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Abstract. We investigate the spectrum of the following random Schrόdinger
operators:

72

where F(Xt(ω)) is a Markovian potential studied by the Russian school [8]. We
completely describe the transition of the spectrum from pure point type to
absolutely continuous type as the decreasing order of a(t) grows. This is an
extension to a continuous case of the result due to Delyon-Simon-Souillard
[6], who deal with the lattice case.

1. Introduction

In this paper, we will study the one-dimensional Schrόdinger operator:

on L2(R, dt), where {^(ω); 1e R} is a Brownian motion on a compact Riemannian
manifold M with the normalized Riemannian volume element μ as its marginal
distribution. Then {Xt(ω}\ teR} becomes a stationary ergodic process on M. We
assume that FeCco(M), αeC°°(R), a(t) is non-increasing on R+=(0,oo), a(t)
= a( —t\ and α(ί)-»0 as |t|->oo. It is known that H(ω) defines a self-adjoint operator
on L2(R, dt).

For a self-adjoint operator H on a Hubert space, we denote by ΣH, ΣpH, ΣSCH,
and ΣacH spectrum, point spectrum, singular continuous spectrum and absolutely
continuous spectrum of H respectively (see Kato [12]). Our interest here is to
investigate the existence or non-existence of these components of the spectrum of
H(ω). Since α(ί)->0 as |ί|->oo, H(ω) has only discrete spectrum on (— oo,0) if any
and ZH(ω)n[0, oo) = [0, oo) (Reed and Simon [17]).
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Let L be the generator of {Xt; ίeR}, that is, L = ̂  of the Laplace-Beltrami
operator on M. For /l>0, set:

which is equal to

where σF is the spectral measure of — L associated with F. Therefore γ(λ) is positive
and strictly decreasing unless σF(dξ) concentrates on {0}, namely, unless F is a
constant. We set:

A(t) = ί a(s)2ds
o

λ0 = sup \λ ̂  0 ί exp ( - 2y(λ)A(ή)dt < oo \ .

We say that a smooth function /: M->R is non-flattening if there exists an n0 ̂  1
such that at any point x e M some differential d*/ (1 ̂  /c ̂  n0) is non-zero (cf. [8]).
Then our theorem is the following.

Theorem. (1) // F is non-flattening and A(i)-> oo as \t\ -> oo, then the spectrum of H(ω)
is of pure point type on [0, A0], and purely singular continuous type on [/10, oo) with
probability one. Moreover, every generalized eigenfunction ψλ(t) of H(ω) decays as
follows:

lim A(trl\os{ψM2+ψfAt)2}ll2 = -yW
|f|-»oo

with probability one, which especially shows that the spectral multiplicity is one on
(0, αo).

(2) // J F(x)μ(dx) = 0, A(t) is bounded and J a(t)2\t\δdt < oo for a δ e (0, 1), then
M R

the spectrum of H(ω) is of purely absolutely continuous type on [0, oo) with
probability one. Moreover, we have two independent solutions φλ and φλ ( = complex
conjugate of φλ) satisfying compact uniformly in Ae(0, GO) with probability one:

as t-»oo, which especially shows that the spectral multiplicity is two on (0, oo).

d2

When H(ώ) = — -^ + F(Xt(ω)) and F is non-flattening, it is well known that

H(ω) has only point spectrum and every eigenfunction decays exponentially fast
(Goldsheid et al. [8], Molchanov [16]). When a(t) = (ί + \t\)~« for sufficiently large
|ί|, the case (1) occurs if 0<α^. (A) If 0<α<i then λ0 = oo. (B) If α = ̂ , then
0</l0<oo. (C) If α> |, then the case (2) occurs. Delyon et al. [6] considered a
discrete model of the form: (H(ω)ψ) (n) = ψ(n + 1) + \p(n — 1) + \n\ ~*Vn(ω}\p(n\ where
Vn(ω) is i.i.d., and proved the following: (A) If 0 <α <•£, then the spectrum is of pure
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point type and the eigenfunction decays fractionally exponentially fast. However,
the estimate is a little rougher than the above theorem. They did not obtain the
Lyapounov exponent γ(λ). (B) If α = ̂ , then the transition from point spectrum to
continuous spectrum occurs. However, they did not identify λ0 and the unsettled
region of the spectrum has remained. (C) If α>^5 then the spectrum is continuous.
Delyon [5] showed in this discrete model that if α=-|, then the spectrum has no
absolutely continuous part. Therefore our theorem can be regarded as a
completion of their work at least in the continuous system. In the discrete system
also, it is possible to show that the assertion (2) in the theorem holds, however, we
have not so far succeeded in obtaining the result corresponding to (1).

