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Abstract. We study Calabi-Yau manifolds that are embedded as hypersurfaces
in products of semi-ample complex surfaces. We classify the deformation
classes of the latter and thereby achieve a classification of the Calabi-Yau
manifolds that are constructed in this way. Complementing the results in the
existing literature, we obtain the complete Hodge diamond for all Calabi-Yau
hypersurfaces in products of semi-ample surfaces.

1. Introduction

In order to explore the phenomenological implications of the Superstring theories
[1], originally defined in 9 + 1 space-time dimensions, it was shown to be
consistent to assume that the 9 -f-1-dimensional space-time locally has the form of
M4 x Λ^Cγ, where M4 is 3 +1-dimensional Minkowski space and JίCΎ is a Calabi-
Yau manifold of 3 complex dimensions [2,3]. Calabi-Yau manifolds are compact
and admit a Ricci-flat Kahler metric, i.e. have a vanishing first Chern class [4].

Several examples of such manifolds were analyzed in [2,5,6]. Upon restriction
to massless states and compactification on a ̂ cγ, the effective models exhibit
JV = 1 supergravity and Yang-Mills interactions with the gauge group being a
subgroup of E6 x E8, coupled to matter superfields the spectrum of which is
counted by topological invariants of JίCΎ. In particular, superfields that transform
as (27,1) of E6xE8 are counted by the Hodge number bίt2 while the (27*,!)-
transforming superfields are b{, i-fold degenerate.

In [7,8] a huge family of Calabi-Yau manifolds was established all of which are
embedded in products of complex-projective spaces as complete intersections of
hypersurfaces (we shall adopt the CICY acronym [9] in what follows). Because of
the fact that the Euler characteristic χE = 2(b1 ?1 — b1 > 2) f°r an" Calabi-Yau
manifolds, and since χ£ is computed straightforwardly for every case, the difference
of the number of 27's and 27*'s of E6 is readily obtained for models based on any of
these manifolds. In contrast, the computation of & 1 > 2 and bltl separately appears
to be a much harder task.
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One method for computing bίtl relies on the Lefschetz Hyperplane Theorem
(LHT) [10] applying it iteratively, as described in [8]. There we were able to prove
the applicability of LHT only for a fairly restricted subset of CICY.

On the other hand, a different method was suggested in the literature [3,11],
presented as based on the deformation theory of Kodaira and Spencer [12]. In
[13] we analyzed this method, proved that the argument generally given in
support of these computations is seriously misleading and have given the correct
proof of its applicability to the cases we found in the literature. Moreover, using the
technique of spectral sequences we presented a general analysis which applies to all
CICYs.

Our method, which is based on spectral sequences, yields sufficient conditions
for the validity of the method of polynomial deformations, provides a computation
of all Hodge numbers independently of any other, and applies to many cases where
other methods fail. It also provides some information on the structure of the
various cohomology groups on CICYs, so that an explicit construction generaliz-
ing that of the polynomial deformations method may be possible.

As we mentioned in [13], certain CICYs for which our method fails to
determine blΛ and b l j 2 can be embedded as hypersurfaces in products of certain
complex surfaces. Furthermore, for some of these manifolds LHT cannot be
applied directly in the sense of [8].

It is the main goal of this paper to study the Calabi-Yau hypersurfaces in
products of such surfaces and attempt to classify them.

The material of this paper is organized as follows: In Sect. 2 we define a family
of surfaces in products of which Calabi-Yau manifolds can be embedded as
hypersurfaces. We discuss the properties of these surfaces as abstract complex
surfaces, construct "moduli spaces" for them, and show that many of them (we
conjecture all) are complete intersections of hypersurfaces in products of complex
projective spaces. In Sect. 3 we obtain the Hodge diamond for all Calabi-Yau
hypersurfaces in products of these surfaces.

