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Abstract. The fluctuation field integral, constructed in Part I, is represented by
the exponentiated cluster expansion. It is proved that the terms of the expansion
satisfy the inductive assumptions. This completes the construction of the
sequence of effective actions in the small field approximation.

Introduction

in the first paper of this series we have considered the fluctuation field integral
defined by the kth renormalization transformation. We have shown there that the
fluctuation field effective action is a small perturbation of the basic quadratic form,
in the small field approximation. This is the main part of the analysis of this
integral, and it includes the analysis of renormalization. Now it remains to construct
a localized representation for the new term in the effective action defined by the
fluctuation field integral. This is done by an application of the exponentiated cluster
expansion. This expansion is constructed in two steps.

At first we localize the fluctuation field effective action by a procedure similar
to a cluster expansion, using the generalized random walk expansions for
propagators and minimizers occurring in the action. This procedure is described
in Sect. 1. It yields the integral in the form to which we can apply in a straightforward
way the exponentiated cluster expansion. This expansion is described in Sect. 2.
It yields the desired localized expansion of the new effective action. We prove
also that terms of this expansion satisfy the inductive assumptions formulated in
the first paper. Thus we complete the proof of Theorem 3 of that paper. The two
expansions constructed here are quite general, as will become clear from their
descriptions. They can be, and will be, applied in many other situations, such as
for the expressions constructed with the help of more general propagators described
in [13], or for integrals conditioned to subdomains of the lattice.

* Work supported in part by the Air Force under Grant AFOSR-86-0229 and by the National Science
Foundation under Grant DMS-86-02207
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The first paper is referred to as /, so we refer to its sections and formulas by
writing I before the corresponding numbers, e.g. Sect. 1.3, or the formula (I.LI8).
We also refer the reader to the list of references at the end of that paper.

1. Localizations and Bounds of Terms in the Fluctuation Field Action

In Sects. 1.3-5 we have constructed the expansions of terms in the original fluctuation
field effective action in (1.2.12). The newly created terms, after the cancellations
described at the end of Sect. 1.4, satisfy much better bounds of the type (1.0.29),
bounds assuring convergence of the sum of all these terms. They are analytic and
nonlocal functions of the configurations U, J, B. The nonlocality is, however, of a
simple origin, it is introduced by the functions Hy,Hfc, propagators and other
expressions appearing after the expansions. Analyzing the terms (1.3.7), (1.3.21) or
(1.3.34), we see that they have the following structure: there exists a function
E(X,U,J?A) analytic and localized to X in U,J, A, such that a given term is
obtained substituting a proper nonlocal expression in the place of A, e.g., the
function Hj(B(t)) + tπδHj in (1.3.7), {tζπ + ίπζπ)Hk{B/) in (1.3.34), and so on.
Instead of trying to cover all possible cases, let us consider one important and
typical term, and then discuss necessary changes for other terms. For example let
us consider the last term on the right-hand side of (1.3.34). We have proved that
it is an analytic function of U, J5A, for (U, J)eC/£+1(Πo>0 +2/?)αo,(ί + 2j8)α lsα0)
and A satisfying (1.3.31). Substituting

A = (tζπ + tDζD)Hk(B') (1.1)

we introduce, through the function Hk(5'), a dependence on U, J, B on the whole
lattice. Our problem is to localize the obtained function, more precisely to
represent it as a sum of terms, which are localized in domains from D/c, and which
satisfy bounds of the type (1.1.18).

We construct such an expansion by a procedure similar to decoupling
procedures in cluster expansions. To this purpose we use extensively the generalized
random walk expansions for propagators constructed in [13]. The function Hk(B')
is determined by the propagators through the equations it satisfies. By the results
of Sect. G [15] this function is given by

nk(B') = H0B' + Ao - HD(H0B' + Ao), (1.2)

where the linearizing transformation D(Λf) is a solution of the equation

D(A') = C(A'-HD(A% (1.3)

and Ao is a solution of the equation

Ao + G(J^J V\H0B' + Ao) = 0. (1.4)

We have suppressed the subscript k in the equations, and also the dependence on
the variables U, J. The function V(A') is a nonlinear and nonlocal function
depending on H and D(A'). It is given by the formula (80) [15]. Thus Eqs. (1.3),
(1.4) are determined by local, analytic functions, and nonlocal propagators H, Ho, G.
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In these equations we can replace the propagators by arbitrary operators having
the same regularity properties and satisfying the same bounds. Only these bounds
were important in the analysis of Sect. C, E [15], hence the solutions D, Ao can be
considered as functional of these operators, having all the properties proved in [15]

D(A') = D(H,A'l A0 = A0(H,G,H0B'). (1.5)

The nonlocality of these solutions is a result of a nonlocality of the operators,
hence we localize the solutions by localizations of the operators. We start with the
original propagators, and we decompose them into generalized random walk
expansions. A propagator is represented by the sum (3.107) [13]

where ω = ((0,XO)(OL19X1 ) , . . . ,(α n ,X n )\X 0 ,X u . . . ,X n are simple localization
domains, unions of connected families containing several cubes from πk(l), i.e. of
the size M1 instead of M. For more detailed explanations of (1.6) see Sect. C [13].
Localization properties and bounds are important for us. Each factor in (6.6)
depends on external gauge field configurations restricted to the corresponding
domain X*, and its kernel vanishes in a sufficiently thick neighborhood of dXj,
e.g. in a neighborhood of the width j M 2 . The term corresponding to a walk ω in
(1.6) can be bounded, as (3.108) [13], by

^0d(ω, y,y')\ (1.7)

where Δ(y\ Δ(yf) are localization cubes of the term. This bound holds for all operator
norms in formulations of theorems in [13], e.g. in Theorem 3.1. The first two
factors in (1.7) are used to control the sum over ω, and they determine the constant
Bo. We will use the remaining two factors to produce exponential bounds for
localized terms.

To construct the decoupling we introduce a regular partition σk of the space
T, in the scale corresponding to the lattice Tη, into cubes Δ of the size R1M1. The
number R1 is a power of L satisfying the condition RιMιM~1 ^1. For the
particular example under consideration we take cubes of the size M, which are
disjoint with the interior of Π 4 . We denote this family by σ0. To each cube Δ in
this family we assign a variable s(Δ), and we denote by s the system of all these
variables. We introduce a dependence on s in propagators in the following way:
for a random walk ω localized in XQUX5

XU ---uX^ we take the {Δ1,...,Δm} of
all cubes from σ0 which intersect this localization domain, and we multiply the
term in (1.6) corresponding to ω by ^(ZlJ s ^ ) . This way the s-dependent
propagators H(s\ G(s),H0(s) are defined. They coincide with the original ones for
s = 1. The symbol B' in (1.1) denotes the local function of B defined by (1.3.2).

