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Abstract. In this paper we study the topology of .#,, the moduli spaces of
SU(2) monopoles associated with the Yang-Mills—Higgs and Bogomol’'nyi
equations, and # (m),, non-linear ¢ models from quantum field theory. Beautiful
work of Donaldson [18, 19], Hitchin [24,25] and Taubes [37,39,40] shows
that gauge equivalence classes of monopoles correspond to based rational
self-maps of the Riemann sphere. Similarly, the non-linear ¢ models we consider
here are based harmonic maps from the Riemann sphere to complex projective
m space. In seminal work, Segal [35] studied #(m),, the space of based rational
maps from the Riemann sphere to complex projective m space of a fixed degree
k. Any element of %(m), is clearly an element of 27 CP(m), the space of all
based continuous maps from the Riemann sphere to complex projective m space
of a fixed degree k, and this assignment gives rise to the natural inclusion of
R(m), in Q% CP(m). Segal showed that these natural inclusions are homotopy
equivalences through dimension k(2m — 1). As the topology of the two-fold loop
space 2% CP(m) is well understood, Segal’s result gives a very efficient way to
explicitly determine the low dimensional topology of %(m),. Thus iterated loop
spaces have much to say about the topology of monopoles and non-linear o
models.

In this paper we apply the theory of iterated loop spaces (more precisely, May’s
C, operad spaces [31]) to study .#,, # (m), and %(m),. Our main technical device
is to place a C, operad structure on these spaces which is compatible with the
usual C, operad structure on 2> CP(m). This will enable us to study the topology
of #(m), and thus the topology of ./, and #(m), above the range of the Segal
equivalence.

The C, operad structure we define here on %(m) is very similar to the C, operad
structure defined on the moduli spaces for instantons in [10]. It is worth recalling
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Segal’s observation that Morse theory supplies on reason for expecting his theorem
to be true (for m = 1). That is, Eells and Wood [21] and, independently, Woo [43]
showed that the “energy” functional

E()=2 [ 14012 dvol
2CP(1)

on the space of smooth self maps of CP(1) has no critical points (which are precisely
the harmonic maps) other than the rational maps which are absolute minima.
Thus “infinite dimensional Morse theory”, predicts that rational maps should tend
to approximate all smooth maps. When m > 1 there are harmonic maps (non-linear
o models) which are not rational (holomorphic) [15,16] [22] and one has the
following sequence of proper containments Z(m), = # (m), = Map,(CP(1), CP(m)).
In this case, Segal’s result implies that #(m), and Map,(CP(1), CP(m)) are homotopy
retracts of #(m), through a range that increases as k grows.

There is a striking similarity between the energy functional with associated
rational maps as minima and the Yang—Mills functional with associated instantons
(self-dual connections in principal SU(2) bundles over $*) as minima. This similarity
led Atiyah and Jones to their foundational work on the Yang-Mills instanton
problem and to make their celebrated, but as yet unsettled, conjecture [7] which
generalizes Segal’s theorem to the instanton case. One truly remarkable aspect of
the theory of Yang—Mills instantons has been the on-going program of Taubes
which now includes a proof of a “stable” version of the Atiyah—Jones conjecture
[41]. Using a result of Taubes on the existence of tubular neighborhoods for
instantons and the linear-algebraic description of instantons due to Atiyah,
Drinfeld, Hitchin and Manin [5], we were able [10] to build an operad structure
on the moduli spaces of these instantons and to study the associated rich
homological structure. At the same time, Fred Cohen explained to us how he had,
in an unpublished manuscript, placed an operad structure on #(m). Furthermore,
in a seemingly unrelated direction, Lawson’s exciting work on the topology of
Chow varieties [28,29] has, in addition to his many other results, uncovered an
operad structure there.

It is apparent that the appearance of operad structures in so many varied
moduli problems is no accident and that one should look for other situations
where they arise. There are compelling reasons to consider monopoles, that is, the
moduli space associated to the functional whose Euler—Lagrange equations are
the Yang—Mills—Higgs equations on R® and whose minima are the solutions to
the Bogomol'nyi equations. First, Taubes’ work on monopoles [37,39,40] has
much the same form as his work on instantons, including a tubular neighborhood
theorem which is such an important homotopy tool in these problems. Second,
there is also an analog of the ADHM construction for monopoles, namely the
Nahm construction [32]. Thus it would be reasonable to proceed in the monopole
case precisely as was done for instantons. It is not necessary to carry out that
program because the remarkable result of Donaldson [ 18], which relates the Nahm
construction to the space of rational maps, together with deep work of Hitchin
[24,25] and Taubes [37,39,40], brings us back full circle to Segal’s theorem on
rational maps and Cohen’s operad structure there!
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The monopoles considered here are “Euclidean” monopoles, that is, they are
obtained by reducing the self dual Yang-Mills equations on R* with respect to a
one parameter subgroup R of translations. However, one can also reduce by a
circle group to obtain “hyperbolic” monopoles as described by Atiyah [3,4]. Atiyah
showed that hyperbolic monopoles also correspond to based rational maps from
CP(1) to itself. Thus, we fully expect that the moduli space of hyperbolic monopoles
has the structure of a C, operad space.

One amusing consequence of Donaldson’s theorem identifying rational maps
with monopoles is that the manifold #(1), represents the global minima of two
quite differently defined functionals on £27?CP(1) (see 2.1 and 1.4). This is a
manifestation of the principle that any two Morse functions on a manifold are
equally useful in studying the topology of that manifold.

We now turn to the organization and main results of this paper. In Sect. one
we review the fundamental work of Taubes, Hitchin and Donaldson on monopoles
culminating in the identification of monopoles with rational maps (see Theorem 1.21).
Section two reviews non-linear ¢ models while Sect. three briefly reviews Segal’s
theorem. At this point, we write (1), for both the space of based rational maps
of degree k and for the moduli space of monopoles of monopole number k.

In Sect. four we construct a C, operad structure on %(m). This construction,
while similar in spirit to our construction on instantons [10], is far simpler for
rational maps (and hence monopoles) precisely because rational maps on the
Riemann sphere are much simpler than rational maps on HP(1). While the natural
inclusion i(m),: Z(m) — Q> CP(m) is thus a map of C, spaces, it is not true that i(m)
is a C, map. Our main technical result, Theorem 4.16, shows that i(m) is a
“homotopy” C, map which is sufficient to carry out the computations that occupy
the remainder of the paper. The proof is essentially identical to our proof in the
instanton case.

