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Abstract. We discuss the relationship between “string structures” and the
topological class e H*(M,Z) on non-simply connected manifolds. We also
investigate to what extent the index formula for the Dirac-Ramond operator
detects the class, A.

1. Introduction

It is now evident that the Dirac-Ramond operator [1] plays an important role
in physics and mathematics. In physics it was shown that the anomaly generating
function in string theory [2,3] could be derived as the character valued index of
this operator [4,5]. In mathematics a similar construction provided an explicit
realization of the elliptic cohomology and was introduced to prove certain vanishing
theorems [6-9] conjectured by Witten [10]. In fact by studying automorphisms
of the Dirac-Ramond operator these can be now proven more directly [5,11,12].

This interplay between physics and mathematics resulted in a rather unusual
chronological order for the discovery of the properties of the Dirac—Ramond
operator. For example, the index formula was known even before the operator
itself had been rigorously defined®, and in particular, before the generalization of
spin-structure had been properly understood.

In order to define a Dirac operator on a manifold, M, and hence discuss
its index, the manifold must have a spin-structure. This is a topological
restriction which is equivalent to requiring that the second Stiefel-Whitney class
w,(M)eH?*(M,Z,) vanishes. Physically, one can think of this like a Dirac
quantization condition in the presence of the Dirac monopoles. On certain
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manifolds (with w, # 0) fermions naturally have wrong “charge” with respect to
the affine connection. In some cases this can be corrected by coupling to a
topologically nontrivial gauge field. This introduces the generalized spin structure,
also called the spin®-structure. On a manifold M with a spin structure, or a
generalized spin structure one can define the Dirac operator coupled to gauge
and gravitational fields.

The index of the operator is then given by the Atiyah—Singer theorem [13] as

Ind D = | LA(R) ch (F) Jop form» (1.1)
M

where A(R) is the Dirac genus, and ch(F) is the Chern character of F in the
corresponding representation.

It is important to notice that the index formula (by which we will mean the
integrand in the right-hand-side of (1.1)) is a set of curvature densities to be
integrated over M, and therefore it makes perfect sense even if the manifold has
no spin structure, or generalized spin structure, or if the appropriate Dirac
quantization condition is not satisfied. However, if the integral fails to be an integer
then the spinor fields in a given representation of the gauge group are obviously
ill-defined. For example the A-genus integrated over the even dimensional complex
projective space CP?" gives (— 1)"((2n)!/2*"(n!)?) which is never an integer. The
converse need not be true, i.e., if the index formula yields an integer, a spin structure,
or a generalized spin structure does not necessarily exist.

In this paper we will study the corresponding issues in string theory. First we
carefully examine the notion of “string structure” as described in [14] and find
that when M is not simply connected one needs to tighten up the definition by
requiring that the string structure also respects the Diff * (S?) (the superscript ‘ +’
indicates oriented difftfomorphisms) action on the loop of the string. Once this is
done we believe that the conclusions of [14] are correct in that the topological
obstruction to the existence of the string structure is the A-class®. The second part
of this paper investigates to what extent the character valued index formula for
the Dirac—-Ramond operator detects the A-class.

The class, 4, belongs in H*(M, Z) (note that this is the integer cohomology of
M), and is related to the chiral and global anomalies on the string world-sheet.
In general J has two parts, the free part, A, which can be expressed in terms of
curvatures on the manifold, and the torsion part®, A", which cannot be written
in terms of local quantities. However, on a large class of physically interesting
spaces, for example on orbifolds, A" can be calculated explicitly. Also the existence
of string structure in these spaces can be established directly without using
computations in cohomology. It is by considering such a space that we are able
to establish precisely how to properly modify the definition of string structure in
[14]. Having done this, we generalize the index formula to orbifolds, which we

2 Itis plausible that there may be implicit assumptions about M in [14], like being simply connected,
that allow to relate the obstruction in H*(LM, U(1)) to ieH*(M,Z) by using the evaluation map
e:S' x LM —» M and integrating over S*.

3 To be precise, the torsion part is unambiguously defined only when the free part vanishes
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will take to be an arbitrary manifold (not necessarily flat) divided by a discrete
symmetry group, I". The A-class for such a space can be schematically written as

A=Ay [M]+ A, [M] 2, [ 1]+ A, [T], (1.2)

where A,[ M] is the obstruction on the manifold itself, 1,[I"] is related to twists
at the critical points of the group action, and A,[M] A,[I"] is a cross-term. We
show how various consistency conditions of the index formula require different
parts of A to vanish.

In Sect. 2 we review the derivation of the index formula using path integrals
and discuss how the A-class appears for the Dirac-Ramond operator on a general
manifold. In Sect. 3 we discuss in detail the string structure on a simply connected
manifold divided by a finite abelian group of isometries. We show that the string
structure can be constructed in each sector of the loop space independently of
whether 4 vanishes or not. Only after one relates different sectors by requiring that
the Diff * (S*) action can be lifted to the string structure, the A-class appears as an
obstruction. In Sect. 4 we explain how the index formula on an orbifold can be
derived and show that part of (1.2) is required to vanish through the consistency
conditions on the index formula.

2. Index of the Dirac—Ramond Operator

We consider the heterotic string o-model on a Riemannian manifold M. Upon
quantization the supersymmetry charge of the right moving sector becomes an
operator on the loop space, LM, of M. This is the Dirac-Ramond operator,
F[1]. To avoid inconsistencies in the definition of F it was suggested by Killingback
[14] that the manifold must possess a “string structure.”

The ordinary spin structure on M is associated with the central extension

0 Z, - Spin(d) - SO(d) -0, 2.1)

of the orthogonal group SO(d) to Spin(d). Here, SO(d) is the structure group of
the bundle of the orthonormal frames, P, on M, and the spin bundle, S, if it exists,
is a double cover of P with the structure group Spin(d). As mentioned earlier the
existence of the spin bundle imposes the topological restriction that w,(M)=0.
More generally, if the spinors couple to a vector bundle E, then the existence of
the generalized spin structure requires that w,(M)— w,(E)=0.