2. The Surfaces

The family of Calabi-Yau manifolds considered in [7-9,13] consists of complete
intersections of hypersurfaces in products of complex-projective spaces

m

Hf = Yl CPn

r

r. These hypersurfaces are defined by the vanishing of generic sets of
r = l

holomorphic polynomials (hereafter constraints) such that the αth constraint is
homogeneous of degree qr

a in the homogeneous coordinates of CPn

r

r. It is useful to
note that one may consider a set of holomorphic polynomials as a section of the
global vector bundle:

h I m I m

<?••= Θ <g> (*$" I Σ </^2 for all a, (2.1)
fl= 1 |_r= i J r= 1

where 3?r denotes the Hopf bundle (i.e. the bundle the sections of which correspond
to linear homogeneous polynomials) on CPn

r

r. We restrict to constraints of total
degree at least two, since linear constraints are trivial in a sense: they only reduce
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CPn to CP""1. It has been proven in [8] that J(:=v~1(0) is a non-singular
submanifold of W for v a generic section oϊS*. For ̂  to be a Calabi-Yau manifold,
we need to ensure the vanishing of the first Chern class [4], which amounts to:

1, for all r. (2.2)
a = 1

The column-vector of dimensions of the CP"r's in Hf together with the matrix q,
in the notation of the form (w||q), was termed the configuration matrix and to the
equivalence class of configuration matrices under permutations of rows of (n||q)
and columns of q we refer simply as a configuration. Furthermore, a configuration
represents a certain (partial!) deformation class of manifolds to which, in turn, the
manifold M belongs.

The Calabi-Yau manifolds which form the subject of this paper are represented
by configurations of the form:

0 Q\ (Γ Q\

0 q(Γ) Q) \Γ Q')' (Z *>

where Γ: =(nΓ||q(Γ)) and Γ: = (nΓ\\q(Γ')) are configurations representing surfaces,
Q is a column-vector with mr entries and q(Γ) is an mr x hr matrix of degrees of
homogeneity of the constraints that define the configuration-surfaces Γ. To satisfy
Eq. (2.2), the following must hold:

for all r, (2.4)
β = l

and similarly for Γ'. Since we consider only indecomposable configurations in the
sense of [8], neither Q nor Q1 may be the 0-vector.

2.1. The Problem and its Transposition

In order to approach a classification of the surfaces y belonging to Γ in (2.3), let us
consider first some of their numeric invariants. For every surface y the Euler
characteristic can be computed straightforwardly [7,8]. Independently, using e.g.
the spectral sequence technique, as presented in [13], one can verify that for every
surface ^ belonging to Γ satisfying Eq. (2.4):

&o,o(^)=l, &ι.o(^) = &2,o(^) = 0. (2.5)

In particular, b1>0(Γ) is called irregularity1 of Γ and its vanishing renders Γ regular.
Note that χE determines all the Hodge numbers:

1

0 0

0 & l f l 0=>6 1 ( 1 =χ £ -2 . (2.6)

0 0

1
1 Throughout our analysis we shall rely on standard definitions and results in the algebraic
geometry of surfaces as presented in [14]
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The reader should be cautioned that unlike the situation in complex dimension 1,
it is not in general the case that the surfaces with the same Euler characteristic are
deformations of one another.

Using standard expressions for the Euler characteristic and the Hirzebruch
signature [14]:

τπ(^=(C(«^)-2C2(^)) = 2-fe l f l(^),

with C\ and C2 denoting the Chern numbers, one readily finds that:

(/>12. (2.8)

The latter equation is just the statement of the Noether formula [14] for the
surfaces that satisfy Eq. (2.4) and will be helpful because of the relation to the
canonical bundle:

J^ Jf^, (2.9)

where Jf^ is the bundle of holomorphic 2-forms of 5 .̂
JQ£, the anti-canonical bundle, is the restriction to y of:

. (2.10)
r=l

For the β/s as in Eq. (2.4), Jf^ is non-trivial and, for each point of ̂ , has by
Eq. (2.4) at least one section which does not vanish there. In particular, it follows
that rank#°(^,jfJ0^2. Consequently, the g-fold tensor-products of jfjί,
((jΓjjy7), are non-trivial as well and have sections. Thus, it follows for the g-fold
tensor-products of the canonical bundle:

P,:=#°(Γ,(Jίy*) = 0, (2.11)

i.e. all the plurίgenera vanish.
Comparing our situation with the existing classification of the complex

surfaces we see that all the surfaces we are studying have Kodaira dimension
κ(£f)=—\ [by Eq. (2.11)]. Then, since Γ are all regular algebraic surfaces, it
follows by the Castelnuovo-Enriques theorem that they are rational. By the
classification of rational surfaces every <f is a CP2 or Sn with finitely many
(possibly no) points blown-up. Sn are the Hirzebruch (rational ruled) surfaces, all of
which have χE = 4 and which are distinguished one from another by the fact that Sn

contains an exceptional line of the nth kind, i.e. a line with self-intersection

We shall shortly prove that for our purpose Sn,n>2 need not be considered
and thus we need only consider possible blow-ups of CP2, S0, Sl9 and S2. Before
doing so, we recall some standard facts in algebraic geometry:

Proposition 1. Let &p denote the surface obtained from £f by blowing it up at p. Then
the space of sections of the anti-canonical bundle, JΓ|p, may be identified with the
space of sections of Jίfβ that vanish at p.

