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Abstract. We attach secondary invariants to any acyclic complex of holo-
morphic Hermitian vector bundles on a complex manifold. These were first
introduced by Bott and Chern [Bot C]. Our new definition uses Quillen's
superconnections. We also give an axiomatic characterization of these classes.
These results will be used in [BGS2] and [BGS3] to study the determinant of
the cohomology of a holomorphic vector bundle.
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Introduction

This is the first of a series of three papers, which are devoted to the study of the
determinant line bundle of the direct image of a holomorphic vector bundle. Parts
II and III of this work will be referred to as [BGS2] and [BGS3]. We first summarize
the results which are obtained in these papers.

Let π:M-^B be a proper holomorphic map of complex analytic manifolds
and let ξ be a complex holomorphic vector bundle on M.

According to Grothendieck and Knudsen-Mumford [KM], the (derived) direct
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image of ξ by π has a determinant, which is a holomorphic line bundle det Rπ% ξ
on B. We call its inverse λKM = (άQtRπ^ξ)'1 the Knudsen-Mumford determinant.

For every yeB, let Zy = π~~1 {y} be the fiber over y, and for i ^ 0, let Hι(Zy, ξ)
be the ίth cohomology of Zy With coefficients in the restriction of ξ to Zy. The fiber
λfM is by definition given by

, , ξ ) ( - 1 ) l + 1 . (0.1)

Assume now that for every yeB, there is a Kahler metric gZy on Zy depending
smoothly on yeB. The holomorphic tangent bundle T(1'0)Z is then endowed with
a Hermitian metric gz. Assume furthermore that ξ is endowed with a Hermitian
metric hξ. If / = dim Zy9 let

0-+E°y >E1

y-+'..-+El

y-+0 (0.2)
Oy

be the (ί complex associated with the restriction of ξ to Zy.
In [Q2], Quillen suggested that the fibers λfM can be naturally endowed with

a metric, which is the product of the L2 metric, deduced from integration along
the fiber, by the analytic torsion of Ray-Singer [RS]. He considers the situation
where M is the family of Cauchy-Riemann operators on a fixed Hermitian smooth
vector bundle over a Riemann surface. Quillen constructs a smooth line bundle λ
on B which has the following three properties:

— F o r every yeB, λy is canonically isomorphic to λfM.
— λ y has a natural holomorphic structure.
—When endowed with the Quillen metric, the curvature of the canonical

holomorphic Hermitian connection on λ is obtained by a differential form version
of the Riemann-Roch-Grothendieck Theorem.

In [BF1,2], Bismut and Freed considered the case of C00 fibrations M—>B.

They constructed a C00 line bundle λ on B associated with a family of Dirac
operators. In [BF1,2], the line bundle λ was endowed with a metric and with a
unitary connection. The curvature of this connection was shown to be given by a
differential form version of the Atiyah-Singer Index Theorem for families [AS].
Finally, it was proved in [BF1] that in the case considered by Quillen [Q2], the
constructions of [BF1] and of [Q2] coincide.

In the case where M and B are complex manifolds and π is holomorphic, an
application of the results of Bismut and Freed [BF1,2] tells us that there exists a
connection XV on λ which is unitary for the Quillen metric, and whose curvature
is of type (1,1). Therefore by [AHS, Theorem 5.1], we know that λ can be endowed
with a holomorphic structure such that 1V is the corresponding unique holomorphic
Hermitian connection.

Now observe that for every yeB, λfM and λy are canonically isomorphic.
However it is not at all clear that the isomorphism of the fibers extends into a
holomorphic, or even a C00 isomorphism.

We prove in full generality that this isomorphism is smooth and that it is
holomorphic when π is locally Kahler, i.e. there is an open covering °U of B such
that, if Ue%, π - 1 ( ί7) admits a Kahler metric (whose restriction to Zy,yeU, may
differ from gZy).



Bott-Chern forms and analytic torsion 51

Let Rz, Lξ be the curvatures of the holomorphic Hermitian connections on
TiU0)Z and ξ.

Theorem 0.1. Assume that π is locally Kάhler. Then the identification of the fibers
λy ~ λfM defines a holomorphic isomorphism of line bundles λ ~ AKM. The curvature
of the holomorphic connection associated with the Quillen metric on λ ~ 2K M is the
component of degree 2 in the following form on B,

2iπj Td( - Rz/2iπ) Tr [exp( - Lξ/2iπ)l (0.3)
z

Let now g'z be another choice of a Kahler metric in the fibers Z, with associated
curvature R'z. Bott and Chern [BotC, 3.28] defined a class of forms Td(gz,g'z)
(modulo the images of dM and dM) such that

(ί/2ίπ)dMdMfd(gz,grZ) = Td(-R/Z/2ίπ) - Td(-Rz/2iπ).

Theorem 0.2. // gz is replaced g'z, the Quillen metric on λKM is multiplied by the
exponential of the component of degree 0 in

J fd{gz,g'z) Tr [exp( - Lξ/2iπ)l (0.4)
z

Finally, let
0-ίo-Γ-{i-r--Γ>{.-0

be an acyclic complex of holomorphic bundles, equipped with Hermitian metrics.
Let λfM be the Knudsen-Mumford determinant of ξj9 j ^ 0. According to [KM],
the line bundle ζx)(λfM){~1)J is canonically trivial. Let σ be the canonical section

of this line bundle. ^
On the other hand, we define in this first paper a class of forms ch(ξ) on M

such that

(l/2iπ)dMdM dk(ξ) = Σ ( - 1) J + * Tr [exp( - LςV2/π)]. (0.5)

Theorem 0.3. The Quillen norm ofσ is the exponential of the component of degree 0 in

U (0.6)

Also, we obtain several results on characteristic classes for direct images in
degree higher than 0 and 2. In particular, an analog of Theorem 0.3 is proved in
[BGS2] in any degree, and is related to work by Gillet and Soule [GS1,2] on
direct images in Arakelov theory.

When the fibers are curves, some of our results were already known before. In
[BeK], Belavin and Knizhnik obtained Theorem 0.1 in relative dimension 1 for
specific line bundles. A proof of Theorem 0.1 in relative dimension 1 was announced
by Bost [Bo] and Freed [F].

Also Donaldson [D2] has used the results of [BF1,2] to extend the results of
Quillen [Q2] in relative dimension higher than one. When M = Z x B, and when
ξ has no higher dimensional cohomology, a proof of Theorem 0.1 was announced
by Gillet and Soule [GS2].
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In the case where the fibers Z are curves, Theorem 0.2 is a well-known result.
Polyakov's computation of the conformal anomaly [P] can be seen as an example
of Theorem 0.2, as explained in [Al], [Bo].

Let us now describe the content of this first article. Its purpose is to study
secondary invariants attached to acyclic complexes of holomorphic Hermitian
vector bundles on a complex manifold. Such invariants have been introduced by
Bott and Chern [BotC] and studied by Donaldson [Dl] . Also Gillet and Soule
gave in [GS2] another definition of these Bott-Chern forms.

The Bott-Chern forms are holomorphic analogs of those of Chern-Simons in
differential geometry. These are obtained by transgression from the Chern character
forms. But, in the holomorphic context, instead of writing an exact form α as
α = dβ, one has to solve α = ddy, and give explicit formulas for y. Such a double
transgression was first achieved in [BotC].