Now let us consider the last term in (1.3.34), or an arbitrary expression obtained
by the transformations of one of the terms on the right-hand side of (1.3.34). We
denote the corresponding function of U, A by E(Π 0,U,A), hence making the
substitution (1.1) we have

(1.8)



T. Balaban

To simplify the formulas let us omit the symbols U, J. Now, as in cluster expansions,
we apply the fundamental theorem of calculus

= Σ Π ί ^ ) ^ E ( Π o > ( ί C D + ί D ί D ^^ (i.9)
σczσQΔeσ0 OS(Δ)

Consider a term in the last sum. The set Y(σ) = Π 4 u ( u ΔEσA) is a sum of connected
components, with the following notion of connectedness. We consider domains Y
which are unions of subfamilies of σk, and which satisfy one of the following two
conditions: either Y is disjoint with the cube Π 4 , or it contains this cube. In the
first case Y is connected if and only if for any two cubes A, A' a Y there exists a
sequence Δ,Δ1,...,An,Δ

/ of cubes contained in Y and such, that boundaries of
two successive terms in the sequence have a common d — 1-dimensional wall, and
there is no cube in Y having this property with respect to Π 4 In the second case
Y is connected if and only if for any cube A c Y there exists a sequence having
the above property and connecting A with Π 4 , i.e. the last term in the sequence
intersects Π 4 along a d— 1-dimensional wall. We denote by Yo the connected
component of the domain Y(σ) containing the cube Π 4 .

Consider the function (tζπ + tπζD)Hk(H{s)9G(s)9H0(s)Bf) for s satisfying
s(σc) = 0. We prove that it depends on B, s is restricted to the component Yo. At
first we remark that kernels of the operators H(s),G(s),H0(s) vanish, unless both
arguments are in the interior of one component of Y(σ), in fact with distances to
the boundary of this component bigger than Mx. Consider Eq. (1.3) with H replaced
by H(s). By the above remark this equation reduces to the equality D(A') = C(Ά)
on the neighborhood of Y{σ)\ and to separate equations in components of Y(σ).
The solution D(H(s),A') restricted to the interior of a component depends on
A\H(s\ hence s, restricted to this component. This implies that the function
(δ/δA') V(H(s), Ar) has similar properties, i.e. it coincides with the local function
(δ/δA')V0(A') on the neighborhood of Y{σ)\ and considered on a component of
Y(σ) it depends on A\ H(s), s restricted to this component. Thus Eq. (1.4) represents
a system of separated equations in components of Y(σ). The solution A0(H(s),
G(s% H0(s)B') is equal to 0 on the neighborhood of Y{σ)\ and again, on a component
of Y(σ) it depends on the propagators and B' restricted to the component. Finally,
the function B' defined by (1.3.2) is a local function of B. As a consequence of these
properties we obtain that the term in the sum on the right-hand side of (1.9),
corresponding to the set σ, depends on propagators and function B, s restricted to
the component Yo, the component of Y(σ) containing Π 4 If there are other
components, then the derivatives with respect to s restricted to these components
render the term equal to 0. This simplifies the sum in (1.9). We can write it as a
sum over connected domains Yo containing Π 4 , with parameters s = 0 on Yc

0. We
denote s by s(Y0% hence we have

= Σ Π } ^ ( ^
5Όzlcyo\D4O OS(Δ)

(1.10)
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In the term corresponding to Yo in the above sum all propagators and the function
B are restricted to Yo. This implies that this term depends on U, J restricted to

To estimate a term in the sum (1.10) we use the Cauchy formula, hence we
have to investigate analyticity properties of the functions E( ) with respect to the
variables s(Y0). We review successively the functions and the operators in (1.10).
Let us start with a bound for the function H(s(Y0))X,X is an arbitrary gc-valued
function on Y(

o

fe), the parameters s(Y0) are complex valued and satisfy the bound
\s(Δ)\ rg eKl for A a 7 0 \ Π 4 , κx is a sufficiently big positive number. Using the bound
(1.7) we estimate the function by

B0\X\sup Mϊίβlωl exp(- δod{ω))emκi

9 (1.11)
ω

where d(ω) is a length of a shortest tree graph intersecting all localization domains
of ω, m is the number of the parameters s connected with the walk ω. If m is big
enough, for example m > 2 4 , then δod(ω)^δ1mM, for a positive constant δx

depending on <50 only, and we can bound the expression under the supremum in
(1.11) by 1, for δίM^κ1. If m ^ 24, then we can have short walks, in fact with
|ω | = 0, and the expression can be bounded by e16κi only. Thus the function
H(s(Y0))X is an analytic function of the variables s(Y0) on the domain |s(Y0)| ^ eκ\
bounded by B0e

16κi\X\ in all norms of Theorems 3.1.-3.10 [13].
Consider the change of variables

A = A'- H(s(Y0))D(H(s(Y0)\ Ά\ (1.12)

The function D is the solution of Eq. (1.3) with H(s(Y0)) instead of H. Let us
introduce an auxiliary constant ε2,

 a n < i consider this equation on the space of
functions satisfying \Ά\<ε2. Let us recall the most important points from the
discussion of Sect. C [15]. If we replace the function D in (1.3) by a configuration
X, then for the complex s(Y0\

^\X\\ (1.13)

and for X satisfying \X\ <4C2ε\ ^(4C2B
2

)e
32κi)~1, hence for ε2 satisfying

4C2B0e
16κίε2 ^ 1, the right-hand side above is bounded by 4C2ε2. Thus the

transformation defined by the function on the left-hand side of (1.13) maps the
domain {X:|X| <4C2ε\} into itself. We prove similarly that it is contractive on
this domain, hence the fixed point is an analytic function of A'9s(Y0), bounded by
4C2ε2. Because ε2 can be chosen arbitrarily close to \A'\, so we have the inequality

\D(H(s(Y0)\A')\^4C2\A'\2. (1.14)

It is the same as the inequality (55) [15]. Similarly the other inequalities and
statements of Sect. C [15] hold in this case, for example the transformation (1.12)
can be bounded as in (57) [15]: \A\ < ε2 + Boe

16κi4C2εl <; 2ε2. This implies that
the function V(H(s(Y0))9 Ά\ defined by (80) [15] with the help of the transformation
(1.12), is an analytic function of A\s(Y0)> and Proposition 4 [15] holds for it (with
ε3 replaced by ε2). Consider now Eq. (1.4) with the above function F, and with
G,H0 replaced by G(s(Y0)),H0(s(Y0)). The last propagators are analytic functions
of s(Y0), and they have the same bound (1.11) as H(s(Y0)), hence their norms are
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bounded by B0e
16κ\ Using this, and the inequality (98) in Proposition 4 [15], we

obtain

\G(S(YO))(~V\H(S(YO)IHO(S(YO))B' + A)\

(1.15)

and if \B'\ < ε3, where ε3 is another auxiliary constant. The last inequality holds
if 4C4Bl\e32κίε3 ^ 1. The norm of the function H0(s(Y0))B' + A is bounded by