On a loop space, LM, assuming that M has a spin structure, the natural “frame
bundle” is the bundle, LS, of loops in S, whose structure group is LSpin(d), i.e.,
the loop group of Spin(d). An element, g, of LSpin(d) is a smooth map
g:S! - Spin(d). This group has a unique central extension [157, LSpin(d),

0- U(1) - L Spin(d) - LSpin(d) -0, 2.2)

with the center U(1). The string structure exists if the manifold, M, has a spin
structure (or a generalized spin structure) and the bundle LS has an extension to
a bundle LS with the structure group LSpin(d). In [14] it was suggested
that there is a topological obstruction to the existence of LG given by the class
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A =1p,(M)eH*(M,Z). More generally, if the left-moving string gauge fermions
couple to a vector bundle, E, then the appropriate class is A =4(p, (M) — p,(E)),
where p,(M) and p,(E) are the first Pontryagin class of the tangent bundle of M
and the vector bundle E, respectively. We assume here that the structure group,
G, of E is simply connected. As for the tangent space, the string structure in E is
defined as an extension of the loop bundle with the structure group LG to a bundle
with the structure group LG.

One can understand the role of the A-class in string theory as follows. In string
theory one considers the space, Map(Z, M), of maps x: X' — M from the string world
sheet, X' into a manifold, M, given by the coordinates x*(c,,0,). Then one tries
to define the chiral determinants of the world-sheet fermions minimally coupled
to the world-sheet gauge and gravitational fields induced from M via map x*.
However, as has been discussed by many authors [1,16—-18], because of anomalies
these determinants cannot be defined as functions on Map(X, M). In general, one
can only construct a determinant line bundle over the space of maps Map(X, M).
In terms of this bundle the chiral and global anomalies have a simple interpretation
[17-19]: the chiral anomaly is given by the curvature of this bundle, while the
global anomalies correspond to a non-trivial holonomy. To detect the local chiral
anomalies, that is to measure the curvature, one must consider pairs of directions
in Map(X, M) defining 2-parameter families of maps from X into M. The image
in M of such family defines a 4-surface, and the chiral anomaly is absent if the
free part of A restricted to this surface vanishes in cohomology. This gives the
familiar condition [20] Tr F> — Tr R? = dH. This is once again the usual method
of detecting an anomaly in d-dimensions by constructing the appropriate (d + 2)-
form [21]. The differences here are that the extra 2-dimensions are realized in
terms of maps of X into M, and the (d + 2)-dimensional fields are not arbitrary,
but are induced from the background fields in M. As a result, the anomaly restricts
the background fields in M, and does not spell a disaster for the o-model. Moreover,
the fact that one only need to require Tr F? — Tr R? to vanish in cohomology, and
not require the overall coefficient of this term to vanish is merely another way of
describing the anomaly cancellation mechanism in the o-model [22].

Having cancelled the local chiral anomalies, there are still potential global
anomalies corresponding to the holonomy in the phases of the determinants. These
are detected by a closed path in Map(X, M) which corresponds to a closed 3-surface
in M. Computation of the holonomies associated with all such 3-surfaces determines
then the torsion part*, 1", of 4.

At this point one might be tempted to conclude that there are anomalies unless
the whole class A vanishes. In fact 1" =0 is a sufficient condition for the absence
of global anomalies, but it may not be necessary [18,11]. Intuitively we may
understand this as follows. Take a 3-surface, K, which detects nonvanishing A'".
This will be fatal only if it is possible to arrange a 1-parameter family of string

4 This is in agreement with the universal coefficients theorem which relates the torsion part of
H*(M, Z) to the torsion part of H;(M, Z), which is spanned by closed 3-surfaces in M such that a finite
number of them bounds a 4-submanifold in M
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world-sheets to produce K. It may happen that the best one can do is to cover K
n-times with such a family. As a result the necessary condition will be n-A*" = 0.
Of course, to analyze this completely is rather complicated and ultimately by
considering all possible families of world-sheets we may end up with the requirement
that 1 =0.

To summarize, the condition for the existence of string structure of [14] might
be slightly stronger than the one needed for the anomaly cancellation.

Having described the topological conditions necessary to define the Dirac—
Ramond operator coupled in a gauge and gravitational background we may now
ask to what extend the index formula, analogous to (1.1), detects these conditions.

The loop space has a natural S*-symmetry, the translation by a constant along
the loop. Therefore the proper form of the index is the character valued index
defined by

I(x) = Tr(q¢" " (— 1)'™), (2.3)

where g = €™, with Imt>0, and fy is the right-moving world-sheet fermion
number. The operators H; and Hy are the left- and right-moving Hamiltonians,
and are equal to the Virasoro generators, L, and L, shifted by the appropriate
intercept parameters, in the background fields. From the usual supersymmetry
argument only the states annihilated by Hy contribute to the trace and as a result
I(z) is always a holomorphic function. This allows one to consider (2.3) in the limit
in which Im 7 becomes infinitesimally small, and then use analyticity to obtain the
answer for arbitrary t. This was the method employed in [4]. After converting
(2.3) into a path integral the limit of Imt being small corresponds to the high
temperature expansion. The result is®

det(00 45 + F 45(x)) |*1
det’ (662 + R%(x,)) ’
where 0= (d,, +10,,) is the anti-holomorphic differential on a torus with

Teichmiiller parameter, 7, and the coordinates o, and o, vary from O to 2n. The
curvature 2-forms

I(t) = [dxt Wg[ 24)

FAB = %(Fuv)AB}'g 169 (25)
RY=13RE,, 4645, (2.6)

ony

depend only upon the zero modes, x, and 4,, and thus represent constant twists
on the string world-sheet. The determinants in the numerator and the denominator
are for free fermions and bosons, respectively, with implicit boundary conditions
corresponding to the summation over world sheet spin structures. The powers of
1 in (2.4) arise because the fields are real, and the corresponding determinants over

5 In comparison with [4] there is no overall factor det’(9) which arises from the integration over the
ghost and superghost fields. These fields do not couple to the background and can be dropped in the
calculation of the index of the Dirac-Ramond operator. However, they must be included if one wants
to obtain correctly space-time anomalies in the underlying string theory
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the real chiral fields are to be defined as square roots of determinants for the
complex chiral fields.

