r=Σ r i ? w n e r e ri i s the degree of Pt in k.

iel
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The proof idea is as follows (cf. [1]). The integral (9.1) will be divided into a sum
of integrals over appropriate subsections. These integrals will be splitted into a
four-dimensional "outer" and a 4(m0 — l)-dimensional "inner" integration, and
the denominator will be made homogeneous by use of Lemma 8.9. The idea is to
apply the hypothesis of induction to the inner integrals in such a way that the
remaining integrations show the desired cutoff dependence. To this end, the
numerator is decomposed into homogeneous components. This allows an appro-
priate scaling of inner momenta by the outer one (here homogeneity of the
denominator is important). After scaling, the inner integrals can be brought to a
form similar to the original one. These results are summarized in Lemma 9.1.
Lemma 9.2 states that the hypothesis of induction can be applied to these integrals,
and combining both lemmas, a simple calculation leads to the desired cutoff
dependence of (9.1), i.e., the auxiliary power counting theorem holds for m = m0.

In the following we identify m with a given natural number m0. We again use the
shorthand notation Kt(k) — lt(k, 0). At first, for every ξ = 1,..., TV we define a non-
singular linear transformation

tι=Σ(At)vkJ> (Ai)iJeR i,j=U-,m (9.2a)
.7 = 1

such that

h=Kξ{k) . (9.2b)

Then k(t) = Aξl t. Without loss of generality we assume det(Aξ) = 1. Furthermore,
we introduce the following notations.

i) Let Jf ° be the set of all He 34? which are parametrized by a basis of i^ 5 . Set
A— max δ(H). Then we define ω 0 by [cf. (5.3)]

ωo = 4m + A-2Σnj=m<ϊx ω(H) . (9.3)

ii) Let ξ E {1,..., TV). For every sequence Hu... ,Hsoΐ Zimmermann subspaces
which is ordered with respect to a basis of if containing lξ and satisfying

a) H&-1 has lξ = const ,

b) Hs has all line momenta of a basis variable ,

there exists an iel, so that (5.8) holds. The set of all these iel is denoted by I(ξ).
in) For given ξ define ^ξ = {lj(A^ΐ,0)\tl=o\je{l, ..^N}\{ξ}}.

Lemma 9.1. There exist K> 0 and R> 0 such that the following statement holds. For
all b> R one can find c(μ, r, b) > 0, so that

£ Σ ί #h \\hl|ω°"4 W'i»?) (9 5 a)
ξ=\ yeY(ξ) W{λ)

5 This means that all momenta of a basis are variable on H
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for all λ>K, where W(λ) = {tx e R 4 | l S \\h\\ ύλ + K}, 7(1),..., Y(N) are finite
sets, and λ'fξ

mm (A) H Λ j Λ ^ Uq)\

^ ' " ^ ^ {ξ)E(A^tΛμ)\t~0

 ( 9 5 b )

Here λr = b(λ + d)/\\t1\\+e, and

Piy(Aξlt,q) = Pi(Aξ1[Fίy(t)lq) , (9.6)
where

d, e and ciy, ρiy > 0 are appropriate constants.

As will be seen below, the hypothesis of induction can be applied to (9.5b) iίb is
large enough. Remember that q is fixed or at least bounded.

Proof. 1. Applying Lemma 8.9.3 and Lemma 8.9.2 to (9.1), one can find K>0 and
c1 (μ, r) > 0 such that for λ > K,

(9.7)
Q Q ) ,

where λ = λ + K, & = {Ki(k)\i=l,...,N} and D01 is defined in (8.2). The de-
nominator in (9.7) is homogeneous, and the poles are excluded from the integration
range. For every ξ = 1,..., N we define a sector Xξ <Ξ R 4 m in the integration domain
by

^K2

ξ(k)^\ for all i=\,...,N. (9.8)

N

Using D0Λ= [j Xξ, we get

_ (9.9a)

where

. (9.9b)
1 - " m E(k,0,0)

In the following let ξ e {1,..., N} be arbitrary. We apply the transformation (9.2) to

tfjXq, Xξ). Then

where
U(λ) = {t1eR4\ 1̂ 11 ίiH^I} ,

for all
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2. For every ze/the polynomial Pt is decomposed according to

