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Abstract. A convergence theorem is proved, which states sufficient conditions
for the existence of the continuum limit for a wide class of Feynman integrals on
a space-time lattice. A new kind of a UV-divergence degree is introcduced,
which allows the formulation of the theorem in terms of power counting
conditions.

1. Introduction

Feynman integrals on a cubic, four-dimensional lattice have a very specific
structure. In momentum space the integration domain is the Brillouin zone (BZ),
hence compact for every non-vanishing lattice spacing a. Instead of being rational
the integrand is a periodic function. If none of the propagators has vanishing mass,
and so we will assume throughout this paper, a Feynman integral is absolutely
convergent for every finite lattice spacing. We want to discuss the behaviour of such
inegrals if the cutoff is removed, i.e., if the lattice spacing a tends to zero.
There exists the well known power counting theorem of Hahn and Zimmermann
[1] which states sufficient conditions for the absolute convergence of ordinary
Feynman integrals. Convergence depends on the behavior of the integrand in
various sections of the integration domain where some or all integration momenta
get large. This behavior is described by use of UV-divergence degrees of the
integrand with respect to so-called Zimmermann subspaces, i.¢., special classes of
affine subspaces of the integration momenta. If the divergence degrees with respect
to all these subspaces are smaller than zero, the Feynman integral will be absolutely
convergent. Unfortunately, this power counting theorem assumes a rational
structure of the integrand and hence does not apply to diagrams with a lattice cutoff.
Similar problems occur in connection with Weinberg’s power counting theorem [2].
In fact, it is meaningless to discuss naively large momenta on the lattice, the
integrand of a Feynman integral being periodic. Actually, if convergence holds,
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only a neighborhood of zero momentum in the Brillouin zone should contribute to
the continuum limit. Other contributions should vanish.

At first sight it seems reasonable to assume existence of the continuum limit of a
lattice Feynman integral if the naive a—0-limit of the integrand is integrable. A
simple counter-example shows that this is not so. Consider the one-dimensional

integral
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The formal continuum limit is given by
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t22
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which is absolutely convergent, whereas expanding cos?(ga/2) yields

6 n sin“% [1 —cos? %:I
I(g;pna)="— Jdt 5 +0(1)
‘. 4sin2£+,uza2
m 2

for small «, i.e., I is (linearly) divergent. This example shows that “‘continuum UV-
degrees” do not suffice to control continuum limit behavior of Feynman integrals
on the lattice. This means we have to take into account the lattice structure more
carefully. This can be done by introducing a new kind of UV-degrees which we shall
call “lattice UV-degrees.” It will be shown that they are suited to describe correctly
the leading term in a small @ expansion of Feynman integrals. In some sense, these
degrees describe the behavior of Feynman integrals at large momenta and small
lattice spacing simultaneously. Using them, we formulate a power counting
theorem on the lattice which states existence of the continuum limit if all lattice UV-
degrees are smaller than zero. In a forthcoming paper this theorem will be used to
construct a general renormalization procedure for lattice field theories.

This article is essentially divided into two parts. The first part is devoted to the
lattice power counting theorem. In Sect. 2 we introduce the notion of a lattice UV-
degree for functions containing a wide class of Feynman integrands on the lattice.
We show that almost all properties one does expect of a degree are satisfied. In
Sect. 3 the power counting theorem is formulated, and the first steps of the proof are
donein Sect. 4. As will be seen the numerator of the integrand causes some technical
problems, but the integral is always bounded by a sum of generalized continuum
Feynman integrals. These are integrals which have a structure similar to Feynman
integrals in the continuum, but with a sharp cutoff and a more complicated
numerator. Hence it is necessary to have a theorem which states the cutoff
dependence of such integrals. Such an auxiliary power counting theorem is
formulated in Sect. 5, and in Sect. 6 it is shown that the numerator of a lattice
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Feynman integrand admits an estimate which allows application of this auxiliary
theorem to complete the proof of the power counting theorem in Sect. 7. The second
part of this paper is devoted to the proof of the auxiliary power counting theorem.
Section 8 contains technical lemmas, and in Sect. 9 the proof is given by induction
on the number of loops.

2. UV-Degrees on the Lattice

We shall consider momentum space-integrals of the general form

n/a

I(q; p,a)= j d*k, ... d*k,,

—nja

Clk,q;p,a)= H(M) >, w>0,

m

li(k, q)—K(k)+Q(q)~Z Ciki+0iq) ., i=1,....n,

i=

Vik,q;u,a)

2.1
Ck,q;p,a)’ @D

where

and the Q; are linear (g represents the external momenta and k the loop momenta).
V and 5 are functions to be specified below. As explained in the introduction, to
discuss the behavior of the integral when the cutoff is removed, it does not suffice
to consider the continuum limit of the integrand only. We will now define special
classes of functions and for them a generalized notion of a UV-degree. These
degrees allow a generalization of the old power counting theorem [1] which can be
applied to diagrams with a lattice cutoff.

We shall consider functions of the lattice spacing a > 0, of ““external” momenta w
and “internal” momenta u.

Definition 2.1. For arbitrary m € Z, we define %,, to be the set of functions ¥V in real

variables (u, w)=(uy, ..., uy), Wy, ..., ws) and a>0 of the form
1. V 5o =(1/a™
(u,wya)=(1/a") F(ua,wa) , 22)
2. FeC” .

% is defined as the set of functions which are finite sums of functions in some %,,,.
C* is the set of infinitely often differentiable functions. To simplify the notation, we
shall use multi-indices. Set No=Nu {0} ={0,1,2,...}. For be N§ and ue R" define
bl=by ..., . b=l b= b
i=1

The well known definition of a UV-degree of polynomials is given in Appendix C.
We now define the lattice version of a UV-degree of a function Ve %,, with respect to
internal momenta u.
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Definition 2.2. Let Ve, be of the form (2.2) and r, the largest non-negative integer
such that

ab
(W F(u, w)>w=050 forall beN§ , |bl<r, . (2.3)

Then the UV-degree of V' with respect to (u) is defined by
degrpV=m-—r, .

The UV-degree of a function Ve%,, with respect to internal momenta u is
determined by the asymptotic behavior of ¥ for small external momenta w. Note

that always degrpV <m. With respect to all variables, degrg V'=m, the set of
complementary variables being empty. If for all b

OFu,w)| 0
GWYb w=0 B '
we set degr; V= — 0. Note that, contrary to the definition of a polynomial degree,

we never fix external momenta.

This form of a degree will be useful later in many circumstances, e.g. in prov-
ing convergence of renormalized Feynman integrals. An equivalent, even
simpler definition is the following. Let V€%, for some meZ. Then &,=degr;V if
and only if

1
V()yu, w;za>=A(u, w;a) A+ 00, Ao, 2.4

where A(u, w;a)£0 (4 is a polynomial in w and C* in u).

As can be seen from (2.4), the UV-degree of V' with respect to u is determined by
the behavior of ¥ for large u and small a simultaneously. There may be high powers
in 4 not occurring in the large u behavior of the leading term of a small a expansion
of V. For example, let

2 . ta\* t 2 . ta\? 2 . 2
V(t,q;a)=<; sin?a> [COSZ%—COSZ ?a}-i—(; sm?) coszq—za(z mn%‘l) ,

as in the introduction. Then degrpV =4, but lim V(it, q; a)=A*t*¢*. The leading
a—-0

term does not show the correct asymptotic behaviour of Vif rand 1/a tend to infinity

simultaneously.

If Fin Definition 2.2 is a homogeneous polynomial in u, w of degree m,, then
V(u,w;a)=a"F(u,w) and degr,F=mg—r,=d+degrpV ,

where d=my—m. In this case the lattice degree reproduces the old polynomial
degree up to a constant which counts inverse powers of the lattice spacing. Every
additional factor a in V decreases the lattice degree by one, i.e., improves the
continuum limit behavior.

We now generalize Definition 2.2 to functions in 4.
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Definition 2.3. Let Ve ¥4, V=) V;, V;€%,, for some m;e Z, m;+my for i k. Then
we define tel

degryV =max degrpV; . (2.5)
iel
By Definition 2.3, the UV-degree is uniquely defined for every V'e%. Again,

5l,=ae—gr,;V if and only if ¥ shows a behavior (2.4). The lattice degree defined in
this way has quite similar properties as the usual degree of a polynomial. Using
(2.4), we get

Lemma 2.1. Let V, V,,..., V,€% be functions in variables (u,w) and a>0. Then

— )4 R
1. degry Y V;< max degr;V; , (2.6)
i=1 i=1,..., p
JR— > P4
2. degry [T Vi< ), degryV . 2.7
i=1 i=1
e __
3. degry —— V=degrpV —|c| , (2.8)
ou
B .
4, » Zdegr;V . .
degr;; Fwe V<degr;V (2.9)

Note that the second statement is an inequality, whereas the analogous property
of polynomial degrees is an equality.

We further restrict the function classes %,, and . Until now we have not made
any assumption about the behavior of functions in ¢ for small lattice spacing a. We
now assume existence of the continuum limit.

Definition 2.4. €, is the set of functions V defined by

a) Ve®, .
b) im V(u,w;a) exists.
a—0

%° consists of all finite sums of functions in some %;,.

This roughly defines the class of functions to which numerators and de-
nominators of Feynman integrals belong. In particular, they are assumed to be
infinitely often differentiable, and their continuum limit exists. Before defining the
exact form of Feynman integrals to which the power counting theorem will be
applicable we state some important properties of the class 45. If Ve®;, is
independent of momenta u, then

degraV(u,w;a)<0 .

If in addition lim V' (u, w;a) %0, we have

a—0

degrpV(u,w;a)=0 .
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Every Ve%;, has an expansion for small lattice spacing a of the form

V(u,w;a)-—-;; F(ua,wa)=P(u,w)+ R(u,w;a) . (2.10)

The continuum limit P of ¥ is a homogeneous polynomial of order /. In general,

degr, P<degryV/ . 2.11)

As shown by the example considered above, degr, P <degr;V cannot be excluded.
However, with respect to all momenta u, w,

degr,, P=degrip V. if P(u,w)£0 .

In this special case the lattice degree is determined by the continuum limit. In
general, “lattice effects’ are described by the remainder R(u, w; a). As can easily be
seen, R admits an estimate

R, wia)|<a? ) 1Q:w.w)l , pz1, (2.12)
iel

where 7 is a finite set and Q; are polynomials satisfying degr, Q; <degr;V +p. This
means every additional power of u in Q; (with respect to degr,V’) is accompanied by
a power of a. Unfortunately, (2.12) depends on the partition of (u, w) into internal
and external momenta. Later we will derive a much more general inequality which
allows determination of the cutoff dependence of Feynman integrals having such a

V as the numerator of the integrand.
We now define a class of Feynman integrands on the lattice. To this end we
choose momentum variables (u,, ..., u,) and (wy, ..., wy), where u; and w; are four-
momenta. The following considerations can easily be extended to other dimensions.