Proof. Let (z l 5z2) be local coordinates on y at p = (0,0). Let also
(d : = z l 5 £ 2 : =z2/zί) whenever zlή=0 (z1=0 is easily covered by an analogous
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coordinate patch). Note that in the limit where ζ2 is constant and zί=ζί-*Q, ζ2

may be used to parametrize the CP1 into which p is blown up. We have:

dz1 Λ dz2 = Ci dζ1 Λ dζ2 ,

and note that the left-hand side is a section of the canonical bundle Jf^, while the
right-hand side represents a section of the canonical bundle 3C& . Let σ be a section
of the anti-canonical bundle on ^\{p} = &P\{CP1}. Then:

<σ, dz1 Λ dz2y = (/σ, dζί Λ d(2> ,

by the natural pairing between Jf and Jf *. Consequently, if σ extends over S?p, we
have

lim (tfjdzi Λdz2> = 0,
ζι-0

ζ2 f ixed

independently of ζ2. Therefore,:

lim <σ, dz± Λdz2> = 0,
(2i ,2 2 )->(0,0)

and σ extends to ,̂ taking the value 0 at p.
Conversely, if σ is a section of the anti-canonical bundle of £f, vanishing at p, we

can extend σ over &p by setting:

(σAΛ^Uo,^ lim -<σ'^lΛ&2>. D
ZI-»Ό Zi

(2 2 /2i)f ixed

Proposition 2. Let D be a non-singular divisor on the surface ^ and p e D. Let 9^ be
<7 blown up at p and D the proper transform of D. Then the self-intersection D - D
= D-D-\. (For a proof we refer to [14, p. 476].)

Motivated by the considerations so far, we shall adopt the following definition:

Definition, A complex surface, ̂ , is called semi-ample if:
1. The canonical bundle, Jf^ is non-trivial;
2. Jf j£ has at least one non-vanishing section at every point of ίf.
This definition has the advantage of being based on the properties of the

canonical bundle of ̂  which is purely intrinsic to ̂  . It however does cover all the
surfaces that belong to configuration surfaces Γ. As a simple corollary to the
definition, it follows that Jf$ of a semi-ample surface ̂  has at least two sections.
We shall hereafter refer to a semi-ample regular (hence rational) surface as a SAR.

Proposition 3. The anti-canonical bundle of a SAR £f is induced from the Hopf

bundle, Jf, by a map ̂  — >CPη~1, where η is the number of linearly independent

sections of Jf^.

Proof. Let V be the space of sections of Jf|. Set CPn~l : =P(V*). For se^ set
Vce = {σe F|σ(s) = 0}. Then π(s) is the one-dimensional subspace of F* which is
identified with F/F^ by the natural pairing, F(χ)F*-»C. Π

Proposition 4. A SAR has no line with self-intersection less than —2.
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Proof. Assume that S AR ̂  contains a line L with self-intersection L L = — n, n > 0.
It is standard that JΓL - Γ*(L) = ̂ L~ 2, i.e. T(L) = J^L

2 (since L^CP1). Since
L'L=—n, the normal bundle of L is given by N(L) = J^^n. But then the
anticanonical bundle of y at L is :

Thus if n > 2, Jf^ would have no non-trivial non-vanishing sections along L C ̂ ,
contradicting the definition of a SAR. Π

Proposition 5. Every SAR zs S0 = CP1 x CP1, S2

 or the result of a (possibly empty)
sequence of successive blow-ups of CP2. (S1 is a blow-up of CP2 at one point.)

Proof. A generic point of Sn is one that is not on the exceptional line; a non-generic
point is one which is. Sn blown up at a generic point is the same as the blow-up of
£„_! at a non-generic point. It follows that any blow-up of S2 at a non-generic
point contains a line of self-intersection — 3, and that Sn, ft §: 3 or any blow-up
thereof contains a line of self-intersection ^ — 3. On the other hand, a blow-up of
S2 at a generic point can also be realized as a blow-up of S^ Π

As in [14], we shall call p2 infinitely near /?1 if p2 is on the (exceptional) line
created by blowing up p±. Further, a sequence of points { p ί 9 . . ., pn} we call a stack if
Pi is infinitely near pi_1 for each \<i^n.

