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Abstract. For potentials V=V(x) = 0(\x\ 2 ε) for |x|->oo, xeR 3 , we prove
that if the iS-matrix of ( — A, — A + V) has an analytic extension S(z) to a region
Θ in the lower half-plane, then the family of generalized eigenfunctions of
— A + V has an analytic extension φ(k, ω, x) to Θ such that \φ(k, ω, x)\ < Ceb^
for \lmk\<b. Consequently, the resolvent ( — A + V—z2)'1 has an analytic
continuation from (C+ to {keΘ\\lmk\<b} as an operator R(z) from jtfb = {f
= e~&|x|g|gEL2(R3)} to #f_h. Based on this, we define for potentials
W=o(e~2blxl) resonances of (-A + V, -A + V + W) as poles of (1 + WR{z)Yι

and identify these resonances with poles of the analytically continued S-matrix
of(-zJ + F, -A + V+W).

Introduction

Analytic continuation of the scattering matrix of a two-body Schrodinger
operator —A-\-V has been established for various classes of the potential V,
including exponentially decaying [3] and dilation-analytic, short-range [4]
potentials.

Two methods were developed to obtain a unified approach to these two classes
of potentials, one [5] based on local spectral deformation techniques in
momentum space, the other [9] based on an analytic family of deformations of the
underlying momentum-space. These methods cover potentials of the form V + W,
where V=O(r2~ε) is radial, dilation-analytic and W is exponentially decaying.

For radial potentials a different method was introduced [6]. The basic idea was
that if the resolvent ( — A + V—fc2)"1 can be shown to have an analytic
continuation to a domain Θ in the lower half-plane as an operator from a space of
exponentially decaying functions to its dual, then —A + V can play the role of — A
as background for an exponentially decaying perturbation W9 using analytic
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Fredholm theory. In particular it was shown that if the scattering matrix of ( — A,
— A +F)has an analytic extension to Θ, then the resolvent has such an analytic
continuation.

In the present paper we extend these results to non-radial potentials. In Sect. 1
we establish the existence of an analytic extension to the upper half-plane of the
generalized eigenfunctions ψ+(k,ω,x) defined in a standard way for k real. The
construction utilizes methods of [1], extended to operators of the type

e-ikω-xAeikωχ^ τ h e p r o o f r e q u i r e s t h a t v(x) = 0(\x\~2~ε), but it is possible to
extend these results to potentials V(x) = O(\x\ ~x~ε) (cf. [10,11]) and perhaps even,
with modifications, to long potentials. A different method of obtaining the
analytic extension of the eigenfunctions to the upper half-plane via the Green's
function is indicated in [2].

In Sect. 2 we prove that ψ(k, ω, x) can be continued analytically in k to a
domain G in the lower half-plane, provided the S-matrix Sx(k) can be extended in
this way (Theorem 2.2). We utilize the abstract stationary scattering theory as
developed in [8]. From this we obtain analytic continuation of the resolvent
( — A + V— fc2)"1, acting as an operator from an exponentially weighted L2-space
into its dual (Theorem 2.4). This allows for addition of an exponentially decaying
potential W to V. As a consequence we obtain as our main result (Theorems 2.5
and 2.7) the meromorphic extension of the <S-matrices Sί2(k) of ( — A + V, —A
+ V+W) and S2(k) of (-A, -A + V+W). This provides a basis for the further
study of resonances and resonance functions arising from a very short range
potential W acting on the background of a short range smooth potential V. This
will be taken up in [11].

1. Generalized Eigenfunctions

In this section we define the generalized eigenfunctions Ψ(k,ω,x) for fce(C + \{0},
ω e S2_and x elRA We establish the analyticity properties of Ψ(k, ω, x) as functions
of fce(E+\{0} and their exponential growth as functions of X G R 3 .

The free Hamiltonian Ho is the selfadjoint operator defined by Hof= — Af
with domain 2Ho = // 2(R 3). The potential V is assumed to be multiplication by a
real-valued, measurable function v on R 3 satisfying for some ε>0, Ro>0,

(i) veύ°2

c(Έi%
(ii) \v(x)\<C\x\-2-£ϊor\x\>R0.

