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Abstract. We continue our program to establish the Higgs mechanism and
mass gap for the abelian Higgs model in two and three dimensions. We develop
a multiscale cluster expansion for the high frequency modes of the theory,
within a framework of iterated renormalization group transformations. The
expansions yield decoupling properties needed for a proof of exponential decay
of correlations. The result of this analysis is a gauge invariant unit lattice theory
with a deep Higgs potential of the shape required to exhibit the Higgs
mechanism.

Table of Contents
1. Introduction 258
2. Localized Kernels 260
3. The First Renormalization Step 265
4. The Inductive Hypothesis 273
5. Renormalization and Decoupling in the General Step 277

5.1. Renormalization Transformation 277
5.2. Restrictions on the Fields 278
5.3. First Gauge Field Translation 280
5.4. Gauge Transformation 281
5.5. Second Gauge Field Translation 283
5.6. Expansion with Respect to the Fluctuation Field 285
5.7. The Gaussian Normalization Factors 289
5.8. Scalar Field Translation 295
5.9. Bounds on Fluctuation and Block Fields 296
5.10. The Interaction for the Fluctuation Fields 298
5.11. Mayer Expansion I 299
5.12. Conditional Integration 300
5.13. Decoupling of the Small Field Region 303
5.14. Resummation and Extraction of the Perturbation Expansion 307
5.15. Second Mayer Expansion and Scaling 312

References 314

* Research partially supported by the National Science Foundation under Grant DMS-
8602207 and by the Air Force Office of Scientific Research under Grant AFOSR-86-0229
** Alfred P. Sloan Research Fellow. Research partially supported by the National Science

Foundation under Grants PHY-84-13285 and PHY-85-13554
*** Research partially supported by the National Science Foundation under Grant PHY-85-
13554



258 T. Balaban, J. Z. Imbrie, and A. Jaffe

1. Introduction

We wish to establish the existence of a mass gap for the abelian Higgs model on the
subspace of gauge invariant observables. Earlier work on this problem has led to a
method to establish these results and to a partial solution [1, 2]. Here we continue
this study with the development of a multiscale expansion suitable for the problem.
The basic formulation of the model is given in [2]. We consider an action function
Sε which is defined for a gauge theory on a lattice with spacing ε. We use the Wilson
form of lattice action, which is gauge invariant. Thus it is important to consider
gauge invariant observables such as loop variables

(1.1)

where y is a closed curve on the lattice, or string variables

, y, Γ) = φ(x) exp ieε £ A(b)\ φ(y) , (1.2)

where Γ is a lattice curve from x to y. These variables must be renormalized
appropriately, by multiplying or subtracting ε-dependent terms. For gauge
invariant operators (but not in general) we expect exponential clustering in the
equilibrium state defined by Sε. This state is given by the limit of normalized finite
volume expectations

<£>= ?-Se-ssB(u9φ)2u&φ. (1.3)
.̂/

(We assume periodic boundary conditions, but this is not crucial since as a
corollary we establish the existence of the infinite volume limit.) Thus for gauge
invariant functions B, C we expect

|<£C>-<5><C>|^0(l)exp[-mdist(£,C)], (1.4)

where 0 < m and dist(£, C) denotes the distance between the supports of B and C.
For unit lattice models, (1.4) was established in [3] and here we investigate the
corresponding estimates uniformly in the lattice spacing ε.

The exponential decay or mass gap is intimately connected with the Higgs
mechanism. We see the Higgs mechanism at work through the evolution of the
effective action as we proceed lower in momentum. The action on the ε-lattice
appears almost massless, but as we approach the unit lattice, the Higgs potential
exhibits a pronounced ring of minima at |φ| = ρ0, which leads to a mass term for the
gauge field. The apparently massless rotational degrees of freedom of φ can be
gauged away.

To obtain decay, we need a convergent expansion with a small parameter.
Thus, we restrict the coupling constants (<?, λ) to be sufficiently small in order to use
cluster expansions. Such methods yield a nonperturbative analysis of the vacuum
state, by explicitly displaying the exponential decay (1.4). Classically, the gauge
field mass is of order e / λ ί / 2 , so we choose this ratio to be a fixed number of order
unity.

The general ideas of these methods were described in our earlier papers
[1, 2, 4]. Gauge invariance enters in a crucial way, both in the Higgs mechanism
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described above and in the control of ultraviolet divergences. By separating high
and low momentum parts of the interaction in a gauge invariant way, we can
choose convenient gauges to discuss renormalization of the high momentum part
and to discuss the spectrum of the Hamiltonian in the low momentum region.

In the present paper, we consider clustering properties of the high frequency
modes of the model. Our goal is an exact expression for the effective action on the
unit lattice. The expression is complicated by the need to treat large field or large
action regions differently from the perturbative, small field regions. The effective
unit lattice theory is, however, similar in spirit to the one considered in [3]. A final
cluster expansion will be performed on this theory in another paper, and the proof
of clustering and of the existence of the mass gap will then be complete.

The dual requirements of clustering and of the renormalization group force us
to develop a cluster expansion for each frequency mode separately. We formulate
an inductive form of the model after k renormalization group transformations, and
then the bulk of this paper is devoted to clustering of the (fc + l)-st mode in the next
renormalization transformation.

The heart of our method is the way we accomplish changes of gauge without
spoiling the exponential decoupling properties of the functional integral. We
integrate out each frequency mode using a simple "tree" gauge on blocks (called
axial gauge). After a number of modes have been integrated out, such gauges are
not sufficiently regular to allow control of all the terms in the expansion. This is
expected even in perturbation theory, where only gauges such as the Landau gauge
are well behaved in the ultraviolet. Thus we must change the gauge in which those
modes are expressed in the effective action. In keeping with the locality
requirements of the cluster expansion, the change of gauge must be performed in
patches, with slightly different changes on the overlaps. It turns out that the effects
of the lack of alignment are small, and this way we avoid building up effects over
long distances - something that tends to happen when changing gauges globally.

A similar problem occurs in our treatment of the effective unit lattice model.
We have to change from the Landau gauge to the unitary gauge that is best suited
for exhibiting the Higgs mechanism. Again, this must be accomplished without
spoiling decoupling. Thus the method for changing gauges is the crucial aspect of
our analysis, both for high momenta and for low momenta.

This paper is organized as follows. Having discussed Green's functions in [2] as
global operators, we start by introducing localized forms of these operators which
are better suited to the cluster expansion. We replace kernels G(x, y) with kernels
G\oc(x? y}= G(x, y)ζ(x > y), where ζ is smooth and supported in some neighborhood
of x = y. This section also serves to review the roles of the various operators. We
then briefly describe the cluster expansion in the first renormalization step. This
leads to the formulation of the inductive hypothesis for the form of the model after
k renormalization steps. Finally, we describe the expansion in the general
renormalization step. Usually we are able to prove the necessary convergence
estimates as we describe each part of the expansion. This has the advantage of
allowing us to consider each part in isolation, without worrying about the overall
structure. Unfortunately this philosophy cannot be applied to the large field
estimates. For these we find it necessary to postpone the estimates of convergence
until integration over the final set of fields on the unit lattice. However, using the
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expected small factors arising from terms in the action with large fields, we show
how convergence will eventually be obtained. We also assume estimates similar to
those proven in [5] on the perturbation theory for this model.

2. Localized Kernels

In the previous paper [2], a number of operators arose from the application of
renormalization transformations to the Gaussian approximation to the Higgs
model. (Equation numbers from that paper will be prefixed here by /.) Exponential
tails in the kernels of these approximately local operators are unavoidable.
However, they are inconvenient for our analysis here, since they interfere with the
decoupling of distant regions of space-time. Therefore, we introduce localized
versions in which the tail has been cut off at a sufficiently large distance. In
addition, for operators depending on an external gauge field, the dependence will
be reduced to a bounded region. The use of the localized operators instead of the
exact ones will introduce small error terms that are easily controlled.

Let us consider gauge field operators first. The minimizer Hk maps unit lattice
bond fields to /y-lattice bond fields, ϊ\ — Uk. The configuration A = HkB minimizes
the Landau gauge ^-lattice gauge field action under the constraint QkA = B. We
define Hk starting with a large but fixed torus T0 ε of size 0(e~l\ say, in each lattice
direction. [Recall our convention that subscripts on tori T or T0 indicate the lattice
spacing (in this case ε); superscripts (k) indicate the number of times the initial
lattice has been decimated.] This avoids spurious dependence on the lattice Tε on
which we put our model, and so simplifies the infinite volume limit. (Alternatively
we could take the limit T0 ε /> εZd.} Construct a translation invariant localization
function ζk such that

0, if dist(b9b')^r(ek),
(2.1)

I f Λ:^4.Π~ L / Λ -̂ 1 „/„ \ \ /

and such that ζk is a smooth function of b. Here b e Tn, b' e Tf\ and

et = (L*e)(4~<f)/2e, λk = (Lkε)*~dλ, (2.2)

rfoHlog^-1!', r > l . (2.3)

Then the localized version of Hk has a kernel

Hk9loc(b9b') = ζk(b9b')Hk(b9b
f). (2.4)

There is no ambiguity because ζk permits a sampling only of b near b', relative to
the size of T0tη; Hk is also translation invariant. Since ζk is smooth, Hkίloc inherits
the regularity and decay properties of Hk, see (1.7.2.2). So we have

t

ά w > b \ (2.5)

Hfc,ioc(M') = 0 for dist(M')^iKefc), (2.6)

\Hk, ιoc(b, bf) - Hk(b9 b')\^e~ cr(ek}e ~ c dist(b' b'} , (2.7)

and similarly for dHkΛoc, d*Hkίloc, and for Holder derivatives oϊHkΛoc of order less
than two.
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Next we consider C(k\ the co variance of the k-th step gauge field. This is defined
on the unit lattice T$\. First define

,
0, otherwise,

and extend by translation invariance to T[k}. Then put

CSi = (I - Q**Q)C(k\l ~ β*βs); (2.9)

this insures that Cί̂ , like C(k\ satisfies the constraints from the renormalization
transformation and from the axial gauge conditions:

ecS)

c = C}S>β* = 0, (2.10)

Σ cg>(M0)= Σ c$c(b09b)=o. (2.ιi)
beΓy,x beΓy,x

(See [2, Chap. 2] for definitions of the block averaging operators <2, Qs, and Qe.) We
have estimates analogous to (2.5)- (2.7) for C .̂

From C|o}

c and Hk>loc we construct a localized ^-lattice gauge field propagator
analogous to Q)k\

fc-l fc-l
ί̂  — V HLJη Γ(ti>LJηH*LJ — V /^O'),*? n 1 9Ϊ
^/c,loc— Z, -"J.loc^loc nj,loc= L ^loc (/.IZJ

7 = 0 j = 0

Superscripts LJη, η, etc. indicate the lattice spacing for operators rescaled to
nonstandard lattices. This propagator derives its regularity and decay from that of
C£>c and Hkιloc. Thus

K^ioc/)Wl^cβ-d i s t ( s u p p^'^||/iU? (2.13)

and similarly for derivatives of 2k > l o c and Holder derivatives of order less than 2.
Furthermore,

®*,ioc(&ι>&2) = 0 for dist(fe l 9b2)^ir(ek)9

and ^ fcj loc is close to ^fc, see (5.4.3) below.
The operator σk gives the quadratic form for the fe-th-step field strengths

f(k\p) = (iek) ~ 1 l°g u(p} As before we construct a localized operator on 7i(k) from σfc

on 7 « :
if

 1 , 2

2 θ, otherw1Se, (2J4)

where p l 5 p2

 are plaquettes of T\(fe). Recall from [2] that

σk = Qe

k(l - dGkt Axd*)Q*k* = Ql(I - d®kd*)Qe

k* , (2. 1 5)

the second equality following from the change of gauge, (1.5.2.6). Writing Q)k in
hierarchical form as in (2.12) and using the regularity of H; , Q^j<k, we see that

for dist(p l 5p2)^c. (2.16)

[The rapid decay of the terms with small j compensates for the scaling factors
(Ljη) ~ l .] For close p l , p2 the kernel of σk can be large, of the order of η ~ 2. However,
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we shall only encounter situations where f(k\p2) = (8 A) (p2) for p2 near pp Then we
prove that

(Vkf(k))(Pι)^\\fw\\<* (2.17)

as follows. Write f ( k ) = dO-A + f, where Q is the characteristic function of a
neighborhood of p2. The distant part (σkf')(pl) is easily estimated by \\f(k}\\^ by
(2.16). The near part is similarly bounded since σk is a bounded operator on curls
[2]. It was also shown in [2] that σk is bounded from below. In view of (2.16) we
have that

^e-edl^ ^, (2.18)

so that (2.16), (2.17) hold for σMoc, and

(2.19)
as well.

