Commun. Math. Phys. 114, 599-612 (1988)

Analyticity Properties of Eigenfunctions and Scattering Matrix*

Erik Balslev

University of Aarhus, Denmark and Institute for Advanced Study, Princeton, NJ 08540, USA

Abstract. For potentials $V = V(x) = O(|x|^{-2^{-e}})$ for $|x| \to \infty$, $x \in \mathbb{R}^3$, we prove that if the S-matrix of $(-\Delta, -\Delta + V)$ has an analytic extension $\tilde{S}(z)$ to a region \mathcal{O} in the lower half-plane, then the family of generalized eigenfunctions of $-\Delta + V$ has an analytic extension $\tilde{\phi}(k, \omega, x)$ to \mathcal{O} such that $|\tilde{\phi}(k, \omega, x)| < Ce^{b|x|}$ for $|\mathrm{Im}k| < b$. Consequently, the resolvent $(-\Delta + V - z^2)^{-1}$ has an analytic continuation from \mathbb{C}^+ to $\{k \in \mathcal{O} | |\mathrm{Im}k| < b\}$ as an operator $\tilde{R}(z)$ from $\mathscr{H}_b = \{f$ $= e^{-b|x|}g|g \in L_2(\mathbb{R}^3)\}$ to \mathscr{H}_{-b} . Based on this, we define for potentials $W = o(e^{-2b|x|})$ resonances of $(-\Delta + V, -\Delta + V + W)$ as poles of $(1 + W\tilde{R}(z))^{-1}$ and identify these resonances with poles of the analytically continued S-matrix of $(-\Delta + V, -\Delta + V + W)$.

Introduction

Analytic continuation of the scattering matrix of a two-body Schrödinger operator $-\Delta + V$ has been established for various classes of the potential V, including exponentially decaying [3] and dilation-analytic, short-range [4] potentials.

Two methods were developed to obtain a unified approach to these two classes of potentials, one [5] based on local spectral deformation techniques in momentum space, the other [9] based on an analytic family of deformations of the underlying momentum-space. These methods cover potentials of the form V + W, where $V = O(r^{-2-\epsilon})$ is radial, dilation-analytic and W is exponentially decaying.

For radial potentials a different method was introduced [6]. The basic idea was that if the resolvent $(-\Delta + V - k^2)^{-1}$ can be shown to have an analytic continuation to a domain \mathcal{O} in the lower half-plane as an operator from a space of exponentially decaying functions to its dual, then $-\Delta + V$ can play the role of $-\Delta$ as background for an exponentially decaying perturbation W, using analytic

^{*} The author would like to thank the Institute for Advanced Study for its hospitality and the National Science Foundation for financial support under Grant No. DMS-8610730(1)

Fredholm theory. In particular it was shown that if the scattering matrix of $(-\Delta, -\Delta+V)$ has an analytic extension to \mathcal{O} , then the resolvent has such an analytic continuation.

In the present paper we extend these results to non-radial potentials. In Sect. 1 we establish the existence of an analytic extension to the upper half-plane of the generalized eigenfunctions $\psi_+(k, \omega, x)$ defined in a standard way for k real. The construction utilizes methods of [1], extended to operators of the type $e^{-ik\omega \cdot x} \Delta e^{ik\omega \cdot x}$. The proof requires that $V(x) = O(|x|^{-2-\varepsilon})$, but it is possible to extend these results to potentials $V(x) = O(|x|^{-1-\varepsilon})$ (cf. [10, 11]) and perhaps even, with modifications, to long potentials. A different method of obtaining the analytic extension of the eigenfunctions to the upper half-plane via the Green's function is indicated in [2].

In Sect. 2 we prove that $\psi(k, \omega, x)$ can be continued analytically in k to a domain \mathcal{O} in the lower half-plane, provided the S-matrix $S_1(k)$ can be extended in this way (Theorem 2.2). We utilize the abstract stationary scattering theory as developed in [8]. From this we obtain analytic continuation of the resolvent $(-\Delta+V-k^2)^{-1}$, acting as an operator from an exponentially weighted L_2 -space into its dual (Theorem 2.4). This allows for addition of an exponentially decaying potential W to V. As a consequence we obtain as our main result (Theorems 2.5 and 2.7) the meromorphic extension of the S-matrices $S_{12}(k)$ of $(-\Delta+V, -\Delta$ +V+W) and $S_2(k)$ of $(-\Delta, -\Delta+V+W)$. This provides a basis for the further study of resonances and resonance functions arising from a very short range potential W acting on the background of a short range smooth potential V. This will be taken up in [11].

1. Generalized Eigenfunctions

In this section we define the generalized eigenfunctions $\Psi(k, \omega, x)$ for $k \in \overline{\mathbb{C}^+} \setminus \{0\}$, $\omega \in S^2$ and $x \in \mathbb{R}^3$. We establish the analyticity properties of $\Psi(k, \omega, x)$ as functions of $k \in \overline{\mathbb{C}^+} \setminus \{0\}$ and their exponential growth as functions of $x \in \mathbb{R}^3$.

The free Hamiltonian H_0 is the selfadjoint operator defined by $H_0 f = -\Delta f$ with domain $\mathcal{D}_{H_0} = H_2(\mathbb{R}^3)$. The potential V is assumed to be multiplication by a real-valued, measurable function v on \mathbb{R}^3 satisfying for some $\varepsilon > 0$, $R_0 > 0$,

(i) $v \in L_2^{\text{loc}}(\mathbb{R}^3)$,

(ii) $|v(x)| < C|x|^{-2-\varepsilon}$ for $|x| > R_0$.

V is H_0 -compact and hence $H_0 - \varepsilon$ -bounded. Thus, the Hamiltonian $H_1 = H_0 + V$ is selfadjoint on $\mathcal{D}_{H_1} = \mathcal{D}_{H_0}$, and $\sigma_e(H_1) = \mathbb{R}^+$.

Two families of generalized eigenfunctions $\Psi_{\pm}(k, \omega, x)$ are formally defined [1] for k > 0, $\omega \in S^2$, $x \in \mathbb{R}^3$ by

$$\Psi_{\pm}(k,\omega,x) = \left(\underset{\varepsilon \downarrow 0}{1 - \lim} (H_1 - k^2 \pm i\varepsilon)^{-1} V \right) e^{ik\omega \cdot x},$$

where the limit is taken in a suitable topology.

For the purpose of studying analyticity properties it is useful to introduce the family of eigenfunctions $\Psi(k, \omega, x)$ defined formally for $k \in \overline{\mathbb{C}^+} \setminus \{0\}$ by

$$\Psi(k,\omega,x) = \lim_{\varepsilon \downarrow 0} (1 - R_1((k+i\varepsilon))V)e^{ik\omega \cdot x},$$

where $R_1(k+i\varepsilon) = (H_1 - (k+i\varepsilon)^2)^{-1}$.

