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Abstract. For potentials V= V(x)=0(x|" 2% for |x|— o0, xeR3, we prove
that if the S-matrix of (— 4, — 4 4 V) has an analytic extension §(z) to a region
O in the lower half-plane, then the family of generalized eigenfunctions of
— A+ V has an analytic extension @(k, w, x) to @ such that |$(k, w, x)| < Ce®!*!
for |Imk|<b. Consequently, the resolvent (—A+V—2z*) "' has an analytic
continuation from €% to {ke O|[Imk|<b} as an operator R(z) from #;,={f
=e Plglge L,(R%) to #_, Based on this, we define for potentials
W =o(e 2"™) resonances of (— A+ V, — A+ V + W) as poles of (1+ WR(z)) !
and identify these resonances with poles of the analytically continued S-matrix
of (—A+V, —A+V+W).

Introduction

Analytic continuation of the scattering matrix of a two-body Schrédinger
operator —A+ 1V has been established for various classes of the potential V,
including exponentially decaying [3] and dilation-analytic, short-range [4]
potentials.

Two methods were developed to obtain a unified approach to these two classes
of potentials, one [5] based on local spectral deformation techniques in
momentum space, the other [9] based on an analytic family of deformations of the
underlying momentum-space. These methods cover potentials of the form V + W,
where V=0(r" 27 is radial, dilation-analytic and W is exponentially decaying.

For radial potentials a different method was introduced [6]. The basic idea was
that if the resolvent (—A+V—k?)~! can be shown to have an analytic
continuation to a domain ¢ in the lower half-plane as an operator from a space of
exponentially decaying functions to its dual, then — A + V can play the role of — 4
as background for an exponentially decaying perturbation W, using analytic

* The author would like to thank the Institute for Advanced Study for its hospitality and the
National Science Foundation for financial support under Grant No. DMS-8610730(1)



600 E. Balslev

Fredholm theory. In particular it was shown that if the scattering matrix of (— 4,
—A+V)has an analytic extension to ¢, then the resolvent has such an analytic
continuation.

In the present paper we extend these results to non-radial potentials. In Sect. 1
we establish the existence of an analytic extension to the upper half-plane of the
generalized eigenfunctions v, (k, w, x) defined in a standard way for k real. The
construction utilizes methods of [1], extended to operators of the type
e ko x foiko x The proof requires that V(x)=0(|x|"27%), but it is possible to
extend these results to potentials V(x)=0(|x| ~! ~¢) (cf. [10, 11]) and perhaps even,
with modifications, to long potentials. A different method of obtaining the
analytic extension of the eigenfunctions to the upper half-plane via the Green’s
function is indicated in [2].

In Sect. 2 we prove that y(k,w, x) can be continued analytically in k to a
domain O in the lower half-plane, provided the S-matrix S,(k) can be extended in
this way (Theorem 2.2). We utilize the abstract stationary scattering theory as
developed in [8]. From this we obtain analytic continuation of the resolvent
(—4+V—k?*) ™1, acting as an operator from an exponentially weighted L,-space
into its dual (Theorem 2.4). This allows for addition of an exponentially decaying
potential W to V. As a consequence we obtain as our main result (Theorems 2.5
and 2.7) the meromorphic extension of the S-matrices S,,(k) of (—4+V, —4
+V+W)and S,(k) of (—4, —A+ V+ W). This provides a basis for the further
study of resonances and resonance functions arising from a very short range
potential W acting on the background of a short range smooth potential V. This
will be taken up in [11].

1. Generalized Eigenfunctions

In this section we define the generalized eigenfunctions ¥(k, w, x) for ke C*\{0},
weS?and x eIR3. We establish the analyticity properties of ¥(k, w, x) as functions
of keC* \{0} and their exponential growth as functions of xeRR>.