Another important kernel is the one generating the gauge transformation:

(Ql* - 2tkd*Ql*d)A = HkA + dCkA . (2.20)

The kernel Ck is constructed from the basic gauge transformation Dk which
changes the minimizer from axial to Landau gauge (1.5.1.1):

Hk^B = HkB + dDkB. (2.21)

By changing gauge in each term in the hierarchical sum defining @k and applying
(1.5.3.1), we obtain

ck=ok+ Σ D^c(j)>LJηmLJ}id*Qe

k*d. (2.22)
7 = 0

The kernels of all these operators have an exponential decay on their respective
length scales; for Dk the required estimate is (1.7.2.4). The sum over j is not well
controlled for close points; this will not be important for us. For more distant
points, however, the rapid decay of terms with small j controls the scalings and the
sum over j to yield a uniform bound

I Cfc(x, b')\ ^ ce ~ c dist(* b'} , dist(x, b')>c. (2.23)

Here x e Γ0 j f?, b' e T0

(

t̂*. Of course there is no uniform bound on dCk. The localized
version of Ck is defined using another smooth cutoff:

(224)
0, for ' (2>24)

We then construct Ck loc on T/fc) from Ck on T^k\ :

Ck, loc(x, &') = Ci(x, &')Q*, V) . (2.25)

Then C f c > l o c also satisfies (2.23) and

I Qc, ioc(^? b') - Ck(x, b')\^e~ cr(ek} e ~ c dist(x' b / ) . (2.26)

In the scalar field sector, we have the ^-lattice propagators Gk(Ω, u) defined on
subsets Ω C Tη with Neumann boundary conditions. To localize the dependence on
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u, we interpolate in a smooth fashion between operators with Neumann boundary

conditions on small cubes. Let {Πα} be the collection of —— r(ek_ J-cubes that can

be built from cubes of size M = 0(l) as in [6]. Define

G k (w;x 1 ? x 2 ) = ΣΛαGk(Πα 5 w; x l 5 x 2 ) (2.27)
α

as a convex combination of Neumann propagators. The convex combination
varies smoothly with (xl + x2)/2; it involves at most 2d terms and is concentrated
on Πα when (x1 +x2)/2 is near the center of Πα We then put

G/c,loc(W5 Xl ? *2) — ζk(Xl>X2)Gk(U> X l j X 2 ) j (2.28)

where Cfc(x ι?X2) is a smooth function of x1 — x2,

4f (2-29)

1, if |xι-x2 |^ gj-r(efc-i)

The boundary conditions are always at a distance 0(r(ek)) from x l s x2, so a
straightforward application of the random walk expansion of [6] shows that

\(GkΛoc(u)f)(x)\^ce~cdίsi(BU^tf^} \\f\\,,, (2.30)

l(Gχ ioc(w)/ - Gk(Ω, ")/) (x)l ^ ̂  "cr(ek) ̂  ~cdis t(suppt/ ! x) || /1| o o , (2.31)

for disψc, ί2c) ̂  0(r(gk)). [Each Gk(Πα, M) is close to Gk(Ω, u) for the relevant x l 9 x2,
therefore the convex combination and Gk > l o c are close also.] We assume that u is
smooth in the Πα's entering the sum in (2.27); for (2.31) we assume smoothness
throughout the subset ΩcTη. This means that in a neighborhood of each Πα there
exists an A, λ such that

u = Q\p[iekη(A + dλ)'] with \dA\9\d*A\^O(p(ek)). (2.32)

Here

(2.33)

is our logarithmic scale for small fields. Bounds analogous to (2.30), (2.31) hold for
covariant derivatives and Holder derivatives of Gk < l o c(w) of order less than two.

We use Gk > l o c to define a localized quadratic form for scalar fields,

4, ioc(«) = akl ~ aiQk(u}Gk, loc(u)Q*(u). (2.34)

Here we have simply replaced Gk(Ω, u) with Gk loc in the definition of Ak(Ω, u); see
(1.4.6.4). Hence

IA,ioc(X Xι,X 2 )- Δk(Qu> xi' ^2)!

^e-cr(ek)e-c\Xί -X2\ for dist({x l9 x2}, ΩC) > 0(r(ek)), (2.35)

^-χ21, (2.36)

2 | ^ r ( e f c _ 1 ) . (2.37)
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Again we assume u is smooth in the relevant regions; Ak > I O C(M; x l 5 x2) depends on u
only in an O(r(efe))-neighborhood of x l 5 x2. Finally, in view of (2.35), the lower
bound (1.7.3.2) applies to Δk Λoc(u) as well. Let φ be supported in a region having an
r(ek) neighborhood where u is smooth. Then

<<M*.ioc(t00>^c Σ w«6_,6 + »φ(b+)-0(b_)|2-c4p(efc)
2 X |φM|2. (2.38)

Finally, we need to construct a localized version of

C<f>(Ω, M) - [Cdk(Ω, K) + air 2Q(w)*β(κ))L] " ' , (2-39)

the single-scale propagator for the scalar field in the fe-th step. We have already
replaced Ak(Ω, u) with ΔkΛoc(u). Let us assume u is smooth in a neighborhood of Λ,
the region for the Dirichlet boundary conditions in (2.39). We define

C<» = [(4, ioc(w) + aL~ 2β(H)*β(«)|J " ' . (2.40)

This is of course a nonlocal operator, but by (2.38), C(^(u)~l is bounded below and
a random walk expansion as in [6] can be used to prove that

IC^u x^Xj)!^-'1*1-*21. (2.41)

We shall actually use a convenient resummation of this expansion. The basic
expansion has the form

C»=ΣCω, (2.42)
CO

where ω is a walk on a lattice of spacing M = 0(1). We define the localized form of
C5>(w) to be

C!ftoc(«; xι>*2)= Σ' Cjx^xz), (2.43)
CO

where the prime indicates that only ω remaining within^r(efc) of x l 5 x2 are included.
Let X be a connected union of r(efc)-cubes, and let ^Γ° be the cubes of X not at the
boundary of X. We define

C%x(u;x1,x2)=ΣxCtt>(xί,x2), (2.44)
ω

where the sums runs over walks not included in £r, which remain within X° and
which intersect each cube of X°. Then we define

«) = C<ί,>loc(M) + Σ C<ί>» > (2-45)
X

and the convergence and locality properties of the random walk expansion imply
the following facts about these operators. The local part C^loc(w; x l 5 x 2 ) depends
only on u in an O(r(ek)) neighborhood of x l 5 x2; it vanishes for \xί — x2\ >2r(ek) and
is bounded as in (2.41). The operator C(%]x(u) depends only on u in X. It vanishes
unless both arguments are in X, and is estimated as follows:
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Here and elsewhere, \X\ refers to the number of r(efc)-cubes in X, not the volume of
X. This estimate can be summed over all connected sets X to show that

|C<ftoc(w;x l9x2)-^ (2.47)

If X does not intersect Λ\ then C(^]x(u) does not depend on A; neither does
C(Λ]\OC(U\ x 1 ?x 2) depend on A if dist({xί,x2},Ac)>^r(ek). In this case we write it as

(u', x l 9 x 2 ), A large enough. (2.48)

Note that all operators introduced through random walk expansions of C(^(u) or
GΛ(Ω, ύ) transform properly under gauge transformations, that is, by the difference
of the gauge transformation between the points of evaluation of the kernel.

Lastly we note that the single-step covariance for the gauge field can be given a
random walk expansion analogous to (2.45), with similar estimates:

C^C^oc+Σ^x (2.49)

3. The First Renormalization Step

In this section we briefly and informally describe the sequence of operators
performed in the first renormalization step. This will serve to orient the reader in
the more detailed descriptions for the general step, and it will motivate the
inductive hypothesis for the general step. Most estimates will not be discussed here,
since they are special cases of those proven for the general step. We avoid formulae
in favor of verbal descriptions, except for the first few operations, which are special
to the first step.

We wish to give an expansion for the partition function, or for an unnormalized
expectation of an observable F. Thus we consider

lF]=S®u&φe~SB(u φ)F, (3.1)

where F is a gauge-invariant function, a product of terms like \φ(x)\2,
φ(b -)u(b)φ(b +), Re(ieε2)"1(u(p) — 1). Each such term may need to have an
appropriate constant subtracted in order to obtain ε-independent bounds on the
full expectation

<F> = [F]/[1]. (3.2)

These "Wick ordering" constants are given by perturbation theory to a low order,
and will be discussed carefully in a subsequent paper on the perturbation
expansions.

The action on Tε, the ε-lattice, is

Se(u9φ)= Σ ε d 4[ 1 -Reφ)]+i<^-Λ«0>+ £ εdP(ψ(x)) + E0 + £ι. (3.3)
peT** e £ xeTE

Here -Aε

u = D**Dε

u9 and

^\φ\2+-^δm2\φ\2. (3.4)
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We have taken the bare scalar field mass [coming from the radial curvature of
P(φJ] equal to 1 other values can be achieved by scalings. We have included a mass
renormalization δm2 = δm2(e, λ, ε) and a vacuum energy renormalization E1

= Eί(e,λ,ε,\Tε\). The constant E0 = E0(ε, Tε) normalizes the integral (3.1) so that

lim [1] = 1. (3.5)
λ,e^0

We will be considering subsets X of the lattice T^ obtained by decimating 7^
fc-times and scaling the resulting lattice spacing to α. We denote by X* the set of
bonds with both endpoints in X; then X** denotes the set of plaquettes with all
four corners in X. A superscript c denotes complement, so that Xc=Tjk\X, X*c

= TJfc)*\Jf *, etc. Thus Xc*c includes bonds with one or both endpoints in X.
We rescale our expressions from Tε to the unit lattice 7\. The scalar field is

multiplied by g~( d ~ 2 >/ 2

5 and we have

u,Φ), (3-6)

P0(φ(x))- Σ {δm2t2\φ(x)\2-ό°Q-EΛ. (3.7).
J

Here F0 is the first in a sequence of scalar potentials forming the dominant term
after k steps:

}d. (3.8)64r '
We use a rescaled coupling constant

λk = (Lkε)4-dλ, (3.9)

and since e2/λ = 0(\) we have also ek/λk = 0(\\ by (2.2). The constant SQ includes
the scaling factors,

(3.10)

Each factor φ in F acquires a factor g-^~2)/2

; but we use the same notation.
Ultimately these scaling factors will be cancelled by successive rescalings back to
the original scale.

We begin to compute [F] by integrating over u, φ under constraints given by
the block fields v, ψ on the L-lattice. This is the renormalization transformation,
described in the previous paper. With the gauge fix (5Ax(w), it takes the density
QO(U, φ) to

ρftυ, ψ) = J 9u®φδ(υlQu)δ^(u)F exp Γ - Σ ̂  2(1 - Reφ))
L p

- Σ WM)- Σ ^όmVlφWf-^-E^-E,-}. (3.11)
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Here we define

£«>)= -\Ί+»\log(aLd-2/2π)9 (3.12)

which normalizes the transformation so that

v9ψ). (3.13)

The first operation is a decomposition of the lattice into large and small field
regions. This is accomplished by means of a partition of unity,

1- Σ C^e^CO). (3.14)

Λ(o0)

Here Λ (

0

0 )cTi is the small field region. It is composed of r(e0)-cubes, in each of
which the factor χΛ(0) enforces the following conditions:

\f(°\p)\^p(e0), where f(0\p) = (ie0Γ
llogu(p).