The index formula I(t) can be also obtained without path integrals by applying
the fixed point theorem [23] to the Dirac-Ramond operator and the S*-symmetry
[11,24]. The main idea of this method is as follows®. To compute the character
valued index of the Dirac operator on a manifold, M, with a symmetry group, G,
it is enough to consider a Dirac operator on the submanifold, M[G], which consists
of fixed points of G-action, and couple it to the bundles which are canonically
constructed from the bundle normal to the fixed point set. For the Dirac—Ramond
operator on LM the fixed point set is the manifold, M, itself, and the bundles
which arise from the normal directions in the loop space are precisely those of the
massive modes of the string. Therefore, the calculation of the index from the fixed
point formula is nothing other than assembling the elliptic genus from the A-genus
and Chern characters corresponding to all mass levels of the string. This was the
method, motivated by physical considerations, which was used originally in [2].

We will call I(7) given in (2.4) the index formula for the Dirac—-Ramond operator.
The fact that (2.4) only depends on the background fields through the curvatures
localized at x, is a reflection of the high temperature limit in which the dominant
contribution to (2.3) comes from infinitesimal tori around x,. Integration over the
non-zero modes can then be rewritten in terms of path integrals in the tangent
space, and the geometry of M enters only via constant twists. Therefore one would
expect that the index formula will be consistent even in the presence of nontrivial
geometry. However, the chiral determinants in (2.4) are infinite dimensional and
must be consistently regularized over the entire manifold [3,24]. Moreover, we
want to compute the character valued index of the Dirac—-Ramond operator, and
the path integral that corresponds to Tr(— 1)’% is evaluated over tori with a
distinguished 1-cycle corresponding to the S'-action. On a euclidean torus there
is no natural way to distinguish a single cycle, and this may cause an inconsistency
in (2.4) unless it is independent of which way S! acts on a torus. This ambiguity
persists even for infinitesimally small tori, and as will be seen, can detect the
localizable part of 4.

As discussed in [3] the determinants in (2.4) can be holomorphically regularized
and evaluated explicitly in terms of the Jacobi -functions. The result is

_ B xan@) N 0iy/2mi7)
I(T) - jddx [a:[;ll 61 (xa/ZTEi | ‘C) /;ljl }’](‘L') :ltop form, (27)

where x, and y, are 2-forms that are skew-eigenvalues of R and F, respectively,
and #(t) is the Dedekind function. The particular theta-function, 6;, or their
combination, in (2.7) depends on the boundary conditions in the left-moving sector.

The index formula in (2.2) should be viewed as a function of the torus that is
used to define the determinants, and not merely as a function of T with Im 7 > 0.
As a result I(7) is required to be a modular function for the entire modular group
if one has a modular invariant string theory, or for a subgroup of the modular

§  For a detailed discussion see, e.g., [10,11]
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group if one restricts to a subsector of the string. In either circumstance the
transformation of I(t) under the modular transformation t — (at + b/ct + d) can be
deduced [2, 3] from that of the -functions

0i<CT :- - at + b> _ Seincvz/(a+d) /et + dgj(vlf)a (28)

ct+d
where ¢ is a phase and j depends in some complicated way on i,a,b,c and d. One
finds that the integrand in (2.7) is modular invariant, up to phases of the form

inc
Tr F? —TrR?) |. .
exPl:cr+d( r r ):l (2.9)

However, if F and R satisfy
TrF?—~TrR*=dH, (2.10)

for some 3-form H on M, then the phase factor (2.9) disappears upon integration.
This is because the theta-functions in (2.7) can always be rewritten in terms of
invariant polynomials in F and R [2,3], which are closed forms on M. Thus, any
term involving dH, or powers of it, vanishes by integration by parts. As a result
we see that I(z) is only a modular function if (2.10) is satisfied.

In [1,17,18] it was shown that in order to define chiral determinants in a
modular invariant manner, one also encounters the torsion part of the A class. The
reason why this does not happen here is that (2.4) has been evaluated in a high
temperature limit, and the minimal couplings have disappeared. The background
thus only enters through curvatures. Moreover, the high temperature limit has
enabled the bosonic integration to be performed. These simplifications and the
invisibility of A" are simply consequences of the fact that we really only consider
arbitrarily small tori that can be localized at x,, and so only see the localizable
part of the class.

We conclude that the index formula I(z) is well-defined by Eq. (2.4) when the
free part of the A-class vanishes. Moreover, if A'" and w, vanish, then the
Dirac-Ramond operator exists, and I(t) can be identified as its index. However,
if one is on a manifold for which the only non-zero components of 4 are the torsion
parts, then I(r) is a well defined modular function, but it may not have integer
coefficients. It would be interesting to investigate under what circumstances I(t)
has integer coefficients on an arbitrary manifold on which it is well-defined.

3. String Structure on Orbifolds

The condition, A =0, for the existence of string structure on a general manifold,
M, was derived in [14] using abstract techniques of algebraic topology. Such
methods are not very well known to physicists and we feel that such analysis
obscures the assumptions that are being made in the proof that 2 must vanish in
order for there to be a string structure. Indeed, as one might expect from the
experience from the spin structures, complications arise when the manifold is not
simply connected. Since the majority of physical models require orbifolds or
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non-simply connected manifolds with Wilson lines, it is clearly important to
examine more closely what is required for the existence of a string structure.

The first thing to observe is that if M is not simply connected, the corresponding
loop space, LM, is not a connected space and it decomposes into components
corresponding to different elements in ,(M)’. We shall argue below that in many
cases one can establish the existence of string structure in each component
separately without encountering any obstruction. It is only after one tries to relate
various components that one finds that the A-class must vanish. This suggests that
when M is not simply connected the definition of the string structure given in [14],
which was discussed in Sect. 2, must be modified.