The connection between $\Psi_{\pm}(k, \omega, x)$ and $\Psi(k, \omega, x)$ is given for k > 0 by

$$\Psi_{+}(k,\omega,x) = \Psi(-k,-\omega,x), \qquad \Psi_{-}(k,\omega,x) = \Psi(k,\omega,x).$$
(1.1)

We shall prove that the functions $\Psi(k, \omega, x)$ exist and behave asymptotically as $e^{ik\omega \cdot x}$. For this purpose we study the functions $\Phi(k, \omega, x)$ formally defined by

$$\Phi(k,\omega,x) = 1 - e^{ik\omega \cdot x} \Psi(k,\omega,x) = e^{-ik\omega \cdot x} R_{1+}(k) V e^{ik\omega \cdot x}$$
$$= (1 - e^{-ik\omega \cdot x} R_{0+}(k) e^{ik\omega \cdot x} V)^{-1} e^{-ik\omega \cdot x} R_{0+}(k) e^{-ik\omega \cdot x} V,$$

where in a suitable topology

$$R_{i+}(k) = \lim_{\varepsilon \downarrow 0} R_i((k+i\varepsilon)), \quad i = 0, 1.$$

The basic operator is $R_{0+}(k,\omega)$ defined for $k \in \overline{\mathbb{C}^+}$, $\omega \in S^2$, by

$$\begin{split} R_{0+}(k,\omega) &= e^{-ik\omega \cdot x} R_{0+}(k) e^{ik\omega \cdot x} = (e^{-ik\omega \cdot x} (H_0 - k^2) e^{ik\omega \cdot x})_+^{-1} \\ &= (T_\omega e^{-ikx_1} T_\omega^{-1} (H_0 - k^2) T_\omega e^{ikx_1} T_\omega^{-1})_+^{-1} \\ &= T_\omega (e^{-ikx_1} (H_0 - k^2) e^{ikx_1})_+^{-1} T_\omega^{-1} = T_\omega \left(H_0 - 2ik \frac{\partial}{\partial x_1} \right)_+^{-1} T_\omega^{-1}, \end{split}$$

where T_{ω} is the operator defined by

$$(T_{\omega}f)(x) = f(t_{\omega}^{-1}x),$$

and t_{ω} is any rotation which sends (1, 0, 0) into ω .

Setting $k = \alpha + i\beta$, we have

$$H_0 - 2ik\frac{\partial}{\partial x_1} = e^{-i\alpha x_1}e^{\beta x_1}H_0e^{-\beta x_1}e^{i\alpha x_1} - k^2 = e^{-i\alpha x_1}(H_0(i\beta) - k^2)e^{i\alpha x_1},$$

where

$$H_0(i\beta) = e^{\beta x_1} H_0 e^{-\beta x_1} = H_0 + 2\beta \frac{\partial}{\partial x_1} - \beta^2$$

(see also Appendix 2).

The operator $H_0(i\beta)$ has as its spectrum the parabolic region $\mathscr{P}_{\beta} = \{z^2 | |\operatorname{Im} z| \leq \beta\}$. The point k^2 belongs to the boundary of \mathscr{P}_{β} , and for $\beta \geq 0$ fixed, $\varepsilon > 0, (k + i\varepsilon)^2 \in \mathbb{C} \setminus \mathscr{P}_{\beta}$,

$$R_0(\beta, k+i\varepsilon) = (H_0(i\beta) - (k+i\varepsilon)^2)^{-1} \in \mathscr{B}(\mathscr{H}),$$

and

$$\left(H_0 - 2ik\frac{\partial}{\partial x_1}\right)_+^{-1} = e^{i\alpha x_1}R_{0+}(\beta,k)e^{-i\alpha x_1}$$

where

$$R_{0+}(\beta,k) = \lim_{\varepsilon \downarrow 0} R_0(\beta,k+i\varepsilon).$$

The rest of this section is devoted to a rigorous derivation of the above formalism.

Definition. For $s \in \mathbb{R}$ we define the following spaces:

$$\begin{split} L_{2,s}^{1} &= L_{2,s}^{1}(\mathbb{R}^{3}) = \left\{ f \mid \|f\|_{L_{2,s}^{1}}^{2} = \int_{\mathbb{R}^{3}} |f(x)|^{2} (1+x_{1}^{2})^{s} dx < \infty \right\}, \\ L_{2,s} &= L_{2,s}(\mathbb{R}^{3}) = \left\{ f \mid \|f\|_{L_{2,s}}^{2} = \int_{\mathbb{R}^{3}} |f(x)|^{2} (1+|x|^{2})^{s} dx < \infty \right\}, \\ H_{2,s} &= H_{2,s}(\mathbb{R}^{3}) = \left\{ f \mid D^{\alpha} f \in L_{2,s} \quad \text{for} \quad |\alpha| \leq 2 \right\}, \end{split}$$

and

$$||f||^2_{H_{2,s}} = \sum_{|\alpha| \leq 2} ||D^{\alpha}f||^2_{L_{2,s}}.$$

For $b \in \mathbb{R}$,

$$\begin{aligned} \mathscr{H}^{b} &= \left\{ f \mid \|f\|_{\mathscr{H}^{b}}^{2} = \int_{\mathbb{R}^{3}} e^{2b|x|} |f(x)|^{2} dx < \infty \right\}, \\ \mathscr{H}^{b}_{2} &= \left\{ f \mid D^{\alpha} f \in \mathscr{H}^{b} \quad \text{for} \quad |\alpha| \leq 2 \right\}, \end{aligned}$$

and

$$\|f\|_{\mathscr{H}_2^b}^2 = \sum_{|\alpha| \leq 2} \|D^{\alpha}f\|_{\mathscr{H}^b}^2 .$$

We set

$$\mathscr{H} = L_2(\mathbb{R}^3), \qquad \mathfrak{H} = L^2(S^2).$$

 $\mathscr{H}^b_{\mathfrak{H}}$ and $\mathscr{H}^b_{2,\mathfrak{H}}$ are defined as \mathscr{H}^b and \mathscr{H}^b_2 with f replaced by an \mathfrak{H} -valued function on \mathbb{R}^3 and |f(x)| replaced by $||f(x)||_{\mathfrak{H}}$. We consider for $\beta \ge 0$ the closed operator $H_0(i\beta)$ with domain $H_2(\mathbb{R}^3)$, defined

by

$$H_0(i\beta) = -\Delta + 2\beta \frac{\partial}{\partial x_1} - \beta^2,$$

whose Fourier transform is multiplication by the polynomial

$$Q(\beta) = \xi^2 + 2i\beta\xi_1 - \beta^2.$$

Lemma 1.1. For given $s > \frac{1}{2}$, $\beta_0 > 0$, K a compact subset of $\mathbb{C} \setminus \{0\}$, there exists a constant C such that for $0 \leq \beta \leq \beta_0$, $z \in K$, $u \in H_2$

$$\|u\|_{L^{1}_{2,-s}} \leq C \|(H_{0}(i\beta) - z)u\|_{L^{1}_{2,s}}.$$

Proof. The lemma is proved in the same way as [1, Lemma A.1]. Note that the set of critical points $\Lambda_c(Q(\beta))$ of $Q(\beta)$ is given by

$$\Lambda_{c}(Q(\beta)) = \{Q(\beta)\xi | \nabla_{\xi}Q(\beta) = 0\} = \begin{cases} \emptyset & \text{if } \beta \neq 0\\ \{0\} & \text{if } \beta = 0 \end{cases}.$$

It is easy to check that each step of the proof given in [1] is valid with $(1 + |x|^2)^s$ replaced by $(1 + x_1^2)^s$ and that C can be chosen independent of β , $0 \le \beta \le \beta_0$.