Definition 2.5. # 1is the set of functions F in momentum variables (uy, ..., u,),
(We,...,wy), masses =y, l,...) and a>0 of the form
V
F=— 2.13
c (2.13)

and the following properties:

1. Ve%<is of the form V(u,w;p,a)=Y, P;(u)V;(u.,w;a), I a finite set and
iel
Vie%by,, meZ. For every iel, P;is a polynomial in the masses u.!
2. Cis a product

C=T11 le;(isa)+ 4] ,
i=1

where neN0={0, 1,2,...}. The “line momenta” /;#0 are of the form

h s
Luywy=Y ciuj+ Y, dgwy ,
i=1 K=1

! The mass dependence of the numerator is important if Feynman integrals containing massless
propagators are to be renormalized. Then it will be necessary to introduce auxiliary masses
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where ¢;;, dy are real constants, and

1
e;€6; , €i(li§a):a—2 ni(la) ,

where
n{(ha%£0)>0 for [ e[—n/a, rja]* ,

n; 2m-periodic in every component of /ja ,
and
lim e;(l;;a) =1}
a—-0
With respect to addition and multiplication, the set of functions # is closed.
Furthermore, % is invariant under differentiation. We always assume that every
e¢;(l;;a) is periodic in /; with the BZ, and e; should have only one zero in the BZ,
located at vanishing momentum. Especially, naive fermions are excluded, their
propagators having more than one pole. If we would drop this condition, our
general assumptions about the form of the numerator would not be sufficient to get
convergence of a Feynman integral in the continuum limit.
For F=V/Ce % we define

degrpF=degrsV — (?gr,;C ) (2.14)
Note that

if (Cila~~~acin):F0 5

2
degry(e;(l;; )+ 1) = { otherwise

hence for F=V/Ce F
degrpF=degrsV —2n

u s

where n, is the number of line momenta /;, i€ {1, ..., n}, which are dependent on . In
particular

n

deary T1 [elli-+i)= Y. deerile(hia)+ut] @15)

In this special case Lemma 2.1.2 is an equality, i.e., the UV-degree of the
denominator is already given by the polynomial degree of its continuum limit. As a
consequence, for every Fe &

degr, lim F(u, w; u,a) <degrpF(u, w; u, a) . (2.16)
a—0
The UV-degrees of functions Fe % have “typical” degree properties. They are
direct consequences of Definition 2.5 and of Lemma 2.1, and are listed below,
although we do not make use of them in this paper. Nevertheless, they are of
importance, especially in proving convergence of renormalization schemes [4].

Lemma 2.2. Let F, Fy,...,F,e #. Then

)4
1. degry 3 F< max degrgF; , (2.17)

i=1 i=1,..., p
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p p
2. degry [1 Fi< ), degryF; | (2.18)
i=1 i=1
B S
3. degry P F<degraF —|c| , (2.19)
— .
4, degry Eo: F<degr;F . (2.20)

For instance, to prove 3, let Fe #. Then

oV oC

oy =z
0 ou ou
ou c?

hence

—— OF — 0V — _0C o
degrp ——<max { degr,C —, degrpV — | —2degr,;C
Ou ou Ou

<degry;V —degry;C —1=degrsF—1 .

The assertion now follows by induction on the number of derivatives.

3. The Power Counting Theorem

We consider Feynman integrals

n/a
(g, ma)= [ d*k,..d*k,F(k,q;p,a) (3.1)

—n/a
where
Flk,qp,a)=V(k,q;p,@)/Ck,q; p,a) e F .
We assume periodicity of the numerator Ve ¢° with the Brillouin zone [ —n/a, n/a]*

in all internal momenta k4, ..., k,,. An important notion is given by the following
Definition 3.1. Let ¥ be a set of four-vectors /;,

ik, q)=K;(k)+ Q:i(q)= Z Cijki+0i(q) , i=1,...,N, C(;eR.
=1

J

& is called natural with respect to k, if the following conditions hold:

1.
CijeZ forall i=1,...,N; j=1,...,m,

rank(Cij))=m ,
(Cil’“"cim):’zo for all i=1,...,N .

2. If the four-momenta
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are linearly independent, then
kJ:Z Aﬂk{ Wlth AﬂEZ .
=1

This condition is natural in the sense that arbitrary independent /;€ ¥ could be
chosen as integration momenta, the coefficients C;; always being integer-valued.
For a Feynman integral this condition is ensured if all loop momenta k&, ..., k,,
coincide with momenta of lines up to external momenta [3]. Also, using periodi-
city of the integrand, the integration domain could always be chosen to be
[—n/a, m/a]*™. Asexample of the importance of line momenta to be natural consider

n/a
J d*kyd*k,

—n/a

1 1 1 1

— B (k2 +k3)° .
R4 B2+ 12 (=K + 12 (k4 k342

Here k%= Z (4/a*)sin®(k,a/2) and p@*>0. All criteria of the power counting
n=1

theorem below are satisfied except that the set {k,k,,k; —k,, ky +k,} is not

natural. In fact, if 0 <e<1/2 and e=(1,0,0,0), the integral is divergent in the sector

B L e T
a a a

. &y k2|1<Aa

) 4
as a—0 where I)le\/Z 12 for I=(,...,I)eR* As will be seen below,
i=1

naturalness means that line momenta in neighborhoods of poles? of propagators in
higher BZs can be transformed simultaneously into neighborhoods of the poles in
the first BZ by translation with reciprocal lattice vectors. Under such a transfor-
mation the numerator of a Feynman integrand is invariant. This would not be the
case by other translations. They would produce explicit negative powers in the
lattice spacing destroying convergence.

Before defining UV-divergence degrees of Feynman integrals in Zimmermann
subspaces, we have to introduce the notion of a basis of a set of line momenta. Given
variables k =(k,, ..., k,) (loop momenta) and ¢= (g, ..., q») (external momenta),
ki, q;eR*, let L denote the space of all linear mappings /: R*™ x R*™ >R* of the
form

I(k,q)=K(k)+Q(q) , (3.2)
K(k):i ak; ; aqeR, i=1,....m, (3.3)
;;1
Q(q)=j§1 big; ; bjeR ., j=1,...M 3.9
inthe four-momentaky, ..., k,and g, ..., qy. Kand Qissaid to belinearink and ¢,

respectively.

n(ka)

2 A “pole” of a propagator 1/ (—aT+ ,u2> denotes a zero of the y-function
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Let .# =L be an arbitrary subset. Elements /,,...,[e.#,

m

M
ll(k,q)= Z a”k1+2 bijqj , i=1,...,S , (35)
j=1 j=1
are called linearly independent with respect to k if their homogeneous parts in k are
linearly independent. Furthermore, {ll, <l = is called a basis of .4 with
respect to k if /1, ..., [ are linearly independent and every /e .# can be written as

N

le,q)= Y, clik,9)+0(q) , (3.6)
i=1
where ¢;eR, i=1,...,s and Q is linear. In this case we define rank,.# =s.
We now define UV-divergence degrees with respect to Zimmermann subspaces.
Let & be a natural set of four-momenta® and

uy=liys o g =l (3.7)

1)1211-1, 7vm—d:ljmfd
be an arbitrary basis of % with respect to k, 1 <d<m. By fixing v{,...,0,-4 We
define a class H of affine subspaces in the space of integration momenta R*™, H is
called a Zimmermann subspace, (1) = (uy, ..., uy) is called the parametrization of H,
and (v) =(vy, ..., v, -4) are the complementary parameters of H. For Fe # we define
degril(q; u, a)=4d+degry F(k (4,0, ), ; jt, @) (3.8)

(v,q represent the “external momenta” of H). The set of all Zimmermann
subspaces, for all bases (3.7), will be denoted by #. Note that # depends on the set
£ of four-momenta. Now we state

Theorem 1. Power Counting Theorem. Let

N n/a
Hg;pa)= | d*k;...d*%k,F(k,q;ua) (3.1
—n/a
and Fe F of the form
V(k,q;up,a)
Ck,q;ua)’

where Ve€° is (2n/a)-periodic in every component of ki, ..., k,, and

F(k,q;p,a)=

n
C(k>q’,u7a)=n [el(ll(ksq)’a)+#12] 5 :u12>0 .
i=1
Let & be a natural set of four-momenta and {l,,...,1,} = £. If for every He #,
degrjl(q; p.a)<0 , 3.9)
3 Actually, property 1 in the definition of naturalness would be sufficient to define UV-degree of

Feynman integrals. However it is convenient here to assume ¥ to be natural, this being an
important assumption of the power counting theorem
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the continuum limit of 1(q; u, a) exists and is given by

P(k,q, 1)

— 3.10
Ee.q.p) " (3.10)

a—0

lim I(q; p, @)= J d*k, ... d%k,,

where
P(k,q, wy=lim V(k,q;u,a) ,
a—0

E(k,q,w)=lim C(k,q;u,a) .
a—0

If P+0,theset &' = {ll ,..., I} contains a basis of ¥ with respect to k [otherwise
w(H)=0 for some He #]. Hence, if & is natural so is &’ In this case the theorem
can be formulated using %' instead of .#. The continuum limit (3.10) is absolutely
convergent according to (2.16) and the power counting theorem of Y. Hahn and W.
Zimmermann [1] (or by Theorem 2 below).

As an example for the importance of (3.9), let us look at (1.1) in the introduction
again. Only one subspace must be considered, and the corresponding divergence
degree 1s equal to one. Hence the theorem cannot be applied, and as we have seen,
(1.1) is in fact divergent in the limit of vanishing lattice spacing «.

To prove the theorem, using Definition 2.3, it does suffice to assume Ve %5, for
some myg € Z. Hence let us consider

nja

- Vik.q;
H(q: o a)= j d*ky ... d*k, — n((l‘i)“) , (3.11)
~nja ]._[ !:—L;— + ﬂ?}
i=1 a
Ve%y,. moe Z. Without loss of generality we assume £ = {/;, ..., Iy}, N aninteger
greater or equal to n, and that k,, ..., k,, are contained in .. By naturalness of £,

this is always possible to arrange by a linear transformation.

4. Proof of the Power Counting Theorem : First Steps

The proofiidea is as follows: The integral (3.11) will be written as a sum of integrals
over various sections in momentum space. The division of the integration domain
will be done in dependence on the configuration of line momenta /;. For every
propagator we distinguish line momentum in neighborhoods of the poles and
outside of them. As will be seen, a propagator can then be estimated by its
continuum limit or by some powers of the lattice spacing a, respectively.

For /e R* define

98(1)2{0 if ]‘lf(Zn/a)Z'I <(n/a)¢ for some zeZ* )
1 otherwise ,

where ¢ is a small positive constant which will be chosen below. Using Heavisides
O-function, O(x)=1if x<0 and @(x)=0if x<0,
z > . 4.2)
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Doing so for every propagator, (3.11) can be written as
lgspay= Y Y I.gma) , 4.3)
Je{l,...,n} 2
where for every “sector” J,z=(z;lieJ), we have

n/a
Letgina= | a0
—n/a I_I <m_a;"—_+.u12>
i=1
i
.(H@ (5 e—“l - ) H@ B, (@44

and for every J the sum )’ runs over finitely many configurations z. We have to

z

estimate the contributions of all integrals (4.4) for small lattice spacing a. To this
end, we make an appropriate transformation for each integral (4.4). As a
consequence of naturalness of the set ¥ of four-momenta, for small enough ¢>0
and for every J, z, there exists a translation

2n
kj—)k‘,_*_al 01 N 5_,'EZ4 N j=1,...,m s
so that
2n )
li_’li‘l‘aA Z; fOr all lEJ . (45)
This is shown in Appendix D. By (4.5), all line momenta at poles of propagators in

higher BZs are shifted into neighborhoods of the origin in the first BZ, leaving
V(k,q;a) and all u; invariant. Consequently

- Vik,q;
1.(q; 1, a)= J\d4k1 . d*k,, T%(qu)ﬂ*“
ay I:I < : #l)
T
: <H@ <E £— ”li ”)) 'n@g(li) R (4.6)
iedJ i¢J

where
Ulz{(kl’ ’km)€R4m| - +2(5j)i)”/a§(kj)i§(1 _2(5j)i)7f/a s

4.7)
j=1,..,m ;  i=1,...,4} . (

Now, in every integral (4.6) the propagators can easily be estimated, using their
properties listed in Definition 2.5. Again, for small enough e, there is a constant o,
so that
1 < @
ni(ha) T4

(4.8)
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whenever [|/;| <(n/a)e. This can be seen by an expansion of #; at vanishing
momentum. Furthermore, there is a constant y>0 such that, if ”li—(27t/a)2“
> (n/a)e for all ze Z*, then

T
Hence, the denominator in every integral (4-6) is bounded by a product of
continuum propagators and explicit powers of the lattice spacing a. If it would be
possible to estimate the numerator V(k, ¢; a) by its continuum limit, (4.6) would be
bounded by a rational function to which the power counting theorem of Hahn and
Zimmermann could be applied (in a somewhat generalized form to determine the
cutoff behaviour). Unfortunately, this will not be possible, as we have seen in the
introduction. Another possibility would be to expand V" at small lattice spacing a,

Vik,q;a)=P(k,q)+R(k,q;a) ,

P being the continuum limit of ¥ and R a Taylor remainder, and to estimate R by a
polynomial. But this estimate is too rough, the conditions (3.9) will not be sufficient
for convergence of this estimate. This is because we have a lot of Zimmermann
subspaces and for every such space a corresponding lattice degree of the numerator
V. For a fixed space we will get an estimate of the form (2.12), but now we need such
an inequality which respects degree properties of all Zimmermann subspaces
simultaneously. This is not possible in general.