Section five reviews basic facts about homology operations in C, spaces. We
catalog our computational results in Sect. six. Our main result is to generate
non-trivial classes in H (%(m),) for g > k(2m — 1) and describe how the homology
of #(m), grows as k increases. We also recover some of the homological information
obtained by Segal when g < k(2m — 1). We note that Segal’s theorem [35] implies
that #(m), and QfCP(m) are homotopy retracts of #(m), up to dimension
k(2m — 1). Therefore the higher dimensional classes we construct also live in
H (A (m),).

Finally, in Sect. seven, we give a proof of Proposition 1.22 which seems to have
been noted in the literature without proof and which is needed to complete the
topological identification of monopoles with rational functions.

1. Monopoles

It is well known [27,39,40] that the SU(2)-Yang—-Mills equations on R* reduce
under “time” translation symmetry to the Yang-Mills—Higgs equations on R3:

D *F, +[®,+D,®]=0, (1.1)
D,+D, & =0, (1.2)
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where A is a connection on the trivial principal bundle P = R?® x SU(2), and @ is
a section of the Lie algebra adjoint bundle ¢ = P x gy(,su(2), which satisfies the
boundary condition

lim | @(x)] =1, (1.3)
where the norm ||| in P is the Euclidean norm on R® and the Killing

norm on su(2). Equations 1.1 and 1.2 are the Euler Lagrange equations for the
Yang—Mills—Higgs functional

1
%(A,¢)=§J3[IIFAH2+ 1D, @) ]dx>. (1.4)

We are interested in the space € of all smooth pairs (4, @) such that % (A4, @) < o
and 1 — || @||eL°(R?). The topology on € can be described as follows [39]: Consider
the affine space o7 of all smooth connections on R* x SU(2) and the space I' ().
By fixing the flat connection on R* x SU(2) we can identify .o/ with the space
of smooth sections I (£ ® T*M). Now I'(9¢® T*M) x I'(9) has the product
topology where each factor has the weak C*-topology. Consider the natural
inclusion

LE->T'(PRT*M) x I'(#) xR
defined by
i(A, @)= (A, D, U(A, D)),

and give ¥ the subspace topology. It is well known [27,39,40] that an element
(A, @)% defines a homotopy class [A4, @]en,(S?) = Z called the monopole number
k. A curvature computation [23] shows

1
k:zgtersDA@/\FA, (1.5)
which implies
U(A, ®) = 4n|k|. (1.6)

The monopole number partitions % into components

% =1] % (1.7)

keZ

and we will be mainly interested in the positive sector

©=1] %.. (1.8)

k>0
Equality holds in (1.6) if and only if (4, @) satisfies the Bogomol'nyi equations [9],
#«F, = —(signk)D , . (1.9)
Solutions to (1.9) give all minima of the Yang—Mills—Higgs functional (1.4).

The gauge group % can be identified with the space of smooth maps
g:R3 - SU(2) again with the weak C*®-topology. We are more interested in the
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normal subgroup of based gauge transformations
4" =1{ge%]g(0)= 1},

which acts freely on 4. Endow % = %/%" with the quotient topology. Now there
is a fibration

SUQRQ)— ¥
| (1.10)
gb
so0 SU(2) acts on # and there is an SU(2)-equivariant fibration (described in detail
in [39])
l" (1.11)
SZ
where 4 =5~ '(c0). Furthermore, since ¢ leaves the functional (1.4) invariant, it
gives a well-defined functional on the spaces % and 4.
Now we also have the fibration
C* () — G (5%, 5%)
l” (1.12)
SZ
where 7 is evaluation at a fixed point coeS?, C°(S2,S?) is the space of smooth
maps of degree k from S? to itself and C*(2?S?) is the k™ component of the

subspace of the based maps. Again the topology is the weak C®-topology.
The following theorem of Cliff Taubes is fundamental:

Theorem 1.13 [39]. There is a commutative diagram

@k s B,
12 i, e (1.14)

C*(Q28?) — CF (52, 52) -~
where the vertical maps I, and I, are homotopy equivalences.

In fact, much more is true [39]. The Taubes map, I,, is an inclusion, its image
1,(CP(8%,8%)) is a deformation retract of 4,, and I, is the restriction of I, to
C*(225?). To define I, regard C*(S? S?) as a subset of C*(S?,su(2)) by fixing
an identification of su(2) with R3, and let e C*(R) be a smooth, non-negative bump
function which is 1 for t <4 and 0 for t = 2. Then I:C®(52,S?)— % is defined by

I(f)=(—(1—B(lﬂ))[f(%)ﬂ(%)}(l—ﬁ(lﬂ))f(%)) (1.15)

Now SU(2) acts on # by regarding group elements as constant gauge
transformations and on C®(S2,5?) by rotations on the image S. Note that I is
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Ad-equivariant and that the stabilizer of the north pole in SU(2) is S*. Therefore
BIST ~ C*(Q*S?)/S' ~ C*(S2,8?)/SUQ) ~ B/SU(2) ~ €/%. (1.16)

Turning to the first Bogomol’nyi equation (1.9) with k > 0 (the case k <0 can
be obtained from the map @+ — @), we define the moduli space

M= {(A, P)e¥,:(1.9) is satisfied}/¥, (1.17)
and the extended moduli space:
My ={[A, ®]eB,:(1.9) is satisfied}, (1.18)

where [A4, @] denotes the equivalence class of (4, @)e%, under the based gauge
group %" From (1.16) we see that y//k:,,/?k/Sl. Actually, it follows that ./#,
is an S* bundle over .#,.

The existence of global solutions to (1.9) satisfying the appropriate boundary
conditions was given by Taubes in his Harvard Ph.D. thesis [36] and included in
[27]. It was shown that there is a natural inclusion

CulR?) —> A, (1.19)
where
C(R?) = {k distinct points in R?}/Z,

and X, is the symmetric group on k letters. Using the analog of the analysis for
instantons of Atiyah and Jones [7], we have the commutative diagram

Sk

C,(R?) ., Q282
s { A, —2 s 9, s (1.20)
C,(R%) — Q383

where S, denotes the Segal map [34], which is known to be an equivalence in
homology through a range, and X is the natural suspension map. Furthermore,
Taubes [40] has shown that i, induces an isomorphism of the homotopy groups
nq(ﬁk) ~ nq(@k) for ¢ < |k| and an epimorphism for g =|k|.