Pi(A71t,q)=Σ TJA^Uq) , iel , (9.11)
α = 0

where Tia are homogeneous polynomials in the components of t2,. ., tm of degree α.
Further,

Tia(A^t,q)= X Γ ί β / , ( V ' ί ) , (9.12)
βι,...,β*

4

where £ βy^η—α and 7 ^ are homogeneous in the components of ϊu i.e.,

71 βpμf 1/^) = (ί1)f1...(ί1)245 i α / ?(/2,...,/m^) . (9.13)

Using the notation of Appendix B and writing (<xβ) = (oιi,βi)ieI, we get

J f j f t e , ^ Σ SχiaP)(q,Xξ) , (9.14)
a , , ^ , .,(ft)4for all /e/

ϊιt, 0,0)
ααl κα.0 ( 9 1 5 )

Substituting

fe,...,/m) = (^,...,C) |ki|| (9.16)

in the inner integral and writing î = /i/||/i|| and I=όX/||ί1||, where Z? l̂ (to be
chosen below), we get

fM,βM,Xζ)£c'φ) ί Λ i l ί i h - 4 - / ^ ! , ? , ^ ) , (9.17a)
V(X)

where c'(ό) is some power of b, ω0 is defined in (9.3), and

min (λy"\Tiaiβt(A^t',q)\

) = {(tί,---,OeR4(m~y)\λ2^KhAz1t')^\; for all /e{l, . . . ,iV}\{ξ}} .

(9.18)

Here we have used that, by definition of I(ξ) and Δ, for every iel(ξ) the inequalities
4

α f + X (jS^^Γi and n-p^A hold, i.e., for H ^ H ^ l and all iel(ξ),

Hlj ^ ( J ) ~ ^ r'(Λ) . (9.19)

From Lemma 8.5 and (9.13), we get

l p min (ΐΓp \SiXiβχtί,...,tm,q)\

(9.20)
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where J%= {Kj(Aξlt')\je {!,..., iV}\{£}}. t[ is bounded. Using Lemma 8.9.3, there
exist R>0 and c3(μ)>0, so that for b>R(=>I> R)

λ'f πiin (λ

(9.21)

where X' = bXl\\t4+R&nd &ί = {Kj(Aϊ1t%i=o\Je{U...,N}\{ξ}}.
3. So far we have re-introduced masses in the denominators, and the whole tx-

dependence of the inner integral is contained in λ'. The last step in proving Lemma
9.1 is to re-introduce the polynomials Ph Let r = max rt and choose r + 1 different

iel

points y0,...,y^eR and set

X = { ( z 1 , . . . , z 4 ) | z ι . e { j o , ..,Λ-} for all ί = l , . . . , 4 } .

According to Lemma 8.1, there exists c 4 ( μ ) > 0 such that

j^ eZfor all e/

λ'*'ξ min (A')- J"|Γ t e i(^ ί-
1/', ί)| l l = Λ

Similar, let γ o , . . . , y - > 0 be r + l different points and Z = { y 0 , . . . , yr-}. Using
Lemma 8.2, one can find c5(μ)>0 such that

> ,eZ, ρ,eZ for all iel

min (AO-'-IP.-Uf1

where
[T;itί} = (yi,Qit2,--,QiO . (9.23)

Collecting indices and using the notation (9.6), we get Lemma 9.1. •

We now show that the hypothesis of induction can be applied to the integrals
(9.5b).

Lemma 9.2. There exist Ko(μ,q)>0 and c0(μ,q)>0,so that for b>K0(μ,q)for all ξ
and all y e Y(ζ) we have

Π ifώ(ξ)<0

Iλ.ξy(t1,q)Sc0(μ,q)-\(λ'Γi1ogm-ιλ' ifώ(ξ)<0 and Pi^l for all iel(ξ)

l
where ώ(ξ)=max ω(H). λ' is defined in Lemma 9.1. ^ c j f is the set of
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Zimmermann subspaces, defined by bases of ££ containing lξ with respect tok1,... ,km

and having lξ = const. If q is bounded and {3 (H)\H e J^ξ} is independent ofq, Ko andc0

can be chosen to be independent of q.