In [Ql] , Quillen introduced superconnections on Z 2 graded finite dimensional
vector bundles, to obtain non-trivial representatives of the Chern character of
difference bundles. Also the analogs of Chern-Simons forms were introduced in
[Ql] for superconnections to transgress the Chern character forms.

Here we use Quillen's superconnections to construct new representatives of
Bott-Chern classes of an acyclic complex. Our formula in Theorem 1.17 uses in
a crucial way the number operator, which describes the Z-grading of the complex.

We also establish certain identities which will be very useful in [BGS2] when
computing certain asymptotic expansions. After giving a new proof of one of Bott
and Chern's results [Bot C] in Theorem 1.27, we conclude with a third (and
axiomatic) construction of their characteristic classes in Theorem 1.29, along the
lines of [GS2].

This paper is organized as follows.
Section a) contains preliminaries on the determinant of a complex of vector

spaces.
In b), we establish algebraic identities on the Chern forms associated to a

holomorphic acyclic chain complex.
In c), we calculate the double transgression of such Chern forms by using higher

order analytic torsion forms.
In d), we establish how such forms behave when considering double complexes

and exact sequences.
In e), we construct the classes of Bott-Chern [Bot C] and we reprove a result

of Donaldson [Dl] .
In f), we give an axiomatic construction of the double transgression of the

characteristic classes associated with a chain complex. The classes which were
obtained in the previous sections are shown to verify these axioms.

The results contained in our three papers were announced in [BGS1].

a) Determinant of a Chain Complex of Vector Spaces

1. Torsion of an Acyclic Chain Complex. If £ is a finite dimensional complex vector
space of dimension n, set

det E = Λn(E).
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Let

(E,δ):0->E°^E1 —> •••-> £'-> 0 (1.1)
δ δ

be a chain complex of finite dimensional complex vector spaces, with chain map d
(and so d2 = 0). The determinant of E is the one dimensional complex vector space

A = det(£)-(det£°)~1(χ)det£1(χ)(det£2)"1® .

Assume that (£, d) is acycliαFor 0^i^l-l set nt = dim [δ(£')] Let sfeΛ "'(£*)
be such that dst #0. Since (£,δ) is acyclic, dst Λ si+1 is non-zero in det(£ί + 1).

Definition 1.1. T(δ) is the non-zero element in det(£),

0 Λ s 2 ) - 1 ( 8 ) . . . . (1.2)

Of course, one immediately verifies that T(d) does not depend on the choices
of s0,^1 — Therefore T(d) is a non-zero element of det(E) canonically associated
to (£,3).

We shall call T(d) the torsion of the acyclic complex (£, d).

Let now (E{, d, v) be a double complex, with 0 ^ i ^ m, 0 ^ j ^ /, υ:E{-*E{+1,

and d:E{^>E{+1. Let (£ f ,δ) (respectively (£J', i;)) denote the chain complex (£•/)(><,</

respectively (£ί')0<,<m) with the chain map ^(respectively t;). Let Af (respectively λJ)

be the determinant of (Ei9d) (respectively (Ej,v)). The complex lines

and

are canonically isomorphic. We call them the determinant of the double complex
£, denoted det(£).

If all the lines and columns of E are acyclic, we can define the torsion elements
Tifyeλi and Tj(υ)eλj for 0 ^ i g m, 0 ^ ^ /.

Using [KM, Proposition 1], one checks that

T o ί S ) ® ^ ^ ) ] - 1 ® ^ ^ ) ® - - ^ ^ ^ ) ® ^ 1 ^ ) ] - 1 ® ^ ^ ) ® . - - . (1.3)

Assume m = 2 and the lines of £ are exact, i.e. we have a short exact sequence
of chain complexes,

Then TQ{υ)®[Tι(v)Yι®T1(v) is a canonical non-zero element in det(£) =
A 0 ®(/ 1 )" i ®/ί 2 . It provides a canonical isomorphism

When £ 2 is acyclic, Γ2(δ) is non-zero in λ2 and we get a canonical isomorphism,

A Q ^^ A.Q (X/ A-9

by sending 5E2 0 to s® T2(δ). Therefore λj is canonically isomorphic to Ao.
When Eo and £ 2

 a r e acyclic, the same is true for Ex and the isomorphism
λ0 ~λγ maps T0(d) to Tx(d).
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Remark 1.2. A theory of determinants has been developed by Grothendieck and
Knudsen-Mumford [KM]. We refer the reader to [KM] and to [BGS3] for more
details.

Let us point out that in [KM], d e t £ is defined as the pair (ΛnE9 ή) of the line
ΛnE with the integer neZ. The definition avoids the contradictions wjiich might
arise from sign problems. For instance, if dim E = n and dim F = m, the isomorphism

det(E®F)~det{F@E),

sending ex Λ ••• Λ en Λ fγ Λ ••• Λ fm to / i Λ Λ / m Λ g 1 Λ gB is the multipli-
cation by (— l ) n + m . Therefore the induced isomorphism

det(E) ® det(F) ~ det(F) ® det(E)

makes sense for graded lines as in [KM, p 20], but not in our case.
However, most often these sign problems will not occur below and we shall

neglect them. For us det(£) will just be AnE.

2. Determinant and Cohomology of a Chain Complex. Let

E:0->E° >Eι > >Eι->0
d δ d

be an arbitrary chain complex of finite dimensional complex vector spaces. Let
dt = d on E\ Consider the cohomology of E:

For O^i^l there are exact sequences

0 -> d(E1) -^ Ker (dt +,) -> H*+: -• 0,

i+1 i + 1)-+0. (1.4)
1)

d

The torsions of these exact sequences provide canonical isomorphisms

Therefore

We then obtain a canonical isomorphism

- 1 ® - - - . (1.5)

Let A be a linear mapping acting on each E\ 0 ^ i ^ /, and such that Ad = dA.
Then A acts upon each cohomology group H\ Let ΎxEι(A) and ΎτHι(A) be the
trace of A on Eι and Hι respectively.

Proposition 1.3. The following identity holds:

£ ( - iyTrEi(A)= £ ( - iyTτHi(A). (1.6)
i = 0 ί = 0
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Proof. Using the exact sequences (1.4) we get

μ) = 0,
μ) = 0.

Summing these equalities we get the Proposition. Π

3. Torsion and Analytic Torsion of an Hermitian Chain Complex. We still consider
the chain complex (1.1).

Set

i even

(1.7)

Let i be the canonical isomorphisms from λ into ) ' .
s = SQ 1®S1® •• GΛ,-H(S) = (S 0 Λ S 2 ) " ^ ( S I Λ s3 A -- )eλf.

Assume that the Eι are Hermitian vector spaces. E+,E~ are naturally endowed
with Hermitian products so that the various Eι are mutually orthogonal, λ and ) '
inherit the corresponding Hermitian metrics | | and | |', and i is an isometry
from λ into λ'.

Let d* be the adjoint of ΰ. Let DeEnά(E) be given by:

D = d + d*, (1.8)

and let D± be the restriction of D to E±. If s e d e t £ + , s ^ 0 , we define detD + eΛ/ by:

detZ)+=(s-1)(g)Z>+5. (1.9)

Clearly

D2 = (d + δ*) 2 - 33* + δ*δ. (1.10)

For 0 ̂  i ̂  n, let Df be the restriction of D 2 to E1'. The norm of det D+ in λ' is
given by

We now assume that the chain complex (1.1) is acyclic.
Let us recall the definition of the analytic torsion of the chain complex (1.1)

by Ray and Singer [RS].

