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Abstract. In recent years't Hooft and Rivasseau proved the Borel summability
of planar asymptotically free massive theories in Euclidean space. The
corresponding Borel sums in Minkowski space are shown to exist as linear
functionals if the Euclidean counterparts are bounded polynomially in
momentum space and fulfill certain analyticity conditions. Both can be verified
in massive planar "wrong sign" φ\ using Rivasseau's approach. The func-
tionals alternatively are densely defined and unbounded on an U space or
bounded on (the whole of) a Banach space with a more restrictive norm.

I. Introduction

A few years ago 't Hooft [1,2] and Rivasseau [3] established the Borel
summability of planar asymptotically free theories without any massless particles
in four-dimensional Euclidean space. We shall try to translate those results to
Minkowski space.

Our work is based on the methods of Rivasseau which explicitly display the
relation between the renormalized perturbative series for a given one particle
irreducible (1PI) Green function and its Borel sum which is shown to be identical
to a sum over certain dressed Feynman amplitudes. He restricts to a U(N) [or
O(NJ] symmetric massive scalar matrix field theory with the sign of the scalar self-
coupling chosen such that the theory becomes asymptotically free. (The case where
the scalar fields are in the fundamental iV-vector representation is far simpler. The
limit N-*oo can even be obtained analytically, see e.g. [4].) In principle this
method should be applicable to more general examples as regarded by 't Hooft
[1,2], i.e. planar gauge theories where all particles become massive through the
Higgs mechanism and all couplings asymptotically free on imposing suitable
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boundary conditions for the renormalization group equations. But the technical
complications would be considerable.

Quite generally Green functions in Minkowski space are known to exist only
as linear functionals on certain test function spaces due to their singularities.
Mostly they are interpreted as tempered distributions. We are not able to prove the
existence of the Borel sums of planar φ\ Green functions as tempered distributions
because we don't have sufficient understanding of the singularity structure of all
possible planar diagrams, but we can show that these Borel sums exist as linear
functionals on a suitable test function space. With respect to the latter we can take
two attitudes: Either we choose (a dense subspace of) an LP-space (in the external
momentum variables) and get a densely defined unbounded functional, or we
choose a space of functions with a much more restrictive norm and get a bounded
functional on the whole of this space. Since one may take the same attitude with
respect to tempered distributions, the interpretation we shall give to the Borel
sums of Green functionals is not more restrictive but rather complementary to the
standard approach.

The general attitude towards the transition to Minkowski space in constructive
field theory is determined by the belief that for a reasonable physical model - if
constructed in the Euclidean - it should be possible to verify the Osterwalder
Schrader (OS) axioms [5] guaranteeing the existence of a Wightman theory in
Minkowski space. Several reasons may call for complementary procedures. There
may be reasonable physical models which do not fulfill all the axioms such as
planar "wrong sign" φ% which presumably has no true, but an infinitely long-lived
metastable ground state [6] and probably violates OS positivity. Also the OS
procedure might obscure the persistence of certain properties of Euclidean
quantities in Minkowski space, in the present case the asymptotic character of the
perturbation expansion which still seems to be the strongest argument for the
belief in quantum field theory quite generally.

The method to be presented is general enough to deduce the existence of
Minkowski space quantities in other cases under certain conditions on the
Euclidean counterparts. Euclidean quantities in momentum space should be
polynomially bounded, and the modifications of bare perturbation theory through
dressing factors should, roughly speaking, not introduce additional singularities in
those parts of the complex momentum plane which are sweeped out by Wick
rotations.

Section II of this paper presents a short review of Rivasseau's results and of
those ingredients of his procedure we shall need later on. In Sect. Ill we construct
the related Minkowski space functionals starting from regularized dressed
Minkowski amplitudes. The essential tool for this construction are sets of
functions in the Hubert space L2([0, oo)) with certain analyticity and invariance
properties in the upper right complex plane. Some of the information on those
functions is presented in the appendix. We end with a short summary and
discussion of the results.