Proof. Let ξ e {1,..., N) be arbitrary and

w 2,. . .,wm (9.25a)

ba an arbitrary basis of J£ξ with respect to (t2,..., tm) of the form

ί i = //,.-••,* = /£,, ( 9 2 5 b )

Vi=Ijί,...,vm-i-d = ljm-ι-d <

where lj=lj(Aξ1t90)\tί = o. The variables (w) and constants (v) define a Zimmer-
mann subspace H of (/2,..., *m). The set of these //, for arbitrary basis (9.25), is
denoted by ^ . With every Hejfeξ we associate HeJtf as follows. Let a basis
(9.25b) be given. Take the basis

z2, ..,zm,Iξ (9-26)

of y? with respect to (k1,..., km) of the form

(9.27)

and let k = A^T, where Γ = (Λ , ί2» > m̂) T n e n

ww = ̂ w + Uw(x, q) , w = 1,..., d ,

where C/w, F w , Qξ are linear functions. Then the He ff associated with He^ξ is
defined by variables (w) = (w t,..., ud) and constants (ι;) = {vx,..., vm-d). We define
δ(H) = δ(H). The set of these ^ Γ G - ^ is identical to jfξ in the lemma.

By this construction, to every sequence HU...,HS of Zimmermann subspaces in
$ξ, which is ordered with respect to a basis (9.25) corresponds an ordered sequence
Hi,... ,HS of Zimmermann subspaces in ^ξ, with respect to the corresponding
basis (9.26). Adding Hs + ί e Jf, parametrized by the whole basis (9.26), we again get
an ordered sequence. Let (ύj) be the parameters of Hj and (vj) the complement
variables, i.e., (uj, vj) = (w2,. ., wm), and correspondingly (uj) the parameters oίHj,
(uj,vj) = (z2,... ,zm,lξ), for every7 = 1,... ,s. By construction of I(ξ), using Lemma
8.10 [and inequality (C.4) of Appendix C], there exists an iel(ξ) such that

ξ

 ι[Fiy(t)lq)-Pi

, vJ, q\ q) -Pi (9.28)

for all 7 = 1,... ,s. This means the set {δ(iϊ)\HeJPξ} is a UV-set of the numerator
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of (9.5b). For every HeJfξ, parametrized by (9.25b), and corresponding

= 4d+δ(H)-degruE(k(u,v,q\q) = ω(H) . (9.29)

Thus, all the conditions are met for the auxiliary power counting to apply to the
inner integrals h'ξy(h^) According to the hypothesis of induction, we get
Lemma 9.2. •

We now proceed to complete the proof of the main Theorem 2. All that re-
mains to do is to insert the cutoff estimates of Lemma 9.2 into the inequality of
Lemma 9.1. Then, re-expressing λ' by λ, the remaining integration can be done
without problems. Choose a fixed b according to Lemma 9.1 and Lemma 9.2. Then
there exist constants c(μ, q)>0 and K(μ, q)>0 such that for all λ > K(μ, q),

1 if ω o < 0 and ώ(ξ)<0

/~ 1 log m Λ if ω o < 0 and ώ(ξ)<0 and Pi^l for all ίel

1 if max ω(H)<0

λ" 1 logmλ if maxω(//)<0 and p{^\ for all ίel

{f m a χ ω ( / / ) ^ 0 , (9.30)
He,3f

where we have used

^ max ( max ω(Hf),ω(H) irgmax ω(H) .
))

c can be chosen to be independent of q if q is bounded and if {δ(H)\He Jf},
and hence {ω(H)\He^f} are independent of q. This completely proves the auxiliary
power counting theorem.

Conclusion

We have proved a convergence theorem for Feynman integrals with a lattice cutoff.
Under very general conditions, it states existence of the continuum limit as well as its
coincidence with the formal limit, i.e., the Feynman integral, which results from
taking the continuum limit in the integrand. If convergence holds, only a
neighborhood of zero momentum in the Brillouin zone contributes to the limit.
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An important convergence condition is the naturalness of line momenta. This
means that their homogeneous parts in the integration momenta k,

satisfy Ctj e Z for the given representation (3.1) and for every choice of independent
line momenta as integration variables kx,..., km. For a lattice Feynman integral it is
always possible to choose the loop momenta in such a way that this condition is
satisfied, e.g. if the loop momenta kι,...,km coincide with momenta of lines.
However, in the case of renormalizations one must be very careful in order to ensure
that the subtracted integrand still satisfies this condition. Note that in the power
counting theorem of Hahn and Zimmermann [1] the condition of naturalness is
unnecessary. However, this theorem can only be applied to integrals having a
rational integrand. On the lattice, in connection with the periodicity of the
integrand, naturalness makes sure that only one Brillouin zone contributes in the
continuum limit.