To prove the theorem, we have to study the growth order of solutions of:

H(ω)ψ = λψ, (1.3)

for /leR. However, since our random potentials are not stationary ergodic,
Kotani's argument [13] which uses Osceledec' theorem is not available. Hence we
must investigate the Lyapounov behavior of the solutions by explicit calculations,
imposing a rather strong condition of randomness on the potentials. This will be
done by the martingale analysis in Sect. 2. To show the existence of a decaying
solution when 0 < λ0 < oo in the case (1), it is necessary to study the asymptotics of
the ratio of the amplitudes of two linearly indepednent solutions of (1.3). In the case
(2), once we show the compact uniform boundedness of the solution of (1.3) in λ
uniformly with respect to t ̂  0, we can deduce the assertion applying Carmona's
lemma [3,4].

2. Generalized Lyapounov Behavior

Equation (1.3) is equivalent to:

d_ (x(t9 ω, λ)\ = ( 0 r/2\ /x(ί, ω, λ)\

dt\y(t9ω9λ)J \λ-^2a(t}F(Xt(ω}}-λ1'2 0 )\y(t,ω,λ)J' ( * J

where y(t,ω,λ) = λ~1/2 — x(t,ω,λ). We sometimes omit the dependence on para-
dt

meters from now on. For this solution \x(t,ω\y(t,ώ)\ set:

We want to show that the limit of A(t)~l logτf as ί->oo exists and it depends
sensitively on a random initial phase Θ0(ω) in the case (1) of the theorem, and the
asymptotics of *(rt9 θt) can be obtained in the case (2) of the theorem. However,
instead of doing so, we treat the following vector:

cos(λl'2t) -sinμ1/2 x(t)\
( }

and set:

osdt). (2.3)
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Noting that rt = rt and Θt = θt + λ1/2t, it is enough to study the asymptotics of rt and
θt. After a short calculation, we have

_
dt ~ - 2 2 l 2 ' l * j

The key step to show the theorem is related to the following proposition. This
will be proved through two lemmas related to the martingale analysis.

Proposition 2.1. (1) Fix λ>0. Under the assumption of (1) in the theorem, for any

fixed Θ0 (non-random), the limit lim A(f)~ 1 logrt = y(λ) exists with probability one.
ί-> 00

Moreover, there exists a unique initial phase d0(ω) such that if a solution of (2.4)
satisfies Θ0 = Θ0(ω), then

and any other solution grows as:

with probability one.
(2) Under the assumption of (2) in the theorem, for any solution of (2.4),

r^ = lim rt and θ^ = lim θt exist and satisfy:

), and θt = θ

as ί->oo, compact uniformly in Ae(0, oo) with probability one.

Lemma 2.1. Let /eCx(M) and ^eR-{0}. Then there exist g(t,x,λ) and
satisfying:

and complex martingales M(t,ω,λ) and M^t, ω) satisfying:

t)dt=dg(t, X,) - dM(t) ,

t = dgl(Xt)-dMί(t),

where f— \ f(x)μ(dx). Moreover we have:
M

<ReM>r = ί {L(Reg)2 - 2 Reg L(Reg)} (s, Xs)ds ,
0

and so on for ImM, ReM1? and ImM1? which especially shows that

d <Re M> f^ const dt,

and so on, where the const depends on λe (0, oo) compact uniformly. Here we denote
by <•> the bracket in the martingale theory.

Proof. Set g and gx as follows:
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Here we note that since J (f(x)—f)μ(dx) = Q, g t exists uniquely by Fredholm's
M

alternative theorem. Then this lemma is nothing but a consequence of Ito's
formula (Ikeda and Watanabe [9]).

Lemma 2.2. Let feC\M), βeR-{0} and kεZ+ -{1,2,...}.
(1) Fix λ>0. Under the assumption of (1) in the theorem, the following holds with

probability one:

lim A(tΓl J Gxp(iβ(3s + λί/2s))f(Xs)a(s)kds
f-+oo 0

0 whenk^l or j S φ ± 2 ,

— ̂ iβλ ~1 /2 j F(x) (L + iβλ1 /2) ~ ίf(x)μ(dx) otherwise.
M

(2) Under the assumption of (2) in the theorem,

lim J Q*p(iβ(θs + λl/2s))f(Xs)a(s)ds

exists and

] Q*p(iβ(θs + λί/2s))f(Xs)a(s)ds = 0(1)
ί

<zs ί^oo holds compact uniformly in λe(0, oo) with probability one.