The factor ζΛ(0)C forces at least one of these conditions to be violated somewhere in
each r(e0)-cube of Λ(

0

0)c.
Later in this step we will introduce sets Λ(®\ A(®\ etc., which are obtained from

Λ(Q} either by deleting r(^0)-cubes at the boundary of Λ(Q\ or by deleting r(e0)-cubes
covering regions with "irrelevant" terms from the expansions. (These are terms
bounded by a high power of rescaled coupling constants.) In the fc-th step we will
introduce analogous small field sets A(Q\ A(±\ etc.

In the previous paper, we worked with the basic quadratic form <<3^4, dAy. This
is obtained now by expanding the Wilson action in powers oϊe0. In Λ(

0

0)** we have
small /(0), so we write

2n-2 (0) \\2«

o(p) (3.16)

We consider the expansion up to order n in e0 explicitly, the remainder is called
"irrelevant" because it is bounded by ceQp(eo)n + 2^eεd+1 for ή large enough. The
first term, summed over Λ(

0

0)**, gives rise to the quadratic form ^<Λ(

0

0)**/(0),
y4(o0)**/(0)> (We use A** to denote the set of plaquettes with all four corners in A;
A* denotes the bonds with both endpoints in A. The same symbols are used for the
corresponding characteristic functions.) The low order terms in eQ are new
interaction vertices.

For factors (iec2)~1(M(p)-l) = (^0)~1ε"d/2(φ)-l) in the observable F,
*, we expand:

nl

(P). (3-1 7)

The first three terms are relevant (for observables this means they do not go to zero
with ε.) The others are included in Firr(p). (Our use of the terms "relevant" and
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"irrelevant" is different from standard renormalization group language.) We sum
over these two terms for p e π(F)nyi(

0

0)**, where π(F) is the set of plaquettes having
factors RQ(ieε2)~ l(u(p)_- 1) in F (with multiplicity). Denote by β(F\ ξ(F) the bond,
sites having factors :φ(b^)u(b)φ(b + ):, or :\φ(x)\2: in F. The result is the following
expansion for F:

F= Σ Π firΛP) Π fr.l(P) Π
SπCπ(F)nΛ<g)** peSn peS^ peπ(F)\Λ<0°)**

xReOee2)-1^)-!) Π :φ(b-)u(b)φ(b + ): Π \Φ(x)\2 (3.18)
beβ(F) xeξ(F)

The irrelevant part of the gauge field action is Mayer-expanded:

expΓ- Σ W0(p)]= Σ Π (^o(

L peΛ<°>** J SpCΛ^** peSp

(3.19)

We group together large-field regions and regions with irrelevant terms. Anticipat-
ing the structure of the induction, we define Λ[~3^

c as the union of r(^0)-cubes
covering Λ(

0

0)c and all plaquettes in Sp or Sπ. We divide Λ[~^c into connected
components {^ω}, and define

g0(xj= Σ
SπCπ(F)nΛ<0°>

*Fίrr(p)
pe

xReOeε2)

x Π
^eξ(F)nX

xexp -
L

~ Σ

Σ Π
peSπ

Π

: Π

-2(l-Reφ))

We have written E1= Σ

2ε2|φ(x)|2 + J S 1 ( x ) ) . (3.20)
J

defined by fixing one vertex at x for each

diagram defining JE^.
The remaining r(e0)-cubes covering the support of F are divided into connected

components {XQ}, and we put

FQ,ioc(Xσ)= Π frciίP) Π :φ(b.)u(b)φ(b+):

(3.21)

Our density now takes the following form:

QLι(v,ψ)= Σ Σ S

x Π goί^J Π ^o,ioc(
cα σ

-$aL- \ιp - Q(u)φ, ψ - Q(u)φy

(3-22)
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where the basic interaction terms have been included in

= Σ (P0(Φ(x)) + ̂ m2ε2\φ(x)\2 + Eί(x))+ £ V0(p). (3.23)
x e/tW peΛ(0°)**

These expressions have a form similar to that of the inductive hypothesis for the
general renormalization step, introduced in Sect. 4.1. Nevertheless, we continue in
an informal fashion with the first step, in order to outline the conceptual ideas
whose details are treated in the general case of the next chapter.

We begin with a translation of the gauge field which takes the block field v out
of the ^-functions of the renormalization transformation. Thus we put

_ fι4%, if bεBs(b')nΛW*9
Ufo - Λ

u, otherwise.
s*υ)b9 (3.24)

where the prefactor Λ^* indicates that what follows is present only for
From the restrictions on the fields, we have that ub = eίe°A'b, with \A'b\^cp(e0) in
Λ(^*. The axial gauge ^-functions are invariant under this translation. In Λ(®\
δ(v/Qu) becomes proportional to δ(QA').

In the general step, a gauge transformation is needed at this point. However, it
is unnecessary here.

The quadratic form for the gauge field in Λ^** is

/ (0)\

+ LΓ2Qe*f\ Λ(P**(dAf + LΓ 2βe*/)> , (3.25)

where

(ie0)"1logφ). (3.26)

A second translation is needed to remove the term linear in A. We put

A' = A(v - Λ(P*L- 2CS0°^*βe*/, (3.27)

which does not precisely eliminate the linear term. However, it is local, and away
from dΛ(4} the linear term is extremely small. If we neglect terms at dΛ(£} and
localized terms of the order of e~cr(e°\ we obtain the main quadratic forms for
block and fluctuation fields:

The prime denotes decimation (taking the corners of blocks only); the superscript
L indicates the block lattice spacing.

Let us write the background gauge field in Λ(

3

0)* in terms of A(Q\ It is

u = (Qs*v) exp[zeoμ
(0) - Λ(^*L~ 2Ci0°^*Qe*/)] . (3.28)

We wish to expand in A(0) in the scalar field quadratic forms, and in the
observables F0 Λoc, where this gauge field appears. This will give us scalar field
forms that depend only on the block gauge field. Let Θ0 be the characteristic
function of /ί(

6

0)*. We expand in Θ0A
(0\ For terms of zeroth order in Θ0A

(0} we have
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a background gauge field

- 2C[°0ld*Qe*f} .

Here u(0} = Qxp(ieQA(0}). Terms of first or higher order in $0/1(0) will be treated as
interactions.

The expansion yields for the scalar field forms

+ Σ W?0)(D), (3.29)
α

where ,R(0) contains the first ή orders in A(0} (or in eQ) and the higher order,
irrelevant, local terms are incorporated in Wi(0)(Π) (These terms can always be
localized to some r(β0)-cube Π ) Similarly each factor FOΛoc(Xσ) *s written as a sum
of two terms: the first m orders in e0, and the remainder which is bounded
uniformly in ε for an appropriate choice of m.

The next step is a scalar field translation to remove the term linear in φ in (3.29).
Again we make a local translation,

φ = φ^ + aL~ 240)Cj0°>(w Jβ*(κ> . (3.30)

Neglecting terms at dA(

Ί

0} and local terms [range 0(r(eQ))~] of the order of e~cr(e°\ we
obtain the basic quadratic forms in φ(0) and ψ\

^<φ(Q\(~AUl + αL-2Q(u1ΓQ(ul))φ^y+^A^'ψ^ (3.31)

In the small field region Λ(

0

0) we have small block fields:

\v(p) - 1 1 ̂  ceoP(e0) , \ψ(y)\ ^ cp(eQ}λ« 1/4 ,

\(Dnιιp}(b'}\^cp(e,}, b'εA^'\

where ΰί(b') = ΰί((b'-,b'+y). We change nothing, then, by inserting a factor
Xι,Λw(v>ψ) which enforces these conditions by means of approximate character-
istic functions. Similarly, it can be shown that

\A(0)\^cp(e0) in A(P* , \φ(0)\^cp(e0) in A(?>* , (3.33)

and we inset a factor χ'Λ(Ό) enforcing these bounds in Λ(

7

0).
We now consider now the interaction terms ^o,ioc(^o0)) and ^(°Vι? ̂ o^(0))' and

reorganize them as follows. Vertices are restricted to Λ(

8

0), and terms whose
combined order in e and λl/2 is greater than n are removed. The result is a standard
set of terms which will appear at each iteration step. Here they are grouped into an
interaction F(0)(Λ(

8

0), ul9 A
(Q\ </>(0)), a polynomial in A(0} and φ(Q\ All other terms are

either localized near Λ(

8

0)c or else are of high order in couplings. The other terms are

written as £ J/F3

(0)(ΠX each term localized at an r(e0)-cube, and we have a bound
D

(3 34)

Here β > 0 is a fixed small power, κ> ά is a fixed large power, and ε0 is the lattice
spacing to terminate the induction.

)1 / 2}. (3.35)
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The bound (3.34) is sufficient for a rough treatment of such terms, since (Lfc£/ε0)
κ is

summable on k even with an entropy factor (Lkε/ε0}~d. Terms satisfying such
bounds are called irrelevant.

We avoid any further consideration of the irrelevant terms by Mayer-
expanding them as in (3.19). This includes terms Wi(0)(Π), ^30)(D), as well as the
small terms neglected in obtaining the quadratic forms for A(0\ /, φ(0\ and ψ.
Grouping all irrelevant terms localized in Π into W^0)(Π)5 we write

Σ Π (exp(-^0)(Π))-l) (3.36)
S4 ϋeS4

In a similar fashion we break off the low order terms in the observables, and we
obtain a sum of terms, depending on whether the relevant or irrelevant parts of
Fktloc(Xσ) are chosen. (For observable terms, irrelevant means bounded independ-
ently of ε.)

We then avoid regions with irrelevant terms exp(— ΐ^0)(Π)) — 1 or from
Fk,ioc(xσ)' Subtract from Λ(

8

0) all such regions; call the result Λ(

8

0) and define Λ(

9

0) by
deleting an r(^0)-collar from it.

The original characteristic functions χΛ(0) are inconvenient for our subsequent
analysis because they couple block and fluctuation fields. We remove them, relying
only on χ 1 > y l<°>' and #Λ<°> f°r restrictions. This means we expand each characteristic
function as χ = 1 — χc. We obtain a sum of regions Λ(

9

0) which contains only 1 -terms:

Here the function ζ'^(0)C forces some field to be large (χc) in each r(e0)-cube of
Λ(

9

0)\Λ(

9

0). Then Λ($ is' defined by deleting a collar from Λ(

9

0).
We now are prepared to calculate the integral over φ(0\ A(0} in Λ($. We write

the integrals there as normalized Gaussian integrals with conditioning at the
boundary of Λ(^. This conditioning is given by φ(0\ A(0} in A($c, and is a source of
some nonlocal effects which must be dealt with. First of all the normalization
factors for the Gaussian integral depend on the fields in Affl These can be written
as the normalization factors without conditioning, ZΛ(Q)C*C, Z/1(o)(w1) times quadra-
tic forms in φ(Q}\Λ(θ)C, A(G)\Λ(0)C. These forms are nonlocal and they must be given
random walk expansions. Secondly, there are cross terms between the fields in A(^
and in A($c in the exponent in the normalized Gaussian integral. We take care of
most of these with a translation localized near the boundary of A^. The residual
linear terms, of the order of e~cr(eo)' are left (resulting in an uncentered Gaussian)
and produce small effects in the cluster expansion.

The result is a small-field integral of the following form :

Γ-0°>μ<8°Uι^(0),0(0))- Σ
L X (3.38)

Here A(0}", φ(0}" are the translated fields, and the terms W^\X) come from the
random walk expansion mentioned above. The complete expression for our
density is of course much more complicated; we focus on this because it is the only
remaining nonlocal effect. We give a cluster expansion for it now.