Proposition 6. A blow-up CPplt ...,pn is a SAR only if:
1) No 2 of the points are infinitely near a 3rd;
2) No 4 of the points form a stack;
3) No 4 of the points are on (the proper transform of) a line in CP2;
4) No 7 of the points are on (the proper transform of) a quadric in CP2.

Proof. The violation of any of the conditions 1, 3, and 4, creates a line of self-
intersection ^ — 3 by Proposition 2, since:

Γ) the line created by blowing up a point has self-intersection — 1;
3') a line in CP2 has self-intersection 1
4') a quadric in CP2 has self-intersection 4.
Suppose now that /?1? p2, p3, and p4 form a stack. Then the sections σ of Jf^

(which, we recall, are cubics) corresponding to sections of JΓ*(CPP1 P4) satisfy:
i) σfoHO;

ii) σp2(p1) = 0, where σp2(pι) is the derivative of σ [well defined because
σ(/7ι) = 0] in a direction determined by p2;

iii) σ^2 ,p3(/?ι):=0, where σ"p2tp^(p^\ is a second derivative in directions deter-
mined by p2 and p3.

To show the necessity of 2, we begin by recalling that sections of Jf^ are
homogeneous cubic polynomials. If we blow up pl9 the sections of the anti-
canonical bundle of CPP1 correspond to cubic polynomials vanishing at pί and the
values of such a cubic on the line created by blowing up p1 are determined by the
derivatives of the cubic at p1 (see Proof of Proposition 1).

If p2 is infinitesimally near p t, in order to obtain a section of JΓ*(CPP1 P2), we
require in addition that some derivative vanishes at p1? and the values on the line
created by blowing up p2 are determined by certain second derivatives, which are
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well defined because of the conditions we have imposed so far. Similarly, blowing
up p3 infinitely near p2 imposes a vanishing condition on some 2nd derivative and
the values along the new exceptional line are determined by 3rd derivatives. If we
blow up p4 infinitely near p3, the values of the sections of Jf *(CPp1 ,...,P4) along the
line created by blowing up p4 will be determined by 4th derivatives, all of which
vanish for a cubic. Hence, if pΐ9 ...,p4 forms a stack, CP^ P4 is not a SAR. Π

Proposition 7. If n^% and pί9 ...,/?„ satisfy 1, 2, 3, and 4 of Proposition 6, then
pl9...,pn impose independent conditions on cubics, i.e. the space of cubics on CP2

vanishing at p l s ...,pn has dimension 10 — n.

Proof. The space of cubics on CP2 is 10-dimensional. What is required is to show
that if pl9 ...,/?„ satisfy the hypotheses there is a cubic curve which contains all but
one of the points and not the remaining one. This can easily be done by a
straightforward adaptation of the proof of the lemma on p. 481 of [14]. Π

Corollary 1. No SAR has χE= 11.

Proof. By Proposition 5, a SAR with χE = 1 1 must be a successive blow-up of CP2

at eight points. By Proposition 1 only those sections of tf*P2 extend to the blow-up
that vanish at the points to be blown up. As by Proposition 7 only two of ten
linearly independent sections of JΓC^2 vanish at those eight points, they vanish at a
ninth point as well, since two plane cubic curves meet in 9 points. Blowing up that
point will increase χE to 12, and if it is not blown up every section of the anti-
canonical bundle will vanish there, contradicting our definition of a SAR. Π

Propositions. Let ̂  be a SAR with 3^χ£^10. Then H1^, Jf *>) = 0.

Proof. Applying the Hirzebruch-Riemann-Roch formula2 (see e.g. [15, p. 5]) to

Σ ( - 1)' _
i = 0

Note that using Eq. (2.7) and Eq. (2.8), the right-hand side of this equation becomes
1 3 — χE, and that, by Serre duality,

On the other hand, by Proposition 7, rank E\Sf, JfT£) = 13- χE(^) for 3 ̂
!g 10, and the statement follows. Π

Remark. Note that the same argument implies that rank Hl(^, jΓjf) = 1 for a SAR
with χ£=12, since then rank H°(^9 tf$] = 2.

Theorem 1. For every SAR £f which is an iterated blow-up of CP2, the ΰ-set of a
generic section of 3C% is the proper transform of a non-singular cubic. (This means
that the set of sections for which the conclusion is true contains a dense open subset
of the space of all sections.)