B0e
ίβKίε3 + 4C4(Boe

16κi)3ε2 ^ 2Boe
ίβKlε3,

and we assume that 2Boe
16κίε3 rgε2, so the function satisfies the assumption of

Proposition 4 in this case. The inequality (1.15) holds for all admissible norms. It
implies that the fixed point, i.e. the solution of Eq. (1.4), is an analytic function
of B\ s(Y0) on the considered domains, it satisfies the bound

\A0(s(Y0\H0(s(Y0))B>)\^4C4(B0e
16^)3\B'\2

< 4C4(Boe
16κi)3ε2

3 ^ B0e
16κiε3 ^ | ε 2 ? (1.16)

and the same bound for the other norms. This finally implies the desired result
for the function

Hk(s(Y0)9ff) = H0(s(Y0))B' + A0(s(Y0),H0{s(Y0))Bt)

- H(s(Y0))D(H(s(Y0)l H0(s(Y0)Y + A0(s(Yo), H0(s(Y0))B')).

(1.17)

It is an analytic function of s(Y0),B', satisfying the bound

\Hk(s(YolBΊ\S4Boe
l6κi\B'\<4Boe

16κiε3^2ε2, (1.18)

and the same bound for all admissible norms. Let us recall that all the considered
functions and operators are analytic functions of the configurations U, J in a
domain given by the conditions I.(i)-(iii) with some αΌ,αΊ, and all the bounds
above are uniform on the domain.

We have to consider the function B' yet. Notice that in the preceding
considerations B' was a variable field. The function is given by the formula

B' = gkCB-hD(gkCB). (1.19)

It satisfies the bound

B| + 4C2(O(l)gk\B\)2 S ClQk\B\ <C,εu (1.20)

where Cx is an absolute constant, and gk\B\<ε1.
Gathering together the above statements and estimates we obtain that

Hk(s{Y0),B')) is a n analy t ic funct ion oϊs(Y0\B, for \s(Y0)\^eKl a n d gk\B\<ε1. I t
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has the estimate

1e
16^gk\B\<4BoC1e

16κίεu (1.21)

and the same for all admissible norms, if e32κi εί is smaller than an absolute constant.
This constant can be easily obtained by inspection of all the above conditions. We
have yet another condition for the function Hfe in (1.21), namely this function
multiplied by tζu + tuζΏ has to satisfy the bounds (1.3.31). We assume that
4B0 C1 e

16κίε1 ^ £α 2, and this implies that the product with tζD satisfies (1.3.31) with
\a2. The product with ζ0 has the norms in (1.3.31) bounded by 4B0C1e

ίβκlgk\B\ <
4B0C1e

16κιε1, and we extend the expression in (1.10) analytically with respect to
tπ satisfying \tΏ\4B0C1e

ί6κigk\B\ ^ α 2 . Taking tπ for which the equality holds,
we get

^ 1gk\B\<SB0Cιe
16κ^21ε1. (1.22)

Let us come back to the expansion (1.10). We differentiate it with respect to
ίD, at ίD = 0, and we represent all derivatives by the Cauchy formula. The term
in (1.10) corresponding to a domain 7 0 is represented as

(1.23)

where the tπ -integration is over the circle (1.22), and the σ(zl)-integrations are over
the circles \σ(Δ)\ --=eKi. We were doing all the considerations for the last term in
(1.3.34), hence we estimate the above expression using (1.3.54). We get

Y0\Π*\)exp(-κdj{X)). (1.24)

Adding and subtracting sKιdk(\Z}0) under the first exponential above, we can
bound it by

^ i 4 | y o \ Π 4 | ) , 0-25)

where 7 = 7 0 u Π o . Of course Y is a localization domain form Όk. The inequality
(1.24) supplemented by the above bound is enough to control the sum over all
terms (1.23) having a common localization domain Y. Before considering such a
sum we have to take a common domain of analyticity for all terms in it. From
the results of Sect. 1.3 it follows that the term (1.23) is an analytic function of
configurations U, J, defined on the space \Jk + 1(Γ]0,(\ + 2/J)αo,(l -f 2/?)α1>α0). By
the construction it depends on U, J restricted to 7 0 u Do = ̂  a n ^ ̂ e conditions
outside Y are unessential. Thus we consider this space defined by the conditions
I.(i)-(iii) on the domain Y, and we take its subspace U | + 1 (7,(1 -f/?)αo,(l +/?)α l Jα 0).
All terms (1.23) with the localization domain 7 are defined and analytic on this
space.

Now we consider the sum of all terms (1.23) having the same localization
domain 7. It is a sum over all admissible Πo? ^o? j a n <3 X- The expression defined
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by this sum can be bounded using (1.24), (1.25). At first we consider the sum over
X. We take XGΌJ,X C Q 2 . This sum can be bounded by two sums, the first is
over Π'eπy, • ' c Π 2 . This sum can be bounded by two sums, the first is over
D'eπ;, D' <= D 2 , the second over XEΌJ such that Π' aX. For the second sum
we have

X exp(-κdj(X))^O(l\ (1.26)
XeΌj,X ^ •'

for K sufficiently large. The number 0(1) is in fact small, because we sum over X
with dj(X) Φ 0, as it follows from our inductive construction. This inequality was
used many times in convergence proofs for cluster expansions, for example see
[48,50,40,26,3]. To bound the first sum, over • ' c Π 2 , we use the factor (Ljη)5

in (1.24). This yields (βLj^Uη, and the sum over j is bounded by 2(6L)4. The sum
over Yo is simply a sum over subsets of the family of cubes Δ contained in Π o \ Π 4 .
The number of terms in this sum is an absolute number, but we get a better bound
using the last term under the exponential in (1.25). The sum is bounded by

exp(8 123 exp( - i(κx - 1))) ̂  e (1.27)

for κ1 sufficiently large. Finally, the sum over Do c a n be bounded by

M " 4 | Y\ £ 3 23dk(Y) ^ exp^Oq - 2)dk(Y). (1.28)

Gathering together the above bounds we obtain

IΣ(1.23)| £ E.ε, O(M*)exp 0 ( 1 ) ^ exp( - ±Kldk{Y)\ (1.29)

with absolute constants 0(1), q. The constant q is a small, nonnegative integer,
which can be easily calculated from the conditions on ax, α2, α 3. Another possibility
is to use the expression gk\B\ instead of ε^ It gives a better bound, but the above
is simpler.