Without going into details, it is worth remarking that if we pull out the terms in
F(0) which are independent of φ(Q\ A(0} (call these F )̂, all other terms are



272 T. Balaban, J. Z. Imbrie, and A. Jaffe

uniformly small (bounded by a power of eQ) because of the restrictions on the fields.
The cluster expansion puts the integral (3.38) in polymer form,

*'"— '^0))Σ ΠszPQ. (3-39)
{*«} «

The polymer functions g2 depend only on fields in XΛ, and exhibit exponential
decay in \XΛ\.

The clusters XΛ intersection A(^c have some dependence on φ(Q)\Λ^ A(0}\Λ^c.
The remaining clusters have completely decoupled from the large field region. We
denote the region they cover by A^. In this region we resum the cluster expansion
and use perturbative expansions to calculate the effective action for v, ψ.

The resummed integral in Λ^l is written as

z M(0)ϊ
exp(logz«2>)) . (3.40)

Z(Λ12)

The first factor is the expectation of the portion of the observable in A(Q in the
interacting fluctuation measure. The exponent is the effective action, which is
calculated as follows. We interpolate the interaction F(0) — V^si with a prefactor t.
At the same time we interpolate away the characteristic functions χ' in A(Q. The
perturbative part of the effective action is

^M°2>)= βΣ - ^logz((Λ<°>)|ί=0, (3.41)

and the remainder involves truncated expectation values in the interacting
fluctuation measure with parameter t e [0, 1]. These truncated expectation values
can be given a cluster expansion exhibiting their locality properties. Since they
involve at least ή+1 interactions, the estimate on the resulting clusters is
improved; there is a high power of couplings or a large field effect from a derivative
of χ'. Thus the remainder is expressed as Σ W^'(X\ a sum of localized, irrelevant

terms.
The perturbative terms involve a set of diagrams, the propagators of which are

fluctuation co variances C^(o), C$Q)(UI) with Dirichlet boundary conditions on A^.
These nonlocal covariances are replaced with our standard localized ones, Cj°? and
C(ioc(MιX with the difference given a random walk expansion. Any term involving a
co variance other than C{̂  or Cj^wJ is extremely small, 0(e~cr(eo)), and localized
with an exponential decay. For simplicity we extend the range of integration of
vertices to all of Λ(

8

0); the difference involves only small, local terms in
As a result of these changes we have

^tloc(^(80))+ Σ W«»"(X) . (3.41)
X

A perturbative contribution to zF(Λ(^/z(Λ(^ is also extracted through
integration by parts. When the order in couplings is high enough, the expectation
is calculated with the cluster expansion. Nonlocal covariances in the perturbative
part are replaced with local ones as above.

In a final operation, we Mayer-expand the irrelevant terms FF6

(0)/ and W^]".
The region A($ is defined as the part ofA($ free of irrelevant terms, either from the
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exponent or from the observable. All the terms associated with the connected
components {Xω} of the large-field region A(^c are grouped into large field
functions gι(Xω). We rescale the L-lattice of blocks to unit lattice spacing. From
the block field \p we get a contribution to the normalization energy:

|, (3.42)

and we put

(3.43)

The result is the following expression for our density:

)= Σ f®ttfj>o)c^

έ\-]. (3.44)

We write explicitly the integral over t/(0) in Λ(®^c* because in general, normalization
factors Z^)(wfc) will depend on U(I)\Λ(DC* through the background field uk. We have
also introduced the rescaled field strength f(1\p) = (ie1)~l logv(p). The expression
(3.44) will serve as a model for our starting point for the general step.

4. The Inductive Hypothesis

Our starting point is an expression like (3.44) which depends on fields, u, φ on the
unit lattice. These were the fields, v, ψ on the L-lattice in the previous step, but we
have rescaled and renamed them. We assume that we have already performed k
renormalization transformations and expansions of the type we are about to
describe. Thus the unit lattice here corresponds to the Lkε lattice if we had done no
rescalings. The original lattice Tε is now Tηί η = L'k, we assume that Lkε<ε0

— min{l, (&λ/e2)ίl2}eβ, with β>0 small and e<ζ\. Thus we are stopping the
inductive expansion somewhat before either of the two lengths in the problem are
reached. The length 1 comes from the curvature of the scalar potential, the length
($λ/e2)112 comes from the curvature of the vector field potential when φ is replaced
by a value minimizing its potential. When Lkε^ε0, we apply a final cluster
expansion designed to exhibit the Higgs mechanisms. This will be the subject of the
next paper in the series. The expected correlation length is of order
/ = max{l,(8x/e2)1/2}.

Our fc-step density has the form

k- l

ί X } i-0 lΛ[Jo)c*J^ >Φ>t ωMM })->
\Λ (yj J — U

< Π g*(*J Π fW*,) jf

(4-1)
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If we integrate this density over the w, φ variables, we obtain our original
unnormalized expectation [F]. The measure du(j} is the normalized measure on
(7(1), \du(j] = \.

We now explain the various elements of this formula. Each Xω is a union of
r(<?k_ J-cubes of the LΓ l -lattice, and the Xω's do not overlap. Each Xω also specifies
subsets A(l]r\Xω for O ^ j r g f c — 1, O^gα^lS. These are unions of r^-cubes of the
Lty-lattice. These sets satisfy compatibility conditions arising from our construc-
tions. In particular, with A^c = \J (Λ^nXJ, we have AtfcA^v for ^l. We

ω

have covered already the case j = 0, which is slightly different. For j ^ 1 , α = 1 , . . . , 8,
1 1 the sets Λ(J} are determined by A^L 1 by subtracting collar neighborhoods of
width r(βj] in the ZΛ/-lattice. We have A^CA^^. The sets A(f2, A({\ need not lose
anything from A({\, A({\, though they may be smaller. The sets Λ(

9

7), A(f$ lose a collar
from Λ(l\ A(cj\ which may be smaller than A(l\ A(<j\ These sets will be defined below
in a manner analogous to that in the first step. We define Λ(£ as the set in TL-3

obtained as the union of //-blocks at the points oΐA^'\ The factors gk(Xω) represent
the effect of large fields or irrelevant interactions from all previous steps. The
factors gk(Xω) depend on uu\ O ^ j ^ f c — 1 and on u, φ.

The external gauge field appearing throughout the initial density is %. It
depends on all the u(j} [or equivalently, the A(j} = (ίej)~ 1 logι/0)]; but in Λ(l~ 1}* it
simplifies to

uk = (Qi* u) exp( - iekη®kt locδ*βΓ /(Λ)) , (^

where f(k\p) = (iek)~1 logu(p). This is just a localized version of (1.4.5.4).
The form of uk in A%~^*c is quite complicated; we will see it as we construct

uk+ ! in the induction step. It is important now only to know that uk>b depends only
on the fields u(j\ uina neighborhood oϊb of size r(ek- J/2L on T{k\ Furthermore,
the configuration is smooth in the sense that for each j<k (and lattice spacing
ζ = L~J), and for each r(e7 )-cube Π in Aψ, there exists a gauge transformation
w f e-^Mfc such that

fe,.L-^) with \Aλ

b\^dζAλ)(pMd^Aλ)(x)\^cp(eJ}r(ej) (4.3)

in Π In the fc-th step the behavior of uk in Ά(%~l)*c matters only in operations
involving the Gaussian normalization factors.

The configuration uk on T* gives a configuration ΰk on T/fc)* by taking a
product along the bond in Γ/^*, i.e.,

w f c f f e = w fc«6_,fc + ». (4.4)

The factor χk<Λ<κ-n' gives restrictions on u, φ in /I'o"1''. The following are
implied by the smoothed characteristic functions in χktΛ<k-D :

\f(k\p}\^cp(ek], peΛ* -"'**,

,

if Lk~ls<λ, x e / l - 1 1 ' ,

\\(φ(x)\-(8λΓ1/2(Lk£)(d-2)/2\^c(LkεΓ1p(ek), if
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We have incorporated some rescaling factors (powers of L) and the difference
between p(ek) and p(ek^l) into the constant c.

The Gaussian normalization factors are given now, in a rescaled form.

^̂-i<ΛV#*cA3*^ (4.6)

where A lies on the Lfy-lattice. The subscript to 3) A indicates where an ,4-field is
integrated; the subscripts to <5Ax and δ(QA) indicate which blocks have axial gauge
conditions and which block bonds have conditions on QA. We have Dirichlet
boundary conditions in A($*. We have included a constant factor to take care of
the scalings and make this independent of k. It is defined using

£]£»,,= - log -(L^) ( d- 2>/ 2, (4.7)
\_2π j

IIΛ'/ΓΊl = MVΓI - Mft'l (Ld- 1)- IΛ'/ΓΊ . (4.8)

Here M(/o*ΊI is the number of free integrations in Λl/£*c after enforcing the
^-functions.

Similarly for the scalar field we have

Z^(uk) = f 9>φΛy exp( -i<Λω </>, «,LK) + aU 2P(uk)}Λ^φ) - Έ$,\Λφ0\) ,

(4.9)

with
P(uk) = Q(uk)*Q(uk), (4.10)

(4.11)

The interactions oft/, 0 are in 2Pk,\oc(A(%~ 1}). The subscript loc indicates that the
terms therein couple fields no farther than O(K^-ι)) apart. 3?kΛoc is given by a
perturbation expansion up to some fixed order ή, which we describe in detail in a
later paper. For the present analysis, it is sufficient to describe a few basic features

Off ice- Γ

The gauge field propagator in ̂ kΛoc is 2>kt\oc except for some renormalization

/ c"1 Ίtransformation vertices, where it is ]Γ G(^η, see (2.12) and the scalar field
l=ι J

propagator is G fc>loc(w fc). The fields w, φ appear in the diagrams through the ^-lattice
minimizers uk and

Φk = akGktloc(uk)QΪ(uk)φ, (4.12)

Λ(p) = (i^2)-1logMk(p). (4.13)

Propagators and external fields are connected together at vertices which arise from
an expansion of the ^-lattice action. Vertices are restricted to A(£~ 1}; for vertices
involving the gauge field the restriction is accomplished by means of a function hk

multiplying each vector field leg at the vertex. The function hk changes smoothly
from 0 to 1 in a neighborhood of Λ(£~l)*c.
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The dominant term for the scalar field is Pk(φk), where

Pk(Ψ) = λk\φ\4-±(Lk

ε)
2\φ\2+ ~ (L*6)'. (4.14)

o4/

Under the restrictions in χk, \Pk(φk)\ ^ cp(ek}
4. At P/(-vertices with / external legs, we

have its l-th derivative

for

for

In fact all terms except Pk(φk) in 0>kt Ioc obey bounds 0(eβ ~ a(Ifε/ε0)
 I /4 ~ α), with α > 0,

small, a<β. If φ or u obey better bounds, then there is a corresponding
improvement in bounds on terms in ^kjloc. We will prove a general theorem on
estimates on perturbation expansions in a later paper.

Also in ^kjloc are vacuum energy and mass renormalization counterterms,
properly localized. In $k we keep track of normalization energies occurring over
the whole lattice. This includes the basic normalization counterterm £0, and
factors from scaling and from normalization of renormalization transformations.