Proof. (1) Taking g in Lemma 2.1, we have:

j Q*p(iβ(8s4- λί/2s)}f(Xs}a(s)kds = ί Qxp(iβθs)a(s)k(dg- dM)s: = l(t) - m(t). (2.5)
o o

We first show that A(t)~lm(f)^0 as ί^oo. By Lemma 2.1, it is easy to see that:

+ <ImmX ̂  c J φ)2fcώ (2.6)
o

with a constant c depending only on λ. On the other hand, for a real continuous
martingale n(t\ there exists a one-dimensional Brownian motion B(t) such that n(ί)
= B((nyt) holds (Ikeda and Watanabe [9]). Since B(t) = o(t) as ί^oo, m(t)

= o\ J a(s)2kds . Therefore ,4(ί) 1m(ί)->0 as ί^oo follows for every fceZ.
\o /

As for /(ί) in (2.5), integration by parts shows that the following holds:

ί(ί) =

- exp(iβdjka(sYa(sf " ̂ sjds . (2.7)
0

We treat only the second term and set it as l^t). It is easy to see that other terms are
oϊo(A(t)) as £->oo. Noting that θ' satisfies (2.4) and g is defined in Lemma 2.1, we
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have:

0

- ±iβλ - 1/2 J exp(ί(jS - 2) β + /2s))F(Xs) (L + iβλ1'2) ~ lf(Xs)a(s)k + 1ds. (2.8)
0

When βή= ±2, every term in (2.8) is of the form:

ί exp(ij8(ffa + λί/2s))f(XJa(slF+1ds (2.9)
o

with another β φ 0 and / However, we can repeat the above argument and replace
k by k + 1 , to see that (2.9) is of o(A(t)) for every k e Z + . When β = 2, the main term in
(2.8) is:

-^iβλ-1/2\F(Xs)(L + iβλί/2Γίf(Xs)a(s)k+lds. (2.10)
o

If k ̂  2, then this is of o(A(t)) as ί-+ oo. When k = 1, setting f1=F (L + i β λ 1 / 2 ) " ̂
we apply Lemma 2.1 to /j, and obtain:

(2.10) - -itfr 1/2 j Λfl^ds-iΐ^- 1/2 j a(s}2(dg1~dM1) .
o o

The second term is of o(A(t)) by the same procedure as before. Noting:

M

we come to the conclusion in the case (1).
(2) We return to (2.5). We deal with the case k = 1 . It is almost obvious that the

assertion holds for /(£) noting that every term in (2.8) is absolutely convergent. As
for m(t\ we see that for fixed λ > 0, lim m(t) exists finitely with probability one

because we can represent Rem(ί) as ^((RewX), where B is a 1-dim. Brownian
motion and <Rem>ί is bounded in this case in view of (2.6), and the same argument
is valid for Imm(ί). To proceed, we need a more detailed analysis. Noting that:

Rem(ί)= -]cos(β8s)a(s)d(JίeM)s+ }sm(βds)a(s)d(ImM)s,o o

we deal only with the second term and set:

/(ί, ω, λ) = J sm(βds)a(s)d(ImM)5. (2.11)
o

We must prove the compact uniform boundedness of / in λ. To this end, we regard
/(ί, ω, λ) as a continuous bounded function space-valued stochastic process, i.e.,
λ-+I( 9ω, λ)eCb([Q, oo)), and apply Kolmogorov's modification theorem in this
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Banach space (Cb, sup norm || H^). We have:

/(ί, ω, λ)- 7(ί, ω, λf) = J {sin05θs(Λ))- sm(ββs(λ'))}a(s)d(ImM(λ))s
o

We discuss only the first term and denote it by I(t, ω, λ, λ'). The second term can be
treated more easily.

Sublemma. Let XC(0, oo) be a compact set and p>Q. Then we have

E sup \I(t,ω9λ9λ
f)\2p^const\λ-λ'\2ηp,

ίe[0,oo)

where the constant is independent of λ, λ' e K, and 0 < η ̂  δ ( δ is introduced in (2) of
Theorem).

Proof. Fix ί0 > 0. We use moment inequality in the martingale theory (Ikeda and
Watanabe [9]) and we have:

E sup \I(s,ω,λ,λ')-I(to,ω,λ,λ')\2p

se[ί0,ί]

(t

^ constE < J \sm(βθ(s, λ)) - sm(βθ(s, λ'}}\2 a(s)2

(to

(t ~]P

^constE sup \8(s9λ)-ΰ(s9λ')\2pUa(s)2ds> . (2.12)
se[ί0,ί] (to }

We estimate Esup\θ(s,λ)-θ(s,λ')\2p. We rewrite (2.4) as follows:

We apply Lemma 2.1 and obtain:

Re Qxp(2iS(s9λ))a(s)(dg-dM)s
to

Re[exp(2/θ(s, λ))

Re

Re exp(2ϊ% λ))a'(s)g(s)ds
to

Re j exp(2iθ(s, λ))a(s)dMs .
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Here we have used F= J F(x)μ(dx) = 0. Set:
M

J(s) = Q(s,λ)-ΰ(s,λf).