Since 02252 is a two-fold loop space and

C(R3)=k[>lo Ci(R?)

group completes to 22S?, it is natural to suspect that, as is the case for
instantons [10],

M= ] A,

k>0

has the structure of a C, little cubes operad in the sense of May [31]. In Sect. four
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we show that this is indeed the case. Our main tool in proving this is the following
remarkable theorem of Donaldson [18] and Hitchin [24,25]:

Theorem 1.21. There is a natural one to one correspondence berween M, and the
space R, of based rational maps f:CP(1)— CP(1) of degree k sending oo to 0.

This correspondence depends on a fixed isomorphism R*~C x R. The
following stronger result seems to have been noted without proof by Taubes
[40, page 476] and Donaldson [19, page 100]. Since we use this result here we
shall give a proof in Sect. seven.

Proposition 1.22. With the natural topologies on Vi i« and R, the correspondence in
(1.21) is a homeomorphism.

2. The Nonlinear o-Model

Nonlinear g-models arose in physics as examples of exactly solvable models of a
nonlinear quantum field theory. In their simplest form they appear as maps from
two-dimensional space-time to an arbitrary manifold that minimize a certain energy
functional, or in mathematical terms, harmonic maps. The g-models considered
here are harmonic maps from CP(1) ~ S? to CP(m) and were first studied by Din
and Zakrzewski [15, 16] and then more rigorously by Eells and Wood [22]. Our
presentation follows the latter reference.
On the space Map(CP(1), CP(m)) consider the “energy” functional

1
E(¢) =5 [ 1dg(x)||? dvol, (2.1)
CP(1)
where ||'|| denotes the norm with respect to the Fubini-Study metric on CP(m)
and dvol is the standard volume form on CP(1). The critical points of E satisfy
tr Dd¢ = 0, (2.2)

where D denotes the induced connection on ¢* TCP(m)® T* CP(1). Solutions to
(2.2) are called harmonic maps.

The space Map(CP(1),CP(m)) is partitioned by its homotopy classes
n,(CP(m)) = Z into components which are labeled by the degrees of the maps. The
complex structure on CP(m) implies that the energy functional 2.1 can be written as

1 _
E()) = -icpfm( [10(x) % + [[0p(x)[|?)dvol (2.3)
and that the difference
1 _
3 § (o) 1? — [ d(x)|1*)dvol (24)
CP(1)

depends only on the degree k. Thus the absolute minima are precisely the
holomorphic maps, that is, the rational maps from CP(1) to CP(m). In the
physics literature (cf. [15,16]) these are referred to as instanton solutions. More
importantly, all minima are rational maps [22] and, for the case m = 1, all critical
points are minima and hence rational maps [21,43].
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We are more interested in the based maps of degree k:
Map}(CP(1), CP(m)) = Q} CP(m).
We have the natural sequence of inclusions
R(m), = H (m), = Q2F CP(m), (2.5)

where Z(m), and #(m), denote based rational maps and based harmonic maps of
degree k from CP(1) to CP(m) respectively. Furthermore, the first inclusion is an
equivalence for m=1 and is always proper for m > 1. Segal’s theorem, which is
discussed in the next section, shows that the composite %(m), = Q22 CP(m) is a
homotopy equivalence through a range that increases as k grows. Thus Segal’s
result, along with (2.5), implies

Proposition 2.6. Both %(m), and Q} CP(m) are homotopy retracts of # (m), through
a range that increases as k grows.

In Sect. six we will use this proposition to extract information on the homology
of #(m),.

3. Rational Maps and Segal’s Theorem

Segal, in his fundamental paper [35], considered the space of based rational
self-maps of the Riemann sphere of degree k and the natural inclusion of this space
in the space of all continuous based self-maps of the Riemann sphere of degree k.
We have seen ((1.21) and (1.22)) that this space and its associated natural inclusion
are of fundamental importance in the study of monopoles. Segal’s main result,
which we state below, represents a guiding philosophy in the study of the topology
of moduli spaces of global solutions to partial differential equations. Briefly put,
as k increases the finite dimensional space of analytic objects (here rational maps
or monopoles) becomes an increasingly better homotopy approximation to the
infinite dimensional space of continuous objects (here all continuous maps or
smooth pairs (4, @)). In practice, much is usually known about the range space
and this classical knowledge may then be used to obtain topological information
about the analytic moduli spaces.

Let f(z) =(p(2)/q(2)) be the quotient of two monic polynomials of degree k,
where p(z) and ¢(z) have no roots in common. f(z) is then a based self-map of
C'U oo = S? which sends oo to 1 and thus, by forgetting the analytic structure,
f(z) determines an element in £27S2. If we denote the space of all such f(z) by %,
and the natural inclusion induced by the forgetful map by i,, we may then state
Segal’s first theorem in [35].

Theorem 3.1 [35].
iRy — Q7 S?
is a homotopy equivalence up to dimension k.
The work of Donaldson [ 18], Hitchin [24,25] and Taubes [39,40] described

in Sect. one shows that Segal’s theorem is also a theorem about the moduli spaces
M . In fact, while Segal’s original proof of this theorem was purely topological,
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the work of Donaldson, Hitchin and Taubes, taken together, gives a purely
“monopole theoretic” proof of (3.1). This allows us to adopt the notational
convention that .#, and %, are identical. We do so for the remainder of this paper.
As §?=CP(1), we can equivalently write f(z) in terms of homogeneous
coordinates as f(z) = [p(z), q(z)], which immediately generalizes to define rational
maps of S? into CP(m) as follows: Let 2(m), denote the maps f(z) = [PosP1s--+» Pm]
where each p; is a monic polynomial of degree k and none of the p; and p; have
a common root for i # j. Again, each such f(z) is an element of Q2 CP(m), and if
we denote the natural inclusion by i(m),, we may state Segal’s second theorem.

Theorem 3.2 [35].
i(m),:  A(m),— Q} CP(m)

is @ homotopy equivalence up to dimension k(2m — 1).

We conclude this section by pointing out that the homology of 27 CP(m) is
well known, and therefore it should be possible to use all the i(m)’s following a
program similar to that in [10] to obtain homological information about %(m),
and #'(m), as well as i(m),: Z(m),— A (m),— Qi CP(m). This program is carried
out in the remaining sections of this paper.

4. Operads and Rational Maps
In this section we define a C, little cubes operad action on
A(m) =] [ A(m),,

the disjoint union of the spaces of degree k based rational functions studied by
Segal [35]. We are indebted to Fred Cohen for pointing out this structure to us.
We then observe that this operad structure is homotopy compatible with the natural
inclusion of the space of based rational maps into the space of all based maps.
This observation will then permit us to make new computations on the homology
of #(m) which we catolog in Sect. six.