A way out is the following. A simultaneous estimate which respects degree

properties can be done for ordered subspace H,, ..., Ay, i.e., H;isa subspace of H;if
i<j. This means that for every such sequence we get an estimate
IR, wia)|<a? Y |Qy(u,w)| (4.10)
beB

where p is a natural number, B a finite set, and the polynomials Q, satisfy
degruijgag;ng—!-p , J=1..s5, (4.11)

(u;) being the internal parameters of H;. Doing so for every ordered sequence of
Zimmermann subspaces, we get

IR(k,q;a)lémiIn a” Y 10wk, q)l (4.12)

beB;

so that for every ordered sequence there exists an /e[ such that

degr,Q;, <degr;V+p; forall beB; , (4.13)

() being the parameters of an arbitrary Zimmermann subspace in the sequence.
Using this and the above estimates for propagators in the integral (4.6), we get
generalized continuum Feynman integrals, i.e., integrals which look like Feynman
integrals in the continuum with a sharp cutoff, the right-hand side of (4.12) being the
numerator. In the next section we will state a theorem which controls the cutoff
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dependence of integrals having this form. Furthermore, we will prove the validity of
an inequality (4.12). Using these two statements it will be possible to complete the
proof of the power counting theorem under the conditions (3.9).

5. A Power Counting Theorem for Generalized Continuum Feynman Integrals

In the present section we state an auxiliary theorem which will be used to complete

the proof of the power counting theorem. Set k =(k,, ..., k,,) (loop-momenta) and ¢
=(¢i, ..., qu) (external momenta), k;, g;e R*. L again denotes the space of linear
mappings /: R*™ x R*™ »R* of the form (3.2)—(3.4) in the four-momenta k., ... , k,,
and ¢y,....qy. The notion of a basis of a set of line momenta is defined in
(3.5)—(3.6).
Let ¥ < L be a finite subset
j=1
where
rank(Cyj)=m ,
(Ciyy..., Cp)*=0  forall i=1,...,N, (5.1b)

B2 if %)

so that rank, ¥ =m [cf. (3.6), especially N=m]. Furthermore, let /"'=.% be an
arbitrary subset. We consider integrals of the form

i min 1~ 7|P;(k, g)|
Igw=| d*, .. .d*k, <L . p:i=0 integer . (5.2)
(4.1 I 1 Eog, )
Iis a finite set, P; are polynomials in the components of the four-momenta k4, ..., k,,

and ¢y, ..., ¢y, and

E(e,q.=T1 (F.q)+p)™ . w>0, nmeN={1,2,..} . (53)
N

H means product over /;e./". Hence ./ is the set of all /€ & appearing in the

denommator of the integrand of .# ;. We always have rank, 4" <m. All propagators
are assumed to be massive.
For a finite subset .# < L satisfying rank,.# =m, we define

Al
| d*ky...d*, f(k) (5.4)

as the integral over all (kq, ..., k,,) € R*™ subject to the constraints
Pk,q)<i?* forall le . (5.5)

#, is convergent for every finite 4. We examine the behaviour of .#; for large 4. The
cutoff dependence can be described with the help of divergence degrees with respect
to Zimmermann subspaces of the integration momenta. First we make the notions
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more precise. Let
ulzlil,...,udzlid , (56)

Ul"—“lj;w“ﬁvm—d:ljm_d

be an arbitrary basis of ¥ with respect to k, so that k=k(u,v,q), 1 £d<m. Asin
Sect. 3, by fixing vy, ..., v,,—q, we define a class H of affine subspaces in the space of
integration momenta k called Zimmermann subspace. () = (uq, ..., uy) is called the
parametrization of H. (vy, ..., v,,_,) are said to be the complementary parameters of
H. The set of all H, for all bases (5.6) of %, is denoted by #. # is the set of all
possible Zimmermann subspaces, and it depends on the set #.

Definition 5.1. Let

u®, L u™ (5.7a)
be an arbitrary basis of ¥ and H,,..., H, s=1, a sequence of classes of affine
subspaces in # having the following properties:
1. H;is parametrized by (u;) = (w1, ..., uzg) = {u, ..., u"™}, the remaining u/’s
in the basis being the complementary parameters of H;. (5.7b)
2. (u;) are contained in (i) if j<k.
Then the sequence H,, ..., H,is called an ordered sequence with respect to the basis

(5.7a).

With respect to the set of polynomials {P;ie !} in the numerator of (5.2) we
define

Definition 5.2. The set {5(H)|He,}’f} is called an ultraviolet-set (UV-set), if

1. 6(H)eZ for every He #.

2. For every basis (u"), ..., u™) of & and every sequence H,, ..., H; which is
ordered with respect to this basis, there exists an i e such that (cf. Appendix C)

degr, o, Pk, q) —p;<0(H,) forall j=1,....s . (5.8)

Here (u;) denotes the parameters of H; and (u;,v;)= ", ..., u"™).

The number of possible bases of ¥ and ordered sequences of subspaces in # is
finite. Hence UV-sets do always exist. If /= {1} consists of one element only, the set
of

S(H)=degr,, Py (k(u,v,q), q) —p;

for every He#, where (u) is the parametrization of H and (v) are the
complementary variables, is a UV-set. In this case the notion of ordered subspaces is
superfluous. Note that UV-sets as defined in (5.8) are dependent on the external
momenta ¢, which we have kept fixed. However, for every UV-set {5(H)|He A}
one can find a UV-set {§'(H)|He# }, which is independent of g, where
O0'(H)Yz0(H) for all He #.

We now define UV-divergence degrees for integrals of the form (5.2). UV-
degrees of polynomials are defined in Appendix C. Let {§(H)|H e # } be a UV-set.
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Given an arbitrary basis (5.6) of ¥, we define for He . #, parametrized by
(u)=(u1,...,ud),

w(H)=degry ¥, =4d+0(H) —degr,, E(k(u,v,9), ¢, 1) - (5.9)

This definition depends on a given UV-set. The following theorem states the cutoff
behavior of integrals (5.2) for large A if a UV-set is given.

Theorem 2. Auxiliary Power Counting Theorem. Let {5 (H)|He #} be a UV-set and
{w(H WHe A} the corresponding set of UV-divergence degrees. Then there exist
K(u,q)>0 and c(u,q)>0, so that for all 2> K(u, q),

1 if max w(H)<0
Hex
(g, w=<c(u,q)4 A og™ if max w(H)<0 and p;=1 for all iel
Hex#
Ao ooy if max w(H)20 . (5.10)
HeH

If the momenta q are bounded and the UV-set is independent of such q, then K and ¢ can
be chosen to be independent of q.

The estimate (5.10) can be strenghened if a UV-set is given having max w(H)

minimal. However, we do not need this in our application, where a UV- set w111 be
given in a natural way. The theorem is an extension of the power counting theorem
of Hahn and Zimmermann [1]. In general, the numerator is not a polynomial,
instead it is a minimum of a collection of polynomials, and we include the cutoff
behavior of divergent integrals (for A— o0). Below we will apply the theorem (for A
~1/a)in two special cases. If /= {1} and p; =0, the statement of [1] is reproduced. If
all p;=1 and the limit exists, it is zero. If p;=0 for all ie I and max w(H) <0, then
#,(q, w) converges to Hext

" min |P;(k, g)|
d*k, ... d*%, ‘<L ——
J ' E(k,q, 1)

The proof of Theorem 2 will be given in Sect. 8, 9.

6. Bounds on the Numerator of a Lattice Feynman Integrand

Having introduced appropriate notions and an auxiliary power counting theorem
being at our disposal, we will now show that the numerator of a Feynman integrand
can be estimated as proposed at the end of Sect. 4. This statement is contained in the
following theorem. It is a consequence of the definition of UV-degrees on the lattice.
Remember we are using multi-index notation. We shall write k =(k;,....k,) and g
=(q1,...,9y) as in the power counting theorem.
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Theorem 3. Let V(k, q; a) e b, for some mye L, & a natural set of four-vectors with
respect 1o k*, and let (ka, qa) be bounded. Then V admits an estimate of the form

WVik.q;a) =Pk, q)|<a’ ) miln Qi (k, 9)l (6.1)

beB i€
where I, B are finite sets, pe N, and
1. P(k,q)=lim V(k,q;a). For every He #, parametrized by (u)
a—0
degr, P<degr; V . (6.2)
2. Q; are polynomials. For every basis

u(1)=li1,...,u('")=li

(6.3)

m

of & with respect to k and every sequence Hy, ..., H of classes of affine subspaces in
A which is ordered with respect to the basis (6.3), there exists an i€ l, so that

degr,,Qp=degr; V+p forall j=1,...,s andall beB , (6.4)

where (u;) denotes the set of parameters of H;.

The statement means that, for every b € B, the set of all § (H) =degr; V, where ()
is the parametrization of He #, is a UV-set for the polynomials Q;, which is
independent of ¢. This allows us to apply the cutoff theorem to the integrals (4.6) in
Sect. 4 to determine their cutoff dependence, as will be seen in the next section. Note
that always p=1. If P(k,¢)=0, then p can be chosen to be 1. If V(k, g;a) is the
numerator of a Feynman integral, the variables (ka,ga) are always bounded,
because k;,...,k, range over the BZ, and external momenta ¢ are fixed.

In the remaining part of this section Theorem 3 is proved. First of all we note an
extended version of Taylor’s theorem.

Lemma 6.1. Let F be a C*-function of the form F(vy,...,v,), v;€ R™. Let ;e N,
={0,1,2,...} for every i=1,....n, and ;29 if i<k. If

F(y, . 0g-1, AU, .., A0)=0(%) ,  A=0 ; s=1,...,n, (6.5)

then there exist C*-functions Fy, be N§», |b|=0,, satisfying

Fy(0ys o Vg1, Mgy ..., 20,)=0(A%7%) | =0 (6.6)
forall s=1,...,n—1, so that
F(oy,....0)=Y thFy(vy,...,v,) . (6.7)
b

This lemma is an extension of Taylor’s formula in the sense that it states the
coefficient functions Fy being C* if this already holds for F. This allows successive
application of (6.7).

# It would be sufficient to assume property 1 in the definition of naturalness (existence of a basis).
However, in application of Theorem 3 below, ¥ will be natural



98 T. Reisz

Proof. By induction on m,,. If m,=1, let b=05,e N, and
_,F(b#'_’_)

Un

Fy(vy,...,v)

By Taylor’s formula, F,e C*, and (6.6) is satisfied. Assume the statement holds for
all m, <M, where M eN. Let v,=(w;,w,), w; eR™, w,eR. For /=0, ...,5,—1 set

1

0
Ay, 01, W)= [6  F(uy, .. 0, 1,wl,wz)J ,
wz=0

and define a function G by

on 1
wh
n

=0

Gy, ey Oy Wiy, W)=F (0, oo, Upmq, Wy, Wy) — Ap i)
The hypothesis of induction can be applied to G and 4,. For, as A—0 we have
A(vy, Oy, W) =027
AUy, Vs Mg Ay, AW =0 (A% . 1<s<n—1,
Gy ey Uy, Wy, AW,) = 00 ,
Gy, ..y Uy gy Agy ooy AUy 1, AWy, Awy)=0(A%) ;  1<s<n—1 .

Hence, there exist g(vy, ..., 0,-1, W, w2) € C* and hy ,(vy, ..., 0,-1, w;) € C* for all
beNM, |b|=6,—L so that

Ay, Uy, W)= Zwlhlb(bla-'-:vn—lswl) 5

Bip(Uys ooy Og gy Mgy ooy AUy, AW =0(A%7%) 5 )10 ; 1<s<n—1,

and
) 8
Gy Uy, W W) = WG (U1, o, Uy, Wy, W)

GO1s ey Vg1 Agy vy AUy 1, AWy, AWy) =0 (A% 7% | j50 ; 1<ssn—1 .
Writing F in terms of G and A4,, the assertion follows. O
We shall use the following notation: For seN, d=(6,,...,5,)e Na~*"! and
multi-indices b;e Ng*, i=s, ..., n let

; b+ ... +]b /=0, and
hsjs(bg, ..., by)= b+ ... +1b;]£0,—0;+1 forall i=s,...,n—1
0 otherwise .