These considerations and bounds were done on the example of the last term
on the right-hand side of (1.3.34), but almost all of them are quite general and can
be applied to all terms in the fluctuation field action. Let us discuss the other terms
briefly. The simplest situation is for the remaining terms on the right-hand side of
(1.3.34), or rather for expressions obtained by the transformations described in
Sect. 1.4. We apply the expansion (1.10) to them, and the terms in this expansion
can be bounded similarly as in (1.24), using the inequalities (1.4.5), (1.4.22), (1.4.36),
(1.5.44), and other inequalities mentioned in the previous sections. The summation
over all possible choices of Πo> YoJ>X yields an expression satisfying (1.29).

Consider now the expression (1.3.7), or rather its analytic extension (1.3.15). It
is determined by the functions H^ (δ/δB)Hjf besides the function Hfc, and it depends
on the first two functions restricted to X. We introduce the parameters s in the
same way as before, only the family σ0 is different. It is defined now as the family
of all cubes Δ disjoint with the interior of Xo, where Xo is the smallest localization
domain from Όk containing X. We apply the expansion (1.10). Terms in this
expansion can be bounded using the inequalities (1.3.17), (1.21), and we obtain the
bound
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i (1.30)

By the definition of the linear size functions they satisfy the following fundamental
scaling inequality

'dk(X0). (1.31)

It implies that the last two exponentials in (1.30) can be bounded by

exp( - (1 - δ)κdk{Y) - δκdj{X)), (1.32)

if \(κλ — 1)^(1 — δ)κ,0<δ< 1. Now we sum all the terms having the same
localization domain Y. At first we notice that each term is defined and analytic on
the corresponding space (1.3.16) restricted to the domain Y. All these spaces contain
the subspace U£ + 1(Y,(1 -b β)αo,(l +j5)α l 5α 0), and all the terms are defined and
analytic on it. The summation over X is controlled in several steps. We fix a cube
• ' e π , such, that Π'<=X, dist ( ξ )(^, D) = dist(^(Π', D), and we sum over X
containing •', using the second exponential in (1.32)? and the inequality (1.26) for
δK sufficiently large. Next we sum over the cubes Π'? and this sum is controlled
by the first exponential in (1.30). The first term under the exponential gives also
the factor Ljη, which controls the sum over j . Finally, the sum over all possible
cubes • can be bounded by

M~4\ Y\ ^ 3 2 3 4 ( 7 ) ^ Qxpδκdk(Y).

These estimates yield again a bound of the form (1.29) for the considered sum,
with the last exponential replaced by e x p ( - ( l -2δ)κdk(Y)). We assume that
(γβ)κ1 ^ (1 — 2δ)κ, hence we can bound both sums by the above exponential.

The expression in (1.3.21), given by the last integral, is expanded and analyzed
in almost the same way as the last term in (1.3.34), so we do not repeat these
considerations.

The results obtained for the expression in the curly bracket {•••} can be
summarized as follows.

Lemma 1. The second expression in the fluctuation field action in (1.2.13) is
represented as the sum

Ek(Uk(expiB'VW))-Ek(Uk(VM))= £ V'k(Y, Uk+i,B). (1.33)
YeΌk

For each term in the sum there exists a function Y'k(Yy\J,J,B), defined and analytic
on the space

Wk+ί(Y,(\+β)ao,(l+β)a1,«o)x{B:\B\<ειgk-
1 on Y}, (1.34)

i.e. it depends on configurations U, J, B restricted to the interior of Y, and such that

\'k(Y,Uk+ι,B) = Yk(Y,Uk+ι,Jk+ι,B). (1.35)

There exist absolute constants C1,C2,q, for which

| V i ( y , U , J , B ) | g J B o e 1 C 1 M ί e x p C 2 κ 1 e x p ( - ( l - 2 δ ) κ d t ( y ) ) . (1.36)

We would like to prove a similar result for the first term in the fluctuation field
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action in (1.2.13). It is the function F{k)(gk,Uk + 1,B) and, as we have remarked
already at the beginning of Sect. 1.3, this problem is much simpler for it, because
of good regularity and boundedness properties on the unit lattice T{P. Nevertheless,
there is one aspect of the problem which we have to discuss here. It is connected
with the factor \jgl at many terms in this function. We have to cancel this factor,
and this implies that we can get a bounded polynomial in B only, not the absolute
bound of the type (1.36). Let us discuss it on the most important example of the
expression (l/gl)V(H1B')9 where B' is given by (1.3.2). The function V is given by
the formula (80) [15], which comes from the expansion (41) [15] of the Wilson
action by the change of variables (47). In this function, as in all other terms, we
replace the configurations Uk + ί9 Jk+ί by the variable U, J. We obtain an analytic
function on the space U^+^T^α'o,^), with αJ^αΊ much bigger than oco,(xί. Let us
recall that it is the space of U, J satisfying the conditions I. (i)-(iii) on the whole
lattice Tη. The function V can have a natural localization connected with the sum
over plaquettes in the Wilson action. We take the decomposition of unity 1 = Σ C Π

D

constructed in Sect. 1.3. This decomposition is introduced into the sum over
plaquettes, and we obtain

V{H1B') = ΣVΏ{HιB'\ (1.37)
G

where in each term the sum over plaquettes is localized by the function ζ. Now
we apply the decomposition (1.10) to each term in the sum (1.37). For a fixed cube
• we take σ0 as the family of all cubes A disjoint with the interior of •• From
the definition (80) [15] it follows that the sum in the decomposition is over all
localization domains YczΌk containing the cube •• The term corresponding to
a domain Y is represented as

^ ^ ( L 3 8 )

The above expression is localized in the interior of Y, with respect to U, 3,Bf or
B. It is an analytic function of (U, J) in the space UJ^ x (Tη, α'o, αΊ), and of B' in the
domain {B':elβκi\B'\^a1 on Y}, as it follows from the considerations of the
beginning of the section. The underintegral expression is analytic in σ(Y) on the
polydisc \σ(Y)\Seκι. The estimates (33),(37),(55),(57),(58) [15] imply the bound

|(1.38)| ^ C 3 ( e 1 6 κ i | 5 Ί ) 3 M 4 e x p ( - ( / c 1 - l ) M - 4 | 7 \ Π I ) , (1.39)

where C 3 is an absolute constant. To cancel the factor \jg\ we expand (1.38) with
respect to B' up to the second order. The terms of zeroth and first order vanish,
and the second order term is written as a quadratic form with coefficients given
by second order derivatives of the function (1.38). The coefficients satisfy the bound

~ O 7 5 r τ 4 ^ ( ( .38) with B' replaced by tB')
dB'μ(x)dB'v(y)

| 7 | ) , (1.40)

if έ? 1 6 κ i |B' |^30i- Taking B' as in (1.19) we obtain the above bound with |B' |
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replaced by C1 εx. We fix a localization domain Y and we sum up all the expressions
(1.38) with the domain Y, i.e. we sum over all admissible • c Y. This yields an
expression satisfying the bounds (1.39), (1.40) with the additional factor M~4 | Y\ ^
expM"4 |Y|.