We begin by recalling some basic facts about the theory of iterated loop spaces
and the machinery which we will need to tie # more precisely into this theory.
Actually, we expand our attention from iterated loop spaces to May’s C, operad
spaces [31] which are based on Boardman and Vogt’s little n-cube spaces [8]. We
then show that # is a C, space and that, up to homotopy, this C, structure is
compatible with the natural C, structure on £2?CP(m) under the natural inclusion

i(m).

Definition 4.1. ([8],[31]). Let I" be the unit n-cube and let J” = I" be the interior
of I". An open little n cube is an affine embedding f of J" into J" with
parallel axes. Then C,(j) is the space of j-tuples (f;,...,f;) of open little
n cubes with disjoint images in J" < I" (with the subspace topology inherited from

J
Map([[J", J").
Notice that the symmetric group X; acts on C,(j) by permuting the disjoint
images of the little n cubes.
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Let 2X be the space of based loops on X; that is, the space of based maps
f:(S*, 1)—> (X, *) with the compact open topology. Recall 2X is a topological “group”
where the group operation is classically called the loop sum. We may iterate this
construction to obtain 2"(X)=0Q(Q...(Q2X)), the space of n-fold iterated loops
on X. Equivalently, we identify 2" X with the space of maps (I",0I") — (X, %). Now
C,(j) acts on (2" X), the j-fold Cartesian product of 2"X, in the following way:

ot Co()) X 5 (Q"XY > Q"X 4.2)

is defined by mapping the image of the i" little n-cube in J* = I" via the i* coordinate
function of (£2"X)’ into X and mapping the complement of the images of all | little
n-cubes in I" to the base point xeX. If X, acts on (£2"X)’ by permuting the j
coordinates, then it is clear that §, ; is well defined.

These structures satisfy many other compatibility conditions; for example, the
following diagram (see May [31]) is known to commute.

dxid

Colk) x C,(J) x (2" X > Cl(J) % (Q"X)

5.,

id x u X (43)

]d
id x 9

Calk) X G, (] 2°X) = C, (k) x (2" X)F

Here J= Jl’ ’}k Z 11_17 n Cn(.jl)x s X Cn(jk) (J oX ) n(jl)

(Q" XY x - x C,(j,) x (.Q"X)’k,p is the shuffle homeomorphism, and ¢:C,(k) x
Co(j) x - x Cy(ji) = C,(j) is defined by (g; f1,.... fi) =g(f1 + -+ +[i), where
+ denotes disjoint union. Thus ¢ places the j, disjoint little n-cubes of f,eC,(}j;)
homeomorphically into the interior of the i little n-cube of geC, (k). Also, note
that (4.3) is equivariant with respect to the obvious actions of the various
symmetric groups 2, 2, X

Restricting 3, , to a fixed point ceC,(2), we recover the standard “loop sum”
map

¥, Q"X x QX ->0"X

which makes Q"X a topological “group”. The main thrust of iterated loop space
theory is that the presence of the additional loop factors on "X further enriches
its topological structure as exhibited in (4.3).

These structure maps are formalized in both Boardman and Vogt’s [8] and
May’s [31] theories of iterated loop spaces. More precisely, C,, the union over
all j =0 of the C,(j)’s together with the structure maps 0:C,(k) x C,(j;) x --- X

C,(j)— C,()), is an operad (sec [31], Definition 1.1 and Theorem 4.1). Further-
more, the structure maps {9, ;}. together with higher compatibilities such as (4.3),
make Q"X a C, space (see [31], Definition 1.2, Lemma 1.4 and Theorem 5.1).
We now need the following key definition of May.

Definition 4.4 [317 Y is a C, space if it is equipped with structure maps
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9;:C,(j) x Y/ =Y for all j= 0 such that
(a) The following (the analogue of diagram 4.3) commutes:

dxid

Culk) x Cp(J) x YT 2% € (j) % Y7
o,
o y 4.5)

T‘gn.k
1d x

Cn(k) X Cn(J’ Y) '—l)cn(k) X Yk

(b) 3 (1,y)=y for all yeY.
(©) 9(ca,z) = 9(c,0z) for ceC,(j),ze Y’ and geX".
Again Y/ denotes the j-fold Cartesian product of Y. In addition, May defines a C,

map between C, spaces to be map f:(Y, ) —(Y’, §') such that the following diagram
commutes:

C)x Yy sy
d _f/l lf. (4.6)
C,(j) % (Y’)j—9}+ Y’
The following fundamental recognition theorem of May [31] relates C, operad

spaces to more familiar objects, namely n-fold loop spaces.

Theorem 4.7. Every connected C, operad space has the weak homotopy type of an
n-fold loop space.
In order to place a C, operad structure on #(m) we begin by defining a loop
sum map
w1 R(m)y, x RB(m), = A, 11, (4.8)

as follows: Let « be a fixed homeomorphism of C ~ R* with the open unit square
centered at (0,2)eC ~ R? and let f§ be a fixed homeomorphism of C ~ R? with the
open unit square centered at (0, —2)eC ~ R,

Definition 4.9. Let f=1[po,p1s-..,Pul€R(m),, and g=1[qo.q1.....qn]ER(M),,.
then

f*ge%(m)kl o

is the unique rational function

LopoBao,oapi Bay,. ... o0pmfanl,

where the roots of «p; are precisely the image under o of the roots of p; and the
roots of fiq; are precisely the image under f of the roots of g;.
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It is now easy to extend this loop sum map to obtain maps
9 Ca(p) X 5 (R(M) )P = R(m) ., (4.10)

which will permit us to define the C, operad structure (with associated homology
operations) on #.

We think of little cubes in I? as big cubes in C' ~ R? in the obvious way. Thus
a point in C,(p) is equivalent with p disjoint open cubes in C* (with sides parallel
to the axes).

Definition 4.11. Let f,e%(m), for 1 <i<p. Then
’9(61 .‘.p,fl 9 5fp)e'%(m)pk

is the unique rational function whose p(m + 1)k roots (in homogeneous coordinates)
are uniquely determined by where the map ¢, ,eC,(p) sends the (m + 1)k roots
(in homogeneous coordinates) of the f;’s.

Remarks.

1. When p=2 and ¢, , is fixed, we recover the loop sum map =.

2. Itis clear that 9(c, ,,fy,...,f,) is a well-defined element of Z(m),, as the
roots of the distinct coordinate polynomials of the f;’s are placed in disjoint
cubes by the ¢, .