Furthermore, the theorem assumes that the propagators have only one pole in
the Brillouin zone, located at vanishing line momenta. This means that the
denominators of the propagators

1

a

satisfy η(la φ 0 ) > 0 in the Brillouin zone. If this condition would be violated, the
assumed periodicity of the integrand would not be sufficient for convergence. In
particular, the theorem does not apply to lattice fermions with propagators having
poles on the boundary of the Brillouin zone. In general, the pole condition implies
that only a small neighborhood of zero momentum contributes as the lattice spacing
tends to zero, and that the continuum limit of a lattice Feynman integral is equal to
the formal limit.

For simplicity, we have always assumed the numerator and denominator of the
integrand to be C0 0. Actually, the denominator needs to be differentiable only in a
small neighbourhood of vanishing line momenta, and globally continuous. In the
case of renormalization, the whole integrand has to be differentiable to a degree
depending on the divergence degrees.

The main point of the convergence theorem is that it is a power counting
theorem. This means that convergence of Feynman integrals in the continuum limit
is described by ultraviolet divergence degrees with respect to special subspaces of the
integration momenta, called Zimmermann subspaces. In order to get convergence
in the continuum limit, the divergence degrees with respect to all these subspaces
should be smaller than zero. Due to the structure of diagrams with a lattice cutoff,
we have a new kind of degrees to be dinstinguished from UV-degrees of rational
functions [1]. A lattice degree describes the behavior of a Feynman integrand for
large internal momenta of a Zimmermann subspace and small lattice spacing a
simultaneously. To discuss naively large momenta for fixed a would be meaningless
because of the periodicity of the integrand.
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To every Zimmermann subspace there corresponds a (sub-)diagram. Hence,
loosely speaking, negative UV-divergence degrees mean that all subdiagrams are
convergent. Usually, a Feynman diagram must be renormalized. In terms of a
power counting theorem this means that counterterms have to be arranged in such a
way that divergence degrees of all subspaces are negative. In a following paper [4],
this correspondence will be used to construct a renormalization scheme for
Feynman integrals on the lattice, which is analogous to the BPHZ finite part
prescription for continuum Feynman integrals. It will be seen that counterterms
instead of being polynomials are periodic functions. From the fact that negative
lattice divergence degrees insure not only the existence of the continuum limit but
also its coincidence with the formal limit, it will follow that renormalized
perturbation theory is universal, which means that the continuum limit does not
depend on a specific choice of the lattice action.

The power counting theorem applies to a wide class of lattice field theories. In
this investigation we have been concerned solely with the problem of ultraviolet
divergencies. We have assumed all fields to be massive in order to avoid infrared
singularities. In the given form the power counting theorem does not apply to lattice
field theories with massless propagators. Whereas the lattice provides a UV-cutoff,
IR-singularities are expected to be the same as in the continuum. This suggests that
one should supplement the UV-power counting conditions by IR-power counting
conditions, which describe the behavior of a Feynman integrand for small internal
momenta and state IR-convergence at non-exceptional external momenta. By this
modification, the power counting theorem should apply also to massless field
theories on the lattice. In a forthcoming paper we will show that this is indeed the
case, and that the ideas presented here will go through.

Appendix A. Proof of Lemma A.I

We first show that the propagators of (8.19) are of no importance for the validity of
Lemma A.I. Recall that the line momenta l-^Jf are of the form

m

h(k,q)=Σ Qjkj + Qiiq) .
7 = 1

Given compact cubes σx, σ2 and σ2 containing an open set, let σ = σλ u σ2 and choose
K(C, σ) > 0 such that for all l{ e Jί,

Σ Qjkj

and define

^K(C,σ) for all keσ , (A.I)

(K(C9σ)+\\Qt\\f+μl ' ( A ' 2 )