The observable is treated in a manner analogous to £^k>loc. Each factor
Fktιoc(Xσ) is a perturbative expansion to order m of some of the factors in F [those
located in Xσ, a connected union of r(^_t)-cubes] with the same propagators,
vertices, and external fields as before. The only difference is that the connected
diagrams have at least one vertex from the observable F(Xσ). Also the expansion is
taken to a lower order in coupling constants for most F's. The order depends on
how singular F is. The sets Xσ are the connected components of the smallest union
of r(ek_ J-cubes covering all vertices of all diagrams in the expansion for F(Λ(* υ

As in the case of the effective action, the remainders from the perturbation
expansion for F(Xσ) were included in the hole functional gk(Xω). In the case of the
effective action remainder terms, this was possible because of a sufficiently high
power of e^~α(Lkε/ε0)

1/4~α; in the case of the observable it is possible when terms
obey bounds uniform in k and ε. The bounds may depend on the numbers of fields
of various kinds in F, and how close they approach one another. The perturbative
terms in F(Xσ) are considered more carefully to show that they obey bounds
independent of ε. Cancellations with "Wick ordering" subtractions must be
performed to obtain bounds which depend only on Lkε. For example, as long as
(Lkε)d < λ, we expect for the expansion arising from : | φ(x)\ 2 : a bound of the order of
(Iί~1ε)2)2'd + λk^{2p(ek-ί)

2 (with the first factor replaced by logL*"^ if d = 2).
According to our convention, the perturbative terms in F(Xσ) and ̂ Moc are called
"relevant" because in each case they contain insufficiently many powers of
coupling constants for brute force estimation.

Finally, we assume that every factor or term in our starting expression is gauge
invariant in the following senses. Gauge transformations

"*. z, -» W f c , tf " iekη(dnλ} (b} > Φ M -* Φ(x)eiekλ(x) (4. 1 6)

leave each expression invariant. We will need to use only gauge transformations
supported in Λ(^l\ so the terms in question are scalar field forms, interaction
terms in ̂ jloc renormalized observables Fk j l o c 5 characteristic functions χ k . Λ k - ί ' ,
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and the normalization factors Z^L>(ι/fc). However, all expressions possess this
invariance, even those that are buried in the inductive definition oίgk. Note that λ
above is any real function on Tφ although only its values on T/fc) are relevant for φ.
We call these transformations background gauge transformations, because the
integration variables u(j\ u are not involved. In fact, transforming these fields
would affect the axial gauge conditions and the gauge field renormalization
transformations. These are invariant under only a very restricted class of
transformations, which we describe now.

The second kind of gauge invariance is called block field gauge invariance, and
is invariance under

ub -+ ube ~ iek(dλ) (b] , φ(x) ->e

iekλ(x} ,

utf-^utf exp[ - ίekL
jη(dLJηQ'k*-jλ) (fc)] , if b e Λψ*c , (4.1 7)

u(

b

j)->u(

b

j} , otherwise ,

for / a function on T[k\ Here Q'k denotes the averaging operator for real-valued
functions on sites. The dependence of uk and u and the u(j) is such that the above
transformations induce the gauge transformation ukιb-^uktbQxp[_ — ίekη(dηQ'k*λ)'],
and thus we have invariance in the previous sense. Here, however, the variables u
and u(j} are also transformed, but in a way that does not affect the ^-functions
giving the axial gauge conditions and gauge field renormalization transforma-
tions. We remark that the first translation ofuu) in Λ(f* accounts for the lack of a
transformation there in (4.17).

In both types of gauge transformations we would have rotations of the earlier
fields φU)\Λ(j)c which are integrated over in gk. But since the measure dφ(j} is
rotationally invariant, no account need be made of these rotations.

5. Renormalization and Decoupling in the General Step

5.1. Renormalization Transformation

A density of ρk+l(v,ψ) is obtained by applying the renormalization transfor-
mations of [1] to ρ'k as follows:

[ k- 1
f Π dtι%,rtTβfLfllfcρί(w,φ,{A:ω},{^})

J = ° 10

k- 1

(5.1.1)
Here a x 1 is fixed throughout, and the normalization is

E(k}=-\og(aLd~2/2π). (5.1.2)

We normalize the <S-function on 17(1) so that

lduδ(u)f(u) = /(!), \du = \. (5.1.3)
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Under gauge transformations λ of w, </>, u(j) that vanish on points of T^k+i\ we see
that the ^-functions and ρ'k are invariant. Since uk also transforms by λ, we have
Q(uk}φ invariant as well. Thus no change is made if we insert the axial gauge
conditions

<U")= Π Π %(ΓVJ) (5.1.4)
y e Γ W ' xeB(y),x*y

into the ^-integral above.

5.2. Restrictions on the Fields

We insert a partition of unity under the integrals:

1 = Σ Σ Σ Σ
PxCΛf3~^' PyCΛ[k

3-»" P b C y l ( k - l ) ' * PpC/l^- 1 ) '**

x Π £ Π χ* Π 4 Π iy
xePx xeΛ(f3-»'\Px yePy yeΛ~^"\Py

Π ή Π ^ Π 4 Π χp, (5.2.1)

where we denote

h(λkp(ek),\φ(x)\}, if (Lkέf<λ
2 ) / 2 , if

\(Ψ - Q(uk)φ) (y)\] = \-χc

y,

At each x, y, b, or p where a χc factor is present, we expect to obtain small factors
exp( — cp(ek}

2}^ek, for any K, using the positivity of terms in the action.
The function χ(p, x) is defined as follows: We let χ(l, x) be an even, C°° function,

equal to zero for |x|^l, and equal to one for |x ^9/10, and with

for all n,x. (5.2.3)

Then we put

χ(p,x) = jrf l,x/p). (5.2.4)

The restrictions on |̂ | are best understood by looking at the leading term in

&k,ioc, Pk(Φ«} = P )̂, where

k

= λk(\φ\ - ρ0)
4 + (2λky'2(\φ\ - ρ0)

3 +i(Lkε)2(\φ\ - ρ0)
2 ,

~. (5.2.5)
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For (lίέf < λ, the quartic term gets larger before the quadratic term, whereas for
(Ifs)d>λ, the quadratic term gets large first. It is easy to see that for \φ(x)\ in the
support of ̂  Pk(φ(x))^0(p(ek)

2).
We define the small field region Λ(Q} as the union of r(£fe)-blocks, none of whose

points are in Λ(^1)/c, PX5 or in bonds, plaquettes, or blocks in Pb, Pp, Py. The
regions Λ%\ 0 ̂  α ̂  8 are thus determined. We resum the partition of unity to
obtain

(5.2.6)
λ(k) " u

0

where

C,r= Σ Π £ Π χ,
p p p p v c P v c: /I (k — 1 ) ' \ P \ / Ί (Ό
fx,fy,fb,fp Xefx

 X e y l13 \^ΛΓ\^b

- Π ^^JJ^^Λ'
y _ FT y Π yΛ/IW 11 Λ X 11 Λ p •

x e y l W pe/lf)**

Here the sum is over subsets compatible with Λ$}c, Λ(^l\
Our density now has the form

k- 1

{^ω} AQ J-

k-1
} ΓT F (Y \ ΓT Γ7^ 7^ (u \\ω) 1 1 Γ k, loc(Λ σ) 1 1 L^A^c*c^ΛW\uk)Δ

σ j=0

-iαL- 2<φ - β(Mk)φ, ip - Q(uk)φy

-^<Λ^i}'Φ^kΛoc(uk)Λ^1}'Φy-^^ (5.2.8)

Let us remark that having imposed the axial gauge conditions, we resign from
all but the following restricted block field gauge invariance:

ψy-+ψye
iekλ(y}' φx->φxe

ίe*(Q'*λ)(x)'

vb,->vb.e~ ίekL(dΣ'λ} (bΊ, ub -> ube ~ίek(dQ'^(b), (5.2.9)

utf-+utf exp( - ίekL
jη(dLJηQk*_ j+lλ) (b)), b e Λ<?*c only.

These transformations represent exactly the gauge invariance that was not broken
by the axial gauge conditions but was broken by the renormalization transforma-
tion. By compensating with transformations of the block fields v, ψ, we again have
an invariance. This restricted gauge invariance we intend to preserve in all
subsequent operations. For example, it is easily seen that the characteristic
functions we have inserted are invariant. After integrating over φ, the </>-rotation
becomes irrelevant and we will obtain the block field invariance at the next scale, as
described in the induction hypothesis.

In an analogous fashion, ψ must be rotated when performing a general
background gauge transformation. After integrating over φ we will obtain the
invariance (4.17) at the next scale.
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5.3. First Gauge Field Translation

The first translation is done in Λ^*, and it removes the afield from the <5-functions
there. As in (3.24) we put

u = uf(Λ(P*Qs*v), (5.3.1)

cf. also (1.6.2). (The reader may wish to refer to chapter 6 of [2], where the effects of
the translations are followed without the complications of the large field regions.)
Using the restrictions \u(p) — \\^ekp(ek) in Λ(

0

fc)**, and the axial gauge conditions,
we obtain that

u'b = eiekA'b with \A'b\<,cp(ek) , for beΛ(P*.

Let us define f(p) = (iek)~l logι (p). The restrictions on u(p) and the fact that
v = Qu imply that \f(p)\^cp(ek) for p e Λ f f ' * . Under the translation we have

/<*>(p) = Λ<t»*c(iek) ~ 1 logtφMp'o) + ΛM**(dA' + L~ 2Qe*f) (p) , (5.3.2)

where p0 is the portion of p intersecting some Bs(b'\ b' e Λ(P'*, and p'Q is formed by
replacing each bond in p0 with the block bond b' in Λ(^'*, whose Bs(b') contains it.

After this translation the background gauge field is

+ Λ(P**(dA' + L~ 2βe*/))] , (5.3.3)

for b E Λ(£~l)*. The background field fk appearing at some vertices in ^fcjloc and in
Fk < l o c is transformed accordingly. In Λ(2}* this simplifies to

βe*/)], (53.4)

cf. (1.6.2.3). The quadratic form f(k) transforms into

I/ Λ(k- l)'**f((t) ^(/c-l)'**f(k)\
2\7 I5 J >σk,locΛ5 J /

logφ)φΌ)

- 2Qe*f), σfe, ioeA
(P**(d

(5.3.5)

The translation affects the ^-functions as follows.

lu)δΛr*\^QA'}, (5.3.6)

where

δΛw*(γ-QA')= Π δ(γ-(QA')(b')} (5 3 7)

The factor ek/2π arises because dub = (ek/2π)dAb.
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5.4. Gauge Transformation

We need to make an ^'-dependent gauge transformation to put uk into a proper
form. The purpose of this operation is to keep the operators Hk appearing in uk and
in Gk Λoc in a good gauge, i.e., Landau gauge and not axial gauge. The axial gauge
operator Hk Ax would arise more naturally in our procedure, but it does not have
the necessary regularity, properties. This operation is not performed in the first
step, since HQ = H0ί^x = L

The unlocalized form of the gauge transformation is based on the identity
(2.20),

Qs

k*A' - @kd*Qe

k*dA' = HkA + dCkA' . (5.4.1)

The operator Ck has an exponential decay, but Ck and dCk can have local
singularities which is why the term dCk must be removed.

To do this in a way that does not introduce nonlocal dependence on A', and in a
way that does not change uk in Λ(

3

k)c*, we make background gauge transformations
on individual terms that depend on uk in /f(

3

k)c*c. Up to some small errors, the scalar
field rotations can be removed using the rotational invariance of @φ, &ιp.

The expressions χΛ(», χktΛ(f-v>9 Fktloc(Xσ), Z(»ω(uk), (ψ-Q(uk)φ, ψ-Q(uk}φy,

<Λ(

8

k~1);φ, Aktloc(uk)Λ(£~l)'φy9 and &kt\QC(A(£~ l ) ) are the ones depending on uk in
Λ(

3

fc)c*c. The dependence is through some simple, localized expressions like

fc.ioc(wk; b.9b+)uh(b)9

(xl9 x2) , /k(p)4 ,
or in similar expressions for the diagrams in ^k>loc or FMoc. The Gaussian
normalization factors are written as in (4.9), and the dependence on uk is in the
operators

ΛJ, ioc(Wfc) = <*jl ~ <*jQj{uk)Gjt {oc(uk)Qf(uk] and P(uk) ,

and we have terms of the above type. However, a slightly different procedure is
applied to normalization factors; we describe it later. Let us fix a set of sites where
fields ψorφ sit; then the dependence on uktbis only for b in some cube Πo enclosing

all points closer than — — r(ek_ t) to the fixed sites. There are at most some fixed
2L [_

number of propagators Gjtloc(uk) or SMoc, and each has a range less than
1

4L
diagrams without external φ, ψ fields, we have to localize one vertex in a unit cube
and consider the localized diagram as a separate term. We define an appropriate
Go containing all relevant bonds for the propagators in the localized diagram.