We point out that this construction depends on having based maps and is not
well-defined if we consider the related space of all rational functions mapping to
all unbased maps of S? to CP(m). This is analogous to the situation for instantons
in the Yang—Mills theory as explained in [10].

It is now routine to verify

Theorem 4.12. Let $:C,(p) x 5, (#(m),)” — R(m), be given by (4.11). Then (R(m), )
is a C, operad space.

Since #(m) is not connected we cannot immediately apply May’s recognition
theorem 4.7. However, May’s theory still implies that %(m) has a classifying space.
Hence it follows from Segal’s theorem that

Corollary 4.13. QBZ(m) ~ Q22> CP(m).

This corollary is just a special case of the classical “group completion” theorem
contained in the works of Barratt, May, Milgram, Priddy, Quillen, Segal and others
in the late 1960’s and early 1970’s. The reader who is unfamiliar with this body of
work would do well to consult Adam’s book [1,chapter 3] on this point.
Corollary 4.13 is equivalent to the statement that the direct limit of the Z(m),’s is
homotopy equivalent to £3CP(m), which is also an immediate consequence of
Segal’s theorem.

It is interesting to note that the existence of the operad structure for rational
functions is trivial to prove while its anolog for instantons was quite involved and
delicate [ 10, Sect. five]. The reason for the difference is that C is abelian and thus
rational functions on the Riemann sphere are completely specified by their poles
and zeros, while the ADHM construction [5] for instantons is given in terms of
quaternions. The failure of H to be abelian endows the ADHM maps in
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Map(HP(1), HP(m)) with a more subtle structure which is not obviously compatible
with an operad structure. Thus the difficulty in placing an operad structure on
monopoles has been hidden in Theorem 1.21.

Hence we find the natural inclusion i(m):%(m)— 2>CP(m) is a map of C,
spaces. However, while both %(m) and Q?CP(m) are C, spaces i(m) is not
a C, map! This is evident even at the loop sum level in trying to construct

a map #(m), x %(m)kli@(m)kﬁkz that commutes with the map Q7 CP(m) x

Q2,CP(m) 502, ., CP(m) given by &, (c, f,g) = f+g for any fixed ceC,(2). The
problem arises because ,(c, f,g) is constant on a rather large set while, of course,
any element of %, ,,, is analytic. Fortunately, this defect can be remedied up to
homotopy, which is sufficient for all computational purposes.

Theorem 4.14. The following diagram homotopy commutes
Q2 CP(m) x Q%,CP(m) —— Q2 ., CP(m)
T T (4.15)

Ry, X Rlmy,  —— B,

where the vertical arrows are given by the natural inclusions i(m); and * is the standard
loop sum map on £2* CP(m).

Theorem 4.16. The following diagram homotopy commutes:

C,(p) 5, (Q2CPm)Y - 22

pn

] ‘[ (4.17)

9

CZ(p) X Zp(‘%n)p - %n

CP(m)

Proofs of (4.14) and (4.16). The proofs are completely analogous to that of Theorems
6.3 and 6.10 of [10]. There is a continuous way, which depends only on the ¢, ,’s
and not on the g;’s, of deforming 3(c,. ,.4;,...,q,), first to a map of ¢, _, into
CP(m) which is constant off the little cubes, and then to a map which is defined

by the g;’s on those little cubes. Details are left to the reader.

5. Homology Operations on C,-Spaces

Theorem 4.16 shows that #(m) is a C, space which is homotopy compatible with
the standard C, operad structure on 22 CP(m). The homology theory of C, spaces
is very rich. In particular, it is well-known that C, spaces admit homology
operations above and beyond the duals of the Steenrod operations. Araki and
Kudo [2] were the first to discover and study such operations which generalize
the Pontrjagin product induced by loop sum when p = 2. Browder [12] obtained
more complete information when p =2 and also studied operations when p is an
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odd prime. Dyer and Lashof [20] then studied the algebra of stable operations
(on infinite loop spaces) for all primes p. These stable operations (which naturally
give rise to unstable operations on iterated loop spaces) and their rich algebraic
structure have made the Dyer—Lashof algebra a fundamental tool in algebraic
topology. May’s theory of iterated loop spaces [31, 13] shows that all the homology
operations mentioned above live naturally on C, operad spaces. Finally, Cohen
[13] has given a complete treatment of all the mod p homology operations on C,
spaces that we consider in this paper. We now recall the definitions of these
homology operations and various fundamental facts which we will need in the
next two sections. We refer the reader to [13] for a complete treatment of this theory.

Definition 5.1. Let X be a C, | space with xeH (X, Z/p) and yeH (X, Z/p). Then
define

a. Fori<n
Qi(p—- 1)(x) = ‘9p*(ei(p‘ 1) ® XF)EHpq+i(p* 1)(X> Z/p)
and, for p odd,
Qip—1)-1(x)= 19p*(ei(p~ -1 ®xp)€Hpq+i(p~ 1)-1 (X,Z/p).
b. For p=2and s<g
Q°'(x)=0,

while if s = g, then
Q*(x) = Qs 4(x).
c. Forp>2and 2s<gq

while if 2s = ¢ then
Q'(x)=(— I)SV(Q)Q(Zs—q)(p— 1)(x).

d. For 2s<g¢q

pQ*(x) =0,
while if 25 > g

BO(x) = (— I)SV(Q)Q(ZSﬂz)(p— 1)- 1(x),

where v(g) = (— 1)1@~ V=D (((p — 1))
e. Forp=2

&ax) = S (e, @ x @ x)e H* (X, Z/p).
f. For p odd
&= (= D""2v(q) Ip(eup— 1y ® X" H g nip— 1)(X. Z/p).
g. For p odd and n + g even
= (=D 29(q) Gpu(lnip- 1) 1 ®XP)EH pg 4 nip- 1)~ 1 (X, Z/p).

/‘{‘n(xsy): (— 1)nq+1¢*(Z®X®y)€Hn+q+r(X’ Z/p)
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Here y:C,, {(2) x X x X > X is the X, equivariant map without the Z/2 quotient
action on the domain and 1€ H,(C,, 4 {(2), Z/p) = H,(S", Z/p) is the fundamental class.

Remarks:

1. Part a. defines the operations which come from the stable Dyer-Lashof
operations [20].

2. Parts b. and c. provide a dictionary for passing between lower notation (Q,(x))

and upper notation (Q%(x)) which was invented by May to simplify many

computational formulae involving iterated operations, especially at odd primes.