The free Hamiltonian H, is the selfadjoint operator defined by H, f=—A4f
with domain 2y, = H,(R?). The potential V is assumed to be multiplication by a
real-valued, measurable function v on R? satisfying for some ¢>0, R,>0,

(i) ve LF(R?),

(ii) |v(x)| < C|x|~27¢ for |x|>R,.

V is Hy-compact and hence H,—e-bounded. Thus, the Hamiltonian
H,=Hy+V is selfadjoint on @, =%y, and o (H,)=R".

Two families of generalized eigenfunctions ¥ . (k, w, x) are formally defined [1]
for k>0, weS?, xeR3 by

V. (k, 0, x)= (1-lim(H1 —k*+ig)! V) g0 x
elO0

where the limit is taken in a suitable topology.



Analyticity Properties of Eigenfunctions and Scattering Matrix 601

For the purpose of studying analyticity properties it is useful to introduce the
family of eigenfunctions ¥(k, w, x) defined formally for ke C*\{0} by

Y(k,w,x)=lim(1 — R,((k+ig)) V)e** *,
el 0
where R, (k+ig)=(H, —(k+ie)*) "
The connection between ¥, (k, w,x) and ¥P(k, w, x) is given for k>0 by
V. (ko,x)=P(—k —w,x), ¥Y_(kwx)=Pk o,x). (1.1)

We shall prove that the functions ¥(k, w, x) exist and behave asymptotically as
e** For this purpose we study the functions ®(k, w, x) formally defined by

Bk, 0, x)=1—e* *P(k, o, x)=e " *>"*R (k) Velko =
=(1 _e_ikw'xRo+(k)eikw-xV)—Ie—ikw-xRO+(k)e—ikw-xV’

where in a suitable topology

R, (k)= limR((k+ig), i=0,1.
el 0

The basic operator is R, . (k, w) defined for ke C*, we S, by
R0+(k, w):e—ikw~xR0+(k)eikw'x:(e—ikwa(HO_kZ)eikarx);1
=(Twe—ikx1 Tco_ I(HO _kZ) Tweikxl Ta; 1); 1
-1
=T (e *(Hy—k?»)e™) ' T, ' =T, ( H < 2zki> T, ',

oxi ), °
where T, is the operator defined by
(T, 1)) =f(ts, 'x),

and t,, is any rotation which sends (1,0, 0) into w.
Setting k=o+if3, we have

0 ; . . .
_2lka_ e—zax;eﬁleOe—ﬂxlemxl _ k2 — e—zaxl(HO(iﬁ)_ kZ)eule ,
1

where

Hy(if)=ef*"Hye P =H —|—2ﬁ‘——[)’2

X1

(see also Appendix 2).

The operator Hy(if) has as its spectrum the parabolic region
Py ={z*||Imz| < f}. The point k? belongs to the boundary of %, and for > 0 fixed,
£>0, (k+ie)* € C\Z,,

Ro(B, k+ie)=(Ho(ip) —(k+ie)*) "' € B(H),

and

0\ ! . )
(HO—sz——> =e" 1Ry (B, k)e™ ™1,
0x1) ¢
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where
Ry, (B,k)=1mR(f, k +ie).
el 0

The rest of this section is devoted to a rigorous derivation of the above
formalism.

Definition. For seR we define the following spaces:

Ly =L (R%)= {fl 1S, = st O (1 +x) dx < OO},

L, =L, (R%)= {fl IfIIE,, = HL Lf ()12 (1 +[x]?) dx < OO},

H2,s=H2,s(IR3)={f|DafEL2.s for ’OC|§2},

and
1f,,.= | IZ<2 ID*f17,.,-
For beR,
A= {fl 1f1%e= | ez”""|f(x)|2dx<oo},
R3
HL={f|D*fe A" for |a<2},
and
£ 15 = | |Z<z ID*f )% .
We set

H=L,(R%), H=I%S%.

HE and AP o are defined as #° and #7 with f replaced by an H-valued
function on R? and | f(x)| replaced by | f(x)l|s.