V is //0-compact and hence Ho — ε-bounded. Thus, the Hamiltonian

Ή ^ H o + F i s selfadjoint on @Hί = @Ho>
 a n d σ e(#i) = R +

Two families of generalized eigenfunctions Ψ + (k, ω, x) are formally defined [1]
for fc>0, ω e S 2 , x e R 3 by

Ψ±(k, ω, x) = (UimiHi-k2 ± is)'1 V) eik(a'x

where the limit is taken in a suitable topology.
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For the purpose of studying analyticity properties it is useful to introduce the
family of eigenfunctions Ψ(k,ω,x) defined formally for fce(C+\{0} by

Ψ{k,ω,x)=\im(l-R1((k + i
ε | O

where R1(k + ίε) = (Hι-(
The connection between Ψ±(k,ω,x) and Ψ(k,ω,x) is given for /c>0 by

Ψ+(k9ω9x)=Ψ(-k,-ω,x)9 Ψ _(k,ω,x)=Ψ(k,ω,x). (1.1)

We shall prove that the functions Ψ(k, ω, x) exist and behave asymptotically as
eikωx. For this purpose we study the functions Φ(k,ω,x) formally defined by

Φ(fc, ω, x) = 1 - eikω •x Ψ(k9 ω, x) = e ~ίkω XR x + (k) Veίkω"x

= (\-e-
ikω-χR0 + (k)eίkω'xVy1e-ikωxR0 + (k)e-ίkω'xV,

where in a suitable topology

The basic operator is R0 + (k,ω) defined for /ce(C+, ωeS2, by

~ikxi

where Tω is the operator defined by

and ίω is any rotation which sends (1,0,0) into ω.
Setting k = α + ΪJ8, we have

where

(see also Appendix 2).
The operator H0(ij5) has as its spectrum the parabolic region

&β = {z21 |Imz| ̂  β}. The point k2 belongs to the boundary of 0>β, and for β ̂  0 fixed,
ε>0,

jR0(j8, k + iε) = (H0(ίβ) -(k + iε)2)"x e

and
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where

R0 + [β9 k) = \imR0(β, k + iε).
ε j O

The rest of this section is devoted to a rigorous derivation of the above
formalism.

Definition. For s e E w e define the following spaces:

,= J|/(x)|2(l+*2N*<α)j,
' R3 j

,s= ί

.,s for |α|g

and

\\f\\h,s= ioZ2\\Daf\\l2,s-

For beR,

R3

^ { / | / for

and

11 f | | 2 v II Π α /* I I 2

| α | ^ 2

We set

2^1 and J^2

b^ are defined as $eh and Jf2

b with / replaced by an §-valued
function on IR3 and |/(x)| replaced by ||/(x)||δ.

We consider for β ̂  0 the closed operator H0(iβ) with domain iί2(IR3), defined

by

H0(iβ)=-A+2β— -β2,

whose Fourier transform is multiplication by the polynomial

Lemma 1.1. For given s>^, jδo>0, K a compact subset of <C\{0}, there exists a
constant C such that for O^β^β0, zeK, ue H2

Proof. The lemma is proved in the same way as [1, Lemma A.I]. Note that the set
of critical points Λc(Q(β)) of Q(β) is given by
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It is easy to check that each step of the proof given in [1] is valid with (1 + \x\2)s

replaced by (1 -\-xlf and that C can be chosen independent of β,0^β<^βo.
For the construction of generalized eigenfunctions we shall make use of the

boundary values R0 + (β,k), k = a + iβ. The existence of these boundary values is
proved through a series of lemmas. In this section K denotes a compact subset of
C"+\{0}.

Lemma 1.2. Let geϋ2s, s>\. For fce(C + \{0} the following weak limits exist in
H\ _s, uniformly for keK,

R0+(β,k)g = w-limR0(β,

Proof For / and g with compact support

(/, R0(β, k + iε)g) = (eβXίf R0(

uniformly for keKc<£+. By Lemma Al this also holds for Kc(t^\{0}. Then, by
Lemma 1.1, the same holds for /, geL\ s.
Thus, for geL\s there exists

0(β, ήg in U2 _ s .