We shall not strictly adhere to one convention but rather pass freely to whichever

notation can be used most easily to state our results.

Part h. defines the Browder operation [12].

4. The cells e;e H,(C,(p)/Z,, Z/p(q)) are dual to the i-dimensional generator in the
image of H'(BZ,,Z/p(q)) — H'(C,(p)/Z,. Z/p(q)), see [13].

5. Qo(x) = x?, the p-fold Pontrjagin product of x with itself.

6. In general, the top operation &£, behaves very much like a Dyer—Lashof operation
(¢, is precisely Q,,— ) if X is a C, ., operad space). Theorem 1.3 of [13, pages
217-218] catalogs the precise differences. As %(m) is a C, space, n =1 in our
computations. Thus &, and {,, which we write as Q,_, and fQ,,_; respectively,
are the relevant operations to consider.

W

At this point a remark is in order. The calculus of C, homology operations is
quite intricate. We have tried to present the results that follow with no further
computational prerequisites. We refer the reader who wishes to make further
calculations based on the results of this paper to Cohen’s concise yet encyclopedic
treatment [13, pages 213-219] of the calculus.

We conclude this section with the following classical facts that we will use in
the next two sections. To describe H,(22S% Z/p), recall that the identity map
§? — S represents the base point in the 1 component 27 S? and thus a distinguished
homology class [1]eH,(£2%S?, Z/p). Furthermore, if x and y are homology classes
carried by the k and [ components of £225?, then x*y and Q,(x) are carried by the
k + 1 and pk components respectively. The following is classical.

Theorem 5.2. H,(2%S% Z/2)= Z/2([1],0Q,(1)), a polynomial algebra over Z/2, under
the loop sum Pontrjagin product, on generators [1] and Q,(1)=0,0,...0Q,(1).
Furthermore, the natural fibration

Sl __’52m+ r_, CP(I'H)
splits after being looped once and we have the following splitting
Q*CP(m) = Q*S*"*1 x Z,

where 22521 is connected and Z indexes the components of 22 CP(m). We also
have the classical

Theorem 5.3. H,(Q2°CP(m), Z/2) = H, (Q*S*" "' x Z.7/2)
= Z/z([l:lv lva 1 Qll(llm~ 1))

a polynomial algebra over Z /2, under the loop sum Pontrjagin product, on generators
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(11 tom-1, and Qp(tam-1) = Q1Qy... Q (13— 1), where I, has length 1.
As is customary, we have written Q, for &,. When m =1, (5.2) is a special case of

53 and 1, =Q,(1)x[ —1].

To state the analog of (5.3) for odd primes we need a bit more notation. Let
B ... fQ%(x) = Q'(x) be an iterated mod p operation on x and let A(*) denote
the tensor product over Z/p of polynomial algebras on even dimensional generators
and of exterior algebras on odd dimensional generators.

Theorem 5.4. Let p be an odd prime. As algebras, under the loop sum Pontrjagin
product:

H,(Q2*CP(m), Z/p) = A([11, Q" (12— 1), BO" (13n~1))
for I;=(0,p'%,0,p 7 2%,...,0,1); that is, e;=0 and s;=p' 7 for all 1 < j< 1.
J J

6. Homology Calculations

We are now ready to use the results of the previous sections to construct many
new non-trivial classes in H,(Z%(m),, Z/p) for all primes p. As mentioned in the
introduction we recapture the classes discovered by Segal for * < k(2m — 1) as well
as generate new classes above the range of the equivalence induced by the natural
inclusion. Theorems 4.14 and 4.16 imply that the following diagrams commute for
allmz=1:

H,(Q2CP(m), Z/p)® H,(Q22 CP(m), Z/p) —— H, , (22, ,CP(m), Z/p)
ik@,,j T, (6.1)
H,(#(m),, Z/p)® H(R(m), Zp)  —— H,, (RM)y 115 Z]p)

and
Qp—1
HS(QI%CP(rn)’ Z/p) _—_)Hps+p~ I(ngCP(m)’ Z/p)

,T ], (6.2)
0p-1 .
Hs(‘%(nl)kfz/p) - Hps-#p—l(‘%(m)pk?Z/p)

Lemma 6.3. There exists an element 1,,,_,€H,,,_(#(m),,Z/p) such that 1,,, _, is
Sent 10 iy, 1€Hy,,_ (23 CP(m), Z/p) under the natural inclusion i,.

Proof. This follows immediately from Segal’s Theorem.

If we start with the generator t,,,_,€H,,,_(#(m),, Z/p) and compute iterated
operations on 1,,,_; and loop sums of such elements by using the commutivity of
diagrams (6.1) and (6.2) and the known C, structure of H,,(£2> CP(m), Z/p), we may
construct many non-zero homology classes in H (%(m),, Z/2), including new classes
where g > k(2m —1). The following two theorems summarize the homology
generated by the operations.
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Theorem 6.4. H  (%(m),,Z/2) contains elements of the form

Q1 (tam—1)% % Qy (1o 1)x [k —1] (6.5)
for all sequences (I,...,1,) such that =Y 2™ <k. Here each 1, is one of the
m=1

sequences given in (5.3). Furthermore, the image of this class in H ,(2* CP(m),, Z/2)
is given by the element of the same name.
and

Theorem 6.6. H,,(%(m),, Z/p) contains elements of the form
B Q" (1 1) % # B Q (1 - )6 [k — 1] (6.7)

for all sequences (I,...,1,) such that |="Y p"" <k. Here each I,, is one of the
m=1

sequences given in (5.4) and each ¢; may be either O or 1. Furthermore, the image
of this class in H, (2% CP(m),, Z/p) is given by the element of the same name.

Remark. We may use diagrams (6.1) and (6.2) to generate many classes of the form
Q,- 1(x*y) however, the Cartan formula [13] decomposes these classes into a sum
of classes of the form (6.5) or (6.7).

In particular, we have recovered both a weak form of Segal’s theorem in
homology, and a version of [35, Proposition 5.3].

Corollary 6.8. (i(m),),, is surjective for * < k(2m — 1).

Corollary 6.9. The inclusions
Jkysky): Hoy (R(m)y, . Z/p) = H ( (R(m)y,, Z[p)
induced by loop summing with [k, — k] are injective on the image of
i(m)y,: Hy(R(m)y,, Z/p)— H (27, CP(m), Z/p).