The gauge field appearing in any one term can be written as

u* = (βr+ιtOexpκvί[^ (5A2)

where Π is a^r(efc)-cube in T[k)* containing a collar neighborhood around Do- We
extend Π to a component of a ^r(ek)-neighborhood of y4(

3

k)*c\y4(

3

k)c* for all terms
such that Go intersects A(^*c\A(k)c* . The values of A outside G do not matter

-̂ - r(efc_ j). Thus we can choose L such that Go is a cube of size ^r(ek). For the
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because ^k)loc has a range —-r(ek^ l\ and so uktb doesn't depend on them for

fee Πo We now write

w^'. (5.4.3)

The kernel wΊ=(^ fc — ̂ k%loc)3*6*δΠ involves only the tails not included in the
expansion (2.12). Using the regularity and exponential decay of Hp Hj>loc, along
with (2.7) and scaling properties of these kernels, we find that

<p~cr(ek) -cdist(p,b')
__ c e ,__ c e ,

and similarly for w'l3 d*wΊ. Also, w\ is finite ranged in the sense that w\ = w'Ί Π we
use wΊ(&, b') only for fc in Π0 C D

The nonlocal gauge transformation (5.4.1) is now applied and we have

(Ql*-®kocd*Ql*d)ΏA' = (Hk + dCk)ΏA' + w\A

(5.4.4)

We have put Wi = w\+Hk£]—Hktloc, and it satisfies the same bounds as
The background gauge transformation

(5.4.5)

is now performed on the term localized in Πo The background field becomes

4 = (Qϊί ι«) exp iekηlHkt lQCA' -f dA™cCkϋ]A'

+ w1A'-L-2^ locfl*βί*1/], (5.4.6)

for b E Jΐ(

3

k)c*c; in A(£)c* it is unchanged from the expression (5.3.3), obtained after the
first translation. This field depends on the term considered, but we shall remove the
term w^A' from this expression later (only in Λ(

3

k)c*c). Without w^A' the field u'k is
independent of the term.

There are still the phase factors at φ and ψ. We define

φ'(x) = φ(χ)e

ie*(Άlf)Ck locAΊ (x} , ιp'(y) = iek(Λιk)Ck> locA'}

By (2.26), Ckιloc(x,b') approximates the phase factors in (5.4.5), while being
independent of Πo The measure dφ is rotationally invariant, so we can replace dφ
with dφ' and drop the prime. We have not yet integrated over ψ, so a different
density is obtained by replacing φ' with ψ. However, the new density ρ£+ ±(υ, ψ) still
has the property that $dvdιpρk + 1(v,ψ) = [F^.

After these rotations, the scalar field still have small, term-dependent phase
factors. The scalar fields appear as φ(x)Q\p[iek(w2A'} (x)], ψ(y}Q^\jek(w2A'}(y)],
where \v2 = A(^}Ck ;loc — yT(

3

fc)CkΠ satisfies a bound

I w2(x, b)\ ̂  exp( - cr(ek)) exp( - c dist(x, b)) , (5.4.7)
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[this follows from (2.26)]. Like the w^A' terms, the w2/4' terms will be expanded out
of all expressions.

The same constructions apply to fk(p} = (iekη
2)~1 loguk(p), and we end up with

fk(p) = (iekη
2γl\Qgυ!k(p\ Of course, the term dA^)cCk\Σ\Af disappears. The terms

involving w^' will be separated out later.
The constructions described above were motivated by a desire to preserve

locality, and to avoid effects of the gauge transformation from reaching the hole
functional gk(Xω) or the large-field regions. The Gaussian normalization factors
Z(Λ(j)(uk) are intrinsically nonlocal objects; all regions are essentially tied together.
Onΐy after some expansions can some small terms be localized. Thus at this point
we must resign from a local form of the gauge transformation. Recall from (5.3.4)
that uk has been written as

v) exp ίekηAφ*(Qs*A - % locd*Qe

k*(dA' + L~ 2Qe*f)) . (5.4.8)

We put

4^
+ Hkt ιocΛφ*A' + dCkAφ*A' + w5A . (5.4.9)

Here

is another small, exponentially decaying kernel. We can gauge away the term
dCkΛ

(^Af., leacing us with the following background gauge field for the
normalization factors:

%^ (5.4.10)

The term w5A' will be removed later on; it couples A to bonds everywhere in Tη.

5.5. Second Gauge Field Translation

We translate a second time to eliminate most of the term in Ά\ linear in A'. This is
analogous to what is done in Sect. 1.6.1. The linear term is almost equal to
(Λ(P**LΓ2Qe*f, Qe

kdHkA'\ since by (1.6.1.5), (2.15) we have

σkdA = Qe

kdHkA. (5.5.1)

So we eliminate most of the linear term by a translation approximately equal to

The translation we actually use is localized, and is given by

ocd*Ql*+lf. (5.5.2)
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Our construction of a C(£c satisfying (2.10), (2.11) ensures that δAx(A') = δ
δ(QA') = δ(QA(k)). The quadratic form Ά\ becomes

In the second term we isolate a term localized near A(k)c and a small term. We
write

and in the term with A(k}* instead of /l(

2

k)*c we put

) = σkι locdΛφ* D v4(/c) = σ

, locΛ
(

2

k)M(k) + w«4(k) . (5.5.4)

The ^r(efc)-cube Π is centered near the plaquette that we are evaluating
σfc,ioc^2fc)*^ (fc) a^ "^ne kernels H/3, W g have range less than 2r(ek)> an(i we have

K3(p,fe)|, |w5(p,fe)|^^c^). (5.5.5)

In (5.5.4) we have applied our usual method for obtaining formulas for localized
kernels analogous to those valid for unlocalized ones [in this case, (5.5.1)]. The
precise form of the error terms will be unimportant; only bounds like (5.5.5) will
matter. The / A(k} cross-term is now

(5.5.6)

We insert the decomposition f = A(k)'**f + Λ(k)f**cf in the last two terms. The
terms with A(k)f**cf will be denoted by Ά'2. The first A(k}'** term involves

C1

(5)

c3*σkfloc5 = / + wϊ, (5.5.7)

with another small, short-ranged kernel w^. The term with the identity operator
cancels the second /l(

5

fe)** term. Thus if we define

(5.5.8)

(5.5.9)

then we have written the cross-term as ̂ 2 + </> w3-4(/c)>? with ^2 large but localized
in a |r(ek)-neighborhood of yl(

5

fe)c, and with w3 very small and having a range iτ(efc).
Next we do a similar analysis on the third term in J'l5 the term quadratic in /.

The important contribution is when / is localized in y4(

5

fc)/**, in which case we
obtain the quadratic form σ^+ l iιo c for /, plus small errors. The analysis here
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parallels that of [2], Sect. 6.1 , with adjustments for localized kernels. Using (5.5.4),
(5.5.7), and

oc = ~^fc+ l . loc J (5.5.11)

we may write the A(^'**f terms as

with w4 a small, short-ranged kernel. All terms involving at least one Λ(£)r**cf are
assembled into a quadratic form J3.

To summarize the effect of the two translations, we have

3^( fc)>+K/,w4/>. (5.5.12)

Here Jί? ί = 1, 2, 3, are large linear or quadratic forms, localized near A(k]c. They can
be written as sums over the components Xμ of A(£]c, i.e., Jt = £ Ά^X^. The kernels

μ
w3, w4 are not localized near A(^c, but are small, have a range approximately r(ek),
and become independent of the A f } in A(%\ say.

After the translation, the background gauge field looks as follows. For
)c*c, (5.4.6) becomes

^
loc3*βΓ+1/]. (5.5.13)

In Λf* we apply (5.5.11) to obtain

4 = (βΓ+ι»)expfc^^ (5.5.14)

The same formula holds in Λ(

5

fc)* for the gauge field in the normalization factors,
except that we have w5 instead of \v1.

5.6. Expansion with Respect to the Fluctuation Field

Let Θk be a function on T* that equals 1 in Λ(

6

fc)*, 0 in Z(

5

Λ)*C, and changes smoothly
from 0 to 1 in a neighborhood of Ά(£}* of thickness M = 0(l). We expand most
terms in our density with respect to ΘkHkΛocA

(k) = θkAk, and with respect to w^A'.
This produces a number of important vertices for A(k\ as well as irrelevant terms.
We also expand in the small kernel w2 appearing in phase factors before scalar
fields. This produces only irrelevant terms. After these expansions, the background
field will have the form required for the next step in Λ^*, with dependence on υ
only. In the next section we consider the expansion of the normalization factors.

The new background field for the action and observables is denoted uk+ί, and
for fteZ(

5

fc)* it is given by

(5.6.1)
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In Λ(£}* the A(k) term is absent, and except for scaling, this reduces to the form in the
induction hypothesis, (4.2).

To summarize all the changes we have made on the background field, the final
form of uk+, is given by (5.3.3) in Ά(k~l}*nA(k}c, by (5.5.13) in Λ(?c*cnΛ(p*c (but
without the \vl terms), and by (5.6.1) in Λ^*. We will not need to define ύk+l

anywhere else. The corresponding background field strength is given by

7Λι(p) = (^2)"1logfik + 1(p). (5.6.2)

Later we will define uk+ί which will be slightly changed from uk+ i in /ί(

2

k)*n/ί J}*c,
but which will be defined everywhere because it appears in the normalization
factors.

We need to check the regularity condition on ϋk+ 1. It states that there exists a
gauge transformation uk+l-^uk+i in each r(efe)-cube ΠCΛ\ f e ) such that ύk + ί

\Aλ\, \dAλ , \d*Aλ ^cp(ek)r(ek). InΛ(P*c wehavew f c + 1 = uk. so the
condition follows from the induction hypothesis (4.3).

We verify the bound by first checking it for uk, then noticing that all the
operations changing uk into ύk + ί did not destroy the bound. We use the new
bounds on u(p) in Z(

0

fc)** to estimate

uk = (β|*M) exp [ - ietη@k, locδ*βr /(λ)] (5.6.3)

with constants uniform in fe. [There are bounds from the (k— l)-st step, but these
would not yield uniform constants.] Thus we can assume that \f(k\p)\^cp(ek) for

Fix Π CΛ(k} for estimating ύk+l. In Π' [a neighborhood of Π of width %r(ek)~]
we can write u = exp[ίek(dλ + B)] with \B(b)\^cp(ek)r(ek). We have f(k} = dB in the
cube, and so

uk = (Qfe1^) exp iekη\_(Q? ~ fy. lθcS*Qe

k*S)B^ . (5.6.4)

We have used the fact that ®Moc has range ^y-f(et-ι) Note that Qs

k*e'ehlλ is a
Z^JL^I

gauge transformation (generated by Q'^λ), so we can delete it from uk.
Our desired bound now follows because by (5.4.4),

D'β. (5.6.5)

The kernels Hktloc, w1 and their derivatives are bounded, so A\ OAλ, d*Aλ are
finally all bounded by cp(ek)r(ek).

The first operation we performed was a translation, which of course does not
spoil the regularity ofuk. We then made a gauge transformation and removed the
small kernel w^ The gauge transformation does not change the regularity, and
3w l 5 δ*w1 are small, so the bounds remain valid. After another translation we
removed the field θkHkt locA

(k\ This field satisfies d(θkHkt locA
(k}) ^ cp(ek) because A(k]

^cp(ek) and because dHkΛoc, Hkiloc, and derivatives of θk are bounded. Similarly
δ* (θkHkt locA

(k}l θkHk^ locA
(k} are bounded by cp(ek). Thus removing θkHkt locA

(k) does
not spoil the regularity, and uk + l satisfies the regularity condition. In an analogous
fashion we can check that the -th regularity condition for r(ek)-cubes remains
valid.
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We now proceed with the expansions. We do not expand in the characteristic
functions χΛ(k), Xk,Λ(k+lY We take terms which came from the original expres-
sions Fk loc,

and ^fc, locks' ~1 J)5

 and write the background field as

1A^ = ύk+ίe
ίekηA. (5.6.6)

The scalar fields appear with factors eιekW2A' before then. All expressions depend on
A(k\ f only locally, or at most within a component of Λ(%}c.