We consider for >0 the closed operator H (i) with domain H,(R?), defined
by

0
Hyfif)=—4+285 ——F,

whose Fourier transform is multiplication by the polynomial
Q(f) =& +2ipE, — p.

Lemma 1.1. For given s>3, f,>0, K a compact subset of C\{0}, there exists a
constant C such that for 0Sf=p,, zeK, ueH,

lulls, = ClI(HB)—2)ully , -

Proof. The lemma is proved in the same way as [1, Lemma A.1]. Note that the set
of critical points A,(Q(f)) of Q(p) is given by

A4Q(B)={Q(B)EI7Q(F) =0} = {?0} . gj?)
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It is easy to check that each step of the proof given in [1] is valid with (1 + |x|?)*
replaced by (1+x?)* and that C can be chosen independent of 8, 0< B<f,.

For the construction of generalized eigenfunctions we shall make use of the
boundary values R0+(/3 k), k=o+if. The existence of these boundary values is
proved through a series of lemmas. In this section K denotes a compact subset of

C7\{0}.

Lemma 1.2. Let ge L}, , s>4%. For ke C™\{0} the following weak limits exist in
H} _, uniformly for keK,

R0+(ﬁa k)g: W'limRo(ﬁ, k+ 18)g .
el 0

Proof. For f and g with compact support
(fs Ro(B, k+ie)g)= (e f, Ro(k +ie)e ~*¥1g) 5> (€1 f, Ro(k)e P*1g),

uniformly for ke K CC*. By Lemma A1 this also holds for K ¢ €\ {0}. Then, by
Lemma 1.1, the same holds for f, ge L] |
Thus, for ge L}  there exists

w-limRy(B, k+ie)g in L _,.
el 0
By Lemma 1.1, {Ro(B, k+i¢)g} is also bounded in H} _ for &> 0, uniformly for

ke K. Hence, by the weak compactness of the unit ball in Hj _, the weak limit is
attained also in H} _, uniformly for ke K.

Theorem 1.3. R, (f,k)=limRy(f,k+ic) in the uniform operator topology of
el 0

B o H,. ), uniformly for keK.
Moreover, the B(L} , H, _,)-valued function of k=o+if

e~ Ry L (B, K)o
is analytic in €* and continuous in € \{0}.
Proof. By Lemma 1.2, R,,.(,k):= w hmR (B, k+ie) is well-defined as an

operator in #(L} , H, _,). Note that for u €H, _ the norm [luf,, _,isequivalent

to
ol =l + ”(—A +zﬁb%>u

uniformly for 0< f < f,,, where we fix f, >0 such that K C {k|0<Imk < 8,}. Thus it
suffices to show that in the uniform operator topology of A(L} ,, L, _),

Ro(B, k+ie) 75> Ro+ (B, k)

-S

and
(—A+2ﬁ£)RO(ﬁ,k+i8)W< A+2ﬂ )R0+(ﬁk)

uniformly for ke K.
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Since
0
(—A +2ﬁ§> Ro(B, k+ie)=1+(k+ie)* Ro(B, k +ic),
1

it follows that it suffices to show that

Ro(ﬁ, k + 18) W RO +(ﬁs k)

in the uniform operator topology of #(L}, ,, L, _,), uniformly for ke K. We now
proceed to show this.

First of all, the weak limit as ¢ | 0 is indeed a strong limit, which can be seen as
follows. Let ge L}, . Then ge L}, , for 3 <s'<s. By Lemma 1.2,

Ro(B.k+ie)g ~r5 Ro.(B.K)g.

weakly in H} _ ., uniformly for k€ K. Since H}  is compactly embeddedin L, _j,
we conclude that

Ro(f, k+ie)g w5 Ro+ (B, K)g,

strongly in L, _, uniformly for ke K.