It is easy to list the classes generated by Theorems 6.4 and 6.6 of dimension
greater than k(2m — 1) and to obtain a better bound on how fast the homology of
the space of rational maps, equivalently the moduli space of monopoles, is growing.
We close our analysis by highlighting the top dimensional non-trivial classes
generated by this method.

Corollary 6.10. Let k =2/. Then

0,01 Q(1om-+1)eH (R(m)y, Z/2)
has non-zero image in H,(Q2*CP(m),,Z/2). Here g=2""'m —1.
Corollary 6.11. Let k= p’. Then

Q" Qe QIO (1 )EH (R () Z )

has non-zero image in H, (> CP(m),,Z/p). Here q = (2p")m — 1.
Thus in the special case for monopoles we see ((6.10) and (6.11)) that, while
the Segal homotopy equivalence holds for g <id, where d is the dimension of

M, there are non-trivial classes in H (%k) for g <id for infinitely many k.
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Recall that when m =1 the results stated above hold equally well both for
spaces of rational maps and for moduli spaces of monopoles. We conclude this
section with the observation that (3.2) and (2.5) imply that when m > 1 the results
stated above hold equally well for spaces both of rational and of harmonic maps.

7. Proof of Proposition 1.22

The proof of 1.22 amounts to keeping track of continuity while tracing through
the Donaldson—-Hitchin—Nahm correspondence between monopoles and rational

maps. We do this in three steps: Based rational maps <& equivalence classes of

Nahm complexes < certain algebraic curves on the space of lines in R3S Gauge
equivalence classes of SU(2)-monopoles.

We begin by giving Donaldson’s definition of a Nahm complex [18]: The triple
(o, B,v) is called a Nahm complex if veC* and o and f are smooth maps from the
open interval (0,2) to the k x k complex matrices M*(C) which satisfy:

Wb 12t pr=o, (1)
ds
A ) (o] + [, p¥1) =0 (72

ds

where a2 —s)=al(s), (2 —s)=B7(s),« and B are meromorphic in some
neighborhood of s =0 and s =2 with simple poles at 0 and 2, and with residues
a and b respectively at s =0. In addition, Tr(a) =0 and v is an eigenvector of a
with eigenvalue — (k — 1)/4. Furthermore, {v,bv,...,b*” v} span C*

The topology on the set N, of Nahm complexes is that induced as a subspace
of Map((0, 2), M¥(C)) x Map((0, 2), M*(C)) x C*. Consider the space of continuous
maps Map([0,2], GL(k, C)) and let # denote the subset of maps that are smooth
on (0,2) and satisfy g7 (s)g(2 —s) = I. # acts on N, by:

-, ldg
/= 1__Z -1 7.3
o' = gog TR (7.3)
B =ygpg™ ", (7.4)
v = g(O) (7.5)

for ge #. We are interested in the quotient space N,/ .

Donaldson [18] shows that there is a one correspondence between based
rational maps of degree k, #,, and elements of N,/# given as follows: Consider
the open subset of pairs (B, w)e M*(C) x C*, where B is symmetric and which satisfies
the condition that w generates C* as a C[B] module. The group O(k, C) acts on
this subspace by conjugation on M*(C) and by the standard action on C*. Let 2,
denote the quotient space. Donaldson shows that the map 2, — %, defined by

(B,w)= f(z)=wl(zI —B) " 'w
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is a bijection. To obtain the correspondence between 2, and N,/ consider the
unique “covariantly constant” map u:(0,2)— C*.

Du= %2—+cxu—0 (7.6)
which satisfies u(s) ~ vs* 12 as s -0, If
B =p(1), (7.7)
and
w = u(1), (7.8)

then the elements of N, /# are in one to one correspondence with the elements of 2,.

Lemma 7.9. The Donaldson bijection described above is a homeomorphism between
N /A and R,.

Proof. That #, and 2, are homeomorphic follows easily from the explicit form of
f(2). To describe the homeomorphism between 2, and N,/#°, we first remove the
regular singular point at s =0 (a similar argument works at s =2) in (7.6) by the
substitution u(s) = s*~ /2 y(s), for then y satisfies a regular equation in [0, 17, viz.,
d
=0, (7.10)
ds
where r is analytic at s =0 and y(0) = v.
Near s =0 we can represent (o, f§,v) a

als) = —+2 (s)™ 1d—9 (7.11)
Bls) = --+g(S) Y(B — b)g(s), (7.12)
v = lim sC" %" D2y(s) = y(0), (7.13)

where g(1) = [, the identity element. Thus the continuity of the map [ B, w]+ [, 8, v]
follows from (7.11), (7.12), (7.13) and the smoothness of y as a function of its initial
condition y(1) = w.

To show that the inverse map [a, 5, v] — [ B, w] is continuous amounts, by (7.7)
and (7.8), to showing that y is a continuous function of . Suppose for i =1 and 2
we have

d—+1y() 0

with y;(0) = v;. Then we can write

Vi) = ya(8) = =i ()11(8) = y2(8)) + (r2(8) = r1(5)) y2 ().

From Gronwall’s lemma, [30, page 87], we obtain an estimate

[y108) = y2() = (v, — vy + 1y, ||L°°(o,1)||”z — 7 ”L‘(O,s}) Exp |7, ”u(o,s)-
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This proves continuity since, for regular functions, the compact-open topology
coincides with the uniform topology on [0, 1].

The correspondence 2 given by Hitchin [24, 25] (see also [26]) depends crucially
on the existence of a certain holomorphic curve S, the spectral curve, in the twistor
space T of lines in R*, which is known to be just the holomorphic tangent bundle
of the Riemann sphere, TCP(1). Hitchin [24,25] shows how Nahm’s equations,
(7.1) and (7.2), can be solved by certain algebraic curves S in TCP(1). The gauge
group # can be used to choose o = o* and the stabilizer of this condition in #
is O(k, R). Consequently, we have the homeomorphism

N/# ~NP/O(k,R) = ¥,
where

N? = {(o B,v)eN,Ja=0o* and @=e")}.

Since the “real” eigendirection is determined completely by «, we have an S’
bundle R
St 4,

! (7.14)
N

where ./} is the space of O(k, R) conjugacy classes of pairs (o, ) which satisfy

dp

= 4+ 2[o, f1=0, (7.15)
ds
do
B 1=0, (7.16)
s

a(s) = als)*, a2—s)=a"(s) and B2 —s)=pBT(s), (7.17)

where « and f are meromorphic functions on a neighborhood of [0, 2] with simple
poles at s =0 and 2 whose residues a and b define an irreducible representation
of dimension k of su(2).