The above analysis was done on the example of the expression (l/gk

z)V(H1B
f%

but it can be done in the same way for all terms in F{k)(gk,\J, J,£), and we obtain
the same decompositions and bounds, possibly with other absolute constants. In
fact many of these terms are much simpler, and the above results can be obtained
applying the generalized random walk expansions directly, or even more elementary
means. Our last step is to sum up all the expressions with the same localization
domain. The constructions and the results of this section are gathered together in
the folloiwng lemma.

Lemma 2. The fluctuation field action is represented as the sum

P«\gk,Uk+ι,B) + {-..}= Σ Vk(Y,Uk + ι,B). (1.41)
YeΌk

For each term in the sum there exists a function Vk(Y,U, J,£), defined and analytic
on the space (1.34), and satisfying the corresponding equality (1.35). This function is
a sum of two terms

\B,B)+Y'aYiB). (1.42)

The matrix elements of the operator of the quadratic form satisfy the bound

(1.43)

and the function Y'k'(Y,B) satisfies the bound (1.36). The functions V ^ U , J,B), and
both terms in (1.42), are gauge invariant with respect to the simultaneous gauge
transformations (1.3.29), for Gc-valued transformations u in a sufficiently small
neighborhood of all G-valued transformations.

Let us remark that the last statement is a simple consequence of the statement
in Sect. 1.3, in the paragraph containing (1.3.29), and of the fact that the operations
in this section preserve the gauge invariance.

2. A Final Localization by a Cluster Expansion. Analyticity Properties and
Bounds for Terms in the Effective Action

In the last section we have represented the fluctuation field action in the form
(1.1.7) for j = k + 1, with the analyticity properties and bounds slightly better than
demanded by the inductive assumption. Thus we have prepared the integral in
(1.2.12), or (1.2.13), to the last step in our construction, to a cluster expansion
yielding the decomposition (1.1.7). Let us suppress the dependence on the external
gauge fields in the formulas below. We consider the integral in (1.2.13), with the
fluctuation field action represented by (1.41). The first step is the Mayer expansion
of the action density
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= Σ n\dt(Y)jdμcίk)(B)χkexp\Σt(Y)\k(Y,B)]γ\Yk(Y,B). (2.1)
DcDfc7eDθ \_YeΌ jYeΌ

Each term in the sum over subfamilies D has the underintegral expression localized
in the domain

Y0={jY (2.2)
YeD

Next, for a fixed domain Yo we define the set of bonds YQ = {beTik)\b c
Yo}\{feo(c) :ce^( fc+1)}?

 a n d w e t a ke the following decomposition of the character-
istic functions χk:

Xk = Xk,Y0Xkjc

0= Σ ( - 1 ) | / V Y O X M » ( 2 3 )

gk

Here the symbol | P | means the number of bonds in the set P. For a given set P
we take the smallest localization domain ZoeΌk containing Yo and P. Let us stress
that bonds of P have to be contained in the interior of Z o , they cannot intersect
the boundary dZ0. We insert the decompositions (2.3) into the integrals in (2.1),
and we write the sums over D and P as a sum over localization domains Z o ,
resumming all terms with D and P determining a given domain Z o . Let us denote
by F(Z0,B) the resummed underintegral expression corresponding to the domain

(2.1)= Σ \dμc«,(B)F(Z0,B). (2.4)

The integrals above are represented in a similar way to (2.28) [6], namely as
conditioning on Z%. Thus, we write the term corresponding to a domain Z o as

| < 5 , C*ΔkCB))F(Z0,B) = jdμcw{B')

jdB\Zoexp(-(Z<bB',C*ΔkCZ0B}-±(ZoB,C*ΔkCZ0B))F(Z0,B)

β). (2.5)

In the integral with respect to B' we make the linear change of variables
B' = {C{kψ2X. This yields

.dX{b)e ' l l 2 W b f

• exp( - K C*Δ kCZc

0(Ok))1/2X, 0k\ZQ)C*Δ kCZc

o{C(k))υ2X))
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μ U C k ) ) 1 ' 2 , Δ k ) , (2.6)
where the last equality is a definition of the function G, and the measure dμ0.

The above expression depends yet on the external gauge field configurations
on the whole lattice Tη, through the propagators and the operator in the definition
of the function G. We localize it again by the method used in Sect. 1, introducing
the parameters s and differentiating. There is a difference in comparison with the
construction of Sect. 1, we take cubes from πk + 1 , i.e. cubes of the size LM in the
scale corresponding to the lattice Tψ We define σ0 as the family of such cubes A
disjoint with the interior of Z o , or with the interior of Z'o, where Z'o is a union of
the smallest family of such cubes containing Z o . The parameters s(Δ),Δeσ0, are
introduced into the operators as before, but the generalized random expansions
are constructed now in a slightly different way. We use the possibility mentioned
in Sect. C [13], that the localization domains in expansions can be chosen to a
large extent arbitrarily, they have to be only unions of connected families of
Mi-cubes. We choose Z o as one of the domains, more exactly we take a domain
Xo such, that X$ = Z o (let us notice the inconsistency in the notation, the tilde
over Xo means that M1 -cubes are adjoined, and the tilde over Z o concerns
M-cubes). Other localization domains X are chosen as in Sect. C [13], i.e.
they are unions of small, connected families of Mj-cubes, and we assume
that dist(X, Z o ) > §M. For this class of localization domains we construct the
generalized random walk expansions. This construction was discussed in [13] for
all operators determining Δk, and for C(fe)(Z0), but not for (C(/c))1/2. To expand the
last operator we use a method similar to the method of Sect. C [16]. There it was
applied to expand the determinant of this operator, see (63) [16]. Now we can
simplify it a bit using a better decay property of an underintegral function, and
we have

= - ? dxx'll2(xl + CΔ.Cy1

π o

Expanding the operator Δk into the generalized random walks, we obtain
an expansion of the series above, if yx is sufficiently large. The resolvent
(xl 4- C^ΔkC)~1 has a representation similar to (C*ΔkC)~1. More exactly, the
operator C{xl + C*ΔkC]~ιC* is representated by the integral (3.185) [13] with
the additional term —%x\\χ*(QA + Dμ(QA))\\2 under the exponential function,
where χ* is the characteristic function of the set of bonds T{]c)\{b0(c)'.ceT{k + 1)}.
This term determines a nonnegative, bounded and almost local operator. The
integral yields the representation (3.185) [13], with the operator G2 replaced by
G3(x), which is defined as G2, but with this additional operator. The operator
G3 (x) has the same properties as G2, especially it can be expanded into a generalized
random walk expansion. This yields an expansion of the integral above, hence an
expansion of (C ( k )) 1 / 2 also.