Rather than discussing a general case, we shall study explicitly an example
which is related to abelian orbifolds. Let M be a connected and simply connected
manifold and I' a discrete group acting freely on M. We take I” to be an abelian
cyclic group Z,. Since the action of I" on M is free, the space of orbits, M= M/TI,
is a manifold. Moreover, M is connected, but not simply connected and
(M) =T. Let G be a compact Lie group and p:I" — G an embedding of I" into
G. With each embedding, p, one can associate a principal fibre bundle P, over M-
with the structure group G. The total space of P, is obtained as a diagonal quotient

MxG
P,= T

. (3.1)

In (3.1) we identify (m, g) with (my, p(y) " 'g), meM,geG and yeI. For convenience
we take I' to act on M from the right. The action of the structure group, G, on
P, is defined by

gO:(ms g)_)(ms 990)7 (32)

and obviously does not depend on which representative of the class [(m,g)] is
being used. Since I is abelian we can always arrange the embedding, p, to be via
the maximal torus, that is

rcT(G)cG

eZm'6|

py) = .. ) 3.3)

e2n19N

where the twists 0, =k;/n, k,eZ, i=1,...,N =rank G, are such that p(y) is an
element of order n in G. It has been discussed by many authors [1,25] that the
bundle defined in (3.1-3.3) is in general nontrivial. It is also flat and has
nonvanishing Wilson lines corresponding to noncontractible loops in M . One
can show that the Pontryagin class of P, is [25]

P1(Pp) = .:Zl (ki)z)ez, (34)

7 For simplicity we assume that (M) is an abelian group. In general one must consider loops in
the conjugacy classes in n, (M)
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where X2e H*(M [, Z) is a torsion class element such that nx? = 0. The details of %2
depend on M. For example it vanishes if the dimension of M - is less than 4.
However, in a generic case, e.g., for M = S?*1(k>2),%2,2%2,...,(n — 1)%? are
distinct and nonzero. For more discussion of (3.4) we refer to [1] and [25].

Before we discuss the existence of string structure on P,, we consider a simpler,
but conceptually similar question for the spin structure, when G is an orthogonal
group. If G=SO(2N) to construct a spin structure on P,, one must lift the
embedding p to p:I" — Spin(2N). For a generator, y, of I, p(y)" will in general be
equal to + 1, and one must impose that p(y) is of order n in Spin(2N). When n is
odd such p always exists, but for n even one must require

N
Y k; =0mod 2. (3.5)
i=1

Having chosen the embedding p we can define a spin structure on P, by considering
a bundle

~ M x Spin(2N)
P,=—— (3.6)

which satisfies all the required conditions.

The existence of string structure in P, can be analyzed in a similar way. From
now on we will assume in addition that G is also simply connected and simply
laced. By taking smooth loops in the total space of the bundle P, one obtains the
following bundle of loop spaces

MxG
LG—>LP9:L< ; )

Jn , (3.7)

M
LM, =L~
~7)

with the structure group, LG, which is the group of smooth loops in G. Since M
and G are connected and simply connected 7, (P,) = I" and the projection 7 is an
isomorphism between the homotopy groups. The total space LP, of the loop
bundle is disconnected and I labels sectors corresponding to different elements
in 7,(P,). Thus for each yeI” we have a corresponding bundle

LG-L,P,

I (3.8)
LM,

where L,P, and L, M denote spaces of loops in P, and M in the class y. Since
I is discrete and acts freely we may lift these loops to twisted loops in M x G and
M, respectively. Denote by L,M and L,G spaces of loops twisted by y, that is

L Mam:R—>M, m(t+ 2n)=m(t)y, (3.9
L,G3g:R—-G,  g(t+2m)=p(y)~ "g(. (3.10)
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We then have canonical isomorphisms

MxG\ L,MxL,G
L{—F)= T (3.11)
LM
L M= "F . (3.12)

The action of I" on the twisted loop spaces above is the one inherited from the
action on M and G. Since I is abelian, different twisted sectors do not mix. We
would like to emphasise that in each twisted sector the structure group is still
equal to LG. Indeed, if g,(t),g,(t)eL,G, then g,(t) = g,(t)g(t) for some untwisted
loop ¢(t). Thus by choosing a representative, g,(t), in each sector we have L,G =
g, LG. This shows that there is an isomorphism

(3.13)

MxG\ LMxLG
L, T = T .

However this isomorphism is not canonical since it depends on how we identify
L,G with LG, that is, it depends upon the base point g,e€L,G. In particular let
v:g(t)—p,(v)(1)g(t) define the action by right multiplication of an element v of I
on LG. Since L,G=¢," LG we must take

P, =g,6)" " p(v) "1 g,(0). (3.14)

Observe that p, defines an embedding of I" into LG, and thus the structure of the
bundle in (3.13) is exactly the same as of the one in (3.1).

To define a strlng structure we will show that one can define a lift of p, to the
central extension LG. Here LG is the basic central extension [15] of LG. The
corresponding exact sequence is

0> U(1)>LG—LG—0. (3.15)

As a manifold LG is a U(1) bundle over LG. The first Chern class of this bundle
is given by a left-invariant 2-form, (1/27)w, on LG. At the origin w is a cocycle on
the Lie algebra of LG defined by

(Cn) =5- I de &), ' (1) ), (3.16)

where &(t) and #(t) are loops in the Lie algebra, ¥, of G, and {,) is the basic
invariant product in %, normalized so that the length of roots is equal to ﬁ This
extension is basic in the sense that any other can be obtained from it by dividing
out a normal subgroup.

There is a convenient method of describing LG more explicitly [15]. One
considers the set of triples [g(t), p(g), u], where g(t)e LG, p(g) is a path in LG from
the unit element to ¢(t), and ueU(1). In this set one can define an equivalence
relation such that [g(¢), p(g9),u]l=[g'(t),p'(g'),uw'] if and only if g(t)=g'(t) and

=C(p'+p~Y)u'. Here p'xp~ ! denotes a closed path in LG obtained by going first
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along p’ and then back along p, and

ifw

Cp'sp~')=e", (3.17)

where o is an arbitrary surface in LG bounded by p’*p~!. Since (1/27)w is a Chern
class of a bundle, it is an integer class in the cohomology of LG and (3.17) does
not depend on which surface o is being used to evaluate it. As a set LG is then
the set of all triples divided by the relation we have just discussed. The group
multiplication in LG is

[91,P1,u1 1[92 P2s s 1 =[9192,P1 %G1 P2 Uy Uy . (3.18)

It is straightforward to verify that this is well defined with respect to the equivalence
relation. The projection on the first entry in [,,] is the homomorphism onto LG
whose kernel is the center U(1).