Proof. By Proposition 3 of this paper and Proposition 2 of [8], there exists a dense
and open set ($0 of sections of Jf^ such that their 0-set is non-singular on ^.

2 We are indebted to Jonathan Rosenberg for suggesting this argument
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By iteration of Proposition 1, the 0-set of any section of 3C* is the proper
transform of a cubic. For all σe^, the only possible singularity of σ"1^) on CP2

are points that have been blown up. For each p blown up, a dense open subset ($p)
of the sections of JΓjf has non-vanishing one-jets at p (otherwise ίf cannot be a
SAR).

But ^n p) tflp is dense and open. Q
Pblown up

Corollary 2. No SAR has χE> 12.

Proof. Suppose ̂  were a SAR with χE> 12. By Theorem 1 there is a section σ of
Jf^ such that σ~ 1(0) is the proper transform of a non-singular cubic curve on CP2.
Let C and C be the cubic curve and its proper transform respectively. By
Proposition 1, all the χE — 3 blown up points are on C. We have C - C = 9 (since they
are generic cubics), and by Proposition 2, C C=12 — χE. But C C is also the
Chern number of the N(C\ the normal bundle of C in ̂  and, since the tangent
bundle of C has vanishing Chern class, C C is also the Chern number of tf^\~c.

Hence if C C < 0, all sections of Jf$ vanish along C and therefore ̂  is not a
SAR. Π

2.2. Positive SARs

Many of the surfaces we are discussing share a property stronger than semi-
ampleness. Let us therefore recall that [14]:

Definition. A line bundle 5£ ^Jί is positive if there exists a metric on 5£ with

curvature form Θ such that (]/— l/2π)Θ is a positive (1, l)-form.

Definition. A SAR is positive if it has positive anti-canonical bundle.

Corollary 3. No positive SAR has χE> 10.

Proof. By repeating the arguments of the Proof of Corollary 2, we obtain that if
) ̂  1 2, C C ̂  0 and JΓJ is not positive. Q

Theorem 2. // y7 is a positive SAR, ̂  is one of the following:
1) S0 = CP 1 xCP 1 ;
2) CP2 blown-up at a set of at most 1 points in general position:
• no point is infinitesimally near another (no stacks),
• no 3 pomίs /ι'e on a line,
9 no 6 points lie on a quadric.

Proof. By Proposition 5, ίf is CP1 x CP1 or an iterated blow-up of CP2. If at some
iteration we blow up a point on the exceptional line created by a previous blow-up,
we create an exceptional line of 2nd kind. Jf^ restricted to such a line is trivial and it
follows that JΓj? is not positive. Hence the points which are blown up have to be
distinct points of CP2.

Blowing up a point on any curve decreases its self-intersection by 1, by
Proposition 2.

Thus, straightforwardly, blowing-up 3 (6) points on a line (quadric) creates an
exceptional line of the 2nd kind and as above renders the surface non-positive. Π
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Recalling the discussions in Sect. 2, it is clear that every configuration surface is
a SAR. While we conjecture the converse of this, we have not been able to prove it.
The following two theorems, however, represent some progress in that direction.

Theorem 3. // ̂  is a S0or a successive blow-up of CP2 at up to 6 points in general
position, it belongs to one of the configurations below.

Proof. We shall prove this case by case for 3 ̂  χE ^ 9.

\ =:Γl (see [14, p. 478]).
1 4

2. CP2 belongs to a "trivial" configuration, (2|) = .T3, with no constraints.

2 1

1 1
takes the general form.

= :/4

1. To see this, note that the bi-linear constraint3. S

(2.12)

where j/(2\\ 1) and J>(2|| 1), the "coefficients" in Eq. (2.12), are linear in CP2. When
both of these "coefficients" vanish, (z0, zj are unconstrained by Eq. (2.12) and span
all of CP^. This happens in a single point of CP2, since j/ = 0 and & = Q describe
lines in CP2, which meet only in a point (χ£(2|| 1 1) = 1). Therefore, this single point
of CP2 is blown up (into the CP^) which is exactly the description of St. The
converse follows by construction.