Using these expansions we introduce the parameters 5, and we apply the
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decomposition (1.10),

,Δk) = Σ Π \ d s ( Λ
•μμ0(X)G(Z0,X,C(kHZ0,s(Z)),(Okψ>2(s(Z)),Δk(s(Zm

0). (2.8)

The sums are over Z such, that each connected component of Z contains a
component of Z'o. The equalities (2.4), (2.6), (2.8) imply

(2.1) = £ff(Z), where H(Z)= £ H(Z 9 Z 0 ). (2.9)
z z o zoc=z

This is the desired expansion into localized quantities. The function H(Z) is localized
in the interior of Z with respect to the external gauge fields. From the definition
of H(Z) it is also clear, that if Z = Zγ u u Zπ, where Z{ is a connected component
of Z, then

(2.10)

Thus finally we obtain the polymer expansion

(2.1)- £ H(Z1)..-H(ZII)=1+ Σ π " Σ Π

(2.11)

where the function ζ(Z, Z') is defined by the condition: ((Z, Z') — 0 if Z n Z' contains
a cube, or a wall of a cube, and ζ(Z,Z') = 1 otherwise.

If the activities H(Z) of the above polymer expansion are sufficiently small, then
the polymer expansion can be exponentiated according to the well-known formula,
see [36,60,26,25,67,50]. We obtain by (1.2.13), (1.41), (2.11)

E ( k + 1 ) = £ A Σ PΓ(Z1,...,Zπ)H(Z ι)...H(ZB), (2.12)

where pτ(Z)= 1, and

P Γ ( Z 1 , . . . , Z B ) = Σ Π (αz^z^-i),

Cπ is the set of connected graphs on the set {!,...,n}. The representation (1.1.7)
for E(/c + 1 ) is constructed by taking

oo 1

E < * + 1 > p 0 = £ - X pτ(Zι,...,Zn)H(Z1)-H(Zn), (2.13)
" = 1 W ( Z 1 ; ...Zn) C/Zj = Z

where I e D f c + 1 . To end the proof of the first part of Theorem 3 we have to prove
the bounds (1.1.18). We also need bounds to prove a convergence of (2.12), (2.13).
In the rest of this section we will prove bounds and discuss analyticity properties
of the functions (2.13).

We start with a discussion of analyticity properties of (2.13). The activities H(Z)
are sums of many terms, more exactly the sums in (2.9),(2.1), (2.3) over Z 0 , D , P.
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The subfamily D is important for the analyticity properties, because it determines
the potentials Vk(Y, B). They can be extended to functions of (U,J), analytic on
the space U £ + 1 ( y , ( l + β ) α 0 , ( l +jS)α l Jα 0). Of course 7 c i Z 0 ? and Z o c Z c X for
the activities in (2.13). The potentials are also analytic functions on the subspace
U£ +! (X, α0, αj). The quadratic forms and covariances in H(Z) are analytic functions
on the space of configurations (U, J) satisfying the conditions I.(i)-(iii) on the domain
Z, with constants OL'o,a\ much bigger than α o , α t , therefore we can restrict them,
as analytic functions, to the above subspace. Thus the activities in (2.13), and the
whole sum E(/c + 1)(X), are analytic functions of (U, J), on the space Uc

k+1(X, α O ' α i )
This is the analyticity statement in the inductive assumptions.

To get a bound for H(Z) we consider a term in the sum over D, P. This term
can be written in the following form:

- (B,Γk(Z0,σ(Z))Xy)

•(- lf]Xk.γQ(B)ύAB)exp\ Σ τ(Y)Vk(Y,B)\ (2.14)
LY^D J

where
Γk(Z0,σ(Z)) = C*Δk(σ(Z))CZc

0(C(k))ι/2(σ(Z)).

We consider it as an analytic function of (U, J) in the space U£+1(.AΓ,α0,α1), and
of the complex parameters σ(Z\ τ. This complicates estimates of this expression,
because the operators in it are not symmetric, and the second measure is complex.
We use the fact that, by the definition of the space, the configuration U can be
written as U = U'U.U' = expiL~~1ηA\ and Ά',J have values in gc, but they are
small. More precisely we have |X"|,|V£~ lηA'\ < cq, | J | < α0. For the pair
(ί/,0) the operators are symmetric, and the measure is positive, and then the
estimates are simpler. The general case is handled by a perturbative argument.
The first estimate is

det(Re C( f t )(Z0,

(2.15)

In the expression on the right-hand side we replace the operators by the
corresponding operators with σ(Z) = 0, U = U, J = 0, and we estimate the error.
For the quadratic form in the first exponential the difference is a quadratic form
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%(X,RiXy, with matrix elements satisfying the bound

IKα(&,&')I ^ ( 0 ( l ) β - 1 / 3 ^ M + 0(oίo + α 1 ) ) e x p ( - ^ 0 | b _ - & / _ |). (2.16)

We have assumed, as in Sect. 1, that M is much bigger than κl9 especially that

e-i/3<5oMgi6κi < i jfoQ determinants in the next factor are equal for the new
operators, hence this factor can be estimated by

exp((O(l)<Γ1 / 3 δ o M + O(α0 + α 1 )) |Z 0 | ) . (2.17)

Similarly, the next Gaussian measure is replaced by the measure with the new
covariance, multiplied by a quotient of determinants, which can be estimated by
(2.17), and by the function exp£<5, JR2J3> with R2 satisfying (2.16). In the second
exponential the difference between the new bilinear form and the form in (2.15) is
a bilinear from — (B,R3X) with R3 satisfying (2.16). The expression in the last
exponential can be estimated using (1.42), and the inequalities (1.43), (1.36). We
take a small, positive number α4, to be chosen later, and

^ (2.18)

We assume that ^(κ1 — 1) ^ (1 — 3δ)κ9 C 3 ^ £ 0 C l 5 and q ^ 8. The quadratic form
in (1.42), after multiplication by |τ(Y)|, can be bounded by

* b,b' cz Y

(2.19)

The sum of these quadratic forms over YGD is bounded by a quadratic form with
the above matrix elements resummed over all YeΏk containing, for example, the
point fe_. We use the first exponential factor in (2.19) to bound the sum, and this
yields a constant 0(1). In fact the constant is small for κ1 large, hence we can
bound it by 1. Using (1.28) we obtain

£ \B(b)\2

Yε?Ό b^Y0

+ 0 ( l ) α 4 M - 4 | Y 0 | . (2.20)

The other quadratic forms, i.e. the forms Rl9R2,R3, can be bounded in a similar
way using (2.16), by the forms

Finally we estimate

( ^ 4 \ (2.22)2 4 l l l 7 2 l l
^ 9k

where y2 is a small, positive constant. Applying the above estimates to the
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expressions under the integral in (2.15), we obtain the following integral:

ί d μ o ( X ) | z e x p ( - | < Γ , ( Z θ 5 0 ) X ? C ( f e ) ( Z o , 0 ) Γ , ( Z o ? 0 ) Z > + i α 5 | | Z X | | 2 )

i α 5 | | Z 0 β | | 2 ) ? (2.23)

where α5 - 0(l)e~lf3δoM + O(α0 + αx) + 0(l)α 4 + y2. It is a Gaussian integral, and
can be easily calculated. At first we calculate the integral with respect to B, including
the last two quadratic forms under the exponential into the Gaussian measure. It is
equal to

det(C(fc)(Z0,OΓ
1/2

det(C ( / c ) (2: 0 ? 0)- 1 -α 5 /)

(2.24)

Of course we have assumed that α5 is sufficiently small, e.g. α51| C W (Z O , 0)|| <\.
The factor with the determinants can be estimated by expO(l)α 5 |Z 0 | . The
quadratic form under the exponential is expanded with respect to α5, and the
zeroth order term cancels the first quadratic form under the first exponential in
(2.23). The remainder can be estimated by ^0(α 5) || ZX | |2. In fact a better bound can
be proved using localizations and the exponential decay of operators in the above
expressions, but we do not need such a bound. These calculations and estimates
yield the following integral

j ^ 0 ( ^ ) | z e x p i O ( α 5 ) ! | Z X | | 2 = Π(l-C > ( α 5 )) 1 / 2 ' < ( g ) ^exp(O(α 5 ) |Z |) . (2.25)
beZ

This ends the estimate of the expression (2.14). Gathering together all the bounds
we get

(-(fc1 - l ) (LMΓ 4 |Z\Z ' 0 | )

^ 9k

expO(l)α5|Z|. (2.26)

As we have remarked already it is possible to get a better bound, e.g. with \Z0

instead of \Z\ in the last exponential, by more careful estimates of the quadratic
forms.

To get a bound for H(Z) we have to perform the resummation of the terms
(2.14) over D,P and Z o . We do it in the following order. For a fixed Yo we sum
over all D satisfying (2.2). Next, we sum over Y0,P determining a fixed Z o . Further,
for a fixed Z'o, we sum over all possible Z o determining this fixed Z'o. Finally we
sum over all Z'o cz Z. To bound H(Z) we use the estimate (2.26) for terms of these
sums, and we bound the sums using the factors on the right-hand side of (2.26).

Let us start with the sum over D satisfying (2.2) with a fixed Yo. The set 7 0 is
a union of its connected components, Yo = (J Yh and this decomposition induces
the decomposition of the families D, D = (J D ί 5 D t satisfy (J Y = Yf. The sum over

D factorizes into independent sums over Όh similarly the product over YeΌ in
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(2.26) factorizes into products over 7 E D ; . For simplicity let us denote by Yo one
of the components. Consider the product over YEΌ in (2.26). We extract the
expression α6 exp( — δκdk(Y)) from each factor in it, where α6 is a sufficiently small,
positive constant. Because (J Y = Yo and Yo is a connected domain, hence the

YeΌ

definition of dk(Y) implies the inequality

X(4(7) + 5)^4(7 0 ) + 5. (2.27)
YeΌ

Assuming 2£ o ε ] C1 a~4

 xa^λMqexp C2κί exp 5κ ̂  1, we have

Π •••(in (2.26)) :g Π *bexp(-δκdk{Y))
YeD YεΌ

-lEoB^^^a^ι Mq exp C2κιexp{- (1 ~ 4δ)κdk{Y0)). (2.28)

Now we estimate the sum over D satisfying (2.2). We use the product on the
right-hand side above. For K sufficiently large and α6 sufficiently small we have

L (2.29)
D YeΌ

Inequalities of this type were proved many times, the above can be proved, for
example, by a simple modification of the argument in [26]. In connection with
this notice the following useful inequality

(3 2 3 Γ X M ~ 4 | Y\ g dk(Y) ̂  A T 4 | Y\ - 1 (230)

holding for localization domains YeΌk. The inequalities (2.28), (2.29) yield a bound
of the sum over D.

Now we consider the sum over Y0,P, with fixed Z o . It is controlled by the
exponential factor with | P | in (2.26). The definition of Z o yields | P | ^ M ~ 4 | Z 0 \ 7 0 | ,
because one bond in P may connect two cubes in Z 0 \ 7 0 . We decompose the
exponential factor into a product of five equal factors. Four of them are bounded
using the above inequality, the fifth is used to bound the sum over P, with a fixed
Yo. We have

{ [ | ( - l y 2 | ) ] } ^ l (2.31)
for g%, i.e. y2 sufficiently small, depending on M and K. In general the set Z o is a
union of connected components. Let us denote one of the components by Z o . It
contains Yo = \J y.. By a simple geometric argument we have

"\Z0\Y0\^dk(Z0). (2.32)

Assuming

20 y 2 i-20 y 2 ?- 4 f C '
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and denoting ε2 = 2Eoε1C1a^xi^ 1Mqεxp C2κ1, we obtain

Z 0 )). (2.33)

We have used the assumption ε2 ^ 1, and the fact that if Yo is empty, then we have
the exponential factor. For simplicity let us assume that

expl -

Finally, we have the sum over 70 czZ0, or over Z o \ Yo. The remaining factor is

used to bound this sum

Σ expf ~^724
M~4lzo\^ol)^exp(exp(-^y24)M--4iZo |). (2.34)

zo\yo \ z u βk ) \ \ z u y ) j

The exponential on the right-hand side multiplied by exp( — δκdk(Z0)) can be
estimated by 1.

Let us write the inequality we have obtained for the partially resummed terms
(2.14). The set Z o is a union of connected components, Z o = [jZh and we have

^ e x p ( - ( κ 1 - l ) ( L M ) - 4 | Z \ Z /

0 | )
Ό,P

|Z|. (2.35)

The next step is to bound the sum over Z o , with Z'o fixed. Again the set Z;

o is
a union of connected components, which are localization domains from D f e + 1 , and
we denote by Z'o one of the components. The set Z o determining it is a union of
connected components, Z o = (JZ ί 5 and we denote by Z the smallest localization
domain from Dfc + 1 containing Zt. The sum over Z o is decomposed into several
sums. For each Z we sum over all possible components of Z o determining this
Z . The we sum over all families of domains Z such, that (JZ = Z'o. Consider the
sum over the components with a fixed ZJ. We extract exp( — δκdk(Zi)) from each
exponential in (2.35), corresponding to one of these components. The remaining
exponential is bounded using the following inequality:

2d k(Z i)^Ld k + 1(Z' i). (2.36)