It remains to prove convergence in the uniform operator topology. This is
proved along the same lines as the proof of the corresponding step in the proof of
[1, Theorem 4.1], replacing L, , by L} and H, _, by H; _ and using the
compactness of the embedding of H) _ in L, _for$ <s'<s. This concludes the
proof of the first part of the theorem.

Fore>0the (L, ,, H, _)-valued function e ™ Ry(f, k+ ie)e™** is analyticin
keC* and continuous in ke C*\{0}.

It then follows from the first part of the theorem that e ™' Ry, (8, k)e™ is
analytic in €C* and continuous in €*\{0} as a function of k with values in
g(le,s’ H2, —s)'

The theorem is proved.

Theorem 1.4. The following limits exist in the uniform operator topology of
BLY H, ) for s> %, uniformly for k in compact subsets of €\ X, where

I ={ip| —p*ea(H)}u{0}u{aloa’ca,(H)},
Ry (B, k)= lif%R1(/3’k+i8)=(1 +Ro+ (B R)V) I Ry (B,K).

Moreover, the H(L, ., H, _,)-valued function e” "R, (B, k)e™ " is mero-
morphic in C* with poles at {if| — p*ea,(H)} and continuous in C*\ 2.
Proof. By the 2™ resolvent equation,

R,(B,k+ic)=(1+Ry(B, k+ic) V) ' Ro(, k+ie).
Since Ve¥(H, L, ), by Theorem 1.3,
e PR, o+ ie) Ve e Ry (B K)e™ = 04 (k)
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in the uniform operator topology of #(H, _,), uniformly for k€ K, and Q , (k) is an
analytic, 4(H, _,)-valued function of ke C* and continuous in C€*\{0}. By
Lemma A2,4, 1+Q (k) is invertible for ke C\ 2.

It follows from the analytic Fredholm theorem that (1+Q,(k)" ' is a
meromorphic, %(H, _,)-valued function in € with poles at X,={if|—p*
ea,(H)}, continuous in €7\ X. Using again Theorem 1.3, we conclude the proof.

Theorem 1.5. Set for ke C*\2,
Dk, w,x)=e >R, (k) Ve =,

Then ®(k,w, - ) is for fixed we S* a continuous, H, _ -valued function of ke Cc’ \2,
meromorphic in C* with poles at most at .. o

For fixed xeR3, weS?, ®(k,w,x) is continuous in C*\ X and meromorphic in
C™ with poles at most at ..

Proof. Since Ve L) ; and
Dk, w,x)=T,e” ™R, (B, k)™ T, 'V,
the first part of the theorem is an immediate consequence of Theorem 1.4.
It follows that for fixed we S?, fe Cy(IR?), the function
Rj3 D(k, w,x) f(x)dx

is continuous in C* \ 2 and meromorphic in € with poles at most at X,. Note that
d(k,w,-)e H, _,implies that d(k, w,-)e C(R?). Let ' CC™* be a closed curve with
I'nX;=0 and containing no points of X, in its interior. Then, by Fubini’s theorem

) {j (P(k,w,x)dk}f(x)dxz j{[ ¢(k,a>,x)f(x)dx}dk=0.
R3 (I r (R3
This implies that | &(k, w, x) dk =0 for fixed w € $*, x e R?, and hence ¢(k, w, x)
r
is analytic in C*\ 2. It follows from a similar argument with I" containing a point
of X, that such points are at most poles of ®(k, w, x).

The continuity of ®(k, w, x) is proved as follows. For fixed w € S?, the function
(1+|x|>) %2 ®(k, w,-) is continuous in ke C*\X with values in H,. Since H, is
continuously embedded in C(IR?) (with the sup-norm), (1 +[x|?) ™% &k, w, -) is
continuous in ke C*\ 2 with values in C(IR*). Hence for every xe R?, we S?, the
function ®(k, w, x) is continuous in ke CT\ 2.