Using the triangle inequality and Lemma 8.3 one can find a constant d(C, σ, μ) > 0,
so that for all keσ,

* <d(C,σ,μ)gσ(Q) • (A.3)
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Now Lemma A A is a direct consequence of

Lemma A.2. Let w e N , r e N 0 and σγ, σ2 compact cubes in R", σ2 containing an open
set. Then there is a constant c(σ1, σ2, r) > 0, so that

\ dx1...dxn min |P i(x)|gc(σ1,σ2,r) j" dxί ...dxn min |Pf(x)| (A.4)

for arbitrary polynomials Pt of degree r{ in x1,...,xn, with £ r^r.
i = 1

Proof By complete induction on the number n of integrations.
A. n = 1. By induction on r. The case r = 0 is trivial. Assume for some r e N o there

exists a constant c(σ l 5 σ 2 , r )>0, so that

\ dx min | JP i(x)|^c(σ1 ,σ2,r) J Jx min |Pf(Λ:)| (A.5)
i l i l

for all polynomials Pt of a degree rf, ^ ^rgr. Now let Pt of degree rt and

^ r. = r + 1 . Suppose every Pt has the form
i = l

ΛW-«i 11 V * - ^ ,

where α^z^ eC; αfΦ0. Choose i?(σ)>0, so large, that for all zeC, |z|>/?(σ),

x 3
1 ^ - for all xeσ . (A.6)I<

2r

Let z = ( z l l 5 . . . , z w r J e C r + 1 , a-(a 1 ? . . . ,α w )eC w and for ( r ^ . ^ r J e N J ,

1 = 1 j Jx min IP^x)!

min

All / r i... r>v are continuous and non-negative. If \zu\<^R(σ) for all /', j , then there exists
a constant B(σ1, σ2) > 0, so that

On the other hand, if \ziojo\>R(σ) for some j 0 , iQ, set

such that
k\P;o(x)\S\Pio(x)\ύϊ\PίoW\ for all xeσ

by (A. 6), and set

Λ' = Λ f°r a 1 1

Then, by induction hypothesis
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Choosing c(σu σ 2,r + l) = max(5(σ 1, σ2), 3c(σ ί, σ2,r)) the assertion follows
for H = 1.

B. Let w> 1. Assume the lemma holds for all natural numbers v<n. Without
loss of generality set σx = [a, b]n and σ2 = [α, 5]". By induction hypothesis, there exist
CΊ {abab) > 0 and cw_! {abab) > 0, so that for all polynomials Pt of degree smaller or

w

equal to rf in xu ... , xn, where £ r ^ r , using Fubini's theorem

ί = l

b b b

\ dxι\dx2...\ dxn _min {P^,...,xn)\
a a a i — 1,... ,w

b b b

^cn-1 $ dxt \dx2...\dxn min \Pt{xu ... ,xn)\
a a a i = l , . . . , w

b b

^ C i ^ - j j dx^.,1 dxn min \Pt{xu ... , x j | .
α" α £ = l , . . . , w

This proves Lemma A.2. •

Appendix B. A Useful Inequality

We state a simple but useful inequality.

Lemma B.L Let π e N be a natural number, / = {1,...,«}, andL{ a finite set for every
iel. For all ίel and all leLu let x ^ O . Then

min ]Γ X/^ ^ ... ]Γ min x/t .
i e / ZeL, ί i e L i ί n e L n i e /

This inequality can be written in a more concise form. For / = [ίl9..., in} and sets
L f l , . . . , L ί n define

L = ® L i = ( L f l , . . . , L i J ,
16/

i.e., every leL is of the form

/ = (/ί)ίe/ = (/ i l ϊ.. , ϋ ,
where

Using this notation, Lemma B.I can be written as follows.