By iteration of Lemma 6.1 we get

Lemma 6.2. Let F be a C*-function of the form F(v, ..., v,), v;€R™, and §;€ N, for
every i=1,...,n, ;20 if i<k. If as A—0

Fug,...,0-1, 20, ..., A0,)=0(%) , t=1,...,n, (6.8)
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then for arbitrary s=1,...,n there exist functions F,__, € C®, so that

F(Ul,...,l),,)z Z héls(bsa--~abn)vgs'-'UZans...bn(Uls'”avn) ’ (69)
bs...bn

Fyo 5 Uy Umy A0y o A0) =0 (% 7%) 450 3 1=51<s . (6.10)

Proof. If s=n, this is the statement of Lemma 6.1. Assume it holds for some s=2.
Application of Lemma 6.1 to F,__,, in (6.9) yields

— Cs— 1 C.
Fbs‘..bn(vlﬂ'--svn)_l | 47_: Uss—l "'Unans...b",cS_l...c"(Ul7"'avn) 5
cs—1|+ ... Floen| =0s- 10

Fbs“,bn.crl...cn(vls---eUt—ls/IUta~-~s/q-vn)=0(/16t_as_l) s A-0 I=st<s—1.

Inserting this into (6.9) and collecting indices of Fy_ 5, .. .. .., WE Obtain
F(Ula-“>vn): Z h(ﬂs*l(bs—l"'-abn)vgs-_ll"‘vﬁanS_;‘..bn(vlv~~~9vn) 5
bs-1...bn

Foo o (U1 0pmy A0y A0 ) =0 (A% %) | A0, 1Zt<s—1 . O

Lemma 6.3. Let
V=1 . um=], (6.11)

1 Im

be an arbitrary basis of ¥ with respect to k, and Hy, ..., Hy an arbitrary sequence of
Zimmermann subspaces which is ordered with respect to (6.11). Furthermore, let
Vik,q;a)€%br,, moe L, and (ka, ga) be bounded. Then V admits an estimate of the
form

\V(k,q;a)—P(k,q)|<a” Y, |Qy(k,q)l , (6.12)

beB

where B is a finite set. pe N is independent of the basis (6.11) and the sequence of
subspaces. The homogeneous polynomial P is given by P(k, g)=1lim V(k, q; a), and Q,
are homogeneous polynomials of order p+mq such that a0

degr, P< »
egr, P<degry V , (6.13)

degr, Qp<p+degry V',
where (u;) is the parametrization of H;, for all j=1,...,s and all be B.

If P(k,q)=0, p can be chosen to be 1. If P(k,¢)=0, p is the largest natural
number such that lim V(k, q;a)/a? %0 exists.

a-0

Proof. 1. We define new sets of variables v;,...,v,.; as follows:

(1) = (1) .

(u2) = (Ul > 02) 5

(us):(vl7'--avs) s

@, U™ ) =0y, 00 ) =)
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Let V(k,q;a)=F(ka,qa)/a™ €%, and F'(v)=F(k,q). For every H; in the given
ordered sequence we make a partition (v) = (u;, w;), where (u;)=(vy, ..., v;) are the
“internal” momenta and (w;) =(v;1y, ..., Us+) are the “external” momenta of H;.
Set rj=mg —degr; V. Then r; = ... 2r, and

F/(Ul,...,vj,/\".l/’j.;.l,...,)\,Us.yl):O(/{rJ) 5 X,—’O 5 j=1,...,s .
2. For 6eZ define

, . F'(Avg, .., Avgyy)
P&(v1$~-'>vs+1):hm 1(5 : 5
A—0

and set
G(Dl,... ,Us+1)=F/(U1, ,Us+1)_P,;,0(U1, "'5Us+1) .
Let ro € Ny be the largest integer number such that P, (vy, ..., v,4+1) F0 exists. Set

N Fo if Moy <Fo
r0= .
ro+1 if my=ry

and 7;=r; for j=1. Then
G(Uh~~7Uj7’10j+1»~-~>/q~vs+1)=0(j'r3) ;0 A=0, 05jss
and 7o=7 = ... 2F,. Applying Lemma 6.2 to G yields

Gy,...,U41)= Z hﬂl(bla“':bs*-l)vlil'“UgjfllFbl‘..bsH(Ul"-"Us+1) s
b

|b1|+'-'+|bs+1l:f0 and
By by, o bysy) = b+ ... +bj|SFo—F; forall j=1,...,s
0 otherwise ,

and F,, ,,,,€C®. For bounded va we get

!G(U1a,~~~,l’s+1a)|§a¢0 Z Qv (vy, ..o, s 1)] s (6.14)

beB

where Qy are (finitely many) homogeneous polynomials of order 7, satisfying
degr,, ., Qp Sfo—Fj=(Fo —mo)+degry V., j=1,...,s ,

for all »e B. Finally, let
1
P(kaq)Ehm W V(k,q;a)EPr;to(vla~'~avs+1) 9
a—0

Op(k, )= Q4 (vy, ..., v541) forall beB .

Setting p =7y —mgy e N, (6.13) follows, and as a consequence of (6.14)

1

am

[Vik,q;a)—P(k,q)|=

IG(vla"“aDs+1a)l§ap Z ]Ql(k>q)l . O

leL
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Proof of Theorem 3. Let the set of all ordered sequences of subspaces in # be
indexed by a finite set /. Using Lemma 6.3, Ve %, admits for every i e  an estimate
of the form

V(k,q;a)—P(k,q)|<a” Y |Qp(k,q)l ,
beB,

where B is a finite set and p € N is independent of i 1. P is equal to the continuum
limit of V, hence is independent of all sequences, and satisfies for every He #,
parametrized by (u),

degr, P <degrgV .
For every H;, parametrized by (u;), in the ordered sequence,
ag,‘g?uJQb§p+Fgrgj V., forall beB; .
In summary, using the inequality and notations of Appendix B, V obeys an
inequality

[Vik,q;a0)—P(k,g)|<a” min ) |Q,(k,q)|<a? ) min [Qy(k,q)l ,

iel peB; beB i€l
where B= @ B;, and for b=(b;);c;€ B, Qs = Qs,. Point 2 in Theorem 3 is satisfied by
iel
construction. [

7. Completion of the Proof of the Power Counting Theorem

Having shown that the numerator of a lattice Feynman integrand admits an
estimate as supposed at the end of Sect. 4, and a theorem being at our disposal which
states the cutoff dependence of generalized continuum Feynman integrals, it is not
hard to complete the proof of Theorem 1. Our starting point is (4.6). Using Theorem
3 we write Vi(k,q;a)=P(k,q)+ R(k, q;a), so that

L.=1).+1%

where
- Pk,
I}’zzjd”'kl...d . ( Ela‘)’) )<H@<-e—lht)>‘ﬂ@e(lﬁ) ,
ar 1:1 i ieJ i¢J
= ‘ (7.1)
and
fot ot 5 ([Tl o
I jd koo d¥e — <f1,(la) ) ﬂ@ e— 1] H@g(ll) .
oy I_I i ieJ i¢gJ
=t (7.2)
P is the continuum limit of V, and R(k, ¢;a) admits an estimate
IR(k,q;a)|<a? Y, min |Qy(k,q)| . (7.3)

beB iel



102 T. Reisz

By Theorem 3, for every fixed be B, the set of all 6(H)=degr;V, (u) being the
parametrization of He #, is a UV-set for the polynomials Q.
Using the bounds (4.8), (4.9) on the propagators, we get the estimates

> _ [Pk, q)|
D (q;u,a)|SI0.(q, wa)=o"(ya®)" " | d*k,...d*k,, —"— , (1.4
117 (q; w )| £15.(q, w, @) =o' (ya”) J 1 1t i) (7.4)
KJ ieJ
and
IR (g mal Y IP(q, pa) , (7.52)
beB
where
miln a?|Qu(k, g)|
I0(q, a)=a"(ya>" " | d*ky ... d¥kpy ~S e 7.5b
12 (q, 1, a) (a®) f 1 12+ ( )
Ky ieJ

h is the number of elements of J, i.e., it is the number of propagators having a
momentum near a pole,

iy={ky, ... k) eR*™ || £5/a forall Le )}, (7.6)
Zr={lljelyuiks,....kn)S ¥ , (1.7)
d
" = max (e, 4n(1+8;]/2) (7.8)
i=1,..., m

is a constant. To every integral in (7.4) and (7.5) we can now apply the auxiliary
power counting theorem to discuss the small @ behavior. All integrals are of the form
needed, where 1 is replaced by d/a and ¥ by &;. The corresponding set #; of
Zimmermann subspaces of k is defined by bases of .¢; with respect to k. By (7.7)
A< A . Hence for every J={1,...,n} the set of 6(H)=degrsV, (u) being the
parametrization of H, for all He #;1s a UV-set for the family of polynomials Q;,
for every fixed be B. It is independent of the external momenta g.

We first consider the integrals I}?. As a consequence of (3.9), for arbitrary
He #;, parametrized by (u)=(uy,...,u,) say, we get

degryIf2(q, 1, a)=4d+5(H) —degr, [T (12 +uf)

ieJ

=[4d+degr;V —degrpCl+degr, [T (17 +ud)

i¢J
<degr, [T (2 +p)s2(n—h) , (7.9)
igJ
where we have used (2.15). Hence
degry I (q, u,a)<2(n—h)y—1 forall He#; . (7.10)

By the auxiliary power counting theorem, there exist positive constants K and ¢, so
that for all a< K1,

a) if n—h>0, IP(gua)<c@) ta 2P Uogma=calogma . (7.11)

b) if n—h=0, I¥(q ua)<calog"a (because of p=1) . (7.12)
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Thus, the remainder IR does not contribute in the continuum limit.

Next, we turn to the integrals I}, . If P(k, g) =0, all I}, vanish and the proof of the
power counting theorem is complete. Thus, let us assume that P(k, g) £0. For every
He #;, parametrized by (u)=(uy, ..., uy),

degr, P <degr;V . (7.13)

The set of 6(H)=degr,P(k(u,v,q),q), He #;, is a UV-set. Consequently, using
(7.13) and (3.9), we have

degry Iy, (g, u, a)=4d+degr, P(k, g) —degr, [T (7 +uf)

ieJ
<[4d+degryV —degrpaCl+degr, T ((Z+pH)<2(n—h) ,
i¢J
(7.14)
and hence
dengI_Oz(quu’a)gz(n—h)—i ’ (715)

for every He #;. Using again the auxiliary power counting theorem, there exist
K>0 and ¢>0, so that for all a<K %,

a) if n—h>0, Iy.(qua)<c@) " a B0 " Nog"g=calog™a ,(7.16)
b) if n—h=0. (g pa)<c . (7.17)

This shows that in the continuum limit only sectors (Jy, z) where Jy= {1, o),
contribute to (4.3), i.e., when the momenta of all propagators are located near the
poles. In fact, for appropriate small ¢> 0, there is exactly one such sector. For, if
P=+0, the set {11 , ..., 1,} of line momenta contains a basis of ¥ with respect to k. Let
z=(z;,...,z,) € Z*" and ke R*™ satisfying
2n

z

j=1 a

i, i=1,...,n . (7.18)

By rank(C;;) =m, this system has a unique solution. By naturalness of %, itis of the
2 . . .

form k==~ A, A€ Z*™ (Appendix D). For k € [ —r/a, m/a]*™ this is possible only if
a

A=0,i.e., z=0. Hence, having chosen ¢ > 0 according to Lgmma D.1, for Jy only z
=0 appears in (4.3). The integrand of I}, and hence of I}, is bounded by

- [P(k,q)|

_ , (7.19)
TT (P, )+ 1)

and the integral

o j‘d“kl...d“k Pkl

[T 7k, q)+ 1)
i=1

(7.20)

is convergent by (7.15) and the power counting theorem of [1] (or by the auxiliary
power counting theorem). Using Lebesgue’s “‘theorem of dominated convergence”,
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we get ©
Pk
lim 1(q; ,u,a)—llm 100(q; 1 a)= f d*ky ... d*k,, — X)) . (7.21)
" i TT (2 (k. g)+ 1)
i=1

This completely proves the power counting theorem.