Definition 1.6. For ke C™\X, weS?, xeR3,
Y(k, w, x)=e* ¥1 —d(k, w, x)).
For k>0, k*¢0,(H), weS? xeR?
Y. ko, x)=P(—k, —w,x), Y_(k,o,x)=Pk,w,x).

2. Analytic Continuation

Under our assumptions on V the scattering operator S exists and is unitary on L,.
The generalized Fourier transforms F, are partial isometries with initial space
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H,(H,) and final space L,, defined for fe Co(R?), k>0, weS? by
(F+ ) (k,0)=21)*2 | f(x) P .(k 0,x)dx.
R3

Letting % denote the Fourier-Plancherel transform and setting S=#S% !,

we have SF_=F,, hence for fe Cy(R3),
§[j f(x)'fﬂ(k,w,x)dx]= [ f() P (k,w,x)dx.
R> R>

Moreover, SH,=H,S, so S is diagonalized in momentum representation,

S= Ojo @ S(k) dk, where for k>0, fe Cy(IR>),
0
Stk) | f(x) P (k- x)dx= [ f(x) ¥ (k- x)dx. 2.1)
R3 R3

Since ¥ (k,-,-)eC(R*h) and S(k) is unitary on h, also
S(k)¥ _(k,-,-)e C(R?, h). Hence, (2.1) for all feCy(IR?) implies for k>0, xeIR?,

Stk)¥ _(k,-,x)=" ,(k,-,x). (2.2)

Using (1.1), the above result (2.2) may be expressed in terms of ¥(k, w, x) as
follows.

Lemma 2.1. The scattering matrix S(k) satisfies S(k) P(—k,-,x)=Y(k, —-, x),
xelR3, k>0.

Definition. Let v be a real-valued, measurable function satisfying (i) and (ii). Let
OCC™ be a domain with d0NR* =1. The operator V of multiplication by v is
called 0-analytic, if the scattering matrix S(k) has a continuous extension S(k) from
I to OuI, such that §(k) is analytic in ¢. For any set SCC we let S,
={keS||Imk| <b}.
Theorem 2.2. Assume that V is O-analytic.

1) For fixed xeR3, the function W(k,-,x) has an $-valued meromorphic

continuation P(k,-,x) from C* to OUI with poles contained in XX, defined for
ke(OUD\Z, xeR3, by

W(k77x):R§(k) W(_k’sx)s (23)
where Ris the reflection operator in 9, (Rg) (w)=0(—w).
2) Y(k, -,~)e,7f2f£ for Imk|<b, and W(k,-,-) is a meromorphic, szfg-valued
function of k in (C*Ulu0O), with poles contained in XUZ.

Proof. 1) Define P(k,-,x) for xeR3 ke(@UI)\X by (2.3). For kel\Z, by
Lemma 2.1,

Pk, -, x)=P(k,-,x).
By Theorem 1.5 and Definition 1.6, ¥P(k,-,x) is continuous on (CUI)\Z and
meromorphic in ¢ with poles contained in ¥, Using again Theorem 1.5, we

conclude that for xelR3, ¥P(k,-,x) is meromorphic in C*ul'U@, where I'
=1\{«|a* € o (H)}, with poles at most at X,u%,. The fact that {«|a*> €0 ,(H)} are
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(simple) poles of P(k, -, x) can be proved using the existence of 11m (z o) R,(z). This

concludes the proof of 1).
2) By Theorem 1.5, for |o| <2,

[ ID*P(k,-,x)|5e > dx < | S(k)|? I ID*¥(—k, -, x)|§ dx.
R3

The analyticity properties of P(k, -, ) as an #,_ g-valued function follows from
local boundedness and weak analyticity on a dense set of D* P(k,-,-)for || <2, and
2) is proved.