We note that for any 0<^^1, the following holds when λ, λΈK:

We also note that returning to the proof of Lemma 2.1, we have:

\g(s, λ) - g(s, λ')\ ^ const μ - λ'\\\ + |S)Ό ,

and

d<ReM(A)- Re M(A')>5^ const \λ-λ'\η(l + \s\η)ds,

which is also correct for ImM. From the above, it is easy to see that the following
holds using moment inequality again:

E sup |J(5)|2^constE|J(ί0)|2p + const{|/l-;/r J (1 + \s\")a(s)2ds}2p

se[ί0,ί] ίo

Γ f

+ const \ \λ - λ'\2η J (1 + \s\η)a(s)2ds
( t o

+ constE sup \J(s)\
se[t0,t]

(t -)P

+ constE sup \J(s)\2p<$(l+\s\η)a(s)2ds\ .
se[t0,t] (to }

Taking ί0 sufficiently large such that the last two terms in the right-hand side are
smaller than the left-hand side, and noting that for fixed f 0 >0:

E|J(ί0)|2^ const \λ-λ'\2ηp,

we have

E sup \J(s)\2p^const\λ-λ'\2ηp.
se[ί0,ί]

This together with (2.12) shows:

E sup \I(s9ω9λ9λ
t)-I(tθ9ω9λ9λ

f)\2p^Gonst\λ-λr\2ηp.
se[ί0,ί]

Since it is obvious that:

E sup \I(s9ω,λ,λ')\2p^const\λ-λ'\2ηp,
se[0,ί0]

we come to the conclusion of the sublemma.
We return to the proof of (2) of Lemma 2.2. If we take p>0 sufficiently large

such that 2ηp > 1 holds, then the sublemma immediately shows that Kolmogorov's
theorem holds. Therefore we can regard x,->/( ,ω, λ)eCb([Q, oo)) as a continuous
map and we have:

sup || /( , ω, /) || ̂  = sup sup |/(ί, ω, λ)\ < oo ,
λeK λeK te[0, oo)
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where KC(0, oo) is a compact set. To complete the proof, we must deal with the
term of the form ra(oo) — m(t). However, the argument is almost parallel to the
previous one. As in (2.11), we set:

T(t, ω, λ) = ] sm(βθs)a(s)d(ImM)s .
t

We regard 7 as a Banach space-valued stochastic process:

where C0([0, oo)) = ί/e C([0, oo)); lim f(t) = 0\ equipped with the sup norm, and\ t-xx, i
apply Kolmogorov's theorem. Then it is clear that:

sup|7(f, ω,λ}\ = o ( \ ] , as |ί|->oo

with probability one, where Kc(0, oo) is a compact set. Now we have finished the
proof of Lemma 2.2.

Proof of (2) of Proposition 2.1. Applying Lemma 2.2 to Eq. (2.4), we immediately
obtain our result.

To prove (1) of Proposition 2.1, we need more arguments. From (2.4) we have:

Λ(t) ~ 1 logf f = A(t) ~ 1 logf o + A(t) - 1 - \λ ~ 1/2 Im \ exp(2i(θs + λll2s)}a(s)F(Xs}ds .
o

By Lemma 2.2, we see that the following holds:

lim A(f)~l logr f = - - r l r n i J F(x)(L + 2iλl/2Γ1F(x)μ(dx)
4/i M

= y(λ).

We note that this holds with probability one as far as any initial phase Θ0 is fixed
and non-random. We take two independent vectors

r/ί, ω, λf(sm θ/ί, ω, λ\ cos 0/f , ω, λ)) , (/' = 1 , 2)

satisfying (2.4) and set:

C7(ί, ω, λ) = ,
r2cosθ2

We assume t/(0, ω, A) e SL(2, R). Then it is easy to see that U(t, ω, λ} e SL(2, R) holds
for any ί>0. So far we have proved:

lim A(t)~ 1 log || l/(ί, ω, λ)|| =y(A) (2.13)

holds with probability one. Our aim is to seek the characteristic random initial
phase described in (1) in Proposition 2.1. When the potential is not decaying, i.e.,
A(t) = ί, it is a customary way to apply Osceledec' theorem to this end. Let us recall
a deterministic version of Osceledec' theorem.
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Osceledec' Pseudo-Theorem (see Ruelle [1 8]). Let U(t) e SL(2, R) for t ̂  0. Assume:

HmA(tΓl sup log\\U(t + s)U(trl\\=Q,
t^co se[0, l]

and

]ίmA(tΓ1log\\U(t)\\=y.
t-*ao

Then there exists a θe[0,π] such that:

KmA(tΓl\°g\\U(t) φ\\=y
i->oo

/or any φ = θmodπ. Here, for a 2x2 matrix U and θ, the operation U - θ is
defined as follows:

U-θ=Ut(smθ,cosθ).