4 CP2 e
'̂ ^ rpl,P2 t = : Γ5. The analysis of 3 is repeated twice.

1 1

1 0

0 1 /
5. The argument of 3 can be repeated straightforwardly three times for

1 1 1

1 "

1

1

0

1

0

(2.13)

// the three points are not collinear, then moreover:

\1

= :Γ

To prove this relation, consider the three bi-linear constraints in (2.13) as a system
of three linear equations in (x, y, z) e CP2. For this system to have a solution at all
((0,0,0)<£CP2), we must have:

d e t / 2 (2 14)

where j/ί? ^*ί? and ̂  are linear in CP\. Equation (2.14) is the candidate tri-linear
constraint needed to embed CP2

lί]p2ίp3 in CP1 x CP1 x CP1. For the hypersurface
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to be non-singular, the matrix in Eq. (2.14) must be of rank 2. For it to be of
rankrgl, in addition to Eq. (2.14), the sub-determinants:

Λ /X ®λ Λ Λ (stfv <$\ Λ Λ (3S2 <#2\ „_
det 1 1 , and det 1 J , and det 2 2 (2.15){ }

ought to vanish as well. Let p l 5 p2, and p3 be the three points to be blown up. Let us
choose homogeneous coordinates (x,y,z) on CP2 so that the line lx = 0

==

3, and /Z = 0 =
Then we may write the homogeneous polynomials as:

j^x + JΊ y = 0,

s/2x + <g2z = Q9 (2.16)

where the "coefficients" in the f t h equation are homogeneous coordinates of CP\ in
the configuration (2.13) (e.g. j^ and J*t parametrize CP}). The sub-determinants
in Eq. (2.15) are now simply j/2^1; ^^3, and ^3^2? which do not vanish
simultaneously, unless both of the coefficients of some of the equations Eq. (2.16)
vanish.

6- C>,2,....,,6( J
form:

2\
1 =: Γ7. The quadric-linear constraint is of the general

V 7

In the four points where j/ = ̂  = 0 [since χ£(2||2 2) = 4], the coordinates (ZQ.Z^)
are unconstrained by the above equation and span all of CP\. Hence four
(generically distinct) points of CP\ are blown up. It is standard that two quadrics
intersect at any four points which are in general position (in the sense of our
Theorem 2). The converse now follows by construction.

7. CP^...,p5e(4||2 2)8 = :Γ8 (see [14, p. 552]).

Theorem 4. ̂  is an iterated blow-up of CP2 at 1 points in general position if and only
if ^ is a double cover of CP2 branched over a non-singular quartic. Moreover, the
anti-canonical bundle of ̂  is induced from the Hopf-bundle of CP2 by the covering
map.

(For a proof we refer to pp. 545-549 of [14].)

Conjecture Q. Every non-singular homogeneous quartic on CP2 is the sum of the
squares of some three quadrics.

Proposition 9. If
2/ιo

then ̂  is a double cover of CP2, branched over a
non-singular quartic.

Proof. The general form of the constraint is:

:? = 0, (z&zJeCPl. (2.18)
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This equation has two distinct solutions for (z^zv}^CPl

2 except when the
discriminant vanishes:

A 2 = (£(21| 2))2- 4(j/(21| 2) .#(21| 2)) -0, (2.19)

in which case the solutions coincide. A2 is non-singular because the double cover
is non-singular (see parenthetical remark on p. 548 of [14]). Π

Remark. If Conjecture Q holds, so does the converse of Proposition 9:

CPl (2.20)
10

We shall refer to the configurations F3, Γ4°, Γ£, Γ5, ...,Γ10 as special

Theorem 5. // £f belongs to a special configuration or is a double cover of CP2

branched over a non-singular quartic, it is positive.

Proof. The statement is straightforward for cases with χE^9, since these are
represented by the special configuration given in the proof of Theorem 3, for which
positiveness is manifest, since in each case the anti-canonical bundle is the

restriction of a positive line bundle on the ambient space lif^=γ[ CPn

r

By Proposition 9 the case where 9* e \

mr

r = l

1 is subsumed by the case in which

ίf is a double cover of CP2 branched over a non-singular quartic. Now by
Theorem 4, J^β is induced from ^Cp2 by the covering map. Since the Hopf bundle
is positive, the Chern class of Jf^ has a representative, (9, which is positive except
at points of the branching curve where it is positive semi-definite and positive
along the curve. Let d2 be a smooth function on ̂  which, near the branching set, is
the square of the distance from the branching set in some smooth metric. Then
ddd2 is exact and positive semi-definite along the branching set and positive in

directions transverse to it. For sufficiently small c, (Θ — ]/Γ^ΐεddd2) is a positive
representative of the Chern class of Jfβ. Π

Note that together, Theorems 2, 3, and 5 imply the equivalence of the following
for all 5 ,̂ except possibly when χE(^) = W:

1. ^ is a positive SAR;
2. y = S0, or a successive blow-up of CP2 at up to 7 points in general position;
3. ^ belongs to one of the special configurations.