Lemma 2.3. Assume that V is O-analytic. The trace operator T(k) defined for k>0
by
T(k)f=(F . f)(k,-)

has a B(A®, H)-valued, meromorphic extension T(k) from I to (€ UIU0), with
poles at most at XUZ, given by

T(kf=2m) 2R | f(x) Pk, -, x)dx. (24)
R3

Moreover, T*(k), given by
(T*B) o) (x)=21) "> [ o(w) B, —w, x)do 2.5)
SZ

is in B(S, H5 L),

Proof. 1t follows from Theorem 2.2, 2) that for fe #*, T(k)f as given by (2.4) is a
meromorphic, H-valued function of ke (C* uIu ), with poles contained in U Z.
From the boundedness of P(k, -, )H wg»Ooncompactsets follows that | T(k)| AP, $)
is locally bounded and hence T(k) is a meromorphic ZA(#°, H)-valued function
on (C*UIuLO), A simple calculation yields (2.5), and it follows from Theorem 1.5
that T*(k)e #($, #5_2). The lemma is proved.

Theorem 2.4. Assume that V is O- analytzc The resolvent R (k) has a meromorphic,
BA®, #, Y)-valued continuation R (k) from C* to L0, with poles contained in Z.

Proof. We use the well-known identity, valid for k>0, k? ¢o,(H),
R, (k)=R,  (—k)+mikT*(k) T(k). (2.6)

Using Lemma 2.3, we define the #(#°, #, ")-valued function R,(k) for
ke O,\X by

R, (k)= R (—k)+nikT*(k) T(k). (2.7)

Setting R,(k)=R, (k) for keI\X, we obtain the theorem from (2.6) and
Lemma 2.3.

Theorem 2.5. Assume that V is O-analytic. Let W be a symmetric operator of the
form

W=e "MQe ", 0 e G(HLR?), L,(R?)).
Let H, be the selfadjoint operator on Yy, =Dy =2y, defined by
H,=H,+W=H,+V+W,
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and
Ry(k)y=(H,—k*™~"  for kZGQ(H2)~

Let S,,(k) be the scattering matrix of the pair (H,, H,) associated with the
spectral representation of H, ,. defined by T(k) (cf. [8]). _
1) R,(k) has a B(AH®, #, b)-valued, meromorphic continuation R,(k) from C* to
(IUO\Z, given by
Ry(k)=Ry(k) (1 + WR (k) ™" . (2.8)
2) Sy,(k) has a meromorphic extension S,,(k) from I to O\ Z; with the same poles
as R,(k), given by

S, ,(k)y=1—nik T(k) (W — WR (k) W) T*(k). (2.9)
Pro~of. 1) By Theorem 2.4, WR (k) has a %(#")-valued analytic continuation
WR (k) from C* to (IL©,)\Z. By the analytic Fredholm theorem, (1 — WR(k)) ™!
is meromorphic in (Iu@,)\. Using the 2™ resolvent equation, we obtain 1).

2) Using the representation of H, ,. as k* on L,(R*, §; k? dk) defined by T(k),
the scattering matrix S,,(k) is given for k>0 (cf. [8]) by

S, ,(k)=1—nik T(k) (W — WR, . (k) W) T*(k). (2.10)

It follows from (2.10), 1) and Lemma 2.3, that S, 2(k) has a meromorphic
extension Sy,(k) to (9!1\5 with poles at most at the poles of R, (k). The fact that the
poles of S,,(k) and R,(k) coincide follows from the next lemma.

Lemma 2.6. For ke O,\%,, A (§7,\(k)) and A" (1+WR,(k)) are isomorphic via the

maps - ~ ~
NA+WR,(k)3Q—0=Tk)Qe /(S (k)

with the inverse Z(k) defined by
Q=2Z(k)o = —mnik(1—WRH(— k) WT*(k)o .