This theorem can be proved for the case A(t) — t. For general A(t\ we want to apply
this theorem to each ω such that (2.13) holds. However, if exp { — 2γA(t)} is not
integrable on [0, oo), then the above theorem is not generally true, although if
exp{ — 2yA(t)} is integrable on [0, oo), then we know the theorem is correct
imitating Ruelle's argument. Therefore we want to show that the above Pseudo-
Theorem holds with probability one (not a priori for each ω) in our case. Let:

\U(t,ω9λ)\ = {U(t,ω,λ)*U(t,ω,λ)}ίl2

9 (2.14)

0</ί_ <^λ+ be two eigenvalues of \U(t,ω,λ)\.
Then we have the following spectral decomposition:

I I7(ί, ω, λ)\ = λ_ P(t, ω, λ) + λ+(I- P(t, ω, λ)) , (2. 1 5)

where P(ί, ω, λ) is a projection matrix.

Lemma 2.4. Let λ>0 be fixed. Under the assumption of (1) in the theorem, with
probability one, there exists a projection matrix P(co,ω,λ) such that the following
holds:

1 log ||P(ί, ω, ;.)-P(oo, ω, λ)\\ ^ -2y(λ) .

Proof. Owing to the relation (2.14) and (2.15), we can explicitly calculate every
component of P(ί, ω,λ) and obtain:

where
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Set:

R(t9ω9λ) = r1(t)-r2(tΓ1.

Sublemma. Let λ>0 be fixed. Under the assumption of (1) in the theorem, with

probability one, limR(t,ω,λ) = R(co,ω,λ) exists and

lim sup4(ί)~ * log|K(f, ω, λ)~R(oo, ω, λ)\ ̂  -2γ(λ)
ί^oo

holds.

Proof. First we note that since U(t, ω, /) e SL(2, R), we have:

det I7(ί, ω, 1) - r^ήr^t) sin^ί) - 02(ί)) = 1 ,

and therefore from Proposition 2.1 we have:

(2.16)

From (2.4) we have:

R(t, ω, A) - Λ(0, ω, /I) exp i/ ~ 1 / 2 J {sin2(0
L o

- sin2(02(s) + λίl2s)}a(s)F(Xs)ds

x sin^s)- 02(s))fl(s)F(^rs)ds ^.

Set:

β(ί, ω, λ) = λ~ 1 / 2 ί cos(θ^s) + Θ2(s) + 2λ1/2s} sin(θ^s)- θ2(s)}a(s)F(Xs)ds.
o

Noting that, when x and y are in a compact set in R:

k* — ^1 ̂  const |x — y \ ,

we have only to prove that for fixed /l>0, lim β(ί,ω,/l) = β(oo,ω,/l) exists and

holds with probability one.
Applying Lemma 2.1, we have:
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As we have often discussed in this paper, we deal only with the term of the form:

ro(ί, ω, λ) = λ~ 1/2 ί cos(θί(s) + 02(s)) sin^s) - 02(s))φ)d(ReM)s .
o

There is a one-dimensional Brownian motion B such that m(t,ω,λ) = B((myt)
holds. On the other hand, from (2. 1 6), for any ε > 0, there exists a ί 0 > 0 such that if
t £> f o, then

sinίθΛf) - Θ2(ί)) ̂  exp { -

Therefore if ί0 _^ ί < 7^ then the following holds :

^ const J exp { — 4(y(/l) — ε)A(s)}a(s)2ds
t

= const |exp { - 4(y(λ) - ε)A(T)} - exp { - 4(y(λ) - ε)A(t)} \ .

From this it is clear that lim m(t,ω,λ) = m(ao,ω,λ) exists and
ί-»oo

m(ί, ω,λ) — m(ao, ω, /I) = o(exp { — c

holds for any α < 2, using Levy's Holder continuity of Brownian motion (Ito and
McKean [10]). Since ε > 0 and α< 2 are arbitrary, we come to the conclusion of the
sublemma.

We return to the proof of Lemma 2.4. After a short calculation, we know that:

\\P(T9ω9λ)-P(t9ω,λ)\\=0(\R(T,ω,λ)-R(t,ω9λ)\ + ^^

+ |exp { - 2y(λ)A( T)} - exp { - 2γ(λ)A(t)} |) .

Since the sublemma holds also for R~l(t, ω, λ\ we have finished the proof of
Lemma 2.4.