8. Some Technical Lemmas

We now start to prove the auxiliary power counting theorem. The proof idea is
similar to that of the convergence theorem of Hahn and Zimmermann [1].
However, to discuss the cutoff behavior, we need some deeper statements (e.g.
Lemma 8.6). In this and the next section we shall use the notations of Sect. 5.
Especially, & is a set as given in (5.1). In addition, throughout the sequel we shall
use the shorthand notation

e min A7 |Py(k)|
L(PMg, )= | d*ky.. d*k, X — 8.1

Here, /is a finite set, and { P;} represents a set of polynomials P;, ie I. For >0 we
define

={(ky,.... k) eR*"|[}(k,q)=7* forall [eZ} , (8.2)
and for X< R*"
M min 47| P;(k)|
Ji( P}]q,u,X)=f d“kl...d“k,,,i’E(—k’—W
X
e min A”P|P;(k)|
= J d%,..d‘*k,,,xAMW, (8.3)

where yy is the characteristic function

1, keX

0, ke¢X. .4

xx (k)= {
The present section contains a series of lemmas which will be used to prove the
auxiliary power counting theorem by induction on the number of (four-
dimensional) integrations.

Lemma 8.1. Let I be a finite set andr € Ng={0,1,2, ...}. For every ic 1let Py(x,z) bea
function of x e R? and a polynomial in variables z;,j=1, ..., n of degree smaller or
equal to r:

Pi(x,z)= f Z a® izt z (8.5a)

j1=0  jn=
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Let yg,...,y,€R be r+1 different points, Yz{(zl,...,z,,)|z,»e{y0,...,y,} for all i
=1,...,n} and Q<=RP. If the integrals

[ dx min |P;(x, y®)|
0 iel

are convergent for all Y e Y, then so are the integrals
j dx mln 'a.(ili)lu-jin(x)' ’
0 iel
forarbitrary iy, ..., jiw€ {0, ..., 1}, and there exists ¢ > 0, depending only on y, ..., y,,
such that
[ dx min |}, (x)|<c- Y | dx min |P;(x,y?)] . (8.5b)
Q tel YWeY for all iel iel

The number ¢ is independent of the integration domain Q.

Proof. For every i€l there exist constants c¢{) ; () such that
a(ji,)...j,,(x): Z Cﬁ-i,"‘.,-,,(y)'Pi(x,y) .
yeY

Using the inequality of Appendix B, (8.5b) follows, where

c= max ) .. O
Jiseens JnsyeY,iel

The following lemma is a direct consequence of Lemma 8.1.

Lemma 8.2. Let I be a finite set andr e Ng={0,1,2, ...}. Every polynomial P; of degree
smaller or equal to r in the components of ki, ..., k,, can be written as

Pk)=) Puk), iel, (8.6)
a=0
where Py, is a homogeneous polynomial of order o. Let yy, ..., 7, € R be r + 1 different

points and Y ={yq, ..., ,}. Then there exists ¢ >0, depending only on y,, ...y, (but
not on the polynomials P;), such that

P min A~ | P, (k)|
d*hey o dthe, S
J 1 E(k,q, 1)
22 min A~ 7| P;(gik)|
< Z J d*k, ... d%k,, <! SO 8.7

0,€Y for all iel
for arbitrary sequences (P, )icr-

Proof. Since rank, ¥ =m, the integral

ne min 27| Y, Q%Pia(k)’
d*ky ... d*k, <! 2=0
f ' E(k,q, )
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is convergent for every finite 1 and all g;eR, ie /. Since 7y, ..

T. Reisz

., y»€R are different

points and Y={y,,...,7,}, Lemma 8.1 implies that

min 4”7 Py, (K)

rE
f d*ky ... d*k, <t

E(k,q, 1)

AL

<c Z J‘ d*k, ...

0,€Y forall iel

min AP
iel
d*k,,

a=0

E(k,q, 1)

5 (gi>“Pfa(k)‘

e min A~ 7| P;(¢ik)l
=c d*ky ... d*k,, - 8.8
Z j ! E(k,q, 1) ®.8)
;€Y for all iel
for some constant ¢ depending on 7y, ...,7, only. O
Next we quote
Lemma 8.3 [1]. Let k,/eR* and n>0. Then
(k+1)7?+p? k* + 12
-t < S () .
Ry <c(l) and (k+l)2+/12—c() , (8.9)

where c(l)=1+||1][/u+ /12

4
Recall that we are using the Euclidean norm |/|| =\/Z [? for [eR* As a
i=1

corollary, we have

Lemma 8.4. If the momenta q are bounded, then there exists c(p) >0 such that

~E min A~ 7| P;(k)|
d*k; ... d*k,, <t
J ! E(k,q. 1)

_S_c(,u)J d*k, ... d*k,, *<L

A min A~ | P;(k)|
- E(kO,pm)
(8.10)

Excluding small neighborhoods of the poles of the propagators, i.e., regions
where some line momenta vanish, the masses may be set to zero without affecting

the large cutoff behavior:

Lemma 8.5. For 1>0

L. Ji({Pi}1g s D*Y) £J,({Pi}lq,0, D*7) . (8.11)
2. There exists a c(u,7)>0 such that
Ji({P:}1¢,0, D*%) <¢(u, ) J3({Pi}lg, 1, DT) . (8.12)

This can be seen from /2/(> + ?) <1 and (I? + p?)/1? £ 1+ (4/7*). We will now
show that the cutoff dependence of J; does not change if the poles of propagators
are excluded from the integration domain (Lemma 8.8). This lemma will be used in
Lemma 8.9 to get homogeneous denominators in J;. As a preliminary, we state
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Lemma 8.6. Let [ be a finite set, re Ng=1{0,1,2,...} and 1>0. Set

Lk, S j=1,....s
=\, )| <25 j=s+1,...,N

DIt ={(ky,....kp)eR™t< ik, )| £4; j=1,....N} . (8.14)

X;f”:{(kl,...,k,,,)eR“m } . (8.13)

Suppose {ly,...,1l;} contains a basis of ¥ with respect to k. Then there exist
a(C,7)>0 and co(C, u,r,7)>0 such that for all polynomials P; of degree r;, con-
strained by Y r;<r, we have

iel

min 477 P;(k)|

Jd‘*ki...dd'km L .
IT (G e, )+ )™

Xf.t N

min AT P(k)]
<¢o(C, 1,1, 7) fd“k o dthy —EE ; (8.15)
’ ' IT (B, q)+ 2y

D¥* &

where f.=A\+a(C,1).
Note that ¢, and @ are independent of external momenta g¢.
Proof. The set ¥ is given in (5.1). First of all assume
Cy;=0;;, ;=0 forevery i=1,....m . (8.16)
Then X%7 is the set of all (ky, ..., k,,) e R*™ satisfying “ki [j <tfori=1,...,mand

Y. Ciiki+Qi||St . i=m+1,..s,
o 8.17)
|| Y, Ciki+Qil|S4 ., i=s+1,... N,
i=1
and D¥ " is the set of k satisfying 1< |k;|| <7 for i=1,...,m and
=Y Cuk,-+Qf1 <I, i=m+1,...N. (8.18)
i=1

To prove Lemma 8.6 we use the following lemma proved in Appendix A.

Lemma A.1. Let I be afinite set, r € Ny and o , o, compact cubes in R*™, 6, containing
an open set. Then there exists a constant c(oy,0,, C, u,r)>0 such that

min |P;(k)|

Jd4k1...d4km fj’ 5
TGPk, q) 4+ ui)™
e

g1

min |2 (k)|
<c(6y,0,,C, 1, 7) fd“k L dbk,, —
1 [T (7 k. q) + )"

g2 N

(8.19)
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for arbitrary polynomials P; of degree r;, constrained by Y r;<r, and for all mo-
menta q. iel

To apply this lemma we have to find a> 0 and cubes g, 0, having the desired
properties and satisfying

X¢*co, and o,=D¥" (8.20)

where A=/ +da. At first, Lemma 8.6 is trivial if X5 " =0. Furthermore, if N=m, X"
and D" are independent of ¢, and D}’ " for 4>27 contains an open subset of R*™
which is independent of 1. Hence Lemma A.1 is applicable, and for =21, Lemma
8.6 follows.

Let N=m+1and X¥*+0@. We now proceed to construct appropriate cubes oy,
0, in several steps.

m

) X{"<co,, where ;=[] [—1,7]*.

i=1
il) There exists R(C,t)>0 such that HQing}L+R(C,r) for every i=m
+1....,N. For, setting C=max |C;;|, R=Cmz, and (k, ..., k,) e X7 ", we obtain
iJj

<A+R(C,t) ; i=m+1,...,N .
(8.21)

; Cijk;

Jj=1

lil=

-21 Cisk;+ 0
F=

Next, we define
A={Q=(Qm+1’~'~7QN)€R4(N_m)| }‘Ql”é;“
+R(C,7), i=m+1,....,N} . (8.22)

If 7 grows, Q is not bounded, hence a cube o, contained in D¥* for all values of Q
does not exist. Instead, we construct a(C, 1) >0 and a finite set of cubes, so that for
every Qe 4 one of them is contained in D", where 1=4+a.

ii1) To this end, we construct numbers by (C, 1), ..., by—n+1(C, 7) as follows. Set
bo(C,1)=0. If by, ...,b,_ are given for an integer r, 1<r<N—m+1, choose
b,(C,7)>0 such that the set of (k. ..., k,)eR*™, satisfying

< Hki

|, i=1,...,m,

(8.23)

br‘l(cama‘[)+2‘[§ CUkJ ébr(c,'[) 5 l=m+1,,N
=1

J

contains a compact cube Q, which itself contains an open set. Such numbers
by, ..., by—m+1 do always exist, Y C;jk;=0 being a hyperplane in R*".
j=1
iv) Consider the following subsets of 4:

a) Ay—m+1S4 such that | Q| <by_,+7 for all i=m+1,...,N.
b) For r,1<r<N—m, let A4,= 4 such that for every i=m+1,....N

0] <b—i+7 or Qi zb+1 . (8.24)

Obviously, 4 is the union of these sets. For every r let K,.(C, 1) be a number such
that |k;| £K,(C.7) for all (ky,...,k,)€Q,. Set a,(C.1)=max(K,(C,1), b,(C,1)
+R(C,1)) and Z=JA+a,. Then for Qe 4,, using (8.24), we easily get Q.= D¥".
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v) Let @ be the finite set of cubes constructed in iv), and @(C,1)=max q,.

We have just shown that for every Q € 4 there exists a cube o € @ which is contained
in D¥°. By Lemma A.1, for every o there is a constant ¢(ay, g, C,r, t) > 0 such that

min 277 P; (k)]
jd“kl...d“km el S
[T (k. q)+p5)"

N

4,1

X;
min AP P;(k)|
< | d*k, ... d*,, —<* (by 1))
f ' IT (3, q) +12)"
y

a1

min A~ 2| P;(k)|

<c(oy,0,C, 1, d*k, ... d*k,, —=1 by Lemma A.1
=l “”j ‘ 0GwEger )
N

a

min 47| P,(k)|

<co(Co 1, T d*k, ... d*k, —< by iv)) , 8.25
Sco(Cou,r, 1) J 1 T CE (by iv)) (8.25)
L

Dy’
where ¢, (C, i, r, T) =max c(o,, 0, C, u,r) and 2= A+a. This proves Lemma 8.6, if

Q
(8.16) holds. ’
In the general case, we make a non-singular transformation

ki=l,(k q)= Z Ci,ki+0:,(q)
=1

J

(8.26)
km=1,,(e,q)= ) C, iki+0Q:,(q) -
ji=1
This is always possible because {/;, ..., [} contains a basis {/;,, ..., [, } of Z (with

respect to k). Under such a transformation, the form of (8.15) does not change.
Every [;e % has the form

li(k/aq)zz C—ljk;+Q—l(q) s lzlasN >
Jj=1
and Csatisfies (5.1b) and (8.16). This reduces the general case to the above situation,
and the lemma is proved. O

We now generalize Lemma 8.6 to arbitrary “sectors” X% . For any ¥ = .¢, X5,
denotes the set of k e R*™ satisfying

IFk,q)=7* for Le¥ ,
k)<t for Le P \S .