By Lemma 1.1, {R0(β, k + iε)g} is also bounded in H\ -s for ε > 0, uniformly for
k e K. Hence, by the weak compactness of the unit ball in H\ _s, the weak limit is
attained also in H\ _s, uniformly for keK.

Theorem 1.3. Ro + (β,k)=limRo(β,k + iε) in the uniform operator topology of

2,S,H2 _ s), uniformly for keK.
Moreover, the ^{U2 s, H2 _s)-valued function of k =

is analytic in (C+ and continuous in (C + \{0).

Proof. By Lemma 1.2, R0+(β,k):= w-limR0(β,k + is) is well-defined as an
ε | 0

operator in ^(U2 S,H2 _J . Note that for ueH2 _s the norm ||w[|2 _ s is equivalent
to

u = u _ , +

uniformly for 0 ^ β ^ β0, where we fix β0 > 0 such that K C {k \ 0 ^ Imfe ^ β0}. Thus it
suffices to show that in the uniform operator topology of M{\}2>s, L21_ s),

and

uniformly for keK.
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Since

ί -A+2β-— 1R0{β,k + ie) = l+(fc + iε)2R0(β,k + iε),

it follows that it suffices to show that

in the uniform operator topology of &(L2 S,L2 _ s), uniformly for keK. We now
proceed to show this.

First of all, the weak limit as ε J, 0 is indeed a strong limit, which can be seen as
follows. Let geϋ2s. Then geL\s, for \<s' <s. By Lemma 1.2,

weakly in H\ _s>, uniformly for keK. Since H2 s, is compactly embedded in L2 _SJ

we conclude that

strongly in L 2 ?_ s, uniformly for keK.
It remains to prove convergence in the uniform operator topology. This is

proved along the same lines as the proof of the corresponding step in the proof of
[1, Theorem 4.1], replacing L2s by L\ s and H2t-S> by H\f_s and using the
compactness of the embedding of H\ _s, in L 2 _s for^ <s' <s. This concludes the
proof of the first part of the theorem.

For ε > 0 the SHj}1%Si H2 _s)-valued function e"iaXί R0(β, k + iε)eiaXl is analytic in
fceC+ and continuous in fee(C + \{0}.

It then follows from the first part_of the theorem that e~ίaXiRo + (β,k)eicίXi is
analytic in (C+ and continuous in C+\{0} as a function of k with values in
@(U2^H2^S).

The theorem is proved.

Theorem 1.4. The following limits exist in the uniform operator topology of
}2 S,H2 _s) for s>j, uniformly for k in compact subsets of <£+\Σ, where

ί

Moreover, the ^(L2s,H2ί_s)-υalued function e~iaXίRι+(β,k)eiaxl is mero-
morphic in C + with poles at {iβ\ — β2eσd(H)} and continuous in (C + \Σ.

Proof. By the 2n d resolvent equation,

Since Ve^{H2^s,L2^\ by Theorem 1.3,
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in the uniform operator topology of M(β2 _ s), uniformly for k e K, and_β+(k) is an
analytic, (β(H2>-s)-valued function of fce(C+ and continuous in C+\{0}. By
Lemma A 2,4, 1 +Q+(k) is invertible for keϊϊ^XΣ.

It follows from the analytic Fredholm theorem that (1+Q+(/c))~1 is a
meromorphic, &(H2 _s)-valued function in (C+ with poles at Σi = {iβ\—β2

eσd(H)}, continuous in ̂ T\Σ. Using again Theorem 1.3, we conclude the proof.

Theorem 1.5. Set for k

Φ{k9 ω, x) = e ~ίkω XR x + (k) Veίkω'x.

Then Φ(k, ω, ) is for fixed ωeS2 a continuous, H2 _s-υalued function of ke (D+\Σ,
meromorphic in C + with poles at most at Σt.

For fixed x e R 3 , ωeS2, Φ(k,ω,x) is continuous in (£+\Σ and meromorphic in
C + with poles at most at Σt.