This inequality can be obtained by simple, but awkward, geometric and combi-
natoric considerations. It follows by considering locally many possible cases. Now,
the sum over the components can be decomposed into a sum over one component,
plus a sum over two components, and so on. A sum over n components is
estimated by a product of n sums, each of them is a sum over independently
changing components. The last sum is estimated using (1.28), with K replaced
by δκ> and with an additional sum over (L + 2)4 cubes • ' from πk9 the cubes
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touching a fixed LM-cube in Z\. This yields a bound similar to (2.35), with ε2

replaced by (L + 2) 40(l)ε 2, and (1 — 5δ)κdk(Zι) in the exponentials replaced by
(1 — 6δ)^Lκdk+ι(Z/

i). For n > 1 we leave only one exponential, estimating by 1 the
remaining ones with the same domain Z\. The sum over n ^ 1 is now bounded by
2(L + 2)4<9(l)ε2, assuming that (L + 2) 40(l)ε 2 ^ \. Finally, the sum over all families
of different localization domains Z from Ώk+ί, satisfying the condition [j Z = Z'o,
is estimated using (2.29). We have δ^Lκdk + 1(Z[) instead of δκdk(Y\ but the
inequality (2.29) is valid for all k. The inequality (2.27) is used for the remaining
exponential factors. Assuming that 2(L + 2)4O(l)ε2 exp 5κ ^ 1, we obtain for a fixed

Z'o,

Σ ( 2 1 4 )
D,P,Z0

Γ Ί
• f | 2 ( L + 2)4O(l)ε2exp( — (1 — Ίδ)^Lκdk+1(ZΊ)) expO(l)α 5 |Z | ?

L i J
(2.37)

where now Z\ denote connected components of Z'o.
The last sum to estimate is the sum over Z'o, or over Z\Z'O. Using the

inequality (2.32), properly adapted to the new situation, we bound the exponential
factors in the square bracket above, and half of the first exponential factor, by
exp( — (1 — lδ)\Lκdk + 1 (Z)). Of course, we assume that \{κx — 1) §: 2Lκ. The sum
over Z\Z'O is bounded, using the remaining factor and an inequality similar to
(2.34), by exp(exp( — \{κx — 1))(LM)~4 |Z|). This exponential is of the same type as
the last exponential in (2.37), which can be written as expO(l)(LM) 4α 5(LM)~ 4 |Z|.
Let us recall the definition of the constant α 5:

α 5 = O(l)e~1/3δoM + O(ao + OLX) + 0 ( l ) α 4 + y2.

We assume that (LM)4α0, (LM)4α1 ? (LM)4α4,(LM)4y2 are bounded by a constant
independent of M, for example by 1. Then 0(l)(LM) 4α 5 + exp( — ̂ (κ1 — 1)) is
bounded by an absolute constant. We use the factor exp( — δ\Lκdk+γ(Z)\ and
the inequality (2.30), to bound the exponentials by 1. We leave one factor
2(L + 2)4O(l)ε2, and the remaining factors are estimated by 1. We define the
constant C3 = 2(L + 2)40{l)2E0C1otϊ1oL(;

1 MqexpC2κ1.

Thus we have finished the estimate of the resummed terms (2.14). The sum
defines the activity H(Z), and we have proved the following lemma.

Lemma 3. Under all the above restrictions on the constants M, K, κ ; l 5 α o , α 1 , α 4 , α 6 ,
72,y,ε l 5 the activity H(Z) for a localization domain ZeΌk + 1 satisfies the inequality

\H(Z)\ S C 3 ε 1 exp( — (1 — Sδ)^Lκdk+ί(Z)). (2.38)

The above lemma implies that sufficient conditions for convergence of the series
(2.12), (2.13) are satisfied, see [26,67,25,50]. We want to prove the inequality (1.1.18)
for E{k+1)(X). The series (2.13), defining Έ{k+1)(X\ is estimated in the standard
way, each factor \H(Z)\ is replaced by the right-hand side of (2.38) in the bound.
Consider a term in the sum. We have a product of n exponentials from (2.38). We
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extract the exponential exp( — δ^Lκdk + 1(Zi)) from the z-th factor, and the
remaining product is estimated using (2.27), and the condition u Z f = X, X is a
connected domain. This yields

•Σπ Σ \pτ{Zl9...9Zn)\f\C3ε1exp5κexp(-δ$Lκdk+1(Zi)).
n=ln (Zί,...,Zn):uZi = X ΐ = l

(2.39)

To the above sum we can repeat all the considerations and bounds of the paper
[26], for K sufficiently large, and ε1 sufficiently small. We obtain

ZczX

(2.40)

The last sum is bounded by C3ε1 exp5κO(l)(LM)~4\X\ <; C3ε1 exp5?cθ(l)
exp(LM)~4 |X|, and the last exponential multiplied by Qxp( — ̂ δLκdk + 1(X)) is
bounded by 1. This yields

\^k + 1)(X)\^O(l)C3εlQχp(-(l-10δ)^Lκdk+1(X)). (2.41)

Now we make our last assumptions. At first we assume that (1 — 10<5)^L= 1, or
<5 = γfr(l — 2L"1). Next, we assume that O(l)C3ε1 ^jE0. In fact this assumption
is unessential, because the constant C3ε1 is small anyway, and we can take Eo

such, that the assumption is satisfied. The assumptions allow finally us to fix all
the constants, or rather bounds on these constants.

The inequality (2.41) and the assumptions imply the inequality (1.1.18), with
jE0 instead of E o , for the terms of the effective action E{k + l) in (1.1.3). The effective
action in (1.1.6) is obtained by adding to the above action the expression

PogZ<*>(C/k+1)-logZ<k>(l)].

For this expression we construct the representation (1.1.7) using the generalized
random walk expansion for Zik)(Uk+1). The expansion was constructed in [16],
see the formula (63) there, and the discussion after it. We gather all terms in the
expansions, localized in X, and we extend them to analytic functions of U, J. The
expression localized in X satisfies the bound (1.1.18) with K replaced by <50M, and
with an absolute constant instead of Eo. We define \EQ as equal to this constant,
and we take M sufficiently large, so that δ0M ^ K. This yields the bounds (1.1.18)
for terms of the effective action in the representation (1.1.6) also.

Let us make a last remark about the expressions (2.14). By Lemma 2, and the
transformation properties of the operators in (2.14) with respect to gauge
transformations, e.g. see (3.28)—(3.34) [13], the expressions (2.14) are gauge invariant
with respect to all G-valued transformations. The expressions are analytic functions
of (U,J), hence the invariance can be extended, by the analyticity, to Gc-valued
gauge transformations in a small neighborhood of the space of G-valued ones.
This means that the expressions are constant on intersections of orbits with the
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corresponding space of configurations (U, J) satisfying the conditions I.(i)-(iv). We
extend them to constant functions on whole orbits having non-empty intersections
with the space.

The above remark completes the proof of the inductive assumptions for the
action Λk+ί, hence the proof of Theorem 1.3.
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