II. Planar φj. Results in Euclidean Space

We present a short review of Rivasseau's results [3] in Euclidean space which in
turn largely depend on an earlier paper by de Calan and Rivasseau [7]. We
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consider a massive Hermitian N x iV-matrix field φ in four-dimensional space. The
Lagrangian j

2 2 *} (1)

is invariant under the transformation

φ-±\J~ιφV for any U(N) Matrix [/.

g > 0 corresponds to the asymptotically free side of the theory. The connected
Schwinger functions can be derived from $£ via the standard formal procedure.
They do not make sense without renormalization. In a massive theory we can
choose the BPHZ renormalization scheme and perform the necessary subtractions
at 0 external momenta. Then after rescaling the coupling (g-+g/N) the perturbative
expansion in g of any U(N) invariant Schwinger function is dominated in the limit
iV-> 00 by the planar diagrams [8]. The restriction to planar diagrams is crucial for
Borel summability: The number A of (topologically distinct) Feynman diagrams
with L loops contributing to a given Schwinger function is bounded in the planar
case by [1,9]

AZKECL (2)

(C is of order 10, KE grows with the number of external lines E) whereas it grows
factorially if one considers all diagrams at a given order [7]. Since diagrams with L
loops carry a factor gL, the perturbation expansion would even be absolutely
convergent for sufficiently small g were it not for the unlimited growth of certain
individual Feynman diagram contributions in high orders [10,11]. The kind of
singularity involved here was called renormalon by 4t Hooft because it is related to
the necessity of performing more and more renormalization operations on those
diagrams, and it was his early suspicion that renormalons can be eliminated
through asymptotic freedom in massive theories [11]. The concept was elaborated
on further by Parisi [12].

The connected 1PI Schwinger functions of planar φ\ with E external momenta
are given by the formal power expansion

Σ pq)sE(p;g)=4 Σ pq) Σ f<iv) (3)
q=l ] \q=l Jn=O

P = (PI,"-)PE) is a s e t of external 4-momenta and aξ is the sum over all
renormalized Feynman-amplitudes associated to (topologically distinct) 1PI
Feynman graphs with n internal vertices and E external legs. The Feynman
amplitude for a given graph G in momentum space, renormalized according to
Zimmermann's forest formula [13] as translated to α parametric space [14] is
given by

) = 1 ί Π d*iexPί-m* Σ αi\£ZG(p,α), (4)
0 O ί - l I i=\ )

ZG(p, α) = - ^ - exp { - VG(p, α)/E/G(α)}, (5)

)=Σ(Π«iV vG(p,a)=Σ(U^)(Σ PΛ2, (6)
S\iφS J T\iφT JXieEi J

M = ΣT^, 7>= Π (-tf) (7)
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U, V are the Symanzik polynomials of G (see e.g. [15]). S runs over the (one-)trees
of G, T over the "two-trees" (one-trees minus one line). Eι is one of the two sets of
external momenta into which G is divided by the two-tree (no matter which). The
renormalization operator $ contains a sum over all (closed divergent) forests $F of
renormalization parts of G. For any forest #" (a partially ordered set of divergent
subdiagrams F) a product of Taylor operations tF acting on Z in parametric space
is introduced which lead to an elimination of the divergences coming from the
subdiagrams in the final expression (4). The ultraviolet divergences in momentum
space are reflected by divergences in parametric space for certain α-parameters
going to 0. A more explicit form of (4) (as well as many more explanations) can be
found in [7], especially Lemma III.4 (err.).

Before stating Rivasseau's results we have to introduce his dressing factors. We
cannot give any details here, but should mention that they are a result of a partial
resummation of perturbation theory: at any vertex and also at certain "reduction
vertices" asymptotic freedom is taken into account by iteratively inserting the
1-loop-contribution to the four-point function. Rivasseau proves this modification
to be sufficient to eat up the renormalons on one side and not too drastic to prevent
the unmodified series from being asymptotic to the modified one on the other side.
We define

00 doc ι

ξ(x)=l— \exp{-m2σ.a+β)}(i+βy22dβ, x>0, (8)
x Cί o

od(x,g) = (l -hδg^x))"1 (od from "ordinary dressing"). (9)

For x-+0 ξ(x) = Ofllogxl) so that od(x, g) vanishes logarithmically. Note that od is
singular for g < 0 (i.e. no asymptotic freedom),

y doc 2 1

ζ(x, y g) = f --- j — ^ ί exp {- m2a{\ + β)} (1 + β) - 22dβ, 0 < x £ y.