Definition 1.4. The analytic torsion τ(d) of the acyclic chain complex (1.1) is the
positive real number

τ(δ) = {(detD 2)(deti) 2)- 2(detD 2) 3 ..}1 / 2. (1.12)

Proposition 1.5. The norm \ T(d)\ of T(d) in λ is given by

|Γ(3)| = τ(δ). (1.13)

Moreover

! ^ ( U 4 )

Proof. By splitting the acyclic Hermitian chain complex into the acyclic chain
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complexes corresponding to the eigenvalues λ > 0 of D2, we may and we will assume
that D2 has one single eigenvalue λ > 0.

Each Eι splits orthogonally into

Take s' Φ 0 in det d*(Ei + 1). We define sedet E+ by

S = 5 ° Λ ( δ 5 1 Λ 5 2 ) Λ (ds3 A S 4 ) Λ ••-. (1 .15)

Then s is non-zero. Moreover

D + s = (δs° Λ δ * ^ 1 ) Λ (δs2 Λ a*3s 3) Λ .... (1.16)

Also D V = d*δs\ If nf = dimd*(E i + 1), we find that

D+S = Γ 1 + Π 3 + ' (5"S0 Λ S 1) Λ (5S 2 Λ S 3 ) Λ . - ,

and so

s-
1®D + s = λni+ni + -{s° Aids1 A S 2 ) A -.-y1

®{ds° As^Atfs2 A S 3 ) - - . (1.17)

We thus find that

) (1.18)

Since z is an isometry, (1.14) follows from (1.18).
Also the complex (1.1) being acyclic, dimE{ = nt -\-ni^ί.

Moreover

(1.19)

From (1.18), (1.19) we find

(1.20)

from which we get (1.13). •

b) Number Operator and the Chern Character Forms of a Holomorphic
Hermitian Chain Complex

Let B denote a connected complex manifold of real dimension n' = 2/', and let
JeEnd TB be the complex structure of B.

Let

0-> E o - ^ - > . . . — > £ M - > 0 (1.21)

be a holomorphic chain complex of finite dimensional complex holomorphic vector
bundles on B. In particular the chain map v is holomorphic and v2 = 0.

Set

jodd
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Let N be the operator on E which defines the Z grading of E, i.e. N is
multiplication by j on £ 7 (0 ^ j g m). Similarly let τ be the operator defining the
Z 2 grading of £, i.e. τ = + l o n £ + .

End E is a Z 2 graded algebra, the even (respectively odd) elements of End E
commuting (respectively anticommuting) with τ.

The graded tensor product Λ(T$B)® End E is also naturally Z 2 graded. If A,
Af e A(T$B)<g) End E, we define the supercommutator [A,Af^\ by

In the sequel, [yl,£] will always denote the supercommutator of A and B
(usually denoted \_A, 2Γ|S).

If ,4eEnd£, we define its supertrace Trs,4 by

]. (1.22)

As in Quillen [Ql], we extend Trs to A(T% B)φ) End E, with the convention

that iϊηeΛ(T$B) and ,4eEnd£,

sA. (1.23)

Recall that by [Ql] Trs vanishes on supercommutators.
We now assume that E0,...,Em and E are endowed with smooth Hermitian

products, and that E is the orthogonal direct sum of the E'jS.
Let v* be the adjoint of v. For aeC, set

Va = av + άυ*.

We will use the notation V = V1.
Let V be the unique holomorphic Hermitian connection on E. The connection

V splits into

V = V + V",

where V, V" are the holomorphic and antiholomorphic parts of V.
As in [Ql], we will consider V, V, V" as being first order differential operators

acting on smooth sections of A(T%B)®E. In particular V2 is the curvature of V.
Va is odd in End E. V + Va is a superconnection on E in the sense of Quillen

[Qi]

We first have the elementary result.

Proposition 1.6. The following relations hold:

[V,ΛΓ|=0

(V// + βϋ)2 = (V' + άι?*)2 = 0.

(V + Vaf = [V + άυ*, V" + aυ\

[V + αιΛ(V + F f l) 2] - [V" + av, (V + F α ) 2 ] = 0.

lυ,Nl=-v

[υ*,ISβ = v*. (1.24)

Proof. The operator N is parallel with respect to V and so [V, JV] = 0. Since Vυ = 0,
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and v2 = 0, we have

(V" + av)2 = V"2 + a2v2 + aV'v = 0.

Similarly (V + άv*)2 = 0. The third and fourth line in (1.24) follow. The final two
relations in (1.24) are obvious. Π

Remark 1.7. If λeC and if / is the identity mapping on £, we can replace N by
N + λl in Proposition 1.6, without changing the commutation relations.

By Quillen [Ql] , we know that for any aeC, Tr s[exp - (V + Kα)2] is a closed
differential form, which represents in cohomology the (normalized) Chern character

ch(E0 — Ei -b£ 2 ) = c h £ 0 — chEx + c h £ 2

(here ch£y is the class in cohomology of Tr£ j[exp — V2]).
Let

TiU0)B = {Xe TCB; JX = iX}9

Γ<o.Dβ = {XeTcB; JX = - iX}

be the holomorphic and antiholomorphic subbundles of the complex tangent
bundle Γ£. Let T*(1*0)B and T*(0Λ)B be the corresponding dual spaces.

We denote by dB and dB the usual derivation operators on the smooth sections
oίΛ(T$B).

Let P be the subspace of smooth sections oΐΛ (T%B) made of sums of differentials
of complex type {p, p\ p^O. Let F cz P be the set of smooth forms ω in P which
can be written as ω = dBη + dBη' (where η and η' are smooth differential forms).

When ω, ω'eP, we write ω = ω' if ω — ω'eP'. Note that if τ/eP is closed and
has compact support and ω = ω\

| ω Λ η = Jω' Λ η.
B B

So the pairing of elements of P/P' with such η is well defined.
We first prove a simple result, which will be of constant use in the sequel.

Proposition 1.8. Let A be the vector subspace of yl(T*5)(§) End£ generated by
smooth sections of Λ{p>q)(T£B)®End(Ej,Ej+p_q) for all p,q,j^0. Then A is an
algebra. Moreover ifηeA, ΎrsηeP.

Proof. It is clear that A is an algebra. Since Tr s vanishes on End(Ej,Ek)J^k, the
end of the proposition is obvious. •

We now prove a first double transgression formula.

Theorem 1.9. For any aeC, the differential forms Tr s [exp — (V + Va)2~\

and Tr s\_Nexp — (V + Va)2~\ are in P and only depend on \a\. Moreover

Trs[exp -(V + K*)2] is closed. Also

— Trs(exp - (V + Va)2) = - δ*Trs(z;exp - (V + Va)2\
da

^-Trs(exp - (V + Va)2) =-dB Tφ* exp - (V + Va)2\
όa
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Trs(αt;exp - (V + Va)2) = - 3BTrs(JVexp - (V + Va)2\

Trs(a?;* exp - (V + Va)2) = dB Trs(JVexp - (V + Va)2). (1.25)

In particular

—-Trs(exp - (V + Va)2) = --dBdBTτs(Nexp - (V + Va)2\
da a

— Trs(exp - (V + Va)2) = -1dBdBΎrs(NQxp - (V + Va)2). (1.26)

da a

Proof. It is clear that if 0eR,

jΘN(V+Va)e-iθN= V+ Kαe"

We conclude that Trs(exp - (V + Va)2) and Trs(JVexp - (V + Va)2) are radial
functions of a.