Proof. 1) Let Qe /' (1+WR,(k). Then o+0, since otherwise by (2.7)
Qe N/ (1+WR,(—k))implying R,(—k)Qe A" (H, —k?),a contradiction. Using the

~

expression for §7,' obtained from (2.8) on replacing i by —i and R, (k) by R,(—k),
we get in view of (2.7),

SoUkyo =1+ mik T(k) (1 — WR,(—k)) WT*(k) T(k)Q
=T(k)Q+ T(k)(1—WR,(—k))
x [(1+WR (k) —(1+WR,(—k)]Q=0.
2) Assume that o e A (Sl (k)), ie.,
o—T(k) Z(k)o=0.
Applying Z(k), setting Q= Z(k)o and using (2.7), we get
Q—Z(k) T(k)Q=Q+(1 —WR(—k)) W[R,(k)— R,(—k)]Q
=(1+WR,(k)Q2=0.

The lemma follows from 1) and 2).
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We finally investigate the analyticity properties of the scattering matrix S,(k)
of the pair (Hy, H,).

Theorem 2.7. Under the assumptions of Theorem 2.5 the scattering matrix S,(k) has
a meromorphic extension S,(k) from I to O,\X; with poles at most at the poles of

Ry(k).
Proof. This follows from Theorem 2.5 and the following identity, valid for k>0,
S12(k) S1(k)=S,(k), (2.11)

which we shall now establish.

Using for H, ,, the representation as k* on L,(R™, $;k?* dk) defined by T(k),
the generalized Fourier transforms F , . of the pair (H, ., H, ,.) are given (cf. [8])
for feL,  and k>0, k*¢ 0 ,(H, o ,(H,)), by

(Fiaq )(K)=T(k)(1=WR, (k) f =Tk )(1—VR1+(k))(1—WRz+(k))f

=To(k) (1 =(V+ W) R, . (k) f =(F4 f)(K), (2.12)
where
To(k) f =(F )k, -),
and
(Fio- )(R)=T(k)(1 =WR, (k) f =(F+(1=WR,.(—k)) ) (k)

=Sl(k)(F1—(1—WR2+(—k))f)(k)
=5,(k) To(k) (1 = VR, (= k) (1 =WR, .(=k) f
=8,(k) To(k) (1 =(V+ W) Ry (= k) f =S(k) (F,- ) (k). (2.13)
By (2.12) and (2.13), for feL, , k>0, k*¢ o (H,)uo (H,),
Sy(k)(Fy— (k) =(F5 4 [)(K)=(F 5+ f) (k)
=812k (F12- f) (k) =S815(k) S1(k) (F5- f) (k). (2.14)

From (2.14) follows (2.11) for k>0, k* ¢ o (H,)Ua (H,). Since S, ,(k), S,(k), and
S,(k) are continuous on IR * (cf. [7]) and o (H,) and o,(H,)are discrete setsin R *,
this implies (2.11) for all k>0, and the proof is complete.

Appendix 1

Lemma Al. Let f and g be functions in L, with compact support, and let
oo €IR\{0}. Then there exists 0<d,<|o| such that the following limits exist,
uniformly in {k=o+if||lo—oe| <0y, 0SF=0,},

lim(f, Ro(B, k+ ic)g).
el 0
Proof. Taking Fourier transforms, we have

I'=(f,Ro(p, k+ic)g)= ]}Lf(&)g(é)(éz_az+28ﬁ+82+2i(ﬁél —Po—ex) "1 dE.
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Since f (¢) and g(&) are entire analytic functions of &, &,, &5, we can deform the
manifold of integration in € as follows.

Let aq>0 (2, <0 is analogous). It suffices to consider f=0.

We write the integral in spherical coordinates as follows.