Proof. Since Vel}2iS and

Φ(k, ω, x) = Tωe-ι^R1+(β, k)e^ T~' V,

the first part of the theorem is an immediate consequence of Theorem 1.4.
It follows that for fixed ωeS2, /eC 0 (IR 3 ), the function

J Φ{k,ω,x)f(x)dx

is continuous in (C + \Γ and meromorphic in (C+ with poles at most at Σt. Note that
Φ(k,ω,-)eH2i-simplies that Φ(k9ω, )eC(R3). Let ΓC(C+ be a closed curve with
ΓnΣt = 0 and containing no points of Σt in its interior. Then, by Fubini's theorem

j ίJ Φ(/c, ω, x) dfcl /(x) dx = J { J Φ(fe, ω, χ)/(χ) rfxj dfc = 0 .
R 3 | Γ J Γ(]R3 J

This implies that j Φ(k, ω, x)dk = 0 for fixed ω e S2, x e R 3 , and hence Φ(fe, ω, x)
r

is analytic in (C+\Σ i. It follows from a similar argument with Γ containing a point
of Σt that such points are at most poles of Φ(k, ω, x).

The continuity of Φ(k, ω, x) is proved asjollows. For fixed ω e S2, the function
(1 + |x | 2 )~ 5 / 2 Φ(k,ω, •) is continuous in ke<£+\Σ with values in H2. Since H2 is
continuously embedded in C(IR3) (with the sup-norm), (1 + |x| 2)~ s / 2 Φ(k, ω, •) is
continuous inke<E+\Σ with values in C(R3). Hence for every xeIR 3, ωeS2, the
function Φ(k,ω,x) is continuous in ke(£+\Σ.

Definition 1.6. For ke^\Σ, ωeS2, xeR3,

Ψ(k, ω, x) = β ί k ω x(l - Φ(k, ω, x)).

For fe>0, k2φσp(H), ωeS2,xeΈL3

Ψ+(k, ω9x)=Ψ(-k,-ω,x), Ψ- (k, ω, x) = Ψ(k, ω, x).

2. Analytic Continuation

Under our assumptions on V the scattering operator S exists and is unitary on L2.
The generalized Fourier transforms F± are partial isometries with initial space
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Jζ^HJ and final space L2, defined for /eC 0 (R 3 ), /c>0, ωeS2 by

(F+f)(Kω) = (2π)3/2 f /(x) <P+(fc, ω, x) dx.
R3

Letting #" denote the Fourier-Plancherel transform and setting S = έFS^~\
we have SF_=F + , hence for /eC 0 (R 3 ),

S\ $ f(x)Ψ4k,ω,x)dx]= J /(x) Ψ + (k,ω,x)dx.
|_R3 J R 3

Moreover , SH0 = H0S, so S is diagonalized in m o m e n t u m representat ion,

S= J ®S(k)dk, where for fc>0, /eC 0 (R 3 ),
o

S(Λ) { /(x) ?_(*,-, x)dx= J f(x)Ψ+{k,-,x)dx. (2.1)
R3 R3

Since ( F ± (ϋ, v )eC(R 3 ,/ι) and S(fc) is unitary on h9 also
Λ). Hence, (2.1) for all /eC 0 (R 3 ) implies for fe>0, x

-(k9;x)=Ψ + (K;x) (2.2)

Using (1.1), the above result (2.2) may be expressed in terms of Ψ(k,ω,x) as
follows.

Lemma 2.1. The scattering matrix S(k) satisfies S(k)Ψ(-k,',x)=Ψ(k,- ,x),
x e R 3 , fc>0.

Definition. Let v be a real-valued, measurable function satisfying (i) and (ii). Let
$C(C~ be a domain with dΘn]^+ =/. The operator F of multiplication by v is
called ©-analytic, if the scattering matrix S(k) has a continuous extension S(fe) from
I to 0uJ, such that S(k) is analytic in Θ. For any set 5c(C we let Sb

= {keS\\Imk\<b}.