By (1.24) we have

(V + Va)2 = V2 + \a\2(vv* + t;*ι;) + aVυ + flV"ϋ*.

So by Proposition 1.8, the considered differential forms are elements of P.
We know by [Ql] that Tr s (exp-(V+ Va)2) is closed. On B x C the form

Trs[exp - (V + da(d/da) + dd(d/dd) + Kα)2] is also closed. It is equal to

Tr sexp( - (V + Va)2 - dav - dάv*). (1.27)

By DuhameΓs formula, since Tr s vanishes on supercommutators, (1.27) is given
by

Trs(exp - (V + Va)2) - daΊvs{vQ\p - (V + Va)2)

- dάTφ* exp - (V + Va)2) + dadάε, (1.28)

where ε is a differential form on B. Since (1.28) is closed under dB + da(d/da) and
dB + dά(d/dά), we get the first two relations in (1.25). On the other hand

dBTrs(Nexp - (V + Va)2) = Tr s[V + V\ JVexp - (V + Vaf]

= Trs(( -aυ + at;*)exp - (V + Va)2).

By a simple degree counting argument this implies the final formulas in (1.25).
Finally (1.26) is an obvious consequence of (1.25). Π

We now prove a second series of results which are related to Theorem 1.9.

Theorem 1.10. For a,beC, the following identities hold:

<9βTrs(exp( - (V + Va)2 + bN)) = bάΊrs(v* exp( - (V + Va)2 + bN)\

3s Trs(exp( - (V + Va)2 + bN)) =-ba Ίφ exp( - (V + Va)2 + bN)). (1.29)

Proof. Using (1.24), we find that

* ( - (V + Va)2 + bN)) = Trs{[V + F α ,exp(- (V + Va)2 + bN)~]}

= bTrs{tVa, ΛΓ]exp(- (V + Va)2 + bN)}

= b T r s { ( - av + άυ*)exp( - (V + Va)2 +
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Since dB = dB + dB, by an easy degree counting argument, we obtain (1.29). •

We now prove that certain differential forms produced by the superconnection
formalism are dB or dB exact.

Let α l J α 2 , α 3 denote the differential forms on B which depend on aeC defined
by the relation

Tr s( Nexp - ( V + da— + da— + Va

\ \ da da

= Ύrs(Nexp - (V + Va)2) + da^ + dάoί2 + dadάoc3. (1.30)

Since Tr s (exp(-(V+ Va)2 + bN)) is a smooth function of |α | 2 , there exist a
smooth form βί(x,a,b) (for (x,a,b)eB x C2) which depends smoothly on | α | 2 and
is such that

Tr s (exp(- (V + Va)2 4- bN)) = Tr s (exp(- V2 4- feΛO) + \a\2β1. (1.31)

Theorem 1.11. The following relation hold:

Proof Clearly

~dbT*aΓ"*\ * ' ~~dα ' ~"dά

= Tra( Nexp-( V + da^- + dά4~+Va) Y (1.33)
V V da da J J

On the other hand if we expand

as in (1.28), the form which appears on the right of dα is given by

- Ύφ exp( - (V + Vα)2 + bN)\ (1.34)

For α φ 0, b φ 0, by (1.29), (1.34) is equal to

^a*Tr s (exp( - (V 4- Vα)2 4- bN)). (1.35)

Also in (1.33), we can replace d/db by \{d2jdb2)b. We thus find that

αoίί = 5 s-—-j(Tr s(exp( — (V + Vα)2 + bN))b = 0. (1.36)

By (1.36), we find that

o = 0, (1.37)
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and so

a«i=dB\^Ύΐs{Qxp(-(V+va)2 + bN)-exp(-V2 + bN)}b = 0. (1.38)

Using (1.31) and (1.38), we obtain (1.32). The second equation in (1.32) can be
proved in the same way. •

We now prove another basic identity. If ηeΛ(T%B) (§) C(da, da), we can expand η
in the form

η = ηo + daη1+dάη1+dadάη3; ηieΛc(T*B)9 0 ̂  i ̂  3. (1.39)

Set

Wdadcι = η3. (1.40)

Theorem 1.12. For any {a,b)eC2,

+ bαTr s{exp(- (V + Va)2 + (b\a\2 + ώώ")iV -adav- άdάv*)}dadά. (1.41)

/rc particular

— | f l | 2 T r s ( 7 V e x p - ( V + F f l ) 2 ) = - ^ — [ T r s ( i ; e x p ( - ( V + n 2 + fe|«l2iV))L = 0

+ βTr s {exp(- (V + F f l) 2 + ί/α JαN - αdαt; - άdάv*)}dadcι. (1.42)

Proo/. Clearly, the left-hand side of (1.41) is the coefficient on the right of da in

~, Triexpί - (v + dα^+ VαJ + ft|α|2JV^| (1.43)

Now (1.43) is given by

•expί-ί V + dα — + V") +b\α\2N

-r~ V j

+fo|α|27V

-^+Vα) -b\α\2N

^ - ( V + da^+vf + MafN
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s\p( ^+V) +b\a\2N

I \ \ da J

+ Tr s < (b\a\2(-av + άv*) + bάdaN)

+ d + + b\a\2Nj\. (1.44)

By selecting the factor of da in the left-hand side of (1.44), we find that

+ bάTrs{exp(- (V + Va)2 + b\a\2N

— daav — dά( — av + άv*)

+ dadάN)}dadd. (1.45)

Also

daav + dd( — av + άv*) = (da — dά)av + άdάv*, (da — da) da = dadά.

Then (1.41) follows from (1.45). By differentiating (1.41) at b = 09 we obtain
(1.42). •

One verifies easily that

Tr s (exp(-(V+ Va)2 + b\a\2 N)) (1.46)

is a smooth function of \a\2. We can then write (1.46) in the form

(1.47)

where γ0 (respectively yx) is a form on B depending smoothly on (x,b)eB x C
(respectively on (x9a,b)eB x C2).

Using Theorem 1.10, we now give a refined version of Theorem 1.12.

Theorem 1.13. For every (a,b)eC x C*,

f - (V + Va)2 + b\a\2N) = -ydBdBy1 + bά(Ύrsexp(- (V + Kα)2

ί7

+ {b\a\2 + dada)N - adaυ - addv*))daM.