(8.27)

Lemma 8.7. Let I be a finite set, i'eN0:{0,1,2, ...} and ©>0. Then there exist
K(t)>0 and c¢(u.r,7)>0, so that for arbitrary polynomials P; of degree r; in the
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components of ki, ..., k,, constrained by Y r;<r, in every sector X% and for all
A> K (1), the bound iel
Ji({Pi}lg, 1 X5) < c(u,r, ) Jr({ Pi}1 g, i, D+7) (8.28)

holds, where J.= i+ K (7).

The set D% *is defined in (8.2). The constants K and ¢ are independent of external
momenta ¢. In general we suppress the dependence on the incidence matrix C. On
the contrary, mass dependence will be written explicitly, since non-vanishing masses
are important to avoid IR-singularities.

Proof. Let ¥ < & be an arbitrary subset and X the corresponding sector. If & = %,
the statement is trivial. Hence let & + &. By an appropriate renumbering, X7 is the
set of ke R*™ satisfying

Fk,g)=z7* for j=1,..,a,
IFlk,g)<7* for j=oa+1,....,N,

(8.29)

where o€ Ny. Let us write /;(k, ¢) = K;(k) + Q;(q) for every j=1, ..., N. Renumber-
ing again, one can find b=a+1 and ¢, 7, 1Za<y=<a, so that the following
conditions hold.

1. K={K,sy,.... Ky} is a basis of {K,.,,,....Ky}.

2. Tt can be completed by Kz{Kl, ..., K,} to a basis of {Kl, o Kyl

3. Forevery f=1,...,7,

Kﬂ:Kﬂ(K): Z CﬂiKi Cﬂ,-eR 5
i=1
and y is maximal.
Then, for f=y+1,..., N,

i=at+l

Ky=Ky(K, K)= i dﬂ,.Kl.+i 3K 5 (dpasrys o dpp)+0 . dyi, frieR .
Define -
Zu'={K=(Ky,....,K)eR*|P<(K;(K)+ Q;) 4> ;  j=1....y} .
and for any K let X3z be the set of all K=(K, ;. ....K;) e R*®~? such that
(K{(K)+Q)* <7 j=o+1,...,N ,
PS(K(R K +Q)P <% 5 j=y+1,.0 .
Using K, K as new integration variables in Ji({Pi}lg, n. X%). we get
- min 27 Pk (K )
Jx({Pina wXe)=dy J dK E1(k([?m J dK Ez(k(lz,l?), o)
z’ ok (8.30)

where
Ey (k(R). q. ) =TT (B} Kk (K).q) + 1) ; N=NoleLli=1.....7}
A1

Ex(k(K, K), g, 1) =TT (B (k(K,K).q)+ 13" 5 Ny=AN{lje L]j=7+1,....N} .

A2
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d, is the Jacobian of (k,, ..., k,,) with respect to (K, K). We can now apply Lemma
8.6 to the inner integral in (8.30). For, the set of momenta

Li(k(R,K),q)=K{(K,K)+Q;(q) , j=a+1,....N (8.31)
contains a basis of {ZYH ..., Iy} with respect to K. Hence there exist Ky (t) >0 and
cy(p,r,7)>0, so that

J min A~ P,(k(K, K))| min 4P| P;(k(K, K))|

dR = Sco(u,r,7) Jdl? e
Ez(k(K,K),q,M) - Ez(k(K,K),%/i)

¥ )
Xok Dyx

(8.32)

for all polynomials P; of degree r;, ) r;<r, where J=J+Ky(1) and
iel

Dyi={K=(K,sy.....K)) e R*® 9|2
SKRK)+Q)P<7? ; j=y+1,...,N} .

Consequently
_min 2P P,k(K, R)|
J/({Pt}lqa.u's X;”)§£f/’(/~"a ",T)dy f dK J\ dK el

’

E(k(K.K).q. 1)

< T
Zy Dgk

>~

wr min 47| P;(k))

=co (1,1 Ak d¥h, (8.33)
Ar | dh Eh.g.10

Do
Setting K(t)=max K, (7) and using
S CE¥
;fplé(;f)‘px 2P
for 4> K(t) and 1=+ K(t), one can find ¢(u,r,7)>0, so that
" min (1) 7|P;(k)|
J}({Pl}]qa Hs X;’)éc(ﬂa r, T) J‘ d4k1 d4km el

E(k,q, 1)
Do

=c(u,r, D Jx({Pi}lg, 0, D*7) . O (8.34)
As a corollary, we get

Lemma 8.8. Let I be a finite set, re Ng={0,1,2, ...} and 1>0. Then

1~ JA({Pt}lqa .uaDq,t)é‘]l({Pi}‘q’ :u) . (835)

2. There exist K(1)>0 and c(u,r,t)>0, so that for all .>K(t) and all
polynomials P;, i€l, of a degree r; in the components of k., ..., k,,, constrained by
Y ri<r, we have

iel

L Piflg, w=c(ur, 1) Jr({Piflg, 1, DT7) (8.36)

where 1= 7.4+ K(1).
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Proof. The first statement is trivial. To prove 2, wirte R*"=uUg X5 If £,
X5 X5 is a set of measure zero, hence

Using Lemma 8.7, there exist K(t) >0 and ¢y (u, r, 7)>0, so that for 1> K(z) and
every ¥ < ¥,

JA({Pl}l('L U, X})§CO(H’ r, T)JZ({Pz}l% .u7 Dq’r) 5

where A=A+ K(t). The right-hand side is independent of . Summation over .
then proves the assertion. O

Using Lemma 8.8, we state the important

Lemma 8.9. Let I be a finite set, re Ng=1{0,1,2, ...} and t>0. Then
1. There exists ¢;(pu, ©) >0 such that

Ji({Pi}lg=0,u=0,D") < (1, 1) J;({Pi}1g =0, p) . (8.37)

2. One can find K(t)>0and c, (u, r, ) >0, so that for all polynomials P; of degree
r;, constrained by Z r; <r, and for all .> K(t), we have

iel
J({PYlg=0, < e, (ur, 1) I x({Pi}lg=0,u=0,D°7) | (8.38)

where 7=+ K(z).
3. Let q be bounded. Then there exist R>0 and c5(u) >0, so that for all A> R

Ji({Plg S cs (W Iz({Pitlg=0.p) | (8.39)
where X=J.+R.

Note D%*=D?%7,_,, and D" is defined in (8.2). If all masses are positive,
external momenta do not have any influence on the cutoff dependence of J,.

Proof. 1.
Jﬂ.({Pin:O’“=O7D0Yt)§cl(ﬂ'7 T)Jl({Pl}lqzoa :u"DO’t) (by Lemma 85)
scp, T)Jl({Pi}|q=07 0] (by Lemma 8.8) .

2. Using Lemma 8.8, there exist K(t)>0 and ¢,(u,r,7)>0, so that for all
A>K(1),

J)({Pl}|q=0, u)éCZ(I'L’ ’"J)JZ({Pi}lq:O, H, DO,!’)
éCZ(u’ r, T)J/T({Pl}lq=09 ﬂzoaDO,t) 5

where 2= A+ K(7), and we have used Lemma 8.5 again.
3. For g in a bounded region we get by Lemma 8.4

L min A 7| P;(k)|
voN . 4 dp del
L({Pilg, w=c'(w f ke d o =0y
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& is given in (5.1). Choose R= max [Q;(g)| independent of g and T=A+R.

i=1,..., N
Then for every j=1,..., N and all k£ in the integration domain we have

|5k, 0) <5k + [ Qua)| =T
Furthermore, for 4> R the estimate

min 17| P;(k)| <d-min (1) P|P;(k)|
iel iel
holds, where d is a constant. Hence, setting ¥ ={/,(k,0)[i=1,...,N} and
c3(wy=c'(pd, we get
4 min (3) 7| Py(k)
) < . 4 ) 4 iel
JA({P;}W#):%(N) j d*ky ... d%, Ek,0, 1)

=c(WJ;({Pijlg=0,1) . O
Finally, we state the following elementary

Lemma 8.10. Let P be a polynomial in variables (u)=(uy, ..., u,), (©)=(vy,..., )
and g, and let W(v, q)=(W1(v,9), ..., W.(v,9)), R(v, ) =(R (v, q), ..., Ry (v, q)) be
linear functions, and 9> 0. Then

degr,, P(ou+ W(v, q), R(v, q), 9) S degr,, P(u,0,9) . (8.40)

Proof. Write

Pou+W(v,q), R, q).q)=) S,(R(v,9),q) T,(cu+W(v,q)) ,

T, being linearly independent homogeneous polynomials and S, in v not identically
vanishing polynomials. Then

degr,, Plou+ W(v, q), R(v, q), q) = max degr, T, (u) <degry, P(u,v,q) . O

9. Proof of the Auxiliary Power Counting Theorem
Consider now the integral

LZ min A 72| P;(k, q)|

I 0= | d*%, .. d*%, 9.1
(g, 1) j 1 Ek.a. ) .1

where the external momenta g are fixed or at least bounded, and E(k, ¢, p) is given
in (5.3). We prove the auxiliary power counting theorem by induction on m. For
m=0 nothing has to be shown. Given some natural number m,, we assume the
theorem is valid for m < m, and proceed to show that it then also holds for m =my.
Let r= r;, where r; is the degree of P; in k.

iel
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The proofidea is as follows (cf. [1]). The integral (9.1) will be divided into a sum
of integrals over appropriate subsections. These integrals will be splitted into a
four-dimensional “outer” and a 4(m,— 1)-dimensional “inner” integration, and
the denominator will be made homogeneous by use of Lemma 8.9. The idea is to
apply the hypothesis of induction to the inner integrals in such a way that the
remaining integrations show the desired cutoff dependence. To this end, the
numerator is decomposed into homogeneous components. This allows an appro-
priate scaling of inner momenta by the outer one (here homogeneity of the
denominator is important). After scaling, the inner integrals can be brought to a
form similar to the original one. These results are summarized in Lemma 9.1.
Lemma 9.2 states that the hypothesis of induction can be applied to these integrals,
and combining both lemmas, a simple calculation leads to the desired cutoff
dependence of (9.1), i.e., the auxiliary power counting theorem holds for m=my.

In the following we identify m with a given natural number m,. We again use the
shorthand notation K;(k)=1;(k,0). At first, for every { =1,..., N we define a non-
singular linear transformation

j=1

such that
1=K (k) . (9.2b)

Then k()= A; 't. Without loss of generality we assume det(4.) = 1. Furthermore,
we introduce the following notations.

i) Let #° be the set of all He 3 which are parametrized by a basis of ¥ . Set
A= max 0(H). Then we define wq, by [cf. (5.3)]

Hex#0
wo=4m+4-23 n;=max o(H) . (9.3)
N Hes#0
i) Letée {'1, ..., N}.Forevery sequence H,, ..., H; of Zimmermann subspaces

which is ordered with respect to a basis of & containing /. and satisfying

a) H,_; has [.=const , 9.4)

b) H; has all line momenta of a basis variable

5

there exists an i€ [, so that (5.8) holds. The set of all these i€/ is denoted by I(&).
iii) For given ¢ define .= {[;(4:"'1,0)|,—olje{l,.... N\{&}}.