For the construction of generalized eigenfunctions we shall make use of the boundary values $R_{0+}(\beta, k)$, $k = \alpha + i\beta$. The existence of these boundary values is proved through a series of lemmas. In this section K denotes a compact subset of $\mathbb{C}^+ \setminus \{0\}$.

Lemma 1.2. Let $g \in L^1_{2,s}$, $s > \frac{1}{2}$. For $k \in \overline{\mathbb{C}^+} \setminus \{0\}$ the following weak limits exist in $H^1_{2,-s}$, uniformly for $k \in K$,

$$R_{0+}(\beta,k)g = \underset{\varepsilon \downarrow 0}{\text{w-lim}} R_0(\beta,k+i\varepsilon)g.$$

Proof. For f and g with compact support

$$(f, R_0(\beta, k+i\varepsilon)g) = (e^{\beta x_1}f, R_0(k+i\varepsilon)e^{-\beta x_1}g) \xrightarrow[\varepsilon \downarrow 0]{} (e^{\beta x_1}f, R_0(k)e^{-\beta x_1}g),$$

uniformly for $k \in K \subset \mathbb{C}^+$. By Lemma A1 this also holds for $K \subset \overline{\mathbb{C}^+} \setminus \{0\}$. Then, by Lemma 1.1, the same holds for $f, g \in L^1_{2,s}$. Thus, for $g \in L^1_{2,s}$ there exists

$$\underset{\varepsilon \downarrow 0}{\text{w-lim}} R_0(\beta, k+i\varepsilon)g \quad \text{in} \quad L^1_{2, -s}.$$

By Lemma 1.1, $\{R_0(\beta, k + i\varepsilon)g\}$ is also bounded in $H^1_{2, -s}$ for $\varepsilon > 0$, uniformly for $k \in K$. Hence, by the weak compactness of the unit ball in $H^1_{2, -s}$, the weak limit is attained also in $H^1_{2, -s}$, uniformly for $k \in K$.

Theorem 1.3. $R_{0+}(\beta, k) = \lim_{\substack{\epsilon \downarrow 0 \\ \beta \neq k}} R_0(\beta, k+i\epsilon)$ in the uniform operator topology of $\mathscr{B}(L^1_{2,s}, H_{2,-s})$, uniformly for $k \in K$.

Moreover, the $\mathscr{B}(L^1_{2,s}, H_{2,-s})$ -valued function of $k = \alpha + i\beta$

 $e^{-i\alpha x_1}R_{0+}(\beta,k)e^{i\alpha x_1}$

is analytic in \mathbb{C}^+ and continuous in $\overline{\mathbb{C}^+} \setminus \{0\}$.

Proof. By Lemma 1.2, $R_{0+}(\beta, k) := w-\lim_{\epsilon \downarrow 0} R_0(\beta, k+i\epsilon)$ is well-defined as an operator in $\mathscr{B}(L_{2,s}^1, H_{2,-s})$. Note that for $u \in H_{2,-s}$ the norm $||u||_{2,-s}$ is equivalent to

$$\|u\| = \|u\|_{-s} + \left\| \left(-\Delta + 2\beta \frac{\partial}{\partial x_1} \right) u \right\|_{-s}$$

uniformly for $0 \le \beta \le \beta_0$, where we fix $\beta_0 > 0$ such that $K \subset \{k | 0 \le \text{Im} k \le \beta_0\}$. Thus it suffices to show that in the uniform operator topology of $\mathscr{B}(L^1_{2,s}, L_{2,-s})$,

$$R_0(\beta, k+i\varepsilon) \xrightarrow{\varepsilon \perp 0} R_{0+}(\beta, k)$$

and

$$\left(-\varDelta+2\beta\frac{\partial}{\partial x_1}\right)R_0(\beta,k+i\varepsilon)\xrightarrow[\varepsilon\downarrow 0]{}\left(-\varDelta+2\beta\frac{\partial}{\partial x_1}\right)R_{0+}(\beta,k),$$

uniformly for $k \in K$.

E. Balslev

Since

$$\left(-\varDelta+2\beta\frac{\partial}{\partial x_1}\right)R_0(\beta,k+i\varepsilon)=1+(k+i\varepsilon)^2R_0(\beta,k+i\varepsilon),$$

it follows that it suffices to show that

$$R_0(\beta, k+i\varepsilon) \xrightarrow{\varepsilon+0} R_{0+}(\beta, k)$$

in the uniform operator topology of $\mathscr{B}(L_{2,s}^1, L_{2,-s})$, uniformly for $k \in K$. We now proceed to show this.

First of all, the weak limit as $\varepsilon \downarrow 0$ is indeed a strong limit, which can be seen as follows. Let $g \in L^1_{2,s}$. Then $g \in L^1_{2,s}$, for $\frac{1}{2} < s' < s$. By Lemma 1.2,

$$R_0(\beta, k+i\varepsilon)g \xrightarrow[\varepsilon \perp 0]{} R_{0+}(\beta, k)g$$

weakly in $H_{2, -s'}^1$, uniformly for $k \in K$. Since $H_{2, s'}^1$ is compactly embedded in $L_{2, -s}$, we conclude that

$$R_0(\beta, k+i\varepsilon)g \xrightarrow[\epsilon + 0]{} R_{0+}(\beta, k)g$$
,

strongly in $L_{2,-s}$, uniformly for $k \in K$.

It remains to prove convergence in the uniform operator topology. This is proved along the same lines as the proof of the corresponding step in the proof of [1, Theorem 4.1], replacing $L_{2,s}$ by $L_{2,s}^1$ and $H_{2,-s'}$ by $H_{2,-s}^1$ and using the compactness of the embedding of $H_{2,-s'}^1$ in $L_{2,-s}$ for $\frac{1}{2} < s' < s$. This concludes the proof of the first part of the theorem.

For $\varepsilon > 0$ the $\mathscr{B}(L_{2,s}^1, H_{2,-s})$ -valued function $e^{-i\alpha x_1} R_0(\beta, k+i\varepsilon) e^{i\alpha x_1}$ is analytic in $k \in \mathbb{C}^+$ and continuous in $k \in \overline{\mathbb{C}^+} \setminus \{0\}$.

It then follows from the first part of the theorem that $e^{-i\alpha x_1}R_{0+}(\beta,k)e^{i\alpha x_1}$ is analytic in \mathbb{C}^+ and continuous in $\overline{\mathbb{C}^+}\setminus\{0\}$ as a function of k with values in $\mathscr{B}(L^1_{2,s}, H_{2,-s})$.

The theorem is proved.