Theorem 2.2. Assume that V is Θ-analytic.
1) For fixed xelR3, the function Ψ(k,-,x) has an ξ)-valued meromorphic

continuation Ψ(k, ,x) from (C+ to Θul with poles contained in ΣuΣ, defined for
ke{ΘuI)\Σ, xelR.3

9by

f{k,.,x) = RS(k)W(-k,.9x), (2.3)

where R is the reflection operator in $ , (Rσ)(ω) = σ( — ω).

2) Ψ(k9 9 )e30*2,1 for |Imfc|<fc3 and Ψ{k9',-) is a meromorphic, ^^-valued
function of k in ( ( C + u / u $ ) & with poles contained in ΣuΣ.

Proof 1) Define Ψ(k9-9x) for x e R 3 , ke{ΘvI)\Σ by (2.3). For keI\Σ, by
Lemma 2.1,

Ψ(k, 9x)=Ψ(k9 9x).

By Theorem 1.5 and Definition 1.6, Ψ(k, ,x) is continuous on (ΘuI)\Σ and
meromorphic in & with poles contained in Γf. Using again Theorem 1.5, we
conclude that for x e R 3 , Ψ(k, ,x) is meromorphic in (C + u/'u$, where /'
= I\{oc\oc2eσp(H)}, with poles at most at Σ^Σ^ The fact that {α|α2eσp(H)} are
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(simple) poles of Ψ(k, , x) can be proved using the existence of lim (z — α) R ί (z). This
concludes the proof of 1).

2) By Theorem 1.5, for | α | ^ 2 ,

{ \\D*Ψ(kr,x)\\%e-2bWdx^\\5m2 ί \\D*Ψ(-k,.,x)\\ldx.

The analyticity properties of Ψ(k, , ) as an ^2y|-valued function follows from
local boundedness and weak analyticity on a dense set of DaΨ(k, , ) for |α| ̂  2, and
2) is proved.

Lemma 2.3. Assume that V is Θ-analytic. The trace operator T(k) defined for k>0

has a &(J^b,ξ>)-valued, meromorphic extension T(k) from I to ((L+uIuΘ)b with
poles at most at ΣuΣ, given by

T(k)f = (2π)~3 / 2R J f(x) Ψ(k, -,x)dx. (2.4)

Moreover, T*(k\ given by

( f *(fc)σ)(x) = (2π)" 3 / 2 J σ(ω) ^(fc, -ω9x)dω (2.5)
s 2

is in

Proof. It follows from Theorem 2.2, 2) that for fe J^\ T(k)f as given by (2.4) isji
meromorphic, §-valued function of fce((C+u/u$)& with poles contained in i^uΓ.
From the boundedness of Ψ(k, , ) | | ^ b on compact sets follows that || T(k)\\m^bt5)

is locally bounded and hence T(k) is a meromorphic ^(J^ b , §)-valued function
on ((C+ \JIVJ&\. A simple calculation yields (2.5), and it follows from Theorem 1.5
that T*(£)e ̂ (Jr>5 J^27^). The lemma is proved.

Theorem 2.4. Assume that V is Θ-analytic. The resolvent Rγ{k) has a meromorphic,
b, ^2h)-valued continuation Rγ{k) from (C+ to l^jΘb with poles contained in Σ.

Proof We use the well-known identity, valid for k > 0, k2 φ σp(H),

Rι+{k) = Rι+{-k) + πikT*{k)T{k). (2.6)

Using Lemma 2.3, we define the ^(«^^ 2 ~ f t )-valued function R^k) for
keΘb\Σby

R1(k) = R1(-k) + πikT*(k)T(k). (2.7)

Setting R1(k) = R1+(k) for keI\Σ, we obtain the theorem from (2.6) and
Lemma 2.3.

Theorem 2.5. Assume that V is Θ-analytic. Let W be a symmetric operator of the
form

Let H2 be the self adjoint operator on @H2 = @Hi=@Ho defined by
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and

R2(k) = (H2 — k2)"1 for k2eρ(H2).

Let S12(k) be the scattering matrix of the pair (Hι,H2) associated with the
spectral representation of if1>ac defined by T(k) (cfi [8]).