(1.48)

In particular

d
-j— L I ^ I A i s V " ' W Ψ V V τ > r ) ) ) A ~ "^ v j \

+ αTr s{exp(- (V + V)2 + daddN

-adav-άdάv*)}dada. (1.49)
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Proof. By (1.29), we know that

dBTrs(exp(-(S7+Va)2 + b\a\2N)) = - b\a\2aTrs{vexp(- (V + Va)2 + b\a\2N)}.
(1.50)

Using (1.50), we find that

d*Tr s [exp-V 2 ]=0; dByo = 0. (1.51)

Using (1.41), (1.50), we find that for a / 0 ,

dBdBΊrs(exp(-(V +Va)2 + b\a\2N))
ba\a

+ (b\a\2+dada)N-adav-άdάv*)}dc"'s. (1.52)

Using (1.51), we can replace the first term in the left-hand side of (1.52) by

δBdB

ba\a\2

- T r s ( e x p ( - V 2 ) ) - | α | 2 ) Ό ] = - ^ ^ B

r i . (1.53)
b

Equation (1.48) follows from (1.52) and (1.53).
By differentiating both sides of (1.48) in b at b = 0 and replacing d/db by

^(δ2/δb2)b in the right-hand side of (1.48), we obtain (1.49). •

Remark 1.14. In particular, we find from (1.42) that

d
[uΎTsiNexpiV + ̂ V)nu = o Tτs[Nεxp(V)l (1.54)

which is not really a surprising result.
It turns out that when dealing with infinite dimensional chain complexes, the

analogous identity will be highly non-trivial, because certain singular terms will
disappear as u jjO in (1.54).

In particular the term { }dada is of utmost importance in [BGS2] and
[BGS3].

c) Double Transgression of the Chern Character Forms

Recall that V = v + v*. For u ̂  0, let Au be the superconnection

We first note the following application of Theorem 1.9.

Theorem 1.15. For any u^O, the differential forms Trs[exp( — A2)~] and
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Trs[jVexp( — A2)'] are in P. The form Trs[exp( — A2.)'] is closed. Moreover for u > 0,

A2

U)-] = (dB - 3*)Tr5(iVexp(- A2

U)). (1.55)

In particular

Trs[Qχp(AMhdΎτs(NQχp(A2)). (1.56)

Proof. Equations (1.55), (1.56) are obvious consequences of (1.25), (1.26). •

We now assume that the chain complex (£, v) is acyclic.
The operator V2 is then self-adjoint and positive definite. By Duhamel's formula,

as M| + oo,Trs[exp( — Al)~\ and Trs[iVexp — Al~\ decay exponentially uniformly
on compact subsets of B.

We now will write an integrated version of (1.56). For later purposes, we will
use a zeta function approach to the integration of (1.56).

Definition 1.16. For seC, Re(s) > 0, let ζE(s)eP be defined by

1 +oo

ί u^'Ίr^Ncxpi-A^du. (1.57)
o

1 κs) o

ζE(s) extends into a holomorphic function on C.
In particular

ζ£(0)=-Tr s[JVexp-V 2]

1 du
Ci(O)--J[Trs(iVexp(-^))-Trs(iVexp(-V2))]-

o u

+ GO Ay,

- f Trs(JVexp(-Λu

2))- + Γ'(l)Trs(JVexp(-V2)). (1.58)
1 U

Observe that the closed form Trs[iVexp( — V2)] is a generalized derived Euler
characteristic of the chain complex (£, v\ since the component of degree 0 of
Trs[iVexp( —V2)] is exactly the usual derived Euler characteristic

— dim Ex + 2 dim E2 — 3 dim £ 3 . . . .

For aeC*, if v is changed into aυ, V is changed into Va, ζE(s) is changed into
\a\~2sζE(s) and ^(0) is changed into

V2)]. (1.59)

Theorem 1.17. If the chain complex (E,v) is acyclic, then

+ CD ΛA, _

J T r s ( F e x P ( - / t u

2 ) ) — = -(d»-dB)ζ'E(O),
o . u

Tr s [exp(-V 2 )] = - dB8Bζ'E(0)- (1-60)
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Proof. Equation (1.60) is a trivial consequence of (1.55) and (1.56). •

Remark 1.18. In Remark 1.7, we have seen that the commutation relations (1.24)
still hold if N is replaced by N + λl (with λeC). It is easy to verify that when N
is changed into N + λl, ζ'E(0) remains constant in P/P'.

Remark 1.19. The second line of (1.60) has a natural interpretation in degree (1,1).
Namely Tr s [ — V2] is the curvature of the holomorphic Hermitian line bundle

/l = (de t£ 0 )~ 1 (χ)det£ 1 ®(det£ 2 )~ 1 . (1.61)

By Definition 1.1, λ has a canonical holomorphic non-zero section T(v). By
Proposition 1.5, we know that if τ(v) is the analytic torsion of the chain complex
(£, v)9 then

\T(υ)\ = τ(υ). (1.62)

If CkO)(s) is the component of degree 0 in ζE(s)9 one verifies trivially that

ζ{

E

O)(s)=-Trs{N[V2ys}. (1.63)

Using (1.12), we get

Log[φ)]2=-ίf(0). (1.64)

So in degree (1,1), we obtain from (1.60) the relation

T r s [ - V2] = dBdBLog\T(v)\2. (1.65)

Thus — ζ'E(0) is the natural generalization in P of the logarithm of the analytic
torsion.

d) Multiplicativity Property of the Generalized Analytic Torsion

Consider a double chain complex E of finite dimensional holomorphic Hermitian
vector bundles

0 0

ΐ ΐ
O - ί J E Ό - ^ -* Eι

n-+0 (1.66)

0-> E g - ^ E ? - > • . . - > £ £ - > ( >

with holomorphic chain maps cίand v which are such that d2 = 0, v2 = 0, dv + vd = 0.
The orthogonal direct sum E = © E{ is also a holomorphic Hermitian vector bundle
on B.

Let Et (respectively Ej) be the chain complex of the ith column (respectively / h

row) in (1.66) with the chain map d (respectively v).
The double chain complex E carries naturally a horizontal grading, a vertical
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grading and a total grading. Let NH,NV be the horizontal and vertical number
operators. NH acts on E{ by multiplication by i, and Nv acts on Ej by multiplication

by j .
Then N = NH + Nv is the total number operator.
Let τH,τv be the operators defining the horizontal and vertical Z 2 grading, i.e.

τH = ± 1 on Ej

±, τv = ±1 on E* Clearly

[ΛrH,Λ^] = O, [ τ H , τ κ ] = 0 .

Moreover τ = τHτv defines the total Z 2 grading of £, i.e. τ = ± 1 on E±.
The algebras Λ(Γ?£)<g)End£i,yl(Γ25)<g)EndE-/, Λ(T%B)®EndE are

naturally endowed with supertraces, which we note Trf1, Trf and Tr s.
We still note V = V + V" the unique holomorphic Hermitian connection on

every Ej.
If $*, y* are the adjoints of d, v, the following commutation relations are verified

[3,t?] = [3*,t>*]=0 (1.67)

(remember that [d,v]9 [δ*,ι;*] are supercommutators).
Set

D = d + d*, V=υ + υ*. (1.68)

Assume that (£/ 5 3)(0 ^ ί ̂  m) and (£ J, ι;)(0 ^ j ^ /) are everywhere acyclic.
Let Tt(d) (respectively τj(v)) be the analytic torsion of (Ei9 d) (respectively (Ej, v).

It is a consequence of (1.3), (1.13) that

Using (1.64), we find that

Σ(-iyζ'£\0) = Σ(-iyζ'™(0). (1.69)

We will generalize (1.69) in any degree.

Theorem 1.20. Assume the rows and columns of E are acyclic. Then

Proof. Let E be the chain complex on B x C whose fiber at {x,a)eB x C is Ex with
differential d + aυ. Since the columns of E are acyclic, £ is also acyclic.