Now we can identify θ such that

lim A(t)~ 1 log || U(t, ω, λ) θ\\ = -y(λ) (2.17)
f->oo

holds. Let θ be an angle such that:

, cosθ)eP(oo,ω,/l)R2

holds. Since P(oo,ω,/l) θ = '(81110, cosθ), by (2.15), Lemma 2.4 and the following
relation:

we have:

lim sup yl(ί) ~ 1 log II U(t, ω, λ) - θ\\ -lim sup A(t)~ 1 log \\\U(t, ω, λ) - θ\ \\
t~> oo ί— >• oc

^ lim sup yl(ί) ~ ! log [ || /I _ P(t, ω,λ) θ \\
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On the other hand, it is easy to see that for U(f) e SL(2, R) satisfying

HmA(tΓlloe\\U(t)\\=γ(λ)9
ί-"oo

liminf A(ή~1 log || U(t) 0|| ̂  -γ(λ)
t-+ 00

holds for any θ. Therefore we have (2.17). It is clear that for any φΦβmodπ,

KmA(tΓllog\\U(t9ω9λ).φ\\=y(λ)

holds in view of (2.13). We have completely finished the proof of Proposition 2.1.

3. Some Notations and Results from the Spectral Theory
of One-Dimensional Schrδdinger Operators

Let:

on L2(R, dt\ where q is a bounded function. Since both the end points + oc are of
the limit point type in WeyPs classification, there exists a spectral 2 x 2 matrix
measure Σ(dλ). Let σ = trace Γ, which is usually called the spectral measure. Since
every component of Γ is absolutely continuous with respect to σ, we have only to
investigate σ.

It is well known that there exist generalized real-valued solutions ffa, ζ)
(/=1,2) for σ(dξ)-di.G. ξ such that the Green function g ;(f,s;g) is written in the
following form:

(3.D

See Kotani [14]. fv and /2 are dependent or not accordingly as the multiplicity of
the spectrum is 1 or 2.

Lemma 3.1. We have for j=ί and 2 the following:

A 1 1 £*•
ίeR R 1 + ζ

Proof. In view of (3.1), we have only to prove the following:

d2

Img^ί, t',q) + Im —— g,(ί, s; L
otos

where c is independent of ίeR. From the well-known equation:

and the exponential decay of gi(t9s'9q) = (Hq — ί)~1(t,s) as |ί —s|-»oo, it is not
difficult to show the assertion. We omit the detail.
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Let V(t9λ)eSL(2,R) be the solution of the following equation:

Lemma 3.2 (Carmona [3,4]). σ(dλ) can be written in the form:

σ(dλ) = w e a k - l i m - ] d θ \ \ V ( t , λ ) θ\\~2σθ_(dλ),
t^oo π o

σθ_(dλ) = weak-lim - \\ V(s, λ) θ\\~ 2dλ.
s-> - oo 71

where

Moreover

o

Lemma 3.3 (Carmona [4]). Let ,4cR be a Borel set. If

sup | |7(ί,/l)| |^c<oo,
ίe[0, σo),λeA

then σ(dλ) is equivalent to dλ on A.

Proof of Lemma 3.3. Since F(ί, λ) e SL(2, R), it is easy to see that

holds for any θ. Then Lemma 3.2 implies:

1 J dθσθ_ (dλ) ^ σ(dλ) ^ — ] dθσθ_ (dλ) ,
πc2 ό

and therefore we have:

1 c2

—~-dλ^σ(dλ)^—dλ on A.
πc π

4. Proof of Theorem

We first deal with the case (2) of the theorem. Let K c (0, oo) be a compact set. Then
(2) of Proposition 2.1 and Lemma 3.3 show that the spectrum of H(ω) consists only
of absolutely continuous part on K with probability one. Since Kc(Q, oo) is
arbitrary, we have proved the first part of (2). We take two independent solutions
\Xj{t\yj(t)) (7 = 1,2) which satisfy (2.3), (2.4) and:

lim \x,(t), y,(t)) = '(1,0), lim f(jc2(ί), y2(t)) = r(0,1).
r-»α> r->α>

Considering (2.2) we set:

φλ(t) \ _ ( cos(A1/2ί)

λ-'"^(t))
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Then it is easy to see that this φλ(t) satisfies the asymptotic estimate described in (2)
of the theorem.

We next deal with the case (1) of the theorem.

Lemma 4.1 (Kotani [13]). Let A CR be a compact set and 3?± be σ-fields generated
by {Xs;seR±}. Suppose that F is non-flattening. Then the conditional expectation
Έ[σ(dλ, ω)\^±^ is absolutely continuous with respect to dλ on A with probability one,
where σ(dλ, ω) is a spectral measure of H(ω).

We can prove this lemma using Hόrmander's hypo-ellipticity theorem. We
omit the detail.