Theorem 1.4. The following limits exist in the uniform operator topology of $\mathscr{B}(L_{2,s}^1, H_{2,-s})$ for $s > \frac{1}{2}$, uniformly for k in compact subsets of $\overline{\mathbb{C}^+} \setminus \Sigma$, where

$$\Sigma = \{i\beta \mid -\beta^2 \in \sigma_d(H)\} \cup \{0\} \cup \{\alpha \mid \alpha^2 \in \sigma_p(H)\},$$
$$R_{1+}(\beta, k) = \lim_{\epsilon \to 0} R_1(\beta, k + i\epsilon) = (1 + R_{0+}(\beta, k)V)^{-1} R_{0+}(\beta, k)$$

Moreover, the $\mathscr{B}(L_{2,s}^1, H_{2,-s})$ -valued function $e^{-i\alpha x_1}R_{1+}(\beta, k)e^{i\alpha x_1}$ is meromorphic in \mathbb{C}^+ with poles at $\{i\beta|-\beta^2 \in \sigma_d(H)\}$ and continuous in $\mathbb{C}^+ \setminus \Sigma$. *Proof.* By the 2nd resolvent equation,

$$R_1(\beta, k+i\varepsilon) = (1 + R_0(\beta, k+i\varepsilon)V)^{-1} R_0(\beta, k+i\varepsilon).$$

Since $V \in \mathscr{C}(H_{2,-s}, L_{2,s})$, by Theorem 1.3,

$$e^{-i\alpha x_1} R_0(\beta, k+i\varepsilon) V e^{i\alpha x_1} \xrightarrow[\varepsilon \downarrow 0]{\varepsilon \downarrow 0} e^{-i\alpha x_1} R_{0+}(\beta, k) e^{i\alpha x_1} := Q_+(k)$$

in the uniform operator topology of $\mathscr{B}(H_{2, -s})$, uniformly for $k \in K$, and $Q_+(k)$ is an analytic, $\mathscr{C}(H_{2, -s})$ -valued function of $k \in \mathbb{C}^+$ and continuous in $\overline{\mathbb{C}^+} \setminus \{0\}$. By Lemma A2, 4, $1 + Q_+(k)$ is invertible for $k \in \overline{\mathbb{C}^+} \setminus \Sigma$.

It follows from the analytic Fredholm theorem that $(1+Q_+(k))^{-1}$ is a meromorphic, $\mathscr{B}(H_{2,-s})$ -valued function in \mathbb{C}^+ with poles at $\Sigma_i = \{i\beta | -\beta^2 \in \sigma_d(H)\}$, continuous in $\overline{\mathbb{C}^+} \setminus \Sigma$. Using again Theorem 1.3, we conclude the proof.

Theorem 1.5. Set for $k \in \overline{\mathbb{C}^+} \setminus \Sigma$,

$$\Phi(k,\omega,x) = e^{-ik\omega \cdot x} R_{1+}(k) V e^{ik\omega \cdot x}.$$

Then $\Phi(k, \omega, \cdot)$ is for fixed $\omega \in S^2$ a continuous, $H_{2, -s}$ -valued function of $k \in \overline{\mathbb{C}^+} \setminus \Sigma$, meromorphic in \mathbb{C}^+ with poles at most at Σ_i .

For fixed $x \in \mathbb{R}^3$, $\omega \in S^2$, $\Phi(k, \omega, x)$ is continuous in $\overline{\mathbb{C}^+} \setminus \Sigma$ and meromorphic in \mathbb{C}^+ with poles at most at Σ_i .

Proof. Since $V \in L^1_{2,s}$ and

$$\Phi(k,\omega,x) = T_{\omega}e^{-i\alpha x_1}R_{1+}(\beta,k)e^{i\alpha x_1}T_{\omega}^{-1}V,$$

the first part of the theorem is an immediate consequence of Theorem 1.4.

It follows that for fixed $\omega \in S^2$, $f \in C_0(\mathbb{R}^3)$, the function

$$\int_{\mathbb{R}^3} \Phi(k,\omega,x) f(x) \, dx$$

is continuous in $\overline{\mathbb{C}^+} \setminus \Sigma$ and meromorphic in \mathbb{C}^+ with poles at most at Σ_i . Note that $\Phi(k, \omega, \cdot) \in H_{2, -s}$ implies that $\Phi(k, \omega, \cdot) \in C(\mathbb{R}^3)$. Let $\Gamma \subset \mathbb{C}^+$ be a closed curve with $\Gamma \cap \Sigma_i = \emptyset$ and containing no points of Σ_i in its interior. Then, by Fubini's theorem

$$\int_{\mathbb{R}^3} \left\{ \int_{\Gamma} \Phi(k,\omega,x) \, dk \right\} f(x) \, dx = \int_{\Gamma} \left\{ \int_{\mathbb{R}^3} \Phi(k,\omega,x) f(x) \, dx \right\} \, dk = 0 \, .$$

This implies that $\int_{\Gamma} \Phi(k, \omega, x) dk = 0$ for fixed $\omega \in S^2$, $x \in \mathbb{R}^3$, and hence $\Phi(k, \omega, x)$ is analytic in $\mathbb{C}^+ \setminus \Sigma_i$. It follows from a similar argument with Γ containing a point of Σ_i that such points are at most poles of $\Phi(k, \omega, x)$.

The continuity of $\Phi(k, \omega, x)$ is proved as follows. For fixed $\omega \in S^2$, the function $(1 + |x|^2)^{-s/2} \Phi(k, \omega, \cdot)$ is continuous in $k \in \overline{\mathbb{C}^+} \setminus \Sigma$ with values in H_2 . Since H_2 is continuously embedded in $C(\mathbb{R}^3)$ (with the sup-norm), $(1 + |x|^2)^{-s/2} \Phi(k, \omega, \cdot)$ is continuous in $k \in \overline{\mathbb{C}^+} \setminus \Sigma$ with values in $C(\mathbb{R}^3)$. Hence for every $x \in \mathbb{R}^3$, $\omega \in S^2$, the function $\Phi(k, \omega, x)$ is continuous in $k \in \overline{\mathbb{C}^+} \setminus \Sigma$.

Definition 1.6. For $k \in \overline{\mathbb{C}^+} \setminus \Sigma$, $\omega \in S^2$, $x \in \mathbb{R}^3$,

$$\Psi(k,\omega,x) = e^{ik\omega \cdot x} (1 - \Phi(k,\omega,x)).$$

For
$$k > 0$$
, $k^2 \notin \sigma_p(H)$, $\omega \in S^2$, $x \in \mathbb{R}^3$
 $\Psi_+(k, \omega, x) = \Psi(-k, -\omega, x)$, $\Psi_-(k, \omega, x) = \Psi(k, \omega, x)$.