Let ζ^s) be the zeta function associated to £, and φa'.B^> B x C the imbedding
given by 0α(x) = (x, α). When Re (5) > 0 we have

(-1)1' °°

i l i * (s) 0

Set

—for u > 1,

juD)2)du. (1.71)

+ 00 1

fi«= f TTrf
ft
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—for u < 1

H V ^ - v2 W dh - &.(°)
As w | t + oo, εu decays exponentially.
Using (1.56) and (1.60), we find that for Re(s) > 0,

(1-72)

Furthermore the differential form

η(s) = — — J us~1εudu (1-73)

extends holomorphically at 5 = 0.
Using (1.71), (1.73), we find that

Σ(-iyζ'Eι(O). (1.74)

The proof will now consist in showing that for any αeC,

0?(Cf(O)) = 0S(CHO)). (1.75)

In particular (1.75) holds at a = 1. By interchanging the roles of d and v, we
will thus obtain (1.70).

So we now concentrate on the proof of (1.75).
By Theorem 1.17, we know that

δBxCdBxCζ'~E(O)= - T r s [ e x p ( - V 2 )] . (1.76)

In particular the right-hand side of (1.76) does not contain da or da.
Also there are differential forms on B, Θ0,Θ1, Θ2,θ3 which depend smoothly on

(x,a)eB x C, such that

ζ^(0) = θ0 + daθ1 + dάθ2 + dadάθ3. (1.77)

Clearly

θo = Φt ECHO)]- (1.78)

Since dBxCdBxCζ'E-(O) does not contain any term involving da da, we find easily
that

^ δ Λ ° 8 4 ^ - d B δ B θ 3 = 0. (1.79)
da 3 v ;

^ d s 4 d δ θ 3 0.
dadd da da 3

One readily verifies that 0O, (dθ1/dά),(dθ2/da\θ3 are smooth functions of \a\2

and thus smooth function of \a\. We will thus write θo(\a\%(dθ1/dά)(\a\)
Also if / is a smooth function on R + ,

r) r ) n J v ι *~ l / 4 | J V I " V | / ' ι ~\J v i * * ' / Γ ( I . δ U j
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Using (1.79), (1.80) we find that there exists a form H(x) on B such that for r > 0,

r r o da

4 _ r dθ 4 _
dB\±(b)bdb dBd\(x,b)bdb + dd\θ3(x,b)bdb. (1.81)

v o oa To

Since (dθo/dr)(x,r) is smooth at r = 0, we find that necessarily H(x) = 0. It
immediately follows from (1.81) that

θo(x,r)^θo(x,0). (1.82)

Using (1.82), we find that (1.75) has been proved. We have thus completed the
proof of the theorem. Π

Remark 1.21. Take aeC*. If we change v into av, by (1.59), we know that
ζ'EJ{0) is changed into ζ'EJ(0) + 2Log |α |Tif [iVHexp(- V2)].

On the other hand

Σ(- lyTτf [JVHexp(- V2)] = Σ(- l) fiTrf [exp(- V2)].

Since the various Et are acyclic, we find that

Σ(- l y T r f [ ^ e x p - ί V 2 ) ] =0. (1.83)

Equation (1.70) shows that in P/FΣ(- l)jζ'EJ(0) does not depend on aeC*,
a^O.Oi course this fits with (1.83).

Let now

be two exact sequences of holomorphic Hermitian vector bundles with a holo-
morphic chain map v. In E and E\ Em is of course the same holomorphic Hermitian
vector bundle.

Let E" be the exact sequence of holomorphic Hermitian vector bundles,

0 v 1 υ m-1 V2 m+1 v v m + m' I /

We now prove a property which generalizes a property of the standard analytic
torsion.

Theorem 1.22. The following identity holds

Proof. We first assume that E' is a short exact sequence, i.e. rri = 2. We thus
consider the double complex
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0

0

0

0

T

T
->£«

-»£m_

0

ί

T
—> £ . i -
l> wί T i

0

T
->E,

V

T
-•0

\Ό \ i (1.86)

T ΐ ΐ
0 0 0

The chain maps Ek -> Ek are the identity maps ί.
The rows and columns of (1.86) are trivially acyclic. We now use Theorem 1.19.

Note that the rows and columns of the type 0^Ek ——• £fc -• 0 have a zeta function
which is exactly

I +00

f us 1 Tr £ k [exp( — V2 — u)~\du = T r £ k [ e x p — (V ) ] . (1-87)
Γ(s) o

So (1.87) is constant in s. Its derivative at 0 is 0. So such lines or columns do
not contribute to equality (1.70) for the double complex (1.86).

It is now easy to obtain (1.85) when m! = 2.
For general exact sequences E' we apply (1.85) repeatedly to short exact

sequences and thus we obtain (1.85) in full generality. •

e) Bott-Chern Classes

Let £ be a finite dimensional complex holomorphic vector bundle on the manifold
B. Set k = dim E.

Let M be the set of smooth Hermitian metrics on E. We endow M with the
topology of uniform C°° convergence on the compact subsets of B.

If ί/eM, xeB, let A9

X be the subset of End Ex of metrices which are Hermitian
with respect to g.

lϊgeM, we can identify the tangent space TgM with the vector space of smooth
sections of A9 on B. In fact a metric g is an element of End(£, E*). If heEnd(E, E*)
is an infinitesimal deformation of g in M, g ~1 h is the corresponding element in A9.

Let dM be the exterior differentiation operator on M. We shall use below the
one form η = g~1dMg on M, with coefficients in A.

Let X be the complex manifold of frames in E. X is a principal GLc(k) bundle
over B. Let π be the projection M x X -» B. An element ueX is a linear isomorphism
from Ck into £_,..
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Let θ be the equivariant representations of η. Namely θ is the 1 form on M x X
with values in End(Ck),

lϊgeM, let ω9 be the unique holomorphic connection on E which is Hermitian
with respect to g. ω9 is a 1 form on X with values in End Ck.

Let Ω9 be the corresponding curvature 2 form on X. We have the identities

dxω9 = - (ω*)2, dxω9 = Ω9. (1.88)

The space of connections is afϊine. So dMω9 is a 2 form on M x X taking its
values in End C\ and dMω9 is the equivariant representation of a 2 form γ on
M x B with values in End E.

Note that Λ(T£B)(§) End E is a Z 2 graded algebra. We will use the notation
[,] for supercommutators as in Sect. \a).

We first have the elementary result.

Proposition 1.23. The following relations hold

dMθ=-θ\ dxθ=-\_ω,θ-]-dMω. (1.89)

Proof. In local holomorphic coordinates, we know that ω9 = g~1dBg. Also
θ = g~1dMg.

Clearly

(dx + dM)(θ + ω9) + (0 + ω9)2 = 0.

Equation (1.89) immediately follows. •

Let V9 be the covariant differentiation operator corresponding to ω9. V9 splits
into ψ = ψ' + ψ"9 where Ψ' is the holomorphic part of V̂  and Ψ" the
antiholomorphic part of Ψ.

Ω9 is the equivariant representation of the curvature tensor (V^)2.
The scaled Chern character forms Tr[exp — (V^)2] can be pulled back to forms

on M x B.
We now prove the basic result of Bott-Chern [Bot C, 3.28].