I=1(z)= [sin0d0do | drf(r,0,9)&(r,0,0)(r*—o?+&>—2iex)~'.
S2 Rt

Deforming the radial integration path R * into the curve I" indicated on Fig. 1,
where 0 <0 <o, we get

I(e)= | sinOdfde | dzf(z,0, )8z, 0, 0)
S2 r
x (22 —a? 4+ 2ef+ &%+ 2i(fzsin0 cos o — fa—ea) "',
%o —08 ao—g %o d0+g a5+ 0

N
Fig. 1. This yields I(s)e—l—()» [ sinf0d0de | dzf(z,0,9) &z, 0,9)(z2—e?)~ ", uniformly for Jo— o]
<4/4 52 r

Appendix 2

Lemma A2.1. Let by>0 be fixed. For |f|<f, and C*={a+ib|b>b,}, we have
o H(iB) (22| ze € = { — b2 e o ,(H)|b> b, .

Proof. We set

N 0
H(z)=e¢ “He"= —A—2iz— +z*+ V.
0x,
For f fixed
H(x+if)=e~ ™ H(if)e***.

The operators H(z) form an entire self-adjoint, analytic family of operators of
type A. For fixed f§ the operators H(x + if§) are unitarily equivalent. The essential
spectrum o (z) of H(z) is the parabolic region {{*[Im{|<|Bl} (for =0 coinciding
with R ™). Thus, C*°na(z)=0 for || <b,. A discrete eigenvalue . of H(o' +ify),
|f'|<b,y, remains a discrete eigenvalue of H(x+iff') for all «eR and hence, by
analyticity of H(z), for all ae R, || <b,.

The lemma follows.

Lemma A2.2. Let $>0 be fixed and let k=a+ib, acR, b> f. Then the equation
¢+ Ro(B,K)Vp=0 (1

has a solution pe H, _, $+0, if and only if a=0 and k* = —b*e g ,(H(p)) with
(H(ip)+b*)$=0. 2
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Proof. 1) If ¢ € H, satisfies (2), then applying R(f,ib)e #(L,, H,) to (2), we get,
since Ve L,, (1) where peH, _,.

2) Let ¢eH, _, and assume (1). Then V¢eL, CL, and hence
¢=—Ry(B,k)Vpe H,. Applying Hy(f)—k* to (1), we get (2) and hence by
Lemma A2.1, a=0 and k*= —b? e o ,(H(ip).

Lemma A2.3. For >0, k=o+if,
-1
R0+(ﬂ,k)=lim< A— 2[3 ﬁ’z—k2> .
B 1B X1

Proof. This follows from the fact, proved in Theorem 1.3, that
IRo(B, k+ie)— R+ (B, K)IB(L} , H,, —)—=5~0,

uniformly on compact sets, together with the norm-continuity of R, (8, k).

Lemma A24.
(k=0 +ifeC* | N (1+Ro.(B.2))V)% {0}} = {if| — B c o (H)}
Proof. Fix k=o+if, aeR, f>0. By Lemma A2.1, for 0= <,
ol H(iB) K Imk 2 B} = { —b> € o(H)|bZ B}
Hence, by Lemma A 2.2, there exists a circle C with center — 1, separating — 1
from the rest of the spectrum of the operator Ry(f,k)Ve%(H,, ) for aeRR,

0=p'<p.
Let

P, k)——’j — A+ R (B, ) V) d.

By Lemma A2.3
lim Ro(ﬂ/s k) V= RO +(ﬂ, k) V
BB

in the uniform operator topology of #(H, _,).
It follows that

(/H—RBkV)1 7 (—4+R(B,K)V)

in the uniform operator topology of 4(H,. _,), uniformly for /€ C. Hence, in the
same topology

P 57 = ] (— 2+ Ro (B RV) " di= P (),

where P_(f, k) is a projection on the algebraic null space of 1+ R, (8,k)V.
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It follows that P (B,k)+0 if and only if P(f’ k)0 for all f'<f. By
Lemma A2.1 this holds if and only if x=0 and — %€ o (H), and the lemma is
proved.

Acknowledgement. T want to thank Ira Herbst for a valuable discussion, suggesting the
possibility of proving the estimates of Sect. 1 for fixed we S 1 also thank Erik Skibsted for
pointing out an error in the original proof of Lemma A 2.3 and indicating the proof given.
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