The first expansion we give is for ύk+ίύ itself. (We derive some expansions for
the j-th step objects for use in the next section. The expansions are modeled after
ones in [7], so we will be brief.]

We have with ζ = L~j, A scaled to the ζ-lattice,

+ Σ (ie£A)n/n\\=uk + 1(l+FltJ{A)). (5.6.7)
» = ι

Next we expand Qι(uk+lύ), 1=1 or y, y < f c ,

+ Σ
xeBι(y) \ n = l

= (Qι(ΰk + , )φ) (y) + (F2, A iίk + Jφ) (y) . (5.6.8)

Inserting this formula into \(ψ — Q(ϋk + 1 ύ)φ) (y)\2, we obtain the vertices new to this
step. For the covariant derivative on the ζ-lattice, we have

(5.6.9)

For the basic quadratic form with Neumann boundary conditions on Ω giving rise
to Gj(Q\ we have

(5.6.10)

where VjίQ) is obtained by inserting (5.6.8), (5.6.9) into the left-hand side. This leads
to an expansion of the scalar field propagator in a fixed region Ω:

G/Ω, ύk+1ύ) = G/Ω, ύk+ ,) + G/Ω, uk+ JVjGfiΩ, ύk + lύ) . (5.6.1 1)

The terms in F; are small (0(ej~a)\ bounded kernels, either alone or applied to

Γ Thus the regularity properties oϊGj(ύk + 1\ Dύk+iGj(ύk+ί) imply that
we can develop this expansion to any order.

We insert this into Gjtloc(ύk+1ύ) to obtain

+ C}'(*ι, *2) Σ
α

The second term can be changed slightly by changing the set Πα

 m Gj and changing
the tails of the operators. The difference is v/6, a small (0(e~cr(ej})), local kernel with
small covariant derivatives, and depending only locally on ύk+l9 ύ. We obtain

Gj,ioc(%+ !«) = GjΛoc(ύk+1) + Gίtloc(ύk
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This is now iterated to yield

n

ocfe+l)]"^/ G / ,ι0c(%+ιW) + W 6 , (5.6.12)

with another small kernel w6.
These expansions are inserted in FMoc, <φ — Q(uk}φ, ψ — Q(uk)φy, ^Λjloc, and in

4,ioc(%+ιwHflfc/-α^β^

We expand the phase factors as 1 + (e

ιekW2A' — 1), the second term being extremely
small. We also have the field strength expanded as

Any term involving \v1 or w2, and terms of higher than n-ih order in ek are
irrelevant and will be treated separately. The lower order terms are polynomials in
A(k\ All terms are local.

Let us summarize these expansions as follows. In the action we have written

l>aL~2(ψ — Q(u'k)φ, \p — Q(u'k)φy

1)'^^t.locK)^(Γ1"^>+^.l.c(4*"1)^wi)

-Q(ΰk+1)φ,ψ-Q(uk+l)φy+^Λ^^'φ,AkΛJΰk+l)A^1)'φy

Σwιk\O) (5.6.13)
π

The tildes on φ and ψ indicate the presence of the phase factors. Here W^(fc)(Π) is
localized near Q, an r(ek)-cube in Λ(%\ and | Wf^Π)! ^ek~ l ~°" (Two powers of ek

may be needed to beat the bounds on φ.) If we define

, (5.6.14)
0

then R(k} can be obtained by replacing propagators Gk(duk + 1) with G k > l o c(M k + 1)
and eliminating extra kernels ζk explicitly (not in G fc>loc(Mk+1)).

In a similar fashion we put

Fk, locPϋ = FgUXa) + ?k. locί^σ) , (5.6. 1 4)

where F($oc(Xσ) is defined by replacing Gk(ΠA+ι)? CΛ in

m Γ Λ™
V __ _ F (Y Ή pie'ekηθkHk,locA(V\
L ι,m fk,\OC(

Λσ>Uk+le

m = 0 \_Ue

All remainder terms are in FkΛoc(Xσ), and we have \Fkiloc(Xσ)\^c(F).
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5.7. The Gaussian Normalization Factors

The expansion with respect to the fluctuation field A(k} must be performed with
special care in the Gaussian normalization factors. Nonlocal terms naturally arise,
which must then be organized properly and treated with random walk expansions.
At this point, the background field in the normalization factors is given by (5.4.10),
which simplifies to (5.5.14) in Z(

5

fc)*. We express it as uk+1u, with

u = exp iekηlθkHk^ locA
(k] + w5v4'] = exp iekηA . (5.7.1)

«
In this way the field uk+lis defined, and after A is expanded away, it remains in the
normalization factors for the next renormalization transformation. One could
apply (5.4110) inductively to obtain a complete formula for uk+l on the whole
lattice. We will only need to use the fact that it agrees with uk+ ί in Λt(

5

fc)*, cf. (5.6.1).
The regularity conditions can be checked for uk+ίin the same manner as for uk + ί.

In the integral representation for the normalization factor Z(^(J)(uk\ rescaled to

the unit lattice, we have the quadratic form (with Dirichlet boundary conditions)

~ 2P(uk+ίu)

(5.7.2)

All the terms from our expansions of the last section for Ajt loc, P, with uk + ί replaced
with uk+ί, ύ replaced with u, are included in W(j\ Thus we have

ι

and so

Z<φo,(wk) - Z<φo,(tιk + 1 ) [det(7 - C%n(uk + ,Ϋ/2 W^C^(uk ^)l'2Y1'2 . (5.7.3)

Each term in W(j} has at least one factor ep and all fields are logarithmically
bounded. Thus the operator after the identity is bounded by a very small number.
Thus the determinant can be expanded as

ι=ι 21
(5.7.4)

The operator C(fy)(uk+1) is our first encounter with nonlocal effects. To treat it
we apply the generalized random walk expansion (2.45), modified slightly to use
cubes of size Lk"ir(ek) in TL-jt We need a similar expansion for W(j} into terms
defined in regions X with appropriate decay estimates.

For example, we have in FltJ{Ab) a series involving powers o f ( w 5 A ' ) b , with a
nonlocal kernel w5. We put these powers in the form of a sum on X of quantities
defined in X only. To each b e Tη and each collection of bonds bl9...,bmE T(k} we
associate in some arbitrary manner a set X (a connected union of r(efc)-cubes
containing them). Then we put

X

(5.7.5)

Σ Π (w5(ί>
(bι...bw) J = l

compatible with b, X
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where compatible means that fcl9 . . ., fcw, b were associated to X as above. We have
\A\bl)\^cp(ek), \w5(b,bl)\^e-cr(ek)e~cάist(b'bύ and so

Km(JOI^~cr(ek)m (5.7.6)

We may use (5.7.5) to analyze the interaction terms generated in the expansion
with respect to A = ΘkHk jocA

(k} + \v5A'. Treating for the moment only the high
order terms, we obtain an expansion for F 1 ? J in (5.6.7):

with \Fίtj>b(X)\ ^enj + i -«<>-«•«*) W -. (Here \X\ ~ is defined as max{0, \X\ - 1), and A
has been rescaled to the ζ = L~j lattice.) In a similar fashion we can write

x Σ (ie£A(rU>x)r/n !
n = 1

with

These expansions can be inserted into F; , yielding

V,{X), (5.7.7)

the first term containing the expansions to order n in βp the second containing the
remaining terms. Both terms involve small, bounded kernels (of order e] ~α for V(n\
of order έ ?»+ι-«g-^ Ic)m- for F(J^ alone or appiied to DUk+ί or D*k + 1.

Next we examine the propagators, and expand in V } to all orders:

Thus we have

We insert the expansion for V } into this formula, and insert expansions for
6jK+1δ), Q(uk+lu\ G j > l o c(M k + 1 Shinto ^^^(Mfc+^J + ίiL'^Ufc+jM). Terms whose
order in ^ (or equivalently in A) is between 1 and n are considered as part of
— W(j'n\ Terms of higher order, or involving F2J(X) or Vj(X) are grouped into an

expansion Σ -W^X), with \W(i\X; x 1 ? x2)|^'^+1"αe-cr(βfc)m". Thus we have
X

written the interaction term in (5.7.2) as

The lower order terms need to be resummed by gathering terms with different;
into a perturbative expression. This is because e~cr(ek} is not small enough to
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compensate for having only a few powers of e^ We must replace G;-(Π(*ι, *2\ uk+ 1)
with Gj(Ω, uk+l) for some fixed Ω. This is accomplished with a random walk
expansion for G7(Ώ, u). Such an expansion is given in [6]. It takes the form

G/Ω,tί) = £G(ω),
ω

where ω is a walk on the lattice of M-cubes in TL - 3 . Each G(ω) has regularity as in
(2.30), as well as an exponential decay in the length of the walk. By summing over
an appropriate subset of walks that remain inside X, a union of L^'M^J-cubes,
we obtain G/Ω, X, u). [An analogous construction for C(\\u) is described in (2.42)
-(2.45).] Walks that stay within \Σ}(Xι,x2)^Ω define G7 loc(Ω, u; xί,x2), which is
then nonzero only if | x t — x2\^0(Iί'~Jr(ek)). A convex combination as in (2.27) is
used to preserve regularity across boundaries of M-cubes. The result is the
expansion

G/Ω, u) = Gj, loc(Ω, M) + Σ G/Ω, X, u) . (5.7.8)
X

Of course, Gj(Ω,X,u;x1,x2) = Quιύessbot'hxί andx 2 are in X. All operators obey
the usual regularity bounds, provided dist({x1,x2},Ωc)>c. The bound on
Gj{Ω, X, u) has in addition a factor e~cr(ek)Lk J '*'. The dependence on u is in X only;
for G / > l o c it is only in an Lfc~7r(efc)~neighborhood of x l 3 x2 Also, when xl and x2

 are

farther than lf~jr(ek) from Ωc, G; loc is independent of Ω.
We have developed expansions for C(^(u\ W(j\ and G/Ω, u). We now put them

together to analyze the expansion of the normalization factors. In the expansion
(5.7.4) we put W ( j } = W(j'n)+ £ W^X). In terms with l^n we separate from

] + the terms of order ^ n in e; . We can write the sum of all these

terms as

dn

These will be treated carefully by a resummation. In the other terms we insert the
expansion for C^fi^+i); they then take the form Y W(j)'(X), with

10 χ

\W(j}\X}\^e]+^-*e~cr(e^x\~(r(ek}U-y (5.7.9)

We can take K arbitrarily large by increasing n. The high power of e } beats the big
factor (r(efc)Lk~;y, the volume of an elementary cube measured on the j-th scale.
This is to account for one free summation on Tt

(/); all but one such summation is
controlled by exponential decay on the j-th scale.

We return to the perturbative terms. Resummation in j will be possible only if
A is localized to sets like yl(

5

J)n/ί(

6

J+1)c. Thus we write

5A')+ Y θμ-θj+l)w5A' = Ak+"Σ A,.
/ = - ! / = 0
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Here θ_ 1 = 1, and each Aj is a smooth, small field supported in A(^r\A(l+ 1)c (A^ if
7 = k). The low order terms can be written as

« 1 Γ « / fc J \ / / * ΛM
Σ d π Σ 77- logz^KlβxpW Σ 1̂ -

π = l W ! L«=l \J« = 0"ejJ 10 V V ί = 0 //Jei = 0

Note that Z%}(...) depends only on £»z for /^j. Thus we can write the last
expression as

k n 1

Σ V V
/ /

fn = jn—l Yl {jot} %= i :minα jx = m

L exp(W Σ eμH) . (5.7.10)

We write all terms in the form of the expansions derived in this section, except that
we write a new expansion analogous to one we gave above for (w5A')™°.