Consider now the embedding p,. To construct its lift p,: 1" — LG it is sufficient
to determine it on the generator vel  so that [p,(v)]"= 1. If ¥ is any element in
LG that projects onto p,(v) then 9" lies in the center of LG. We can take
p,(v) = (9")~1"9. Having constructed an embedding p, in each sector one merely
observes that the bundle

“ L.M x LG
LP‘,=U——y

(3.19)
yell I_'

defines a string structure in P,. Note that this construction is completely
independent on whether the A-class vanishes or not.

In the above construction of the string structure all the twisted sectors were
treated independently. The string structure was obtained by lifting separately each
p, to p,. However we must still understand whether this is sufficient to define the
Dirac-Ramond operator and calculate its index. In Sect. 2 we discussed that the
circular symmetry on the loop space, LM, enables one to reduce the index
computation to the infinitesimal neighbourhood of the fixed point set, that is of
the manifold, M = LM. The use of the fixed point formula is legitimate provided
we can show that S! is indeed a symmetry of the operator. Even before we raise
this question, we must understand how the symmetry group acts on the bundle
to which the Dirac—Ramond operator is coupled. Therefore in the remainder of
this section we investigate the conditions under which the string structure has the
necessary S' symmetry.

On the Hilbert space of the string the generator of the S* action is the operator
L,—L,, where L, and L, are the generators in the Virasoro algebra of the
left-movers and the right-movers, respectively. Requiring that the states are
invariant under a complete rotation around the S* restricts the values of the
intercept parameters in L, and L,. This is the so-called level matching condition
[26,27]. However, for a given manifold the values of the intercept parameters are
fixed and can be calculated directly (for example by the {-function regularization
[26]). Thus the level matching condition is an obstruction to having a consistent
string theory, and this is how the A-class emerges for strings on orbifolds [27, 28].

The S* group acting on the loop space is a subgroup of a larger group, namely
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Diff *(S'). In string theory one usually finds that once one represents the action
of this S! on the Hilbert space of states one can automatically represent the whole
Diff *(S*). More precisely, the action of S* is always represented by an operator
with an intercept that can be determined in a number of ways (e.g. by {-function
regularization). The important thing is that when one constructs the other Virasoro
generators from the oscillators one finds that the central term takes its canonical
form when one chooses the proper value of the intercept parameter. Thus from
the point of view of representation theory the correct representation of the S*
action can only be determined by appealing to the whole of Diff * (S*) in order to
determine the value of the intercept.

Consider the total space of the loop bundle L, P,. The points of this space are
loops p:R— P, p(t + 2m) = p(t), where p belongs to the homotopy class labelled
by 7. On this space of loops there is a natural action of the group Diff * (S). The
elements of Diff * (S!), or more precisely of its universal covering, Diff * (S!), are
mappings

o:R->R ot +27n)= () + 2n, (3.20)
and the action on p(t) is given by
@ p(t)=ple~ ' (1)). (3.21)
Note that this action is an automorphism of the bundle in the sense that
@-(pg) = (@-p)(@-9), (3.22)

where ge LG and (¢-g)(t) = g(¢ ~1(¢)) is the natural action of Diff *(S') on LG.
If we choose to describe L, P, in terms of the twisted loop space (L,M x LG)/I”
as in (3.13), we find that a pair (m(z), g(t)) transforms under ¢ as follows

@:m(t)—>mlp~ (1), (3.23)
@:9(0)~ R,[@]()(@-9)(t) = g; ' ()g,(¢~ " ())g(e ™ (1)). (3.24)

One must multiply ¢-g(t) by R,[¢](1) =g, '(t)g,(¢ "' (t)) because the base point,
g,(t), gets transformed under ¢. Also, one should notice that it is really a k-fold
cover of Diff *(S?) (where k is the order of y in I") rather then Diff * (S!) that acts
on L,M x LG. For later purposes we introduce a notation for the diffeomorphisms

which correspond to the R subgroup of Diff * (S')8, ¢,(t) =t — a. From (3.24) we
find that the translation by 27 in LG gives the embedding p,(y)(t) = R,[¢,,1(?).

Consider the untwisted sector. We want to check that the action of Diff * (S*)
on the bundle L, P, can be lifted to an automorphism of the untwisted sector of
the bundle (3.19). First we shall describe how the Diff * (S!) action lifts from LG
to LG. Such a lift exists and is unique [15]. On the explicit realization of LG,
which was discussed above, this action can be described as follows

¢:L9(1), p(9).u] = &-[g(1), p(g). u] = [(@9)(®). ¢ p(9), ul, (3.25)

8 This corresponds to the S! subgroup of Diff * (S!)
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where ¢ p(g) is a path obtained by transforming with ¢ all the points on the path
p(g). Since the cocycle (3.16) is manifestly invariant under reparametrizations the
transformation defined in (3.25) does not depend on a choice of a representative
of a given element in LG. This action is also an automorphism of LG, that is

¢(3:192)=(9°9)(@92) §1,9,€LG. (3.26)

The elements of LG that project onto constant loops in LG are inert under this
action of Diff ¥ (S'). In particular the center U(1) is inert.

In the untwisted sector the embedding p,:1 — G = LG takes I to constant
loops. Thus po(I") = LG does not transform under Diff*(S'). The action of
Diff *(S') on LM x LG factors to the quotient f,oPp and defines the lift of the
action on L, P, we are looking for.