We need to show that .V, is homeomorphic to .#,. First we show that .4,
and ./, are homeomorphic. Hitchin associates to each [, f]€.4", a real algebraic
curve S in TCP(1) as follows: Let (eC be the coordinate on CP(1) centered at 0
and (,{) be the standard coordinates in TCP(1). To each [a, /] we associate

R()=p—2ul+ p*(* (7.18)
and
R (O =a+p* (7.19)
which satisfy the isospectral deformation equation
R
dR =2[R,,R] (7.20)
ds

and the reality condition
RQO* =R (7.21)
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Then to each {o, f} 4} we associate a divisor of a section

¢([o, f1) = det(nl + R(0))

of the linear system |n* @(2k)| on TCP(1). This defines the genus (k — 1) real curve
S by the equation

det(yl + R(0)) = 0. (7.22)

The isospectral deformation equation guarantees that S is an invariant of
Nahm’s equations and thus so is its spectrum. Hitchin shows that S must satisfy
certain conditions (B1-B4 of [25]):

1. S has no multiple components.

2. § is real with respect to the standard real structure on T'CP(1).

3. If I} is the line bundle on TCP(1) with transition functions e*"* with respect to
the standard coordinates (4, ), then I? is trivial on S and

Lk—1)=L@n*0(k)

1s real.
4. H9(S, I5(k — 2)) =0 for all se(0, 2).

It follows from (7.18) and (7.22) that S is a continuous function of the
equivalence class {o, f}e.A4}. Conversely, given a compact algebraic curve S in
the linear system |7*(@(2k)| which satisfies conditions B1-B4, it must have the
form (7.22) and hence determines (x, ) up to an O(k,R) transformation. In
making a choice of representative, o and f appear as the coefficients of R({) and
thus depend continuously on S.

It remains to show that the space of compact algebraic curves S in the
linear system |n*O(2k)| satisfying conditions B1-B4 is homeomorphic to .#,.
Following Hitchin [25], we pick a representative {V, ®}e.#, and define a rank
two holomorphic vector bundle E on TCP(1) as follows: Pick a point ze TCP(1),
let y, be the oriented line in R* represented by z, and u be the unit tangent
vector along 7*. Define

E,={sel (1, E)|(V,— i®)s =0}.
Then E satisfies the following conditions:

1. E is trivial on every real section.

2. E has a symplectic structure.

3. E has an anti-holomorphic linear map 0:E,—E_, such that > = — 1, where
(1, §) = (= (7/C%), — (1/0)). -

4. 1If t parameterizes the line y, and L} denotes the subspace of E, such that
s(t)—0 as t— + oo, then L' is a holomorphic subbundle of E isomorphic to
LY(—k). Thus E can be represented by an extension

0— LY(—k)—E—L'(—k)—0.
The spectral curve is then defined by
S={zeTCP()|L}¥ =L, }. (7.23)
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Remarks.

1. Hitchin [24] showed that every holomorphic rank two bundle on TCP(1)
satisfying the above conditions comes from a solution to the Bogomol'nyi
equations, (1.9), satisfying certain boundary conditions.

2. Taubes (private communication) has shown that the boundary conditions used
by Hitchin (see [24, page 589] or [25, page 146]) are equivalent to those used
here; that is, those of [39,40].

3. The spectral curve S depends only on the gauge class {4, @}.

Now, arguing precisely as in Lemma 7.9, the sections s satisfying the ordinary
differential equation

(V,—i®)s =0 (7.24)

depend continuously on (4, @), where A4 is a connection 1-form associated to V
with respect to a local trivialization. Hence the line bundles L* and thus the spectral
curve S vary continuously with (4, @). It then follows that the map #,— .4,
described by Hitchin is continuous.

To finish the proof that 4 and .#, are homeomorphic it suffices to prove

Lemma 7.25. The map given by Nahm’s ADHM construction is continuous.

Proof. The connection coefficients and Higgs field are given by Nahm [32] as
2
A= [y*Dyds (7.26)
0

and

2
D= [y*syds, (7.27)
0

where

1. D denotes the derivative with respect to xeR>.
2. yekerA*NI*(0,2)® C*® H.

3. A* =i(d/ds)—iT + X.

4. T=(p—p*)i—(f+ )k + 24

Hitchin shows ([25, pages 150—1517) that the residue of the pole at zero of T
decomposes into the direct sum of two irreducible representations of su(2), namely
labeling by dimension, [k + 1]@® [k — 1]. The regular solution of A* at O is the
representation [k + 1] and y ~ s** /% near 0. We can remove the pole at zero by
the substitution y(s, x) = s* 12 f(s, x) and, in the representation [k + 17, the initial
value (0, x) is the lowest weight vector of Res, o( —iT). We restrict ourselves here
to the interval [0, 1] but a similar analysis works for the interval [1,2].

We need to show that (4;, @) for i = 1,2 are close in .#, whenever the Nahm
complexes (x;, B;) are close in Ny. We note that here (4, @) depend only on the
equivalence class {«, f}. From (7.26), (7.27) and the discussion above, it suffices to
show that D’f, and D'f, are always close for any jeZ and for all x in a compact
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set K = R3. Writing A*y =0 as a real equation, we have

df;
ds

(s, %) = (ri(s) + Ux)) fi(s, %),

where r;(s) is analytic near s = 0 and [(x) is a linear function of x. From a standard
theorem in ODE’s fi(s,x) is C® in the parameter x, and thus we seen that D/f;
satisfies a similar equation, namely

DLt~ 1)+ 109D+ oD, (729)

Again, from Gronwall’s lemma we obtain an estimate

|Df 1 (s,x) = DIf5(s,x)| < (4 + BO)D,

where

L A=c,IDI7 =DV ol a0
2. B= ””1“* 2 llL10,9)s

3.C= ” Djfz ”Lw(O,s)’

4. D=Expllri + ) 110.9-

This estimate is valid for all se[0, 1] and for all xeK. The result then follows

by induction (and also noting that r;(s) are linear functions of «; and f;). This
concludes the proof of the lemma.

Thus .4 «and N = A, are S* bundles over homeomorphic spaces (.#, and A",).

Since both bundles have sections, the proof of Proposition 1.22 is complete.

Acknowledgements. We would like to thank Fred Cohen for telling us about his C, operad structure
on rational maps, Jacques Hurtubise for first indicating to us the connection between monopoles and
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