Theorem 1.24. The following identities hold

dMTr[exp - [Ψ)2~] = 5*Tr|> exp - (V*)2],

Tr[y exp - (V*)2] = - ^ T r ^ - ^ e x p - (V*)2]. (1.90)

In particular

dMTr[Qxp-(ψ)2]=-dBdBTτ[g-1dMgexp-(Ψ)2l (1.91)

Proof For every geM, ω9 is a one form on X. The pull back of ω9 to M x X
defines a connection ω on the bundle E over M x B.

Using (1.88), we find that

Then dMω + Ω is the curvature form of E on M x X. Therefore
Tr [exp — (Ω + dMω)] is a closed form on M x B.
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Also by DuhameΓs formula

Tr[exp - (β + dMω)^ = Tr[exp - β ] - Tr[dMωexp(- β)] + C, (1.92)

where C is of degree ^ 2 in the Grassmann variables on M.
Since (1.92) is closed, the first line of (1.90) follows by a simple degree counting

argument.
Let z be an odd Grassmann variable.
Clearly

Tr[exp( - Ω + z0)] = Tr[exp - β ] + z Tr[0exp - β ] . (1.93)

On the other hand

dxΎrlexp(- Ω + zθ)] = Tr[(- dxΩ- zdxθ)exp(- Ω + zθ)l (1.94)

By (1.88), we have

δ * β = [ β , ω ] . (1.95)

Using (1.89), (1.94) we find that

3*Tr[exp(-fl + z0)]=-Tr([ω, - β + z0]exp(-β + z0)) + zTr(dMωexp(-β))

(1.96)

The first term in the right-hand side of (1.96) clearly vanishes. Using (1.93), (1.96)
and identifying the coefficient of z we obtain the second line of (1.90). Equation
(1.91) follows from (1.90). •

The form dMTr[exp - (V*)2] is the "gradient" of Tr[exp - (V*)2] on M.
The question arises to know if Tτ[g~xdMgexp — (V9)2) is also a gradient on

M. This question was first settled by Donaldson [Dl, Proposition 6]. We here
give a new proof of Donaldson's results.
z again denotes an odd Grassmann variable.

We first prove an intermediary result.

Theorem 1.25. The following identity holds:

(Ψ)2 + zg-1dMg)l (1.97)

Proof. Clearly

dMTr[exp( - β + z0)] = T r [ ( - dMΩ- zdMθ)exp( - β + z0)]. (1.98)

Using (1.88), (1.89), we find that

dMΩ = dxdxθ + [fl, 0] - [ω, 3*0]. (1.99)

So from (1.89), (1.98), (1.99), we get
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Since

0,fl- z0] exp(- ί2 + z0)) = 0, (1.100)

we find that

dMTr[exp(- Ω+ z0)] = T r [ ( - 3*5*0 + [ω, 3*0])exρ(- β + z0)]
-zTr[0 2 exp(-ί2)]. (1.101)

Let z' be an even Grassmann variable (which is such that z'2 = 0, and which
commutes with dB, dB... and with z). Clearly

Tr[exp( - β + zθ + z'(δx0 + [ω, 0]))] = Tr[exp( - β + zθ)]

+ z / Tr[(^θ+[ω,

Tr[exp( - Ω+ zθ + z;3*0)] = Tr[exp( - β + z0)]

θ)]. (1.102)

Using (1.88), (1.89) we find that

5*Tr[exp( - Ω+ zθ + z'(dxθ + [ω, 0]))]

= T r [ ( - zdxθ + z'{dxdxθ + [ α 0] - [ω, 5"

exp(- β + zθ + z'(δxθ + [

+ z'Tr[[β, 0] exp(- Ω+ zθ)]

- z T r [ a x 0 e x p ( - β + z ' ( δ x 0 + [

Using (1.100) again, we find that

, 0 ] ) ] = z T r [ ( F a x 0 - [ ω , F 0 ] ) e x p ( -

P (1.103)

Similarly, by (1.88), (1.89), we get

3 x Trexp(-βjf z0 + z'F_0) =
= Trl(z'dxδxθ + z'[ω,5X0] - z(dxθ + [ω,0]))exp(- β

(1.104)

or equivalently

(1.105)

If A = B + Cz', set C = ̂ 2 '. One immediately verifies that

(1.106)

Using (1.103), (1.105), (1.106) and identifying the terms containing z', we get

= T r [ ( - dxdxθ + [ω,F0])exp(- fl+ z0)] - zTr[02exp - β ] . (1.107)
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Comparing with (1.101), we obtain (1.97). Π

We now consider

T r C g T ^ e x p - i V ' ) 2 ] (1.108)

as a one form on M with values in P.
In particular, we find from (1.97) that

d M 1 M 2 (1.109)
or equivalently that

dMTτ\jg-1dMgGxp-(Ψ)2^=0. (1.110)

Therefore Tr[_g~1dMgexp — (V9)2] is a closed one form on M with values in
P/P.

Since M is convex, a closed one form on M is exact. We will then integrate
this form.

We fix a metric g0 in M. Take geM, and let gt(0 ^ t ^ 1) be any smooth path
in M connecting g0 and g.

Definition 1.26. We define f{g) in P/P' by

f(g)=-]ττ[jgt-
1dMgtexp-<y«)2ldt (1.1 H)

Clearly, f(g) does not depend on the path connecting g0 and g and moreover

dMf= -Ύrlg-1dMgQχp-(Ψ)2l (1.112)

Note that the operator dBdB acts naturally on P/P'.

Theorem 1.27. For any geM

Tr[exp - (V0)2] - Tr[exp - (V*0)2] = dBdBf(g). (1.113)

Proof. This is obvious by (1.91) and (1.112). •

Remark 1.28. The definition of f(g) and Theorem 1.27 were given by Bott and
Chern [Bot C, 3.28]. The fact that f(g) does not depend (modulo P) on the path
joining g0 to g was first noticed by Donaldson, [Dl, Prop. 6].

As in [Bot C] and [Dl] , we remark that the definition of f(g) and the whole
Sect. \e) are valid for any characteristic class and not only for the Chern character.
More precisely, let φ:Mk(C)-+C be any polynomial map on (/c,fe) matrices (or
more generally a formal power series) invariant under conjugation by GLk(C).
Then (1.91) can be generalized to

dMφ(Ω) = dBdB(φf(Ωlθ}. (1.114)

Furthermore, (1.97) can be extended to a general φ. In particular (1.106) merely
expresses the fact that two cross-derivations are equal. Definition 1.26 immediately
extends to any such φ, and (1.113) is now

Φ(~ (V9)2) -φ(- (Ψ0)2) = dBdBf(g).

In [BGS2], this will be applied to the case where φ is the Todd genus Td.
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f) Axiomatic Definition of the Secondary Classes of Bott and Chern

Let φ:Mk(C)^>C be, as in Remark 1.28, an invariant polynomial map and

an acyclic complex of holomorphic vector bundles on a complex manifold B,
equipped with Hermitian metrics gj9j = 0,...,m. We assume that every Ej has rank
less than or equal to k. Let Ωj be the curvature form of (Ej9gj) and φ(Ej)eP the
form φ( - Ωj/2πi).

Let F o = 0 and Fj = υ(Ej_ι) if j> 0. We endow Fj with the metric gjt From
£, we get short exact sequences

We say that E is split if, for every j ^ 0, the exact sequence Sj admits an holomorphic
splitting which makes Ej isometric to the orthogonal direct sum Fj@Fj+1.