We set:
S = {(ω,λ); there exists θ(ω,λ) such that

lim A(t) ~ l log || U(t, ω, λ) - θ(ω, λ)\\ = - y(λ) and
ί->00

lim A(t) ~ 1 log || C7(ί, ω,λ)\\= γ(λ) hold.} .
ί-»00

We note that S is ^+ x J^RJ-measurable, where J*(R) is a Borel field of R, because
the statement in S is equivalent to the existence of the projection matrix P(oo, ω, λ)
and the validity:

Proposition 2.1 asserts that for fixed /l>0, the statement in S holds for almost
every ω. Therefore by Lemma 4.1 we have for any compact set A:

j j 1 A(λ}\sc(ω, λ)σ(dλ9 ω) Prob(dω) = E Γ j 1 sc(ω, λ]E[σ(dλ9 ω)|̂ ±]l = 0 ,

where lsc(ω, λ) is an indicator function of a complement of S. We can select Ω0 such
that Prob(Ώ0) = 1 and for each ω 6 Ω0, the statement in S holds for σ(dλ, ω)-a.e. λ.
Owing to the relation rt = rt, we can take for each ωeΩ0 a solution ψ + (t,ω,λ) of
(1.3) such that:

holds for σ(dλ, ω)-a.e. λ. By the same argument on the negative axis, we can take Ωl

satisfying Pΐob(Ω1) = 1 and a solution ψ-(t, ω, λ) of (1.3) such that for each ω e Ωv :

lim
f-» - 00

holds for σ(dλ,ω)-a.e. /I. We fix ωeΩoπΩj . We show that ψ+(t,ω,λ) is equal to
ψ-(t, ω, /I) up to a constant by proving that they are linearly dependent on /7 (f, ω, /I)
(/= 1,2) which are generalized solutions in the sense of Sect. 3.

Let Kd(0, oo) be a compact set and define:

y 0 =infy(I)>0.
λeK

By the definition of λ0 which is introduced in Sect. 1,
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is integrable on (0, oo). Therefore by Lemma 3.1, we have:

j exp {- (70 + 2γ(λ0))A(t)}dt J {//ί, ω, λ)2 +fj(t, ω, λ)2}σ(dλ, ω) < oo .
o K

From this we have for σ(dλ9 ω)-a.e. λ in K:

ί exp{-(γ0 + 2γ(A0)M(t)} {//ί,ω,^)2 +//(ί,ω,λ)2}dί<oo . (4.1)
0

We set the Wronskian of fj and ψ+ as follows:

Then we have for any εe(0,y0/2):

) Λ(f) j { '̂(ί, ω, λ)ψ + (t, ω, 1) -//ί, ω, λ)ψ'+(t, ω,
/ )o (

f exp - 27μo) - ε A(t) at . (4.2)
o

The square of the left-hand side is not larger than the following by the Schwartz's
inequality:

const f exp { - (7o + 2γ(λ0))A(t)} {fj(t, ω, λ)2 +fj(t, ω, λ)2}dt

which is finite by (4.1) and:

for λ e K. On the other hand, the right-hand side of (4.2) is infinite unless w(λ) = 0.
Therefore w(λ) must be 0 and fj and ψ + are dependent. The same argument for ψ _
shows that ψ + 9 φ_, and /)• ( j = ί 9 2 ) are all dependent.

Since exp {— 2γ(λ)A(t)} is integrable when λ ε ( Q 9 λ Q ) 9 it is easy to see that
(ψ2± +Ψ±) is aίso integrable. Therefore on [0, A0], the spectrum of H(ω) consists
only of point spectrum with probability one.

The absence of ΣpH(ω) in (λθ9 oo) is proved as follows. For σ(dλ9 ω)-a.e. λ, we
have:

lim
ί~» ± 00

Since exp( — 2y(λ)A(t)) is not integrable when λe(λ0, oo), it is easy to see from the
above that ||C7(ί, ω, λ)\\ ~1 is not square-integrable. On the other hand, since
U(t,ω,λ)εSL(29R) we have for any θ:

\ \ U ( t , ω , λ ) . θ \ \ ^ \ \ U ( t 9 ω 9 λ ) \ \ - 1 .

Hence \\U(t9ω9λ) θ\\, equivalently, (ψ2

±+ψ'2)ί/2 are not square-integrable.
The absence of ΣacH(ω) in (λθ9 oo) is proved as follows. We repeat a similar

argument in the proof of Ishii-Pastur's theorem simplified by Kotani [13]. Let
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HΘ(ω) be a unique self-adjoint extension in L2([0, oo),Λ) of ί — -r-y
with domain ^

{weCg([0, oo)); M(0)cosθ-w/(0)sin0 = 0}.

Let σθ(d/l, ω) be the associated spectral measure.