(10)

Bounds on ζ,ξ are given by Rivasseau [3, Lemmata A.2 and A.4]. The dressing
factors are then of the form

Dζ(a,g)= Π od(α,,g) Π exp{-16ζ(5A,αA;g)}, α Λ ^ α Λ . (11)
j= 1 h=ί

n is the number of vertices of G; for a given forest #~ s is a certain subset of the
subgraphs of G in J^ with four external legs. This subset as well as the arguments of
od and ζ in (11) depend on the ordering of the α-parameters in (4), i.e. on the
respective Hepp sector Hσ

Hσ = {(a1 . . . α z ) | 0 ^ α σ ( 1 ) ^ ... ^α σ ( Z ) <oo}, σ a permutation of {1,...,/}.

We thus get the following expression for the dressed renormalized amplitude

'G.dr(P>S)=i •..? Π ^ e x p j - m 2 £ J r ^ > , g ) Π (-h)ZG(p9(ή, (12)
0 0 ΐ 1 ( ί 1 J & F

i ? Π j
0 0 ΐ = 1 (_ ί= 1 J

where ]Γ' as compared to £ in (7) contains restrictions depending on the Hepp

sectors. These restrictions are a remnant of the fact that the corresponding missing
counterterms have been resummed to create the dressing factors.
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Now we can state Rivasseau's results on planar ^-amplitudes in Euclidean
space.

Rl The sum over all dressed amplitudes of 1PI graphs with E external legs
Σgn{G)IGidr(p,g) is absolutely convergent for complex g with Reg>0, \g\<η, η
G

sufficiently small (s.s.). This sum, called SE(p, g), is analytic in that domain.

R2 (Borel summability). There exists a constant K such that for Reg > 0, \g\ < η(s.s.)
one has for any k e N,

\SE(p,g)- Σ gn{G)IG(pUkl(K\g\)k.
G/n{G)^k- 1

R3 For any graph G of order n, planar or not, the dressed amplitude is bounded
for Reg>0 5 \g\<η (s.s.) by

As remarked by Rivasseau it is possible - at the cost of a smaller η - to allow for
|argg |<π — <5, δ>0 instead of Reg>0. In this case η-+0 for <5->0. Thus only
negative g are strictly excluded.

III. Transition to Minkowski Space

The (dressed) amplitude associated with a given 1PI graph in Minkowski space
only makes sense as a linear functional, e.g. a tempered distribution, on a space of
test functions. To actually calculate such an expression one has to introduce a
regularization parameter ε (Feynman-ε) which implies a prescription on how to
treat the poles of the propagators. As emphasized by Zimmermann the standard
way of doing this is insufficient from the mathematical point of view because it still
leaves us with only conditionally convergent integrals (even if renormalized) in
Minkowski space [16]. We thus adopt his way of regularization which he has
shown to meet with all mathematical and physical requirements.

The regularized propagator is taken to be

; (13)
Po~ P

so that

1

Po — P2 — m2 + ί ε (P 2 + m ' + WΓ
(14)

Thus for finite ε any Feynman-amplitude can be estimated in terms of its Euclidean
counterpart and inverse powers of ε. Writing

p o - p 2 - m 2 + ί i ( p 2 + m 2 ) ]

5 (15)
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we can represent the dressed renormalization Feynman amplitude for a graph G in
parametric space. The expression corresponding to (12) is

ί G >,g) = ί - 1 Π ί/αie-iΣ-(1-")Σ^c(α»e,g) Π (-h)ZG(p,α,c). (16)
0 0 ί = l J^ FeJ^

In (16) - and all subsequent formulae - we have chosen m2 = 1, i.e. we measure all

momenta in units of m. [A factor (— i)L(l — zε)2 with L the number of loops of G has
been absorbed in I G > ε ] ,

The Minkowski space dressing factors D are derived from the Euclidean ones by
substituting for (8)-(10)

\ 2dβ
Oί 0

Λ(y 1

J - ( a + ί * ) ( 1 + W ( 1 - i < ! >2( l+/3Γ 2 d jS, (18)
o (x-\-ix o

ί (19)

« l (20)

It is easy to see from these expressions that by analytic continuation and for
Reg>0, \g\ s.s.

l im(όd f i (-ιx;g),exp{-£(- ix, -iy\g)})

(21)

(where the bound on |g| is far less restrictive than the one which was necessary in
Rl),..., R3) or even in [1,2]) and also that for those g the integrand of ζis free from
singularities because lim |arg<fix)| = 0. For any such g δdJλ g),

χ-+0

exp{ — fε(/bc, λy g)} are (in x,y uniformly) bounded analytic functions of λ in the
lower right half plane\{/ί = 0} approaching 0 here for |/l|->0.