2. Analytic Continuation

Under our assumptions on V the scattering operator S exists and is unitary on L_2 . The generalized Fourier transforms F_{\pm} are partial isometries with initial space

E. Balslev

 $\mathscr{H}_{ac}(H_1)$ and final space L_2 , defined for $f \in C_0(\mathbb{R}^3)$, k > 0, $\omega \in S^2$ by

$$(F_{\pm}f)(k,\omega) = (2\pi)^{3/2} \int_{\mathbb{R}^3} f(x) \,\overline{\Psi}_{\pm}(k,\omega,x) \, dx \, .$$

Letting \mathscr{F} denote the Fourier-Plancherel transform and setting $\hat{S} = \mathscr{F}S\mathscr{F}^{-1}$, we have $\hat{S}F_{-} = F_{+}$, hence for $f \in C_0(\mathbb{R}^3)$,

$$\widehat{S}\left[\int_{\mathbb{R}^3} f(x)\,\overline{\Psi}_{-}(k,\omega,x)\,dx\right] = \int_{\mathbb{R}^3} f(x)\,\overline{\Psi}_{+}(k,\omega,x)\,dx\,.$$

Moreover, $SH_0 = H_0S$, so \hat{S} is diagonalized in momentum representation, $\hat{S} = \int_0^\infty \bigoplus S(k) dk$, where for k > 0, $f \in C_0(\mathbb{R}^3)$,

$$S(k) \int_{\mathbb{R}^3} f(x) \overline{\Psi}_{-}(k, \cdot, x) dx = \int_{\mathbb{R}^3} f(x) \overline{\Psi}_{+}(k, \cdot, x) dx.$$
(2.1)

Since $\overline{\Psi}_{\pm}(k,\cdot,\cdot) \in C(\mathbb{R}^3,h)$ and S(k) is unitary on h, also $S(k) \overline{\Psi}_{-}(k,\cdot,\cdot) \in C(\mathbb{R}^3,h)$. Hence, (2.1) for all $f \in C_0(\mathbb{R}^3)$ implies for $k > 0, x \in \mathbb{R}^3$,

$$S(k)\overline{\Psi}_{-}(k,\cdot,x) = \overline{\Psi}_{+}(k,\cdot,x).$$
(2.2)

Using (1.1), the above result (2.2) may be expressed in terms of $\Psi(k, \omega, x)$ as follows.

Lemma 2.1. The scattering matrix S(k) satisfies $S(k) \Psi(-k, \cdot, x) = \Psi(k, -\cdot, x)$, $x \in \mathbb{R}^3$, k > 0.

Definition. Let v be a real-valued, measurable function satisfying (i) and (ii). Let $\mathcal{O} \subset \mathbb{C}^-$ be a domain with $\partial \mathcal{O} \cap \mathbb{R}^+ = I$. The operator V of multiplication by v is called \mathcal{O} -analytic, if the scattering matrix S(k) has a continuous extension $\tilde{S}(k)$ from I to $\mathcal{O} \cup I$, such that $\tilde{S}(k)$ is analytic in \mathcal{O} . For any set $S \subset \mathbb{C}$ we let $S_b = \{k \in S | |\text{Im } k| < b\}$.

Theorem 2.2. Assume that V is O-analytic.

1) For fixed $x \in \mathbb{R}^3$, the function $\Psi(k, \cdot, x)$ has an \mathfrak{H} -valued meromorphic continuation $\widetilde{\Psi}(k, \cdot, x)$ from \mathbb{C}^+ to $\mathcal{O} \cup I$ with poles contained in $\Sigma \cup \overline{\Sigma}$, defined for $k \in (\mathcal{O} \cup I) \setminus \overline{\Sigma}, x \in \mathbb{R}^3$, by

$$\widetilde{\Psi}(k,\cdot,x) = R\widetilde{S}(k) \,\Psi(-k,\cdot,x), \qquad (2.3)$$

where *R* is the reflection operator in \mathfrak{H} , $(R\sigma)(\omega) = \sigma(-\omega)$.

2) $\widetilde{\Psi}(k, \cdot, \cdot) \in \mathscr{H}_{2, \mathfrak{H}}^{-b}$ for $|\mathrm{Im} k| < b$, and $\widetilde{\Psi}(k, \cdot, \cdot)$ is a meromorphic, $\mathscr{H}_{2, \mathfrak{H}}^{-b}$ -valued function of k in $(\mathbb{C}^+ \cup I \cup \mathcal{O})_b$ with poles contained in $\Sigma \cup \overline{\Sigma}$.

Proof. 1) Define $\widetilde{\Psi}(k, \cdot, x)$ for $x \in \mathbb{R}^3$, $k \in (\mathcal{O} \cup I) \setminus \overline{\Sigma}$ by (2.3). For $k \in I \setminus \overline{\Sigma}$, by Lemma 2.1,

$$\widetilde{\Psi}(k,\cdot,x) = \Psi(k,\cdot,x).$$

By Theorem 1.5 and Definition 1.6, $\tilde{\Psi}(k, \cdot, x)$ is continuous on $(\mathcal{O} \cup I) \setminus \overline{\Sigma}$ and meromorphic in \mathcal{O} with poles contained in $\overline{\Sigma}_i$. Using again Theorem 1.5, we conclude that for $x \in \mathbb{R}^3$, $\tilde{\Psi}(k, \cdot, x)$ is meromorphic in $\mathbb{C}^+ \cup I' \cup \mathcal{O}$, where $I' = I \setminus \{\alpha | \alpha^2 \in \sigma_p(H)\}$, with poles at most at $\Sigma_i \cup \overline{\Sigma}_i$. The fact that $\{\alpha | \alpha^2 \in \sigma_p(H)\}$ are

(simple) poles of $\tilde{\Psi}(k, \cdot, x)$ can be proved using the existence of $\lim_{z \to \alpha} (z - \alpha) R_1(z)$. This concludes the proof of 1).

2) By Theorem 1.5, for $|\alpha| \leq 2$,

$$\int_{\mathbb{R}^3} \|D^{\alpha} \widetilde{\Psi}(k,\cdot,x)\|_{\mathfrak{H}}^2 e^{-2b|x|} dx \leq \|\widetilde{S}(k)\|^2 \int_{\mathbb{R}^3} \|D^{\alpha} \Psi(-k,\cdot,x)\|_{\mathfrak{H}}^2 dx$$

The analyticity properties of $\tilde{\Psi}(k, \cdot, \cdot)$ as an $\mathscr{H}_{2, \mathfrak{H}}^{-b}$ -valued function follows from local boundedness and weak analyticity on a dense set of $D^{\alpha}\tilde{\Psi}(k, \cdot, \cdot)$ for $|\alpha| \leq 2$, and 2) is proved.

Lemma 2.3. Assume that V is 0-analytic. The trace operator T(k) defined for k > 0by $T(k) f_{k-1}(k-1)$

$$\Gamma(k)f = (F_+ f)(k, \cdot)$$

has a $\mathscr{B}(\mathscr{H}^b, \mathfrak{H})$ -valued, meromorphic extension $\widetilde{T}(k)$ from I to $(\mathbb{C}^+ \cup I \cup \mathcal{O})_b$ with poles at most at $\Sigma \cup \overline{\Sigma}$, given by

$$\widetilde{T}(k)f = (2\pi)^{-3/2} R \int_{\mathbb{R}^3} f(x) \,\widetilde{\Psi}(k,\cdot,x) \, dx \,. \tag{2.4}$$

Moreover, $\tilde{T}^{*}(\bar{k})$, given by

$$(\tilde{T}^*(\bar{k})\sigma)(x) = (2\pi)^{-3/2} \int_{S^2} \sigma(\omega) \,\tilde{\Psi}(\bar{k}, -\omega, x) \,d\omega$$
(2.5)

is in $\mathscr{B}(\mathfrak{H}, \mathscr{H}_{2,\mathfrak{H}}^{-b})$.