Lemma 9.1. There exist K> 0 and R >0 such that the following statement holds. For
all b> R one can find c(u, r,b) >0, so that

N
(g, wW=<c(u,r,b) Z Z E d4f1”11““)0_4'1,1'@(11»4) (9.52)

E=1 yeY(&) W)

° This means that all momenta of a basis are variable on H
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for all J.>K, where W(2)={t, eR*1<|t,| <2+K}, Y(1),....,Y(N) are finite
sets, and
s min (2)7"1Py(dg " 1.9)
Loty Q)= d*t,...d*t, = ) 9.5b
= | ECA 100,00, o O3

Here Z’zb(/ﬁ—kd)/‘[\l] H +e, and

P (A, q)=Pi(A; ' [Fy(D]. q) . 9.6)
where

[Fiy(t)] = (Ciw Qiyt2’ SRR Qiytm) .
d,e and c¢;y, 0;,>0 are appropriate constants.

As will be seen below, the hypothesis of induction can be applied to (9.5b) if b is
large enough. Remember that ¢ is fixed or at least bounded.

Proof. 1. Applying Lemma 8.9.3 and Lemma 8.9.2 to (9.1), one can find K> 0 and
¢ (u,r)>0 such that for 1> K,

7 min (1) 7|Py(k, g)|
7, < - ey dhe, L -
—f/\(qe ,U):C1(,U,I) J‘ d kl . d km E(k, 0, O) 5 (9 7)
DO.[

where Z=A+K, Z={K(k)|i=1,....N} and D' is defined in (8.2). The de-
nominator in (9.7) is homogeneous, and the poles are excluded from the integration
range. For every ¢=1,..., N we define a sector X; = R*" in the integration domain
by

K} (k)= K2(k)=1 forall i=1,...,N . (9.8)
N
Using D*'= (] X., we get
é=1
N
]l(qnu)§cl(:usr) Z %;(anE) s (993)
é=1
where o
B min (7) 7| Py(k, q)|
%;(q,xé)zf d*ky ... d*k,, < EG0.0) . (9.9b)
Xe

In the following let £ € {1, ..., N} be arbitrary. We apply the transformation (9.2) to
H5(q, X:). Then

min (1) 7| P;y(4; 1, q)]

Hi(q, X:)= Jd‘*ty J d*t, ... d*t, iel E(4777.0.0) ,
Uz

(9.10)

) V(1,8

where
U(l)= {11 eR¥1= Hll H §/_} ,

V2, E)={(ty, ..., 1) ER* V22K (A )= forall ie{l,...,N}\{&}) .
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2. For every iel the polynomial P;1s decomposed according to
Plds't.g)= ) Tu(d 'tq) . el ©.11)
a=0

where 7}, are homogeneous polynomials in the components of z,, ..., t,, of degree a.
Further,

Tu(A: 't q)= Tiap(As ' 1,9) (9.12)
By, Ba
4
where Y f;<r;—o and T}, are homogeneous in the components of 7, i.e.,
j=1
ng(AEII, Q=) .. (1 g“Siaﬁ(tZﬁ v tms q) (9.13)
Using the notation of Appendix B and writing (aff) = (o, f;)ier, We get
A5(q, Xg)é Z f;(aﬁ)(qa Xc) 5 (9.14)

2 (B (B, for alliel

min (2) P T, (A 1, q)

1€
Hiap(q. Xe)= Jd‘tlx‘ f d*t,...d*,

Uk V(4,8

E(A;'1,0,0)

(9.15)
Substituting

(tas st = (13, 10) |11 (9.16)

in the inner integral and writing ¢/ =¢,/||¢, | and Z=b2/|t,
chosen below), we get

Hiam (g, X)=c'(b) j d411“11i1w0~4'f,%r(];m(ll,q,Xaj) ; (9.17a)
Uz

|, where =1 (to be

where ¢'(b) is some power of b, o, is defined in (9.3), and

min (1) 7| Tiayp, (4511, )

int = 4pr gayr E1Q) S 9.17b

Fiap (1154, Xe) J d'ty...d1y, E(4:'1,0,0) ( )
P(Z,&)

VEO= {3 ) eR* VD ZKF (A )z 1 forall el N)\{E)) .

(9.18)

Here we have used that, by definition of 7(£) and 4, for every i € I(£) the inequalities
4
w+ Y (B);<riand r;—p;<4 hold, i.e., for ||| =1 and all i€ (&),
j=1

(oc, + ) (/3,),) -4

AN 1Y = <) P-c'b) . (9.19)
From Lemma 8.5 and (9.13), we get
7.7 min (0) " P[Sup, (G- s b )]
Fon (1.4 X) S 2 () J G S :

(9.20)
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where Z,={K;(A; 't")|je{l,....,N}\{¢}}. ¢ is bounded. Using Lemma 8.9.3, there
exist R>0 and c;(u) >0, so that for 5> R(=4>R)

".',Y’ : 17\~ pu ’
s min ()" 7Sy, (825 5 m> 9))

< d*ty...d*, =19
/}-(“ﬂ)([17CI’ Xf)—cf}(tu) J 2 E(Aglt/, 0’ #)l,;:o >

(9.21)

where A'=b2/||t; |+ R and £/ ={K;(A: 1) =olje{l..... N\{E}}.

3. So far we have re-introduced masses in the denominators, and the whole ¢,-
dependence of the inner integral is contained in A’. The last step in proving Lemma
9.1 is to re-introduce the polynomials P;. Let F=max r; and choose 7+ 1 different

iel

points yg, ..., yr€ R and set
X={(z1,....29)lzi€ {0, ...,y7 forall i=1,...,4} .

According to Lemma 8.1, there exists ¢, (u) >0 such that

int
iap(t: 4, X)) Sca(p) Z
yieX for all iel

MLk . 1\~ pi -1,
o min (A) 77| T, (A 't @iy =y,
d412/ a4t iel(%)
m

-1, 9.22
ECA; 7,0, )l o ©-22)

Similar, let yy,...,77>0 be 7+1 different points and Z={y,....,y7}. Using
Lemma 8.2, one can find ¢5(p) >0 such that

int
Fap(t, ¢, Xo) S es(p) Z
yieX, 0,€Z for all iel

ne _mli(lél) (A) PP T, 9)l
d*ty...d*t), = e ,
4[ 2 E(A4:11,0, Wl =0

where
(Tred=(i0itss . 0ity) (9.23)
Collecting indices and using the notation (9.6), we get Lemma 9.1. O

We now show that the hypothesis of induction can be applied to the integrals
(9.5b).

Lemma 9.2. There exist Ky(p, q) >0 and co (1, g) > 0, so that for b> Ky(u, q) for all &
and all ye Y(&) we have
1 if ©(&)<0
Loe(ti, ) S co(p, ) (A) " Hog™ P A" if (&) <0 and p; 21 for all ie I(£)

() og" 13 if 3820 020

where (&)= max w(H). A’ is defined in Lemma 9.1. #.c A is the set of
HeX¢
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Zimmermann subspaces, defined by bases of ¥ containing I, withrespecttoky, ..., k,,
and having [.=const. If q is bounded and {6 (H)|H € # :} is independent of q, K, and ¢,
can be chosen to be independent of q.

Proof. Let £e{1,..., N be arbitrary and

Waosery Wiy (9.25a)
ba an arbitrary basis of % with respect to (t,, ..., t,) of the form
i =1, .. =l
th =l da=1, (9.25b)
G=l e =l

where /j=1;(4:"1,0)|,,—o. The variables (i) and constants (7) define a Zimmer-
mann subspace H of (1, ... m) The set of these A, for arbitrary basis (9.25), is
denoted by %5 With every He %é we associate He # as follows. Let a basis
(9.25b) be given. Take the basis

Zay ey Iy e (9.26)
of ¥ with respect to (ky,...,k,,) of the form
=1 (k,q) , w=1,...,d,
ve=0 (k,q) , w=1,...,m—1-d, (9.27)
Um—a zlé(kv q) .
and let k=A; ' T, where T=(x,15,...,t,). Then
u,=t, +U,(x,q) , w=1,....d,
V=0, +V,(x,q) , w=1,....m—1-d,
Dm—*d:x+Q§(q) s
where U,,, V,,, Q; are linear functions. Then the He # associated with H e #; is
defined by variables (1) =(uy, ..., uy) and constants (v) =(vy, ..., U, —q4). We define
S(H)=0(H). The set of these He # is identical to A in the lemma.
By this construction, to every sequence H, , ... , H, of Zimmermann subspaces in
H &, which is ordered with respect to a basis (9. 25) corresponds an ordered sequence
H,,...,H; of Zimmermann subspaces in #,, with respect to the corresponding
basis (9.26). Adding H, ., , € #, parametrized by the whole basis (9.26), we again get
an ordered sequence. Let (i) be the parameters of H ; and (V) the complement
variables, i.e., (i, ) = (w,, ..., w,), and correspondingly (#’) the parameters of H;
W, v))=(z5, ..., 2, [¢), for every j=1,...,s. By construction of /(£), using Lemma
8.10 [and inequality (C.4) of Appendix C], there exists an i€ I(¢) such that
degry s Py (A2 ', q) —piSdegry s Pi(A:  Fy (D), 9) —pi
< degry i Pi(k (W, 07, 9), q) —p; (9.28)
SO(H))
for all j=1,...,s. This means the set {5(1‘?)]]?6 }?g} is a UV-set of the numerator
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of (9.5b). For every He J{Q, parametrized by (9.25b), and corresponding H e #,
w(H)=4d+6(H)—degryE(4; 1,0, W, =0
=4d+0(H)—degr, E(k(u,v,q),9)=w(H) . (9.29)

Thus, all the conditions are met for the auxiliary power counting to apply to the
inner integrals I;.,(¢;,9). According to the hypothesis of induction, we get
Lemma 9.2. 0O

We now proceed to complete the proof of the main Theorem 2. All that re-
mains to do is to insert the cutoff estimates of Lemma 9.2 into the inequality of
Lemma 9.1. Then, re-expressing A’ by 4, the remaining integration can be done
without problems. Choose a fixed b according to Lemma 9.1 and Lemma 9.2. Then
there exist constants ¢(u, ¢) >0 and K(u, ¢)>0 such that for all 1> K(y, q),

I(gWsclpq) Y
E=1

<

1 if wy<0 and @&(&)<0
27" Hog™a if wy<0 and @(&)<0 and p;=1 forall iel

Jmax©@0.6@  gom s if =0 or @(&)=0

=c(p,q)
1 if max w(H)<0
Hesx
< A7 og" A if max w(H)<0 and p;=1 forall iel
He#
jraxuex @l ogm ) if max w(H)20 , (9.30)
HeA

where we have used

max (wy, ®(¢)) £ max (max co(H/),a)(H)>§max w(H) .

He#y \H'e#

K and ¢ can be chosen to be independent of g if ¢ is bounded and if {§(H)|He # },
and hence {w(H )|H € # } are independent of ¢. This completely proves the auxiliary
power counting theorem.

Conclusion

We have proved a convergence theorem for Feynman integrals with a lattice cutoff.
Under very general conditions, it states existence of the continuum limit as well as its
coincidence with the formal limit, i.e., the Feynman integral, which results from
taking the continuum limit in the integrand. If convergence holds, only a
neighborhood of zero momentum in the Brillouin zone contributes to the limit.
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An important convergence condition is the naturalness of line momenta. This
means that their homogeneous parts in the integration momenta k,

Cik

s

ijfvj o

I

i=1

satisfy C;; € Z for the given representation (3.1) and for every choice of independent

line momenta as integration variables k,, ..., k,,. For alattice Feynman integral it is
always possible to choose the loop momenta in such a way that this condition is
satisfied, e.g. if the loop momenta k,...,k, coincide with momenta of lines.

However, in the case of renormalizations one must be very careful in order to ensure
that the subtracted integrand still satisfies this condition. Note that in the power
counting theorem of Hahn and Zimmermann [1] the condition of naturalness is
unnecessary. However, this theorem can only be applied to integrals having a
rational integrand. On the lattice, in connection with the periodicity of the
integrand, naturalness makes sure that only one Brillouin zone contributes in the
continuum limit.