1) R2(k) has a &(J4?b, J^2~
b)-valued, meromorphic continuation R2(k) from (C+ to

(IuΘb)\Σ, given by

R2(k) = Rι(k)(l + WR^k))-1. (2.8)

2) S12(k) has a meromorphic extension Sί2(k) from I to (9h\Σi with the same poles
as R2(k), given by

Sί2(k) = 1 - πikT(k)(W- WR2(k) W) T*(fc). (2.9)

Proof 1) By Theorem 2.4, WR^k) has a ^(Jf&)-valued analytic continuation
WR^k) from <C+ to (IvΘb)\Σ. By the analytic Fredholm theorem, (1 - WRx(k))~ι

is meromorphic in (IuΘb)\Σ. Using the 2n d resolvent equation, we obtain 1).
2) Using the representation of Hί a c as k2 on L 2 (R + , § ; k2 dk) defined by T(fc),

the scattering matrix Sί2(k) is given for fe>0 (cf. [8]) by

Sί2(k) = ί-πikT(k)(W-WR2+(k)W)T*(k). (2.10)

It follows from (2.10), 1) and Lemma 2.3, that S12(fc) has a meromorphic
extension S12(k) to Θb\Σ with poles at most at the poles oϊR2(k). The fact that the
poles of S12(k) and R2(k) coincide follows from the next lemma.

Lemma 2.6. For keΘb\Σh Λ^(Sΐ2(k)) and Jί{V + WR^k)) are isomorphic via the
maps

with the inverse Z(k) defined by

Ω = Z{k)σ=-πik(\-WR2(-k))WT*(k)σ.

Proof 1) Let ΩejViί + WR^k). Then σ + 0, since otherwise by (2.7)
Ω e Jί(\ + WRγ{- k)) implying Rγ{- k)Ωe Jί(H2 - k2), a contradiction. Using the
expression for SX2

ι obtained from (2.8) on replacing i by — i and R2(k) by R2( — k),
we get in view of (2.7),

SfΓ2

1(fc)σ = (l +πikT(k){ί - WR2(-k)) WT*(k) T(k)Ω

= T(k)Ω+T(k){l - WR2(-k))

2) Assume that σeJΓ(Sϊ2\k)\ i.e.,

σ-T(k)Z(k)σ = 0.

Applying Z(k), setting Ω = Z(k)σ and using (2.7), we get

= Ω + (ί-WR2(-k))W[R1(k)-Rί(-k)]Ω

The lemma follows from 1) and 2).
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We finally investigate the analyticity properties of the scattering matrix S2(k)
of the pair (Ho, H2).

Theorem 2.7. Under the assumptions of Theorem 2.5 the scattering matrix S2(k) has
a meromorphic extension S2(k) from I to $&\^i with poles at most at the poles of
R2(k).

Proof This follows from Theorem 2.5 and the following identity, valid for /c>0,

Sί2(k)S1(k) = S2(k), (2.11)

which we shall now establish.
Using for Hλ ac the representation as k2 on L 2 (R + ,§;/c2dfc) defined by T(k),

the generalized Fourier transforms 7^2± °f t n e P a i r (#i,ao Fί2 ac) are given (cf. [8])
for /eL 2 s and k>0, k2 φσjjϊ^σjjϊ^l by

(Fl2 + f)(k)=T(k)(\-WR2+(k))f=T0(k)(\-VRι+(k))(l-WR2 + (

= T0(k)(ί-(V+W)R2 + (k))f = (F2 + f)(k), (2.12)

where

and

= S1{k)T0{k){\-VR1+{-k)){\-WR2+{-k))f

= Sι(k)T0(k)(l~(V+W)R2 + (~k))f = S1(k)(F2_f)(k). (2.13)

By (2.12) and (2.13), for / e L 2 , s , fe>0, k2φσp{Hγ)vσp{H2\

= Sί2(k)S1(k)(F2_f)(k). (2.14)

From (2.14) follows (2.11) for k>O,k2φσ^J/Juσ^). Since Sί2(k), SM and
S2(k) are continuous o n R + (cf. [7]) and σp(H^ and σp(H2) are discrete sets in R + ,
this implies (2.11) for all fc>0, and the proof is complete.