Proof. It follows from Theorem 2.2, 2) that for $f \in \mathcal{H}^b$, $\tilde{T}(k)f$ as given by (2.4) is a meromorphic, \mathfrak{H} -valued function of $k \in (\mathbb{C}^+ \cup I \cup \mathcal{O})_b$ with poles contained in $\Sigma \cup \overline{\Sigma}$. From the boundedness of $\tilde{\Psi}(k, \cdot, \cdot) \parallel_{\mathscr{H}_{\mathfrak{H}}^{\mathfrak{H}}}$ on compact sets follows that $\|\tilde{T}(k)\|_{\mathscr{H}(\mathscr{H}^b, \mathfrak{H})}$ is locally bounded and hence $\tilde{T}(k)$ is a meromorphic $\mathscr{B}(\mathscr{H}^b, \mathfrak{H})$ -valued function on $(\mathbb{C}^+ \cup I \cup \mathcal{O})_b$. A simple calculation yields (2.5), and it follows from Theorem 1.5 that $\tilde{T}^*(\overline{k}) \in \mathscr{B}(\mathfrak{H}, \mathscr{H}_{2, \mathfrak{H}})$. The lemma is proved.

Theorem 2.4. Assume that V is \mathcal{O} -analytic. The resolvent $R_1(k)$ has a meromorphic, $\mathcal{B}(\mathcal{H}^b, \mathcal{H}_2^{-b})$ -valued continuation $\tilde{R}_1(k)$ from \mathbb{C}^+ to $I \cup \mathcal{O}_b$ with poles contained in $\overline{\Sigma}$.

Proof. We use the well-known identity, valid for k > 0, $k^2 \notin \sigma_p(H)$,

$$R_{1+}(k) = R_{1+}(-k) + \pi i k T^{*}(k) T(k).$$
(2.6)

Using Lemma 2.3, we define the $\mathscr{B}(\mathscr{H}^b, \mathscr{H}_2^{-b})$ -valued function $\widetilde{R}_1(k)$ for $k \in \mathcal{O}_b \setminus \overline{\Sigma}$ by

$$\widetilde{R}_1(k) = R_1(-k) + \pi i k \widetilde{T}^*(\overline{k}) \widetilde{T}(k).$$
(2.7)

Setting $\tilde{R}_1(k) = R_{1+}(k)$ for $k \in I \setminus \Sigma$, we obtain the theorem from (2.6) and Lemma 2.3.

Theorem 2.5. Assume that V is O-analytic. Let W be a symmetric operator of the form

$$W = e^{-b|x|}Qe^{-b|x|}, Q \in \mathscr{C}(H_2(\mathbb{R}^3), L_2(\mathbb{R}^3)).$$

Let H_2 be the selfadjoint operator on $\mathscr{D}_{H_2} = \mathscr{D}_{H_1} = \mathscr{D}_{H_0}$ defined by

$$H_2 = H_1 + W = H_0 + V + W$$
,

E. Balslev

and

608

$$R_2(k) = (H_2 - k^2)^{-1}$$
 for $k^2 \in \varrho(H_2)$.

Let $S_{12}(k)$ be the scattering matrix of the pair (H_1, H_2) associated with the spectral representation of $H_{1,ac}$ defined by T(k) (cf. [8]). 1) $R_2(k)$ has a $\mathcal{B}(\mathcal{H}^b, \mathcal{H}_2^{-b})$ -valued, meromorphic continuation $\tilde{R}_2(k)$ from \mathbb{C}^+ to

 $(I \cup \mathcal{O}_b) \setminus \overline{\Sigma}$, given by

$$\tilde{R}_{2}(k) = \tilde{R}_{1}(k) \left(1 + W\tilde{R}_{1}(k)\right)^{-1}.$$
(2.8)

2) $S_{12}(k)$ has a meromorphic extension $\tilde{S}_{12}(k)$ from I to $\mathcal{O}_b \setminus \overline{\Sigma}_i$ with the same poles as $\tilde{R}_2(k)$, given by

$$\widetilde{S}_{12}(k) = 1 - \pi i k \, \widetilde{T}(k) \left(W - W \widetilde{R}_2(k) \, W \right) \, \widetilde{T}^*(\overline{k}) \,. \tag{2.9}$$

Proof. 1) By Theorem 2.4, $WR_1(k)$ has a $\mathscr{C}(\mathscr{H}^b)$ -valued analytic continuation $W\widetilde{R}_1(k)$ from \mathbb{C}^+ to $(I \cup \mathcal{O}_b) \setminus \overline{\Sigma}$. By the analytic Fredholm theorem, $(1 - W\widetilde{R}_1(k))^{-1}$ is meromorphic in $(I \cup \mathcal{O}_b) \setminus \overline{\Sigma}$. Using the 2nd resolvent equation, we obtain 1).

2) Using the representation of $H_{1,ac}$ as k^2 on $L_2(\mathbb{R}^+, \mathfrak{H}; k^2 dk)$ defined by T(k), the scattering matrix $S_{1,2}(k)$ is given for k > 0 (cf. [8]) by

$$S_{12}(k) = 1 - \pi i k T(k) \left(W - W R_{2+}(k) W \right) T^*(k).$$
(2.10)

It follows from (2.10), 1) and Lemma 2.3, that $S_{12}(k)$ has a meromorphic extension $\tilde{S}_{12}(k)$ to $\mathcal{O}_b \setminus \overline{\Sigma}$ with poles at most at the poles of $\tilde{R}_2(k)$. The fact that the poles of $\tilde{S}_{12}(k)$ and $\tilde{R}_2(k)$ coincide follows from the next lemma.

Lemma 2.6. For $k \in \mathcal{O}_b \setminus \overline{\Sigma}_i$, $\mathcal{N}(\widetilde{S}_{12}^{-1}(k))$ and $\mathcal{N}(1 + W\widetilde{R}_1(k))$ are isomorphic via the maps

$$\mathcal{N}(1+W\widetilde{R}_1(k)) \ni \Omega \to \sigma = \widetilde{T}(k)\Omega \in \mathcal{N}(\widetilde{S}_{12}^{-1}(k))$$

with the inverse Z(k) defined by

$$\Omega = Z(k)\sigma = -\pi i k (1 - WR_2(-k)) W \tilde{T}^*(\bar{k})\sigma.$$

Proof. 1) Let $\Omega \in \mathcal{N}(1 + W\tilde{R}_1(k))$. Then $\sigma \neq 0$, since otherwise by (2.7) $\Omega \in \mathcal{N}(1 + WR_1(-k))$ implying $R_1(-k)\Omega \in \mathcal{N}(H_2 - k^2)$, a contradiction. Using the expression for \tilde{S}_{12}^{-1} obtained from (2.8) on replacing *i* by -i and $\tilde{R}_2(k)$ by $R_2(-k)$, we get in view of (2.7),

$$\begin{split} \widetilde{S}_{12}^{-1}(k)\sigma &= (1 + \pi i k \, \widetilde{T}(k) \, (1 - WR_2(-k)) \, W \widetilde{T}^*(\overline{k}) \, \widetilde{T}(k) \Omega \\ &= \widetilde{T}(k) \, \Omega + \widetilde{T}(k) \, (1 - WR_2(-k)) \\ &\times \left[(1 + W \widetilde{R}_1(k)) - (1 + WR_1(-k)) \right] \Omega = 0 \, . \end{split}$$

2) Assume that $\sigma \in \mathcal{N}(\tilde{S}_{1,2}^{-1}(k))$, i.e.,

$$\sigma - \tilde{T}(k) Z(k) \sigma = 0.$$

Applying Z(k), setting $\Omega = Z(k)\sigma$ and using (2.7), we get

$$\begin{split} \Omega - Z(k) \, \widetilde{T}(k) \Omega &= \Omega + (1 - WR_2(-k)) \, W[\widetilde{R}_1(k) - R_1(-k)] \, \Omega \\ &= (1 + W\widetilde{R}_1(k)) \, \Omega = 0 \, . \end{split}$$

The lemma follows from 1) and 2).