Furthermore, the theorem assumes that the propagators have only one pole in
the Brillouin zone, located at vanishing line momenta. This means that the
denominators of the propagators

1

la
77((12)+M2

satisfy #(la=+0)> 0 in the Brillouin zone. If this condition would be violated, the
assumed periodicity of the integrand would not be sufficient for convergence. In
particular, the theorem does not apply to lattice fermions with propagators having
poles on the boundary of the Brillouin zone. In general, the pole condition implies
that only a small neighborhood of zero momentum contributes as the lattice spacing
tends to zero, and that the continuum limit of a lattice Feynman integral is equal to
the formal limit.

For simplicity, we have always assumed the numerator and denominator of the
integrand to be C*. Actually, the denominator needs to be differentiable only in a
small neighbourhood of vanishing line momenta, and globally continuous. In the
case of renormalization, the whole integrand has to be differentiable to a degree
depending on the divergence degrees.

The main point of the convergence theorem is that it is a power counting
theorem. This means that convergence of Feynman integrals in the continuum limit
is described by ultraviolet divergence degrees with respect to special subspaces of the
integration momenta, called Zimmermann subspaces. In order to get convergence
in the continuum himit, the divergence degrees with respect to all these subspaces
should be smaller than zero. Due to the structure of diagrams with a lattice cutoft,
we have a new kind of degrees to be dinstinguished from UV-degrees of rational
functions [1]. A lattice degree describes the behavior of a Feynman integrand for
large internal momenta of a Zimmermann subspace and small lattice spacing a
simultaneously. To discuss naively large momenta for fixed @ would be meaningless
because of the periodicity of the integrand.
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To every Zimmermann subspace there corresponds a (sub-)diagram. Hence,
loosely speaking, negative UV-divergence degrees mean that all subdiagrams are
convergent. Usually, a Feynman diagram must be renormalized. In terms of a
power counting theorem this means that counterterms have to be arranged in such a
way that divergence degrees of all subspaces are negative. In a following paper [4],
this correspondence will be used to construct a renormalization scheme for
Feynman integrals on the lattice, which is analogous to the BPHZ finite part
prescription for continuum Feynman integrals. It will be seen that counterterms
instead of being polynomials are periodic functions. From the fact that negative
lattice divergence degrees insure not only the existence of the continuum limit but
also its coincidence with the formal limit, it will follow that renormalized
perturbation theory is universal, which means that the continuum limit does not
depend on a specific choice of the lattice action.

The power counting theorem applies to a wide class of lattice field theories. In
this investigation we have been concerned solely with the problem of ultraviolet
divergencies. We have assumed all fields to be massive in order to avoid infrared
singularities. In the given form the power counting theorem does not apply to lattice
field theories with massless propagators. Whereas the lattice provides a UV-cutoff,
IR-singularities are expected to be the same as in the continuum. This suggests that
one should supplement the UV-power counting conditions by IR-power counting
conditions, which describe the behavior of a Feynman integrand for small internal
momenta and state [R-convergence at non-exceptional external momenta. By this
modification, the power counting theorem should apply also to massless field
theories on the lattice. In a forthcoming paper we will show that this is indeed the
case, and that the ideas presented here will go through.

Appendix A. Proof of Lemma A.1

We first show that the propagators of (8.19) are of no importance for the validity of
Lemma A.1. Recall that the line momenta /;e A" are of the form

li(kJ]):Z Cijk;+Qi(q) .

Given compact cubes g, , 0, and g, containing an open set, let 0 = gy U g, and choose
K(C, 5)>0 such that for all /,e .4,

i Cijk;||<K(C,0) forall keo , (A1)
and define o~
1
ga(Q)=l‘—J(K(C’ 6)+HQiH)2+Hi2 . (A.2)

Using the triangle inequality and Lemma 8.3 one can find a constant d(C, g, u) >0,
so that for all kea,

1
AQ)SE——>——=d(C,0, )y, : A3
9,(Q) G0+ 1) (C.o,1)9,(Q) (A.3)
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Now Lemma A.1 is a direct consequence of

Lemma A.2. Let we N, re Ny and o4, 6, compact cubes in R", ¢, containing an open
set. Then there is a constant c¢(ay,0,5,r)>0, so that
[ dx,...dx, min [Pi(x)|Sc(ay,05,7) | dx;...dx, min [Pi(x)| (A4)

o1 i=1,..., w 2 i=1,..., w

for arbitrary polynomials P; of degree r; in x,,...,x,, with Y r;<r.
i=1
Proof. By complete induction on the number » of integrations.
A. n=1.Byinductiononr. The case r =0is trivial. Assume for some r € N, there
exists a constant ¢(ay, g,,7)>0, so that

Jdx mm |P (®)|=Zc(oy,05,7) | dx mm |P )] (A.5)

w

for all polynomials P; of a degree r;, ) r;<r. Now let P; of degree r; and
i=1

Y. r;=r+1. Suppose every P; has the form
i=1
Pi(x)=a; [] (x_Zij) >
j=1
where a;,2;;€ C; a;40. Choose R(0) >0, so large, that for all zeC, |z| > R(0),

1 3
=< 1~— <~ forall xeo . (A.6)
2= 2
Let z=(zy1,..., 2w )€C™, a=(ay,...,a,)eC” and for (r,,...,r,)eNY,
Z rl‘=r+1,
=t jdx min |Pi(x)
z,a)= Tl
Jrreor(2:8)= fdx min |P;(x)]
a2 i=1,.... w
All f,, .., arecontinuous and non-negative. If |z;;| < R(¢) for all i, /, then there exists

a constant B(gy,d,)>0, so that

Jriori(2.@) = B(0y,02) .

On the other hand, if |z; ;| > R(0) for some j,, iy, set

iojo
Pi(X)=a;,zi5j, TT (x—zi))
Jj(*jo)

such that

FIPL(OIS P (0| S5 1PL(x)| forall xeo
by (A.6), and set

P/=P;, forall i%i, .

Then, by induction hypothesis
f;‘p..rw(za a)§3c(0-1>0-29r) .
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Choosing c(oy,0,,r+1)=max(B(g,,0,), 3c(oy,0,,r)) the assertion follows
for n=1.
B. Let n> 1. Assume the lemma holds gor all natural numbers v <n. Without

loss of generality set oy = [a, b]" and ¢, =[a, b]". By induction hypothesis, there exist
¢, (abab)>0 and ¢, _(abab) >0, so that for all polynomials P; of degree smaller or

w
equal to r; in xy,...,x,, where ) r;<r, using Fubini’s theorem
i=1

b b b

.....

b b b
<y [ dxy j_dxz...f_a’x,, omin |Py(xy, .., X))
a a a
b b
<y [dxy [ dx, min [P(xy, ., x|
T 7 i=l..w

,,,,,

This proves Lemma A.2. O

Appendix B. A Useful Inequality
We state a simple but useful inequality.

Lemma B.1. Let ne N be a natural number, 1= {1, ..., n}, and L; a finite set for every
iel Foralliel and all le L;, let x,=0. Then

min Y < ) ... ) minx, .
iel jeL, lieLy lnel, i€l

This inequality can be written in a more concise form. For /={i,,...,i,} and sets
L;,...,L;, define

L: ® Li:(Lip ~~-3Li,.) s

iel
i.e., every /e L is of the form
Z:(li)ielz(lil s lin) s

where

likeL' k:1,.‘.,n .

i >

Using this notation, Lemma B.1 can be written as follows.

Lemma B.2. Let I and L; for every i €1 be finite sets. Let x, 20 for all le L; and iel.
Then

min ) x<) min x; ,

iel JleL, leL iel

where L= ® L;, and for every I=([;);c1: Xy=x,.

iel



124 T. Reisz

Appendix C. UV-Degrees of Polynomials

Let P be a polynomial of u, v and ¢g. The UV-degree degr,, P (4, v, q) is defined as
follows. P can be written as

Pu,v,q)=), Q. ) M, () ,  Q.(v,9)%0 in v(gfixed), (C.1)

where M, are linearly independent homogeneous polynomials in u, and Q, are
polynomials. Then we define

@g?utvPEmax degrM, (C.2)

degr M, being the homogeneity degree of M,. Usually, all parameters which are

considered as variables are written in the argument of degr. In (C.2), ¢ is fixed. If all
momenta are variables we will sometimes use the shorthand notation

a?gup(ua U, Q) Eae?ulvqp(ua U, CI) . (C3)
In general,

degry, P(u,v, q) S degr, P(u,0,9) . (C4
A useful characterization is the following. @u,vP(u, v,q)=0 if and only if
POu,v,q)=A(u,v,q)-2°+0(°" Y, i-w , (C.5)
A(u,v,q)%=0 in u,v(q fixed!).

Appendix D. Naturalness of Line Momenta

We state an important property of a natural set of line momenta. This property is
needed when the integration domain of a Feynman integral on the lattice is divided
into various sections to determine the continuum limit behavior. It happens that line
momenta have values in neighborhoods of poles of propagators in higher BZ’s. The
following two lemmas show that, if the neighborhoods are chosen sufficiently small,
it is possible to shift the line momenta into the first BZ simultaneously by a
translation of the integration momenta by reciprocal lattice vectors. Under such a
transformation, the periodic numerator of a Feynman integrand does not change.
We shall use the notation of Definition 3.1.

Lemma D.1. Givenaset & ={l;, ..., Iy} of four-momenta, there exist ¢ >0 and ay > 0,
so that for all a<ay the following statement holds :

Let J={1,...,N} and z={z;e Z*|ie J} such that
M, (e,a)={(ky, ... k) e[ —nla,n/al*" |1k, q) —2n/a)z; | < (n/a)e
for all ieJ} (D-1)
is not empty. Then there exists a momentum configurationk € [ —n/a, n/al*™ such that

2
Ki(k):%zi for all ieJ . (D.2)
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If the statement holds for some ¢> 0, then so for ¢’, 0 <¢’<¢. The lemma states
that neighborhoods of the poles can always be chosen so small that their intersection
(D.1) with the integration domain is non-empty only if the “internal” momenta K;,
for some k, satisfy (D.2).

Proof- Let J{1,..., N} be an arbitrary subset and Z={ze Z*||z|| <1+2m|C]},
where |C|=max |Cj;| (cf. Definition 3.1).
i
1. Set ¢y= min (r ,Q;|) and ¢ =1/2. Then M, (¢,a)=0 if e<e;, a<ay,
i=1,..., n
and z,¢ Z for some ieJ. For, a simple calculation shows

27
(k. q) _7 Zi

> 0z ~@mici+1)>" ¢ .
a a

2. Let M, (¢,a)#0. If there exists no ke[ —n/a, n/a]*™ satisfying (D.2), then
there exist jeJ and 6> 0 such that

2
Kj(k)———a— z;

gg 5 forall ke[—nla,n/al*" .
This means

27
lj(st)—j zj

=550, >= e(J.2)
a a

ifa<a,(J,z)=n5/(2]Q;|) and & <&, =5/4, in contradiction to M,_(¢, @) + 0. Taking
the minimum of all &,&,(J,z) and of all a,(/, z), a;, respectively, the assertion
follows. O

The importance of Lemma D.1 rests on the following

Lemma D.2. Let the set £ ={l,,.... Iy} be natural and J={1,..., N} an arbitrary
subset. If ke R*™ exists, satisfying

2
Ki(k)z—nzi for some z;eZ* andall iel , (D.3)

a

then there exist reciprocal lattice vectors

2
Al,...,Ame{—nrlreZ“} , (D.4)
a
so that for A=(A4,...,4,)
2
1<i(A)=77T 2 forall ied . (D.5)

The translation alluded to in the introduction to this appendix thus consists in

kj—*kj“"Aj 5 jzl,...,m N
so that for all ieJ

2
li—*li-}-—n Zi .
a
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Proof. Let J={1,..., N} and ke R*", satisfying
2
K,.(k)=—a7iz,. . zeZ* forall ieJ .

Choose linearly independent K, , ..., K,

e SO that K. ..., K., d<m, is a basis of
{Kj|ieJ}. According to Definition 3.1

cas

kj=3) AuK., ., AyeZ,

for every j=1,...,m, and
d
Z aK, forall ieJ; DyeZ .

Define for j=1,...,m
d 2n
z: que Z4

27
a

and 4=(4,,...,4,,). Then, for every ieJ

d

d
i)=Y DK ()= Y DuK (=K ="" 2 D

=1 =1
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