Theorem 1.29. Fix an integer m > 0. There exists a unique way to attach to every
exact sequence E as above a class φ(E) in P/Pr such that:

_ m

i) (l/2πi)dBδBφ(E)= Σ (-l)j(Φ(Ej)-φ(Fj®Fj+1)).
j = o

ii) For every map of complex manifolds f.B' ->B,

iii) IfE is split, φ(E) = 0.

Proof Let P 1 be the complex projective line. Given E as above, we shall define
an acyclic complex E on B x P 1 . Let Θ(\) be the standard line bundle of degree
one on P 1 and σ a section of Θ(l) which vanishes only at oo. Given n ̂  0 and a
bundle F on B x P 1 we define F(n) by the formulae

F(0) = F and F{n) = F{n-ϊ)®Θ(l).

When j = 0,..., m — 1 the bundle Fj can be mapped diagonally into Ej © F f(l) by
the inclusion into Ej and by idFj.®σ into Fj(l).

Define
Ej = Cokcτ(Fj - . Ej® F 7 (l))(m - j),

and

Fj = Fj(m+l-j).

The bundle Ej maps onto (Ej/Fj)(m — j) = Fj+l9 and we get exact sequences

SJ'.O^FJ-ΪEJ^FJ+^O.

These patch together to give a long exact sequence

For every point zeP 1 , let iz:B^B x P 1 be the map sending yeB to (y,z)e5 x P 1 .
When z Φ oo, we have σ(z) 7̂  0, hence if(E) is isomorphic to E. On the other hand
i*)(Ej)~Fj®Fj + 1. Using a partition of unity we can choose a metric g} on £,- in
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such a way that the isomorphisms i^(Ej)c^Ej and i%(Ej)~Fj@Fj+1 become
isometries. Therefore, as acyclic complexes of Hermitian holomorphic vector
bundles, i$(E) is equal to E and i%(E) is split.

To define a class φ(E) having properties i), ii) and iii), we consider the integrable
function log|z|2 on P 1 (where z is the standard coordinate) and the forms φ(Ej)
on B x P 1 .

Let

1= Σ ( ~ ^ J </>(£/) log I z |2. (1.115)
^o P 1

This is a form in P, and φ(E) will be the class of — / modulo P'.
To prove i), note that the differentials B xP1 decompose as d = dB + dz and

d = ΘB + dz. Since d(φ(Ej)) = d(φ(Ej)) = 0, we get

_ m _ ^ m

7 = 0 p 1 / = 0 p 1

(1.116)

Let δz be the Dirac mass at z. By Stokes formula and the current equation

(— l/2πί)dzδz\og\z\2 = δ0 — δ^, (1.117)

we get
_ m ^ _ m

(1.118)

Since i§(£7 ) = Ej and /*(£,-) - Fj@Fj+1 we get i).
To prove ii) we need to prove that the class of / in P/P' does not depend on

the choice of metrics cjj on Ej such that the isomorphisms i*(Ej) ^ Ej and i%(Ej) ^
Fj®Fj+1 are isometries.

Let g'j be another choice with the same properties. Consider the product
B x P 1 x P 1 , with points (y,z,u). Define iz(y,u) = (y,z,u),ju(y,z) = (y9z,u), and

p(y,z,u) = (y,z). On the bundle Ej = p*Ej9 we can choose a metric cjj such that

i*(Ej) is isometric to p*EJJ%(Ej) is isometric to Fj®Fj+1,j*Ej is isometric to

(EjtCjj) and j%Ej is isometric to {Ej9g'j).

Let d = dB + dz + du and d = dB + dz + ^M be the differentials on B x P 1 x P 1 .
For all j = 0,..., m define

cυ = f ^z^z((/)(£ ))log|z|2log|w|2. (1.119)
2πi P i x P i

By Stokes formula, we get

1 ,

ueP1

M|2 = 0, (1.120)

since i*(Ej) and /*,(£_;) do not depend on u. On the other hand, since φ(Ej) is
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δ-closed and ^-closed,

ω - - - 1 - , J duduφ(Ej)log\z\2log\u\2

zπi pi x P i

= \ U^φίEj)- Jlφ(Ej))log\z\2 = ^(Ej,gj)log\z\2

'-$ φ{Ej,%)log\z\2. ' (1.121)
P 1

This implies that, modulo P\ I does not depend on the choice of gjt Therefore
ii) holds. To prove iii) just notice that gj can be taken independent of z when E is split.

It remains to show that φ(E) is uniquely determined by the Properties i), ii)
and iii). But assume that a class φ(E) has been defined with these properties. Given
any acyclic complex E consider the complex E on B x P 1 . By property i), we have

_ m

(l/2πί)ddφ(E)= Σ ( - iy(φ(Ej)-φ(Fj®FJ+1)). (1.122)

From the proof of ii) and iii) above we deduce that

m

(-I)' S φ(FjφFJ+1)log\z\2eF. (1.123)
1J = 0

Therefore

= (l/2πί) J δδ(φ{E))log\z\2 = (l/2πθ j az
i i

Ul2

Since ί J (£) and z* (£) is split, we get, by ii) and iii) applied to <j>, I = - φ(E). •

Let us assume now that φ is the Chern character ch defined by ch(^4) = Tr exp(^)
if AeMk(C). Since c h ( F j 0 F j + 1 ) = ch(F j) + c h ( F j + 1 ) we get (see also [GS1], up
to a factor of 2)

(l/2πί)dBdBch(E) = f ( - l) j ch(£ 7 ). (1.124)

When ^ 0 and g are two metrics on a vector bundle £ we shall write ch(go,g)
/^/ Id "*

instead of ch((£,gf0) >{F,,g)) (and similarly φ(go,g)). If αeP has degree (p,p),
define α* = (2πi)pcc. By linearity we extend the map αh->α* to any oceP.

Corollary 1.30.
i) When E is any acyclic complex as above,

= ζf

E(0). (1.125)

ii) // g0 and g are two metrics on E,

ch(go,gr = f(g). (1.126)

Proof. We just need to show that (up to normalization constants) ^(0) and f(g)
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satisfy the properties i), ii) and iii) characterizing ch. From (1.60) and (1.113) we
know that i) is satisfied. The property ii) is clear, and iii) is certainly true for f(g)
(i.e. f(g0) = 0). If £ is split the map v commutes with V and vv* + v*v = Id. So we get

ζE(s)= --=^-Jtf-^-VuTrΛJVexpί- V 2))= -Tr s(JVexp(- V2)).

I (S) o

Therefore ^(O) = 0 as required. •

Remark 1.31. Defining ζ'gθtg{0) = ζ'E{0) with E = ((E0,g0)-^(Eug)) we get

(1-127)

and so by the definition of f(g), we find that

C;,,'(0) + ^ , , - ( 0 ) ^ ^ ( 0 ) . (1.128)

The equality (1.127) can be shown directly by proving the formula

M Mg exp( - (V*)2)),

and (1.128) also follows from Theorem 1.22.
In [Bot C, 4.18], Bott and Chern define ch(£) when m = 2 and the metrics on

Eo and E2 are induced from the metric on Ex.
Part ii) of the Corollary extends to arbitrary characteristic classes.
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