We finally investigate the analyticity properties of the scattering matrix $S_2(k)$ of the pair (H_0, H_2) .

Theorem 2.7. Under the assumptions of Theorem 2.5 the scattering matrix $S_2(k)$ has a meromorphic extension $\tilde{S}_2(k)$ from I to $\mathcal{O}_b \setminus \overline{\Sigma}_i$ with poles at most at the poles of $\tilde{R}_{2}(k)$.

Proof. This follows from Theorem 2.5 and the following identity, valid for k > 0,

$$S_{12}(k)S_1(k) = S_2(k), \qquad (2.11)$$

which we shall now establish.

Using for $H_{1,ac}$ the representation as k^2 on $L_2(\mathbb{R}^+, \mathfrak{H}; k^2 dk)$ defined by T(k), the generalized Fourier transforms $F_{12\pm}$ of the pair $(H_{1,ac}, H_{2,ac})$ are given (cf. [8]) for $f \in L_{2,s}$ and k > 0, $k^2 \notin \sigma_p(H_1 \cup \sigma_p(H_2))$, by

$$(F_{12+}f)(k) = T(k)(1 - WR_{2+}(k))f = T_0(k)(1 - VR_{1+}(k))(1 - WR_{2+}(k))f$$

= $T_0(k)(1 - (V + W)R_{2+}(k))f = (F_{2+}f)(k),$ (2.12)

where

$$T_0(k)f = (\mathscr{F}f)(k, \cdot),$$

and

(**T**

$$\begin{split} (F_{12-}f)(k) &= T(k) \left(1 - WR_{2+}(-k)\right) f = (F_{1+}(1 - WR_{2+}(-k))f)(k) \\ &= S_1(k) \left(F_{1-}(1 - WR_{2+}(-k))f\right)(k) \\ &= S_1(k) T_0(k) \left(1 - VR_{1+}(-k)\right) \left(1 - WR_{2+}(-k)\right) f \\ &= S_1(k) T_0(k) \left(1 - (V+W)R_{2+}(-k)\right) f = S_1(k) \left(F_{2-}f\right)(k). \end{split} \tag{2.13}$$

By (2.12) and (2.13), for $f \in L_{2,s}$, k > 0, $k^2 \notin \sigma_n(H_1) \cup \sigma_n(H_2)$,

$$S_{2}(k)(F_{2-}f)(k) = (F_{2+}f)(k) = (F_{12+}f)(k)$$

= $S_{12}(k)(F_{12-}f)(k) = S_{12}(k)S_{1}(k)(F_{2-}f)(k).$ (2.14)

From (2.14) follows (2.11) for k > 0, $k^2 \notin \sigma_n(H_1) \cup \sigma_n(H_2)$. Since $S_{1,2}(k)$, $S_1(k)$, and $S_2(k)$ are continuous on \mathbb{R}^+ (cf. [7]) and $\sigma_p(\dot{H}_1)$ and $\sigma_p(H_2)$ are discrete sets in \mathbb{R}^+ , this implies (2.11) for all k > 0, and the proof is complete.

Appendix 1

Lemma A1. Let f and g be functions in L_2 with compact support, and let $\alpha_0 \in \mathbb{R} \setminus \{0\}$. Then there exists $0 < \delta_0 < |\alpha_0|$ such that the following limits exist, uniformly in $\{k = \alpha + i\beta \mid |\alpha - \alpha_0| \leq \delta_0, 0 \leq \beta \leq \delta_0\},\$

$$\lim_{\varepsilon \downarrow 0} (f, R_0(\beta, k + i\varepsilon)g)$$

Proof. Taking Fourier transforms, we have

$$I = (f, R_0(\beta, k + i\varepsilon)g) = \int_{\mathbb{R}^3} \hat{f}(\xi) \,\overline{\hat{g}}(\xi) \,(\xi^2 - \alpha^2 + 2\varepsilon\beta + \varepsilon^2 + 2i(\beta\xi_1 - \beta\alpha - \varepsilon\alpha))^{-1} \,d\xi \,.$$

Since $\hat{f}(\xi)$ and $\overline{\hat{g}}(\overline{\xi})$ are entire analytic functions of ξ_1, ξ_2, ξ_3 , we can deform the manifold of integration in \mathbb{C}^3 as follows.

Let $\alpha_0 > 0$ ($\alpha_0 < 0$ is analogous). It suffices to consider $\beta = 0$. We write the integral in spherical coordinates as follows.

$$I = I(\varepsilon) = \int_{S^2} \sin\theta \, d\theta \, d\varphi \int_{\mathbb{R}^+} dr \hat{f}(r,\theta,\varphi) \, \overline{\hat{g}}(r,\theta,\varphi) \, (r^2 - \alpha^2 + \varepsilon^2 - 2i\varepsilon\alpha)^{-1} \, dr$$

Deforming the radial integration path \mathbb{R}^+ into the curve Γ indicated on Fig. 1, where $0 < \delta < \alpha$, we get

$$I(\varepsilon) = \int_{S^2} \sin\theta \, d\theta \, d\varphi \int_{\Gamma} dz \, \hat{f}(z,\theta,\varphi) \, \bar{\hat{g}}(\bar{z},\theta,\varphi) \times (z^2 - \alpha^2 + 2\varepsilon\beta + \varepsilon^2 + 2i(\beta z \sin\theta \cos\varphi - \beta\alpha - \varepsilon\alpha)^{-1},$$

$$\bullet \underbrace{\alpha_0 - \delta}_{0} \qquad \bullet \underbrace{\alpha_0 - \frac{\delta}{2}}_{\bullet} \qquad \alpha_0 \qquad \alpha_0 + \frac{\delta}{2} \qquad \alpha_0 + \delta$$

Fig. 1. This yields $I(\varepsilon) \xrightarrow[\varepsilon \downarrow 0]{} \int_{S^2} \sin \theta \, d\theta \, d\varphi \int_{\Gamma} dz \hat{f}(z,\theta,\varphi) \, \overline{g}(\overline{z},\theta,\varphi) (z^2 - \alpha^2)^{-1}$, uniformly for $|\alpha - \alpha_0| \leq \delta/4$

Appendix 2

Lemma A2.1. Let $b_0 > 0$ be fixed. For $|\beta| < \beta_0$ and $\mathbb{C}^{b_0} = \{a + ib | b > b_0\}$, we have $\sigma_d(H(i\beta)) \cap \{z^2 | z \in \mathbb{C}^{b_0}\} = \{-b^2 \in \sigma_d(H) | b > b_0\}$.