Lorentz invariance of the amplitudes is reflected by the fact that VG{p, α) is a
function of the Minkowski space squares (£p ? ) 2 only (up to the ε-terms). The sum
is here over some subset of the external momenta. It is the time-like part of the
space of external momenta {pOi? •? POE- I} w e a r e especially interested in. Here we
introduce polar coordinates,

Poi=f ω 1 , . . . , p O £ _ 1 = r ω E _ 1 , E>2, (22)

where r = (p2

)1 + . . . + P O E - I ) a n ( ^ ωi depend on the angles only. We now want to
apply /G ε(r2,ω,p) to test functions depending on r. (Of course we can smear out
with respect to the other variables, too, but it is not necessary.) By Wick-rotation
r^ir, we then try to find our way back to the Euclidean results. The necessary
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restrictions on the test functions are shown still to allow for a set dense in
U([09ao)9dr).

We define the linear space of functions S by:

S = {φ\φ : [0, oo)-^(C, φ fulfills SI) S2)}, (23)
where

SI) φ has an analytic continuation to the upper right complex half plane

and is continuous (bounded) for r->0.

S2) rnφ(reιy)->0 for r-»oo and any n e N ; uniformly in ye 0,— .

Lemma 1. S is dense in L2([0, oo),dr).
_ l - t

Proof. Any function P(r)e 2 for any arbitrary polynomial P(r) fulfills SI) S2).
i

So S contains the Laguerre functions multiplied by the phase factor e2 , i.e. a com-
plete orthonormal system in L2([0, oo),dr).

Furthermore we define

(here |> indicates restriction to [0, oo).)
S is then obviously dense in L2((— oo, oo),dr).
For φeS and a contribution to the two-point function (E = 2)IGtε(pl,p2 g), we

now write

ί dp0IGte(p§,p2 g)φ(po) =ldrIGtε(r2,p2 g)φ(r), (24)
- oo 0

where φ{r) = (θ(r)φ(r)\> +θ( — r)φ( — r)|>)eS, thus unifying the cases £ > 2 and

For φeS the integral over IG 6(r2,ω,p;g)φ(r) is well-defined for ε > 0 as a
consequence of R3), the general estimate (14) and the definition of S. (At this stage
we could have been less restrictive with respect to the behaviour of φ(r), r-> oo). We
now use the definition of IG b (16) to get:

00

μr/G)ε(r2,ω,p;g)φ(r)
o

GO 00 00 I

= J drφ(ή J ... J f ] d α f e " ί Σ α i ( 1 ~ίε)γDξ(α,ε;g) (25)
0 0 0 Z = l J^

1

 Λ™/" . F G ( P ; O 0 . , T G ( r 2 , ω , α )
1 C7G(α) ? Γ l t/G(α)
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The interchange of the application of the tF operators and α-integration on one
side and r integration on the other one is justified because the renormalized
integrand is free from singularities for any subset of the α- going to zero
(renorrnalization), exponentially bounded for αt —>oo (mass term) and because as a
function of r it is bounded by a sum of polynomials with α-dependent coefficients
[7] so that the fall-off of φ(r) (S2)!) is sufficient to ensure convergence. We thus may
apply Fubini's theorem.

The mistrustful reader may again use the explicit (lengthy!) expression
obtained on performing [] tF [7, Lemma III.4 (err.)] to get fully convinced.

Since VG(r2, ω, α) and UG(cή are both nonnegative functions for al! values of r2

?