Lemma Al. Let f and g be functions in L2 with compact support, and let
αoelR\{0}. Then there exists 0<δo<\cco\ such that the following limits exist,

Appendix 1

Lemma A
αoelR\{0}
uniformly in {k = α + iβ \ |α — αo | rg δ0, O^βS ̂ o}5

]im(f,R0(β9k + iε)

Proof Taking Fourier transforms, we have
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Since f(ξ) and g(ξ) are entire analytic functions of ξu ξ2, ξ3, we can deform the
manifold of integration in (C3 as follows.

Let α o > 0 ( α o < 0 is analogous). It suffices to consider /? = 0.
We write the integral in spherical coordinates as follows.

/ = /(ε)= $ sinθdθdφ J drf(r, 0, φ)ξ(r, θ, φ) (r2-α2 + ε2-2ίεa)~ι.
S2 R«"

Deforming the radial integration path R + into the curve Γ indicated on Fig. 1,
where 0 < <5 < α, we get

I(ε) = f sin θdθdφ f dzf{z, θ, φ) ξ(z, θ, φ)
s2 r

x(z2-oί2 + 2εβ + ε2 + 2ί(βzsinθcosφ-βa-εoc)~Λ ,

Fig. 1. This yields / ( ε ) - ^ f sin θdθdφ f ί/z/(z,^φ)g(z,O,φ)(z2-α2)- 1, uniformly for | α - α 0

H(z) = e - ίzHeiz = - A - liz —~ + z2 + V.
dX

Appendix 2

Lemma A2.1. Lei bo>0 be fixed. For \β\<β0 and <Ebo = {a-{-ίb\b>b0}, we have

Proof. We set

For β fixed

The operators H(z) form an entire self-adjoint, analytic family of operators of
type A. For fixed β the operators H(a + iβ) are unitarily equivalent. The essential
spectrum σe(z) of H(z) is the parabolic region {ζ2 |Imζ| ^ \β\} (for j? = 0 coinciding
with R + ) . Thus, (C&onσe(z) = 0 for |j8|<&0

 A discrete eigenvalue λ of H(oc' + ίβ'l
|j8'|<fe0, remains a discrete eigenvalue of H(a + iβ') for all α e R and hence, by
analyticity of H(z), for all αeIR, \β\<b0.

The lemma follows.

Lemma A2.2. Lei β>0 be fixed and let k — a-\-ϊb, ae 1R, 5>jS. 77zerc ί/zβ equation

φ + R0(β,k)Vφ = 0 (1)

/jfls α solution φeH2t _s, φ + 0, if and only if a = 0 and k2= —b2eσd(H(β)) with

φ = 0. (2)
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Proof. 1) lϊφeH2 satisfies (2), then applying R0(β, ib) e @(L29 H2) to (2), we get,
since VφeL2, (1) where φeH2,-s

2) Let φeH2-s and assume (1). Then VφeL2tScL2 and hence
φ=-R0(β,k)VφeH2. Applying H0(β)-k2 to (1), we get (2) and hence by
Lemma A l l , a = 0 and k2=-b2 eσd(H{iβ).

Lemma A2.3. For

This follows from the fact, proved in Theorem 1.3, that

uniformly on compact sets, together with the norm-continuity of R0 + {β, k).

Lemma A 2.4.

Proof. Fix k = oc + ίβ, α e R , β>0. By Lemma A l l , for O^β'

Hence, by Lemma A 2.2, there exists a circle C with center — 1, separating — 1
from the rest of the spectrum of the operator R0(β\k)Ve(£(H2 _s) for αeIR,

\β'<β.
Let

1

2πi c

By Lemma A2.3

in the uniform operator topology of &(H2 _s).
It follows that

in the uniform operator topology of ^(H2 _s), uniformly for λeC. Hence, in the
same topology

where P + (β,k) is a projection on the algebraic null space of 1 +R0+(β9k)V.
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It follows that P+{β,k) + ΰ if and only if P(j8',fc)*O for all β'<β. By
Lemma A 2.1 this holds if and only if a = 0 and —β2eσd(H\ and the lemma is
proved.
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