Broof We set

$$H(z) = e^{-iz} H e^{iz} = -\Delta - 2iz \frac{\partial}{\partial x_1} + z^2 + V.$$

For β fixed

$$H(\alpha + i\beta) = e^{-i\alpha x_1} H(i\beta) e^{i\alpha x_1}$$

The operators H(z) form an entire self-adjoint, analytic family of operators of type A. For fixed β the operators $H(\alpha + i\beta)$ are unitarily equivalent. The essential spectrum $\sigma_e(z)$ of H(z) is the parabolic region $\{\zeta^2 | \text{Im} \zeta| \leq |\beta|\}$ (for $\beta = 0$ coinciding with \mathbb{R}^+). Thus, $\mathbb{C}^{b_0} \cap \sigma_e(z) = \emptyset$ for $|\beta| < b_0$. A discrete eigenvalue λ of $H(\alpha' + i\beta')$, $|\beta'| < b_0$, remains a discrete eigenvalue of $H(\alpha + i\beta')$ for all $\alpha \in \mathbb{R}$ and hence, by analyticity of H(z), for all $\alpha \in \mathbb{R}$, $|\beta| < b_0$.

The lemma follows.

Lemma A2.2. Let $\beta > 0$ be fixed and let k = a + ib, $a \in \mathbb{R}$, $b > \beta$. Then the equation

$$\phi + R_0(\beta, k) V \phi = 0 \tag{1}$$

has a solution $\phi \in H_{2,-s}$, $\phi \neq 0$, if and only if a = 0 and $k^2 = -b^2 \in \sigma_d(H(\beta))$ with

$$(H(i\beta) + b^2)\phi = 0.$$
 (2)

Proof. 1) If $\phi \in H_2$ satisfies (2), then applying $R_0(\beta, ib) \in \mathscr{B}(L_2, H_2)$ to (2), we get, since $V\phi \in L_2$, (1) where $\phi \in H_2$. -s.

2) Let $\phi \in H_{2,-s}$ and assume (1). Then $V\phi \in L_{2,s} \subset L_2$ and hence $\phi = -R_0(\beta, k) V\phi \in H_2$. Applying $H_0(\beta) - k^2$ to (1), we get (2) and hence by Lemma A2.1, a = 0 and $k^2 = -b^2 \in \sigma_d(H(i\beta))$.

Lemma A 2.3. For $\beta > 0$, $k = \alpha + i\beta$,

$$R_{0+}(\beta,k) = \lim_{\beta' \uparrow \beta} \left(-\Delta - 2\beta' \frac{\partial}{\partial x_1} - \beta'^2 - k^2 \right)^{-1}.$$

Proof. This follows from the fact, proved in Theorem 1.3, that

$$\|R_0(\beta, k+i\varepsilon) - R_{0+}(\beta, k)\| \mathbb{B}(L^1_{2,s}, H_{2,-s}) \xrightarrow{\varepsilon \to 0} 0,$$

uniformly on compact sets, together with the norm-continuity of $R_{0+}(\beta, k)$.

Lemma A 2.4.

$$\{k = \alpha + i\beta \in \mathbb{C}^+ | \mathcal{N}(1 + R_{0+}(\beta, z^2)V) \neq \{0\}\} = \{i\beta | -\beta^2 \in \sigma_d(H)\}.$$

Proof. Fix $k = \alpha + i\beta$, $\alpha \in \mathbb{R}$, $\beta > 0$. By Lemma A2.1, for $0 \le \beta' < \beta$,
 $\sigma_d(H(i\beta')) \cap \{k^2 | \operatorname{Im} k \ge \beta\} = \{-b^2 \in \sigma_d(H) | b \ge \beta\}.$

Hence, by Lemma A2.2, there exists a circle *C* with center -1, separating -1 from the rest of the spectrum of the operator $R_0(\beta', k) V \in \mathscr{C}(H_{2, -s})$ for $\alpha \in \mathbb{R}$, $0 \leq \beta' < \beta$.

Let

$$P(\beta',k) = -\frac{1}{2\pi i} \int_{C} (-\lambda + R_0(\beta',k)V)^{-1} d\lambda.$$

By Lemma A 2.3

$$\lim_{\beta'\uparrow\beta}R_0(\beta',k)V = R_{0+}(\beta,k)V$$

in the uniform operator topology of $\mathscr{B}(H_{2,-s})$.

It follows that

$$(-\lambda + R_0(\beta', k)V)^{-1} \xrightarrow[\beta' \uparrow \beta]{} (-\lambda + R_0(\beta, k)V)^{-1}$$

in the uniform operator topology of $\mathscr{B}(H_{2,-s})$, uniformly for $\lambda \in C$. Hence, in the same topology

$$P(\beta',k) \xrightarrow{\beta' \uparrow \beta'} - \frac{i}{2\pi i} \int_{C} (-\lambda + R_0 + (\beta,k)V)^{-1} d\lambda = P_+(\beta,k),$$

where $P_{+}(\beta, k)$ is a projection on the algebraic null space of $1 + R_{0+}(\beta, k)V$.

It follows that $P_+(\beta, k) \neq 0$ if and only if $P(\beta', k) \neq 0$ for all $\beta' < \beta$. By Lemma A2.1 this holds if and only if $\alpha = 0$ and $-\beta^2 \in \sigma_d(H)$, and the lemma is proved.

Acknowledgement. I want to thank Ira Herbst for a valuable discussion, suggesting the possibility of proving the estimates of Sect. 1 for fixed $\omega \in S^2$. I also thank Erik Skibsted for pointing out an error in the original proof of Lemma A 2.3 and indicating the proof given.

References

- 1. Agmon, S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Sc. Norm. Super. Pisa, Ser. IV, II, 151–218 (1975)
- Agmon, S.: Spectral theory of Schrödinger operators on euclidean and non-euclidean spaces. Commun. Pure Appl. Math. XXXIX, 3–16 (1986)
- 3. Babbitt, D., Balslev, E.: Local distortion techniques and unitarity of the S-matrix for the 2-body problem. J. Math. Anal. Appl. 54, 316–347 (1976)
- 4. Balslev, E.: Analytic scattering theory of two-body Schrödinger operators. J. Funct. Anal. 29, 375–396 (1978)
- Balslev, E.: Local spectral deformation techniques for Schrödinger operators. J. Funct. Anal. 58, 79–105 (1984)
- Balslev, E.: Resonance functions for radial Schrödinger operators. J. Math. Anal. Appl. 123, 339–365 (1987)
- Jensen, A.: Resonances in an abstract analytic scattering theory. Ann. Inst. H. Poincaré Phys. Théor. XXXIII, 209–223 (1980)
- Kuroda, S.T.: Scattering theory for differential operators. I. J. Math. Soc. Jpn. 25, 75–104 (1973)
- 9. Sigal, I.M.: Complex transformation methods and resonances in one-body quantum systems. Ann. Inst. H. Poincaré Phys. Théor. 41, 103–114 (1984); 41, 333 (1984)
- Saitō, Y.: Extended limiting absorption method and analyticity of the S-matrix. J. Reine Angew. Math. 343, 1-22 (1983)
- 11. Balslev, E., Skibsted, E.: Resonance theory for two-body Schrödinger operators (to appear)

Communicated by B. Simon

Received June 16, 1987