The twisted sector is more complicated to analyze. Because of the base point
we must use the modified action of Diff * (S!) on LG given in (3.24) and it is this
that must be lifted to LG. Denote this lift by 7. To obtain an automorphism of
the string structure of the form (3.22) 7' must satisfy

T,(6192)=T,(6)(¢:d2) d1.9,€LG. (3.27)
Thus it is sufficient to determine Tq, on the unit element 1 of LG. Denote
T,(1) = R,(¢). (3.28)

The projection of ﬁy(q)) on LG is equal to R, (¢) given in (3.24). From (3.27) we
deduce that it must satisfy the following consistency conditions

R,(id) =1, (3.29)
R,(Wo9) =R,y R,(¢). (3.30)

These conditions guarantee that T defines a group action. Conditions similar to
(3.29) and (3.30), but without the “hats,” are also satisfied by R,.

Similarly as in the untwisted case we can show that if the action of Diff *(S?)
on LG, defined by (3.24), lifts to an action on LG then this lift is unique. Indeed,
let Iiv and ﬁ; correspond to two different lifts. Then A4,(¢) = Iiy(<p)ﬁ’y(qo)‘1 is a
mapping from Diff " (S') to the center U(1). Using (3.26), (3.29), (3.30) and the
triviality of ¢ on the center we find that A is in fact a group homomorphism and
thus must be trivial.

Observe that R, defines a mapping

R,:Diff *(S') » LG. (3.31)

The 2-form @ on LG, which defines the central extension, can be pulled back by
R, onto Diff * (S*). Equation (3.30) (without the hats) and the invariance of w under
the left-multiplication in LG and under Diff * (S') imply that R¥ w is a left-invariant

form on Diff * (S?). Thus it is sufficient to determine it at the origin, that is on the
generators, L,,, meZ, of the Virasoro algebra. In the complexified tangent space we
have

L, =ie™—. (3.32)
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From (3.16) and (3.24) we then find
1 2
R¥w(L,, L,) = y im—n) | " A(t)ydt = Ji(m —n) A, 4, (3.33)
0

where

d d
A(t)= <gy(t)_12;gy(t)sgy([)_lagy(t)> (334)

depends only on the twisted loop g,(1). From the cohomology of Diff *(S') it is
known that the form in (3.33) is trivial. In fact
R¥*w=dA, (3.35)
where A is a left invariant form on Diff * (S!). At the origin A is given by
A(L,) = —1iA,,. (3.36)

To proceed further we will choose an explicit twisted loop

ei(k[/n)t

itknint

which lies in the maximal torus. The product <, in (3.33) restricted to the Cartan
algebra is equal to — Tr. From (3.33) and (3.35) we then find

R¥w(L,, L,) = Zm[ZN: (Oi)2j|5m+,,‘0, (3.38)
and
AlLy)= — %z[i (&)2]5,",0‘ (339)

To construct ﬁy(go), and thereby obtain Tq,, we will modify ¢ given in (3.25).
The mapping, R,, in an neighbourhood, %, of the unit element, is an injection.
Moreover it will be important later to observe that we can choose # to include
the identity of Diff *(S*) as well as ¢,,. (This follows from the fact that if
R,(¢) =R, (¢"), then (k;/n)(¢ ™' (t) — @'~ '(t)) =2nl,l,€Z,i=1,...,N). If pe then
define R

R,(9) =[R,(9),R,(p,), P(p,)], (3.40)
where p,, is a path in % from the identity to ¢, and R,(p,,) is its image in LG. The
phase @(p,) is obtained by integrating the potential A4 along p,,

—ifA

D(p,)=e . (3.41)

One can check that ﬁy(w) defined in (3.40) does not depend on the choice of the
path p,, as long as the latter is in %. The last restriction is necessary so that the
phase (3.17) can be computed by pulling back the integral over 2-surface to
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Diff * (S') and replacing it by a line integral of the potential 4 along the boundary
formed by two paths one is comparing. Using the left-invariance of 4 one can also
show that, when ¢, yope, ﬁy satisfies the consistency conditions (3.29) and
(3.30).

The last thing we must check is that (T »,,) =1d. Since ¢,, defined by (3.25) is
the identity map, all we need to show is that [R (¢,,)1"=1in LG. If we choose
the path p(z),7€[0, 1] in (3.40) as p[¢,,]1(t) = @,,,, then its image by R, will be a
path in G < LG. Using (3.32) we find that ¢,,, can also be written as Pone =
exp(2nitL,). Comparing with (3.39) we see that the line integral of 4 along p
becomes straightforward. The resulting phase (3.41) is

D(p) = exp< — i i (Gi)2>. (3.42)
=1

Putting everything together we obtain

[R,(9022)1" = [p(y)", 75 p(y)- 75 -5 p(y)' ~ -7, D(p)'], (3.43)

where r = R,(p[@,,]), that is r(t) = g,(2n7). The first entry on the right-hand side
is 1 since [p(p)]" = 1. The second entry is a closed path of constant loops, that is
it lies entirely in G < LG, and so is equivalent to a constant path at 1 under the
equivalence relation on such triples, provided one introduces the phase dictated
by (3.17). However w vanishes on G = LG, and so this phase is trivial. Thus (3.43)
is equal to 1 if and only if @(p)" =1, that is

1 N
5 Y (k) =0modn. (3.44)
i=1

This is the level matching condition of ref. [26,27]. Comparing with (3.4) we see
that (3.44) is exactly the condition for the vanishing of the A-class [28].

The obstruction to the existence of a string structure must be a topological
invariant, and from (3.44) we see that the relevant invariant is half of the first
Pontryagin class of the bundle P,. Thus, if instead of the twisted loop (3.37) we
used any other twisted loop which could be obtained by a continuous deformation,
the result would be still the same. Since G is connected and simply connected, LG
is connected and the derivation of the obstruction is thus independent of the choice
of g,. It is clear that the choice (3.37) of the twisted loop significantly simplified
the derivation of (3.44). It would be still interesting to derive this result without
explicit calculations.

Throughout this section we have been assuming that I acts on M freely. This
is obviously not the case on orbifolds. However, as has been discussed in detail in
[28], one should then use the equivariant construction [29], and replace M with
a larger space, which is homotopically equivalent to M and on which I" acts freely.
Since the existence of the string structure and the index problem for the
Dirac-Ramond operator do not depend on continuous deformations, we can use
this construction to generalize our results to orbifolds.