Remark. If Conjecture Q is true, the qualification for χE = 10 can be removed. In
any case, 3 => 1 <=> 2 without qualification.

2.3. SARs with Euler Characteristic 12

By Proposition 5, any SAR Z with χE = 1 2 must be a nine-fold blow-up of CP2 and
by Corollary 3 it cannot be positive (this precludes the application of LHT).

Theorem 6. // a SAR ̂  is CP2 blown up at nine points none of which is infinitely

near another, it belongs to = :Γ12-
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Proof. The analysis analogous to that in 6. of the Proof of Theorem 3 shows that
now nine distinct points, comprising the intersection of two cubics, are blown up
[since χE (21| 3 3) = 9]. D

2.4. Moduli Spaces

Theorem 7. For each n there exist spaces fn, mn and a holomorphic submersion
π w : f w —nτt π , such that:

1. dim(mn) = 2n;
2. for each μerrt,,, πn

 l(μ) is an n-fold iterated blow-up of CP2;
3. every possible CP2

pi^.^pn occurs as μ ranges over mn.

Remark. mn is a considerably redundant moduli space for n-fold iterated blow-up
of CP2, not only SARs.

Proof. We prove this by induction, starting from n = 0, where f n is CP2 and mn is a
single point. Now, given fn and mw, set:

• fn + ι = {fo τ ) e fn x ίn\πn(Q} = πn(τ}} blown up along the diagonal. Finally we
note that f n + 1 is fibred by the proper transform Jίτ of the manifolds
Jίτ = {(ρ, τ)|πn(ρ) = πn(τ)} for τ fixed, and that Jtτ is π~ ^π^τ)) blown up at τ. Π

A moduli space of surfaces with χE= 12, n9, is obtained as the space of all two-
dimensional subspaces of the space of all cubics on CP2.

We observe that for /^7 a dense open subset of the space nt; corresponds to
surfaces which are positive SARs. Similarly, a dense open subset of n0 corresponds
to SARs with χE=12, satisfying the hypothesis, and hence the conclusion of
Theorem 6.

In further support of the Conjecture that all SARs belong to configurations, we
present the construction of a configuration that contains S2:

Consider the configuration:

i i ι)=:Γ4+; (2'21)

the two bi-linear constraints in Γ' are of the form:

where (z0, zJeCP1 and the "coefficients" s$ — <3) are linear in the homogeneous
coordinates of CP3 and thus correspond to planes. In order for the above system of
equations to have a non-trivial solution [since (0,0)^CP1] the determinant:

= 0 (2.23)

must be satisfied, so the matrix must be of rank 0 or 1. However, for it to be of rank
0, all four "coefficients" ought to vanish which does not happen (four planes do not
meet) generically in CP3.

Therefore, in the generic case, the two constraints of the configuration Γ4

+ may
be replaced by the constraint in Eq. (2.23) imposed on CP3 only. This then
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becomes (3||2)49S0, and it can be shown [14] that any non-singular quadric in
CP3 can be represented by Eq. (2.23).

If however the matrix in Eq. (2.23) is indeed of rank 0 at some point in CP3, the
configuration Γ4

+ represents an S2 surface, which is not represented by the (3||2)4

configuration. This result should be compared with the procedure of [9]; in
particular, their "reduction rule":

>(3||2)4 (2.24)

dismisses any Calabi-Yau manifolds that can be embedded in S2

 x ̂  but not in
S0xi^ (where i^ denotes a product of some complex projective spaces).

Also, note that the configuration (2.13), when the matrix in Eq. (2.14) is of
rankl at some point in CP1 x CP1 x CP1, corresponds to surfaces with excep-
tional lines of the 2nd kind, which are not positive.

Similarly to the augmentation of Γ6 to configuration (2.13), one can augment
any of the special configurations Γ3, ...,Γ10 and Γ12; this procedure was termed
"splitting" by Candelas et al. in [9]. Unlike the special ones, the "split"
configurations generally contain surfaces that have exceptional lines of the 2nd

kind; hence many non-ample SARs belong to configurations.
The fact that surfaces having exceptional lines of the 2nd kind are not contained

in the simple configurations, but (at least some of them) are in "split" configur-
ations should be taken into account and treated with special care in any final
classification of CICY.