ω, a and VG(r2, ω, a) has the form VG(r2, ω, α) = V(ω, a)r2 [cf. (6)] we may rotate the
r integration path in (26) by + §. We have

00 , , Γ VG{r2,ω,<x)~] * Ί , Γ FΓ(r2,ω,α)"
J dr φ{r) exp i —777-7— = i ί dr φ{iή exp - i - i — — — (27)

With this expression we go back to (26) and interchange again r integration and ίF

operation plus α-integration. Now we can perform the Wick rotation in
α-parametric space by simultaneously rotating all α-parameters according to
α—• — la. This may be realized by scaling the α-parameters according to α->Λ,α and
rotating λ-* — iλ. The procedure is precisely described in [17] for a diagram
without renormalization parts and dressing factors. The latter do not cause any
harm for the relevant g [see (21) and the following remarks] and the former don't
either: the renormalization operators tF generate products of expressions

^ ~ ' —-— (where ~ indicates that the summation in (6) is restricted to
U GΨ) J

certain subsets of one- or two-trees) with good homogeneity properties; they pick
up a factor ( — ΐ) on transforming A->( — iλ) which together with the ( -/) in front
gives just the minus sign of the Euclidean exponent (5). The ( — ί) in front and the
Euclidean squares in V appear as a consequence of the previous Wick rotation in
momentum space (27). We arrive at the following result:

lim Jί/r/G>ε(r2,ω,p;g)φ(r) = i2 j dr IGfdr(r2,ω,p;g)φ(iή (28)
ε-^0 0 0

the factor ί2 is a remnant of the α-Wick rotation [17]J. At this stage we could

already apply the Euclidean results Rl) to R3) to estimate (28) in terms of the
bound on the sum over dressed Euclidean amplitudes and $dr\φ(ir)\. But before
doing so we want to provide some additional information on this integral and then
apply some basic results from functional analysis to enlarge the domain of the
functional

and to put it in a setting more easily accessible to further mathematical studies.
From a physical point of view the test function has to model the spread of the

external momenta over a certain range for some given process. So we are especially
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interested in the case where the momenta are concentrated around a possibly
rather sharp peak. Since S (23) is dense in L2 we can certainly approximate such a
situation within S. A simple choice of a class of test functions is

δr; C,aι,A,<5eR; α,<5>0. (29)

These functions have their maxima at r = A and are sharply peaked there for large
a. For δ <̂  α they are approximately real too, but for δ = 0 they do not belong to S
any more and J \φ(ir)\dr does not exist. We shall see in a moment, however, that it is
possible to extend (28) to functions e.g.

Φ«Ac(ή=f(r)φ?Ur), (30)

where f(r) fulfills SI) and

$\f(eiyr)\dr< co, O^y^f,

so that we can also approximate the peak e.g. by

which is real and still normalizable after Wick rotation r-^ir. For <xA^> 1 we have

(Kx is a modified Bessel function of the second kind)

so that the (L^-norm of φ grows exponentially in a A on Wick rotation. Similarly if
we approximate the peak by

the blow up factor is found to be proportional to 2n. Better estimates for J7G ε . . .
cannot be expected as long as we only make use of the general analyticity
properties of Feynman amplitudes.

We now want to clarify the structure of (28) from the point of view of functional
analysis. To do so we introduce the linear spaces

S ± = {<p±|<p±:[0,oo)-><C, φ± fulfills SI), S2), S3 + ) respectively S 3 - ) } , (31)

where SI), S2) were given before and

S3±) φ

We have

Lemma 2. i) S+ +S_ is dense in L2 (and thus in any LPa), where
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ii) S±±S%, L\^S±+S%9 where S±=(S±nL\), i.e. the closure of S± with
respect to the norm topology of L2

1? and S* : = {φ\φ* ES} .

The proof of Lemma 2 is given in the appendix. Part ii) is not necessary for the
following. It is only included because it gives some insight into the structure of the
spaces involved.

For φ± eS + we immediately get from (28)

lim Jdr/ G ) ε (r 2 ,ω,p;g)φ ± (r)-±i 2 J drlGΔ ^,ω,p;g I φ±(r) (32)
ε^o o o \r J

on transforming r->-.
r

Due to the uniform bounds on IG dr this implies that on the spaces S+ CLι

0 the
Minkowski space functional is bounded by the L00 (sup-)norm of the Euclidean
amplitude. Lemma 2, ii) says S+ and S_ span (roughly speaking) one half of the
Hubert space L\. Obviously it cannot be possible to approximate a d-peak within
S±. It is only possible to approximate the peak by taking the modulus of functions
which are in S+ as seen from the examples

- exp α< —

r2-i I j / 1\ .( 1

( r 2 + o 2 L I V *y V ^
the moduli of which are peaked at r = 1. Peaks at r — A can be realized by functions
fulfilling

which also fulfill (32).
We want to enlarge the space of functions on which lim JIG c . . . is well-defined.