Let M be an arbitrary manifold. When the action of I" has fixed points, M/I”
is an orbifold and the proper generalization of M [ is the equivariant quotient



206 K. Pilch and N. P. Warner

defined as the manifold M= (M x E )/I", where E - is some contractible space on
which I" acts freely. In our case one can take E,- to be a unit sphere, S, in an

o0
infinite dimensional complex Hilbert space, ie., S*={(zy,z,,....)| Y. |z;|* =1,
i=1

z;€C}. The action of [k]el” on S* is [k](zq,...)=(e*"*"z,,...). The quotient
B, =S*/I" is called a classifying space for Z,.

By replacing everywhere M with M x E we find (3.44) as the obstruction to
the existence of string structure on an abelian flat orhifold.

In the most general situation we may consider M together with nontrivial
gauge and gravitational backgrounds on which I” acts as a symmetry group. In
this case the 4 class of the quotient bundles will have contribution from the twists
and from the backgrounds. The full 1 class is then given by the equivariant
Pontryagin class [28]. For the tangent bundle on M it is defined as

p(M/T") =P1(MF)GH4(MF> 7). (3.45)

When restricted to a connected component of the subspace of the fixed points,
M[I'], in M, it can be decomposed into the cohomology classes of M[I"] and
B. On M[I"] the tangent space TM can be decomposed into

TM = TM[T']® [@ T“’} (3.46)

where TM[I"] is the component tangent to M[I"], and T" are d;-dimensional
complex bundles, in the normal direction, on which I acts by a multiplication
with e2™% 0, =k,/n°. Let & be a line bundle over B, defined as a quotient

P =(S® x C/F where on C, [k]z=e*"*"z. The decomposmon of p(M/T"),
restricted on M[ 1] is obtained by a straightforward computation in cohomology
from the decomposition (3.46). We will not describe it here. It can be found, for
example, in [12]. The result is

%P1(M/F)IM[F] = %pl(TMlM[F]) + %Z [kic1(T(i))Cl(-f) - (ki)zdicl(g)zl
(3.47)

where ¢, (T?) and ¢, () are the first Chern classes of T and %, respectively.
Note that T and . are bundles over M[I"] and B [, respectively. In two extreme
cases, when I acts trivially and when it has only isolated fixed points, we recover
the usual Pontryagin class of the manifold itself, or of the flat orbifold. Since
ne;(£)* =0, in the latter case one recovers the level matching conditions (3.44).
The decomposition (3.47) is a rigorous form of Egs. (1.2). In the next section we
will study how the equivariant A class (3.47) can be seen by the index formula for
the Dirac-Ramond operator.

° In general there may be also real factors in the sum (3.46). It is possible to include them but it
complicates the picture significantly without providing any new insight
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4. Index Formula on Orbifolds

We consider an arbitrary manifold, M, with an isometry group, I, that also is a
symmetry of the Yang—Mills background. We assume that I" is abelian, though
for most of the discussion it can be an arbitrary discrete group. The action of I
on M may have fixed points, so M/I" is an orbifold. The index formula for the
Dirac—Ramond operator on M/I” can be obtained by generalizing (2.3) to include
contributions from the twisted sectors [30]. From the point of view of the loop
space, L(M/I'") this means including twisted loops in M, and also considering
I' x S rather than S! character valued indices. The twisted character valued index
is defined by

1919237 = Tr,,[q"q"*g, (= 1)'*], (4.1)

where ¢,,g,€l are the twists in the o, and o, directions, respectively. Consistency
of the boundary conditions requires that g, and g, commute. As in Sect. 2 the
trace in the left-moving sector is over either the Ramond or Neveu—Schwarz states
and might be G.S.0. projected, depending on a particular theory.

Since the bosons and fermions in the right-moving sector are twisted in the
same way, the world-sheet supersymmetry is unbroken and one can evaluate (4.1)
using the usual path integral argument leading to the fixed point formula for the
Dirac-Ramond operator. As a result one obtains an expression for I(g,g,; 1) in
terms of an integral of various characteristic classes over the submanifold, M, ,,,
of points in M that are fixed under the action of both g, and g,. Details of this
derivation can be found in [30], and here we only state the final result.

Let V be a real vector bundle over M to which the action of I' lifts. In our
case V is either the tangent bundle, TM, or the gauge bundle, E, to which the
left-moving sector couples. Under the action of g, and g,, V, restricted to M, ,,,
formally decomposes as follows

Vi, =VO® [@ VW} 4.2)

In this decomposition V© is the part of the bundle inert under the action of g,
and g,. The second term in (4.2) represents a formal sum of 2-dimensional (real)
bundles on which g, and g, act as rotations by the angles 27¢, and 2n{,, respectively.
If V is the tangent bundle, TM, (4.2) corresponds to the decomposition (3.46)
considered before, with V@ =TM, . and V' = T®. In this case the twist angles
will be denoted by 2no; and 2nf;, i=1,...,d,/2, where d, is the dimension of the
normal bundle to M,,,,*°.

Let 4g,a=1,...,d,=dim(M,,,,) be the zero modes of the right-moving
fermions with indices tangent to M, , . Since the gauge and gravitational
backgrounds are symmetric under I, we can choose bases in the fibers of E and TM
such that F and R, with the space-time indices projected onto M, ,,, have a block-

10 If dimension of M,,,, is odd, the index is identically zero. Thus we need only to consider the casc
when d,, is even
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diagonal form which coincides with the decomposition (4.2). In particular, on T
and E® we have

IR 2 = ( Y “’f) i=1...d,/2, (43)

\
seait=( ") ot (4

The character valued index (4.1) is given by the following expression

det(55A3+FAB) 1/2
1(g{,95;7) = ax8 \dig| —=F——F
(91,9257 M;[m xoj 0[ det (3¢ + RY)
£ 1/2

H1 det. . (0 +ip,)det_, (0 —ip,)

dn/2

[ [ det,, 5.0 + iew;) det_,, _4.(0 — iw;)
=1

4.5)

The first part of the integrand in (4.5) is the same as in (2.4), but with F and R
projected onto M, ,. and the tangent space and gauge indices restricted to the
sectors that are inert under g, and g,. In the denominator, det, »4(J + v) denotes
the determinant of 0 + v for complex modes Y(a,,,) with boundary conditions

Yoy +2m,0,) = eznia‘p(al’ 03)s (4.6)
Y(o,,0,+2n) = eznw‘//(al ,03). (4.7)

In the numerator the boundary conditions are essentially the same except that
there will be extra “—" signs depending on whether the trace involves (— 1)’t, and
whether the left moving fermions are in the Neveu—Schwarz or Ramond sectors.
More precisely, det, (0 + v) is interpreted as in Sect. 2, but with the boundary
conditions given an additional twist of e?™¢ and e*™. As before the quantities
R}, F 45, p, and o, are independent of o, and o,, and are thus simply constant
insertions as far as the determinants are concerned. However, these quantities do
depend upon x§.