Lemma 3.1. For each ω, there exists a generalized real-valued solution fθ(t, ω, ξ)
which satisfies Hθ(ω)fθ(t, ω, ξ) = ξfθ(t, ω, ξ) and:

sup j —~— " σσ(ας,ω)<oo.
fe[0, oo) R 1 + ζ

We omit the proof.
We fix non-random θ. Then we know from (1) of Proposition 2.1 that for fixed

λ > 0, every solution ψθ(t, ω, λ) satisfying H(ω)ψθ = λψθ and

φθ(0, ω, λ) cos θ — ιpθ'(0, ω, /I) sin 0 = 0

grows as follows with probability one:

lim A(t) ~ί log {ιpθ(t, ω, λ)2 + tpθ/(ί, ω, A)2}1/2 - y(/l). (4.3)

By Fubini's theorem, for almost every ω, (4.3) holds for almost every λ with respect
to Lebesgue measure. If σθ(dλ, ω) has non-trivial absolutely continuous part with
respect to Lebesgue measure, then (4.3) holds for λ in a non-trivial set with respect
to σθ(dλ,ω). This contradicts Lemma 3.Γ. Therefore ρθ(dλ,ω) is not absolutely
continuous with respect to Lebesgue measure. One can discuss the same thing also
on the negative half-axis. Observing that the difference of the resolvents of H(ω)
and {H(ω) with Dirichlet condition at t = Q} is of finite rank, we can conclude that
σ(dλ, ω) has no absolutely continuous part, which completes the proof of the
theorem.

5. Remarks on the Lyapounov Exponent

It is remarkable that if we multiply a decaying term a(t) in front of the stationary
random potential, then the Lyapounov exponent y(λ) can be expressed in such a
simple form as (1.2). Delyon suggested the following interpretation ofγ(λ). For any
ε^O, let y(λ,ε) be the Lyapounov exponent of a random system:

Namely if we define U(t, ε) e SL(2, R) by the solution of:

then

f-> oo t
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Suppose {Xt(ω)} is a Brownian motion on a compact Riemannian manifold and F
is a smooth function satisfying EF(Xf) = 0. Then Arnold-Papanicolaou-Whistutz
[1] showed that for λ>0:

7~μ,C)=^pε2 + 0(ε

3) (5.1)

as ε|0, where τ(λ) is the power spectrum of the stationary process {F(X,)}, namely:

ρ(ί - s) = E{F(Xt)F(Xs)} = f e™ -"τ(/)dA .
R

In this case, τ(λ) can be computed as:

by using the spectral measure σF introduced in Sect. 1. Therefore y(λ) can be
identified with the coefficient of ε2 in the asymptotic expansion of γ(λ, ε). The form
(5.1) can be predicted also by the following naive argument. Let A e C + . Then:

Λω,ε)}. (5.2)

Here h+(λ,ω,ε)eC+ is defined by:

, n ϊ r d" +,/! + (/, ω, £)= lim ——gΓ(ί,5,ω, ε),
t > s > 0 OtOS

ί|0

where g^ is the Green function of H(ω, ε) with Dirichlet boundary condition at
t = 0 (see Kotani [15]). On the other hand, h + (λ,ω,ε) has an asymptotic form
(Kotani [15]):

00 OO 00

h + (λ, ω, ε) = iλ1/2 — ε J gλ(t) F(Xt)dt + 8 J j gΓ(^5)^λ(0^λ(5)
0 0 0

x F(Xt)ι
where

Therefore, assuming E{F(Xt)}=0, (5.2) shows:

y(A, ε) = Im A 1 / 2 - ε2 Re J j g+(ί, s)gλ(t)gλ(s)ρ(t - s)rfίrfs + 0(ε3),

for any fixed λeC + . It is not difficult to see the coefficient of ε2 converges to
πτ(2λ1/2)/4λ ifλ tends to a positive real number. This observation may be useful to
predict the Lyapounov exponent of the discrete system:

(H(ω)u)n = un+l+un_1+ anqn(ω)un (5.3)

in /2(Z), where {qn(ω)} are i.i.d. random variables with mean zero and an is a
00

decaying sequence satisfying £ a2 = oo. Let us now trace the above argument in
n= 1

the discrete system. Define a self-adjoint operator H+(ω,ε) on /2(Z + ) by:

(H+(ω,ε)u)n =
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Then for A e C + , by Simon [20] we have:

y(λ,ε) = — ReE{logm+(A, ω,ε)},

where m + (λ,ω,ε) = ((H + (ω,ε) — λ)~lδί,δ1). The asymptotic expansion of
m + (λ,ω,ε) shows

γ(λ, ε) = Im fl + Re ? + 0(s*) > (5 4)

for λeC + 9 where 0eC + is defined as a solution of λ = 2 cos θ. In the continuous
system we can pass to the real line in (5.4) as we saw in the above, however in the
descrete system it is known that there exists an anomaly in ( — 2, 2) if θ is rational
modulo π. This was observed by Kappus and Wegner [11] and Derrida and
Gardner [7], and mathematically by Bonvier and Klein [2]. Therefore in the
system (5.3), it may be false that
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