As a consequence of (14) and R3) both sides of (28) are well-defined for

φ+eS + r\L1

Γί=:S})+ for E>2

and for φ± eS±nL1

2nL1^2 = '-S\± for E = 2 (i.e. a contribution to the two-point
function). In the last case closure is intended with respect to the norm

\ drl-j +r2 \φ(r)\. On noticing that JIG ε,..., JIG dr... operate continuously on
o V J
SQ± respectively ^2+ (28) still has to be true there as well as on the spaces

S0 = S1

0++Sι

0-9 (E>2), S 2 : = S j + + S i _ , (E = 2). (34)

Finally we define the vector spaces with norm

βθ/2=(Sθ/2> II I! 0/2) 5

/ 1 \ i(0/2)

{ 2 \ . (35)
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For φ e B0/2 we now may perform the sum over dressed Feynman amplitudes.
Summing over all planar graphs with E external legs and the number of vertices
varying between n1 and n2, we get

i i - i ; ' ||φilo/2

Here we used the geometric bound on the number of planar graphs (2) and R3).
The last estimate implies the series to be uniformly Cauchy for Reg > 0, \g\ < η (R3))
and thus convergent. We arrive at the following results:

RM1: The sum over all dressed amplitudes of 1PI planar φ\ graphs with E
external legs for Reg > 0, \g\ <η,η sufficiently small (s.s.) uniquely defines a family of
bounded linear functional Ff2v

 o n the Banach spaces Bo (E > 2) or B2 (E = 2) (35)
via

Their norm is bounded by

\cκE(η)\V+\>2)δE<\

i.e. by the bound on the Euclidean sum. Alternatively F ^ p may be looked upon as
an unbounded densely defined linear functional on

1 [0,oo), r2 dr

with domain So (E > 2) or S2 (E = 2) (34). It is then bounded on the subspaces Sι

Q + or

RM2: (Borel summability). There exists a constant K such that for Reg > 0, \g\ < η
s.s. one has for any fceN and φeB0/2,

G/n(G)^k- 1

II 0/2(1

where the sum is over the undressed amplitudes JJ^ε (without Dζ factors) in
Minkowski space of all graphs G with E external legs and less than k vertices.



68 C. Kopper

RM3: For any graph G of order n, planar or not, and Reg>0, \g\<η s.s. and
φ G B0/2, we have the estimate

J\η)\\φ II 0/2(1+ v

2)δ->\

On the same reasoning as in the Euclidean case and on making use of the remarks
following (21) one may - eventually at the cost of a smaller η - replace Reg > 0 by
|argg |<π — δ for any <5>0, where η->0 for δ-+0.

IV. Summary and Discussion

Rivasseau's results implying the Borel summability of planar φ\ have been
transmitted to Minkowski space. Minkowski space sums of dressed Green
functions can be interpreted as bounded linear functionals on a Banach space.
Bounds on Euclidean quantities turn into bounds on the norms of those
functionals. From a general mathematical point of view their domain is as large as
can be expected, namely it is dense in L1 or L2 spaces on the external momentum
variables with respect to the norm-topology. The functionals could not be defined
as tempered distributions, however, which would have been nice in view of
Wightman's axioms. This would require a more detailed knowledge of all possible
Feynman diagram singularities. Our construction is certainly not unique in the
sense that we could have started from different domains for the functionals. So we
could have replaced S3+) Sect. Ill by

φ±ί

or something similar [see also (33)] without major consequences. But it is not

possible to replace the involution r-»- by e.g. r-^ir which leads to conflicts

between the required analyticity and fall-off properties of φ and the global
behaviour of holomorphic functions, e.g. Liouville's theorem. The invariance
conditions S3 + were not necessary to perform the Wick-rotation. They only show
that there are closed subspaces SQ/2 + and SQ/2 _ - spanning together the whole
domain - on which the functionals are bounded also with respect to a L1 norm.