If there are no fixed points then I(g,,g,; 1) vanishes, and if M, ,, consists of
isolated points then I(g,,g,; 1) essentially reduces to the usual orbifold partition
function given by the second part of (4.5), with no constant insertions, and summed
over the fixed points.

The problem of global anomalies in (4.5) can be studied as in Sect. 2 by rewriting
I(g,,9,;7) 1n terms of theta-functions. To each twisted determinant, with v =0, we
associate the following function [31]

det, ,(3) = d[;J(om

— ein(aﬂ—/})q(ﬂz—/}+1/6)/2 _1(1 o qn—[}ezﬂu)(l . qn+/}—1e—2nia). (48)

n

The overall phase in (4.8) is arbitrary and we must show that it can be chosen in
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a consistent manner. (For later comparison we use here the conventions of [27].)
As discussed in [3], one can evaluate det, ;(d + v) by absorbing the constant shift
as a twist in the boundary conditions, that is by letting « »> o + v and — f8, and
obtain

det, (0 +v) = d[“](vm - e"“‘”“d[a * VJ(om. 4.9)
B B
The phase in (4.9) is chosen such that d [;](vfr) satisfies
d[a; 1](1}11): —e'”‘”d[;](vlt), 4.10)
o ina o
d[ﬁ—f— 1:l(v|r)= —e d[ﬁ](vff). 4.11)

Consistency of the index formula requires that I(g,,¢,;7) is invariant under
the subgroup of the modular group which preserves the twists. Only then is it
possible to obtain a modular invariant index by summing contributions from
different twisted sectors. Under a modular transformation T — At = (at + b/ct + d),

we have [31]
dl:A(Z)J(OIAﬂ:):s(A)d[;:l(Oh), 4.12)

where A<Z> denotes the matrix A acting on the vector <;> and &(A) is a twelfth

root of unity which depends only upon A. If A preserves the twists then 4, and
A, defined by

Ai=(@—Da+bp, A,=ca+(d—1)p 4.13)
are integers. From (4.9)—(4.12) we find that
d[;](/wm 7) = a(A)e’"["S(“’ﬁ;A)+c"2/(“’+d)]d[;:|(vI‘z:), (4.14)
where Av=v/(ct + d) and
P, ;A=A +A,+ A, A, +ad, — A, (4.15)

is a phase which depends on the twists, « and f, and on A, but does not depend
on v. We also note that only a term quadratic in v appears in the phase.
Arguments similar to those used in Sect. 2 show that I(g,¢,; A 1) =1(g1,95;7)
provided the sum of phases from all the terms in (4.5) vanishes after we integrate
over M, ... First consider the v-independent terms. The sum of the phases (4.15)
represents the obstruction that comes only from the twists and is independent from
the background. In other words it is the same obstruction that is encountered on
orbifolds without background fields. Thus we can use the results of the detailed
analysis of [27] and [28], to conclude that the level matching condition (3.44) is
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the necessary and sufficient condition for this part of the phase to vanish!®. The
v-dependent part of the phase yields

exp| € (Tr F? — Tr R?) (4.16)
ct+d ’

where R and F are the full curvatures of TM and E restricted to the fixed point
surface M, ,,. Once more, if Tr F> —Tr R> = dH, for some 3-form H on M,,,,,
then the contribution of this phase to the modular transformation of (4.5) vanishes.

We have thus established that the consistency of the index formula (4.5) on an
abelian orbifold requires that the level matching condition is satisfied and the free
parts of the Pontryagin classes of TM and E, restricted to the fixed point surface,
M,,,,, satisfy pl(TM|Mglg2) = p1(ElMglgz)-

We can compare this result with the full A-class on the orbifold which was
given in (3.47). As previously the index formula detects only a part of this class:
the free part of the first term, which is quadratic in curvatures, and the last term
which is quadratic in twists. Neither the torsion part of i[p,(TM]| Mg,gz) -
p1(E] Mmgz)] nor the cross-term between the curvatures and twists, which may also
be present in A, cause any inconsistencies in the index formula. However, they
must vanish for the Dirac-Ramond operator to exist.

5. Conclusions

We have shown that the existence of string structure on an abelian orbifold is
equivalent to the absence of local and global anomalies in the corresponding
o-model, only after one requires that the string structure admits an action of a
circle or more precisely of Diff " (S*). This gives a geometric interpretation of the
level matching condition. Some part of the obstruction to the existence of a string
structure can be detected by the index formula for the Dirac-Ramond operator.
This formula can be derived by formal application of the fixed point theorem or
equivalently by a high temperature expansion of a suitable path integral. Validity
of both methods requires that not only a string structure exists, but also that it
has a well-defined S* symmetry. Therefore one expects that the A-class should be
detectable by the index formula. We saw that it is indeed the case. However, it is
only the localizable part of A that can be probed in this way. On a smooth manifold
this restricts us to the free part of the cohomology class of 4, but if the manifold
has singularities, as in the case of orbifolds, then even an infinitesimally small torus
localized at the singular point can detect the torsion part of 4, that is the level
matching condition.

It is known that on nonabelian orbifolds the level matching condition gives
only a part of the A-class and thus does not guarantee the absence of global
anomalies [27,28]. It would be interesting to understand in this case what is the
interpretation of 4 in terms of the geometry of loop bundles.

1 To prove the necessity one must use that I is abelian
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