Remark. While S0 is an infinitesimal deformation of S2, St is not a deformation of
either and is, in fact, of a distinct homotopy type.

3. Hypersurfaces in Products of SARs

Having discussed the SARs, we are now ready to consider the Calabi-Yau
manifolds embedded as hypersurfaces in product of SARs [see Eq. (2.3)].

If ζf and t/' are SARs (not assumed to belong to configurations), we extend the

configuration notation to denote by
CP1

X l(0), where χ is a section of the bundle Jf *

vanishing one-jet. Similarly, we write
se

J the set of surfaces of the form

over ίf x CP1 with non-

to denote the set of Calabi-

*> withYau 3-folds of the form φ l(0) where φ is a section of JΓ|X^ =
nowhere vanishing one-jet.

Proposition 10. Let Γ and Γ be positive SARs with 3^χ£^10. Then:

9"

(3.1)

(3.2)

Proof. By direct computation for χE, and by LHT for bltl. Π
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Theorem 8. The hypothesis of posίtίvity can be removed from Proposition 10.

Proof. Let ̂  and ̂  be SARs with χ£(^), χ£(^2)^10. Set m =
)-3. We write π for

Then we can identify 5̂  x ̂ 2 with π ~ ί ( p } for some p e mm x τnn. Let ξ be a section of
Jf^ l X t^ 2 = JΓ^1®JΓ^2 with nowhere vanishing one-jet.

We may identify J f j f l X ^ 2 with JΓ*(fmx U|π-ι(p). Then by the Griffiths
obstruction theory [16], the obstruction to extending ξ to a section of Jf *(fm x f j
over a neighborhood of π~ 1 lie in

where S"(y^)) denotes symmetric n-fold products of the normal bundle to π ~ l ( p ) .
Since Jfp is trivial, by Proposition 8 and the Kϋnneth formula, all these groups
vanish.

Let ζ be an extension of ξ to a neighborhood of π~ ί(p}. Then, since π is open
and π ~ l ( p ) is compact, the domain of <f includes TL~I(^} for some neighborhood fyί
of p. Moreover, by making ^U sufficiently small, we can ensure that ξ(π~ 1(%)) has
nowhere vanishing one-jet along the fibres of π. It follows that the Calabi-Yau
manifolds f~1(0)nπ"1(^) are deformations of one another for q e t f l . The result
now follows from the positivity of π~ ^(q) for a dense open subset of mm x m^.

Theorem 9. For every SAR 2£ with χE= ,~M 2

v ̂

Proo/ By Proposition 3, the anti-canonical bundle of 2£ is induced by a map
/: J^CP1 (since there are only two sections), while ^fγ is induced by the identity
map:

2£ x CP1

V lίd (3-3)
CP1 x CP1

Denoting J^ = (/, Id), and by Jf7^ and ̂  the Hopf-bundles of 2£ and CP1

respectively, one has that JΓ*(Jιf^, J^) = 3Cξ®fflv. Given a section σ of Jf^® J^1?

one defines χ = JΓ*(σ), so that χ~1(0) = ί^'~1(σ~1(0)). Without loss of generality,
CP^ and CP1 can be identified, so that cr~1(0) = diag(CP^ x CP1), whereby:

with 5 denoting the points of ̂  and ί the points of CP1. Π

Proposition 11. For any SAR 5̂  and a SAR ̂  wiίfe χ£(^)= 12, ίftere is α SAR
wϊί/i χ£— 12 swc/i ί/iαί:

^*Jl <Ά»
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Proof. By Theorem 9,
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CP1

On the other hand, straightforward computation yields:

CP1

= 12, byEq.(2.8), (3.4)

and by Proposition 5, this configuration must be a nine-fold iterated blow-up of
CP2. Combining these two:

0

o

l σg

π

Since the χE= 12 SARs are not positive, LHT is not applicable to the Calabi-Yau
manifolds considered in Proposition 11 the spectral sequence method [13] yields
only the bounds 19 ^b1 Λ ^23. However, C. Schoen has studied a class of possibly
singular varieties [17] which includes these Calabi-Yau manifolds in the non-
singular case. It follows from his formula (7.4) that bl ?1 = 19.

Using the results of the present paper together with those of [8,13] and
Candelas et al. in [9], the Hodge diamond has recently been explicitly computed
by A. Lϋtken for all Calabi-Yau manifolds which can be realized as complete
intersections in products of complex projective spaces.
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