One may look for invariance conditions of the form

φ(ir)=±{Tφ)(r),

where Γis a suitable bounded operator, a simple choice being Tφ = φ*. In this case
we would get the -f (— )sign for any

where P is some polynomial with real (purely imaginary) coefficients. Those φ
together form a dense set in L2, but the invariant sets are not linear with respect to
(C. Certainly there is no analogue of Lemma 2ii).
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Quite generally the knowledge on the Minkowski space quantities and also on
their Euclidean counterparts, if to a smaller extent, remains very coarse. One way
along which one might try to extract additional information is to make use of the
fact that r = 0, i.e. all external momenta spacelike, always is an inner point of the
Euclidean domain of any Feynman diagram in a massive theory. With the help of
majorization techniques, see e.g. [18] and perhaps making use of planarity one
might extract some information on the Borel sum in that region.

A characterisation of the singularity structure in momentum space of summed
amplitudes seems to be a far more difficult problem.

Appendix

We want to prove Lemma 2 Sect. Ill and make some further comments on the
spaces S+.

Proof of ί). Let

where ψ±(r) have to fulfill SI), S3 ±) Sect. Ill and ψ±(reiγ) is uniformly bounded for
0^r<oo, O^y^f, (Al)

then ψ±(r)w0(r)eS+ .
Therefore

K+ +X_ contains all functions of the form φ(r) = ψ(r)wo(r), where ψ(r) fulfills SI)
and (Al).

The density of K+ +K_ in L\ is equivalent to the triviality of its orthogonal
00

complement in L\. Thus assume (g, φ): = j dr rg*(r)φ(r) = 0 for some g e L\ and all
o

φeK++ K_. Then

(g,φ) = 0 for g(r) = g ( r ) e x p < - i ί r - -

and

We now make a choice for ψ(r). Let

1

~ί[ r--
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Then we have for all neN on assumption

l - x \ Γ x2 + (\-xΫ
i Λ \ n_3 \ x -t-yi x)Q = (g>Φn)= ί drrg*(r)φ(r)=[dx(\~x)g*\ x" exp< —

o o \ * J I x ( l -x)

which on the completeness of the polynomials xn on [0,1] with the weight

( l - x ) e x p < -

Λ x \
strictly positive in (0,1), implies g* ( I = 0 in L2([0, l],dx), therefore g(/) =

V x /
and g(r)^0 in L\.

Proof of ii). Orthogonality oϊ S± and S%: let φ ± eS±nL2

u

OC 00

±): = J drrφτ(r)φ±(r) = i2 j drrψτ{ir)φ±{ir)
o o

where SI), S2), S3 ±) have been used. The orthogonality of S+ and St implies the
one of S + and S* .

Completeness of S+ + St in L2 is equivalent to its orthogonal complement
consisting of 0 only.

We choose φ + (ή = ao(r)eί2na{r\ Π G N 0 , where

so that φπ

+(r)G§r

+; and we choose φ^(ή = aξ(r)e'i{2n+1)a{r\ ne¥S0 so that
φ~*(r)eS*L. Assume

OO GO

J dr rφ + (r)g(r) = f dr rφ ~ *(r)g(r) = 0
o o0

for some g(ήeL\ and all πeN0.
/ r 4 - l\

We have cc(r) = arc cos I -^—- I varying strictly monotonically from — π to 0 for

r between 0 and oo. Therefore

oo I 0 /

oc'i α" ,

and

ί Ψn*(r)g{r)dr = J

i - -



Borel Summability of Planar Perturbation Series 71

Thus from the completeness of {einx, neZ} in L2([ — 2π, 0],dx)

in L2([ — 2π,0i],dx) and therefore g(r) = 0 in L\.

The same procedure is possible for 5_ +S%. q.e.d.

In Sect. Ill the test functions have been split into parts φ + e S ±. Contrary to S +

and S*, S + and 5_ are not orthogonal. In fact the angle between two unit vectors

in S+ and 5_ may become arbitrarily small. As can be seen from the previous

proof, the situation is quite similar to the subspaces {£a n e i l l x ,fteN o l and

α ^ί(" + i)*5 n e j s ί o l (X|αn | 2<oo) of L2([0,2π],dx). Thus it is not possible to

estimate || φ +1| L 2 , || φ _ || L2 in terms of || φ \\Li for a general φ = φ + + φ _. This would

be sufficient [see (32)] to make Fgωp (essentially) a bounded functional on L2.

Splitting up into S + and St does not help either because functions of 5* have no

invariance properties S3+) (and possibly singularities in the upper right half

plane).
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