Lemma B.2. Let I and L{for every i e I be finite sets. Let xι ^Ofor all leLt and i e /.
Then

min ^ i | ^ min xn ,
iel lsLτ leL i e /

where L— (x) L j , and for every l = {lι)iei: χίi — χιt

iel
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Appendix C. UV-Degrees of Polynomials

Let P be a polynomial of u, v and q. The UV-degree dεgr u\vP(u9 v, q) is defined as
follows. P can be written as

P(u,v,q) = ΣQΛv,q)MM , ββ(t>,g)φ0 in υ(q fixed) , (C.I)
α

where Ma are linearly independent homogeneous polynomials in w, and g α are
polynomials. Then we define

\ , (C.2)
α

degrMa being the homogeneity degree of Ma. Usually, all parameters which are

considered as variables are written in the argument of degr. In (C.2), q is fixed. If all
momenta are variables we will sometimes use the shorthand notation

φqP(u9υ,q) . (C.3)
In general,

^ ^ u P ( μ 9 v , q ) . (C.4)

A useful characterization is the following. degrM|yP(w, v, q) = δ if and only if

P(λu,υ,q) = A(u,v,q) λδ + O(λδ-ί) , A^oo , (C.5)

A(u,v,q)φO in u, v(q fixed!).

Appendix D. Naturalness of Line Momenta

We state an important property of a natural set of line momenta. This property is
needed when the integration domain of a Feynman integral on the lattice is divided
into various sections to determine the continuum limit behavior. It happens that line
momenta have values in neighborhoods of poles of propagators in higher BZ's. The
following two lemmas show that, if the neighborhoods are chosen sufficiently small,
it is possible to shift the line momenta into the first BZ simultaneously by a
translation of the integration momenta by reciprocal lattice vectors. Under such a
transformation, the periodic numerator of a Feynman integrand does not change.

We shall use the notation of Definition 3.1.

Lemma D.I. Given a set ^£ = {/i,... ,lN} of four-momenta, there exist ε> 0 anda0 > 0,
so that for all a<a0 the following statement holds:

Let /c{l ?... ? jV} andz = {zieZAr\ieJ) such that

for all ieJ}

is not empty. Then there exists a momentum configuration k e [ — π/α, π/a]4m such that

Ki(k)=~zi for all ieJ . (D.2)
a



A Power Counting Theorem for Feynman Integrals on the Lattice 125

If the statement holds for some ε > 0, then so for ε', 0 < ε' ̂  ε. The lemma states
that neighborhoods of the poles can always be chosen so small that their intersection
(D.I) with the integration domain is non-empty only if the "internal" momenta Kh

for some k, satisfy (D.2).

Proof LεtJ^{l,...,N} be an arbitrary subset and Z = { z e Z 4 | ||z|| < 1+2ra|C|},
where |C | = max | C 0 | (cf. Definition 3.1).

1. Set aι= min (π, ,j<2i||) and ̂  = 1/2. Then MJ z(ε,a) = 0 if ε < ε 1 ? a<au

and ZjφZ for some ieJ. For, a simple calculation shows

a

2. Let M J z f eα)φ0. If there exists no ke[—π/a,π/a]4m satisfying (D.2), then
there exist jeJ and ^ > 0 such that

^-δ for all ke[-π/a,π/a]
a

ι4m

This means

2π
>-ε(J,z)

a

iΐa< a2(J, z) = πδ/(2 || Qj ||) and ε < ε2 = (5/4, in contradiction to M J z(ε, a) φ 0. Taking
the minimum of all ε1,ε2(/,z) and of all a2(J,z),au respectively, the assertion
follows. •

The importance of Lemma D.I rests on the following

Lemma D.2. Let the set ££ — [l1,..., lN} be natural and J^{1,... ,N} an arbitrary
subset. IfkeR4'rn exists, satisfying

t (k) — — zi for some z{ e Z 4 and all i e J
a

then there exist reciprocal lattice vectors

~

so that for A = (Δ1,..., Δm)

Ki(A) = — z t for all ieJ .
a

(D.3)

(D.4)

(D.5)

The translation alluded to in the introduction to this appendix thus consists in

so that for all ieJ
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Proof. Let J^{l,...,N} and /ceR 4 m , satisfying

Ki(k)=—zi9 zt eZ 4 for all ieJ .
a

Choose linearly independent KCί,... ,KCrn, so that KCl,..., X"Cd, d ^ r a , is a basis of

{Ki\ieJ}. According to Definition 3.1

1 = 1

for every 7 = 1,... , m, and

Kί= Σ DuKcι for all ieJ DueZ .
1 = 1

Define for j — 1,. . . , m

_ 2 π ^ 2π 4

and A=(A1,... ,Am). Then, for every / e /

__y _ y _ 2 π

Z = l Z = l β
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