Here αc{l, ...,n}5 and w b ^(X) is also bounded as in (5.7.6).
We insert this expansion in

Π^F,
The result is a localized expansion £F|. /,*(*)> with |Ff ? J b

(unless jα = k for all αeα, in which case \X\ is replaced by \X\~). We make the same
expansions in F2j. The expansions for F t ; , F2, / are inserted in the low order terms
in Vp GJ loc(uk + j δ), and Zl fc loc(w fc + j ύ) + «L~ 2P(w/c + 1 ft). Finally, they are inserted into
(5.7.10),' using (5.7.4) for ίogZ.

The term m=j is special; we bound that term directly without resummation.
The random walk expansion is inserted for C(^(uk + J, and we obtain an expansion
X W^X), with
x

Each term contributing to W(j}"(X) must contain at least one kernel w5. There is a
summation in Λψ0, but since at least one field Λj is present, there is an exponential
decay on the 7-th scale localizing summations near A(^'nA(^+l}c. This gives rise to
the volume factor in the above bound. The volume divergence will be beaten by
small factors coming from large fields near Λ(

5

j)/nyl(

6

7 + 1)c; we will have available

some tfΛΨ'«ΛT 1 ) cIM«/)d

s and since κ(logέ?r >(* .)-* > °gJ£° ' <?}-«, this is sufficient.
k = + 1

Next we take an m>j and we try to replace each C^]7)(wfc+1) with
C(l}

m^j(Λ(m)}(uk+ J. Using the random walk expansions we can write the°difference as

ΣCU)'(X), with \C(j}f(X,x1,x2)\^e~c^~x^e'cr(ek)lxl for χ l 5 x2 in Bm _ .-(/i(

4

m)). For
x
m>7', all operators C%)(MΛ+I) in our low order expansion satisfy this restriction.
Terms with all C^ (y l(m))(wΛ+ j)'s will be considered below. In all other terms, we
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random-walk expand any C^_ j (y l(m))(w fe+1)'s, sum over m, and obtain

X W(j}'"(X], with \W(j}'"(X}\ ^e~cr(e^x\ .
x

We need to replace the propagators Gjjoc(uk + 1), G7 (Π, uk+l)by G7 (Λ(

2

m), uh+1).
They appear in the expansion of Aj joc(uk + ί ) and indirectly in CU)(uk+1). We write

Gjt ioc(% + 1) = GX^W), % + 1) + (Gjt iocK + 1) - Gjt loc

and similarly for G7 > l o c(Π 5w k + 1). We only need to look at this operator in Λ(™\
There a random walk expansion on the j-th scale will yield the usual regularity
bounds on the second term on the right with an extra factor e~cr(ej}. We insert this
expansion into C0) ~ 1 to obtain

CSL^<^ ' + Σ Δ,(X),

where

P(Mi+1), (5.7.11)

\ΔJ{X,xl,x2)\^e-cr(e'}m, =0 if X j or x2φX.

Thus we have

This expansion is inserted at each appearance of C(;) in our low order terms. The
same analysis is performed when G/Π, uk + 1) appears instead oΐGjΛoc(uk+1). In the
leading terms (terms with no e~cr(βj} from the random walk expansions) we put
ζ". = 1 -f (ζ". — 1). The leading terms are now

n \

Σ -Γ Σ
n = l ^. {jα}:minα jα =

Γ π —L « = i de'i«
exp /e/ eJXf , (5.7.12)

where this Zω uses the quadratic form in (5.7.11). Remainder terms are again
localized - there will be typically some delocalized operators and some localized
ones. Thus we random walk expand any GJ{A^l\uk + 1). Also, we expand any

Σ C« _j(Λ^(ut +
p-0 _

and finally we random- walk expand all C^ j(Λ^)(uk + ιϊs- We gather all terms of
this rather complicated expansion of the remainders and sum over m, to yield

£ W(ί)(iυ\X), with
x
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As always, X is a connected union of Lk~ V(ek)-cubes, and W(j)(iv\X) has
dependence only on fields in X, X, or Bk_j(X).

We make a final change in the leading terms, namely we replace
C$m_j(Λ(m))(Λ(2l\ uk+l) with C(j\Λ(2\ M f c + 1), the covariance without Dirichlet
boundary conditions. We give a random walk expansion for the difference,
Σ C^"(X). It is actually a double expansion, since each term in the usual random
x _

walk expansion still depends on Λ(™] through the basic quadratic form [which
involves Gj(Λ(™\uk+ί)'] and through operators C(^(A(

2

n\uk+ί). However, each of
these can be expanded as described earlier, yielding terms C(j}"(X) with proper
locality properties, and obeying the following bounds:

\~X2\ e-cr(e3)\X\- £-cdist({*ι, x2}, Λ(

3

w)r) ^

Leading terms are now given as in (5.7.12) but with no Dirichlet boundary
conditions. Finally, remainder terms are expanded out completely. All remainder
terms have at least one operator C(j]"(X), which provides exponential localization
to Bm_j(Λ(™})c. The field Am is supported in Λ(™\ thus all terms have at least a factor
e~cr(βj\ Thus we can sum all the remainder terms into

£ W(jm(X), with \W(j](v\X}\^e-cr(e^x\.
x

Now the leading terms can be rescaled to the L/~m-lattice, and we sum over
j<m. All the changes we have made allow us now to compose the normalization
factors as

"Π Zω'LJ' m(Ά(™\ u) = Zm(A(™\ u) const,
7 = 0

where the m-step Gaussian normalization factor Zm arises as in Eq. (2.40) of [7].
We obtain the perturbative expansion

«
Σ Σ

n= \ { / α } :min α j ^~nι

r logZm (Λ<?\ uk+1 exp (ienL-m Σ e\λ
eJΛ \ \ ι = m

The diagrams in this expansion are covered by our theorems on the perturbation
expansion. The point is that various Ward identities and symmetries necessary to
obtain good bounds can only be seen in this resummed form of perturbation
theory. We give the random walk expansion for the propagator Gm(Λ(™\uk+ί).
There is at least one factor em in all terms, and a free summation in Λ(™}

nΛ (

6

m + 1 ) c(w<fc) or Λ(™\m = k). Thus we can write the perturbation expansion for
m<k as ΣW(m)(vί)(X), with

X

p'^

As for the W(j)" terms, the volume factor will be beaten by convergence factors
from the large field region Λ(

5

m)/n/ί(

6

m+1)c.
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*
The term m — k is treated slightly differently. We decompose A*l into

θkHk ΛocA
(k} + θkw5A'. Terms with one or more w5A' field are expanded as in the

m<k case. In terms with all ΘkHkΛocA
(k) fields, we expand the propagators as

before, leaving in the main terms the localized propagator GkΛoc(uk+i). The result
is our standard perturbative expansion in the field θkHk ιoc^4(fe), which we denote
β(fc)(wk + 1, ΘkHhΛocA

(k}). The remainder terms become ^W(K)(υi\X\ with

We can summarize the results of this section as follows :

-ρ>k+1,θfcHkiloc^
fc>- Σ W?\X), (5.7.13)

where X is a connected union of r(efe)-cubes in T^\

j = o

and

5.8. Scalar Field Translation

The scalar field quadratic forms, after all our manipulations with the gauge field,
are as follows:

i^'^MMocίδfc + M*^

To eliminate most of the linear term (ψ,Q(uk + l)φy in the small field region, we
make a translation

+l)Q^(uk+l)ψ. (5.8.1)

(Recall that uk + ί=ύk+l in Λ(£\)
The terms quadratic in φ(k} are then

i<Λξ-*ψk\(AkΛoc(uk+ί) + aL-^ (5.8.2)

where

ΐn the cross terms between φ(k} and ψ, we write ψ = Λ($}fψ + Λ($}'cιp. The terms
with Λ($}fcιp define Ά5, a form localized near A(k.}lc. The other terms can be written as
(φ(k\ w6φ), with w6 a small kernel with range less than r(ek). This is because (5.8.1)
would eliminate entirely the linear term were it not for the localizations.
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In the terms quadratic in ιp, we again combine all terms involving Λ(£)/cψ into a
form J6 localized near Λ(

8

fc)/c. The remaining terms become

iαL-2<4k)/ ψ, (I-aL-2Q(uk+ΐ)C[V(uk+ΐ)Q(uk+^ w

with w7 another small, local kernel. We apply the identity [7]

but in a localized version with C|̂ c and Gη

k+ 1>loc and with another small kernel w7

on the right. This yields the desired form ^+ι,ι0c(% + ι);

 ar*d so we obtain

1 > l o c k + ι 8 <φ, w7tp> , with w7 - w'7 + w7 .

To summarize, we have written

^
fc~1^^^

> + <φ(/c), w6^> +i<v, w7φ> , (5.8.3)

with wό, w7 small local kernels, and with J4, J5, J6 localized near Λ(%]lc.

5.9. Bounds on Fluctuation and Block Fields

As we remarked earlier, the restrictions on u(p) and the gauge field renormalization
transformations imply that

1

iek

Also, bounds on φ and ψ — Q(uk}φ imply that for

(5.9.1)

Cpekε ε .

Next, we wish to prove that

\uk+^b^b + y}ψ(b+)-ψ(b^\^\(Dnk + lψ)(b)\^cp(ek), beΛM'*. (5.9.3)

We prove the bound first for DUkψ (before the gauge transformation of Sect. 5). Our
bounds on ψ — Q(uk)φ reduce this to estimating

for any x e #(fr _), xf e B(b+). This is proven with several applications of our bounds
on Dΰkφ. In going from uk to uk+ 1 we made a gauge transformation and removed
some small fields. Also, the gauge transformation was not quite compensated by a
rotation of ψ. Thus in going from the old \Dakψ\ to the new \Dnh + lψ\WG make errors
of the order of cehp(ek}*λk

 1/4, (Lkε)d<λ or

cekp(ek}\λ - 1/2(Lk8)(d ~ 2)/2 + (Lfeε) - l ) , (Lkε)d ^ λ .
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In both cases this is bounded by ^(Lfeε/£0)
1/4~α - see the discussion below of the

bounds on interaction terms. The desired bound follows.
These bounds allow us to insert the following characteristic functions:

γ ,— ΠΛ k + l,Λ (

0

k ) ' 1 1

P o

x Π
yeΛW beΛW*

and the integral is unchanged. If (Ltίε)d^λ, the bound on ψ is replaced with
εΓ\\\ψ(y}\-(^Γίl2(LkεYd-2^2\).

We remarked earlier that A is small in Λ(k)*. We then defined A(k) = A
:^ioc^k.ioc^*6k+i/ Since / is small and Hktloc is regular, we have that

\A(k)\^cp(ek), b<=A(k)*. (5.9.4)

We want a similar bound for φ(k\x\ xeA(k\ Note that C(^c(uk+l) is almost
equal to C(k\uk+l). Thus we have that in Λ(k\ say

0(p(ek)) ,

(the corresponding statement with C(k\uk + l ) was proven in [8, Eq. (2.1 13)]. Using
arguments like the ones we used to bound DUk^v\p, we can replace Q(uk + 1)*ψ with φ
in this bound. This proves that

\φ(k\x)\^cp(ek), XEΛφ*. (5.9.5)

The bounds (5.9.4), (5.9.5) allow us to insert the characteristic functions

XA<»= Π X(cp(ek\AW) Π *(cp(ek), Φ(k})

without changing anything.
We note that the restrictions implied by χΛ(k) are stronger than the correspond-

ing restrictions in χk Λ(k-D> in A^. [When (Ifε)d^.λ, we use the inequality
(UΓll\Lk^f'2}l2 + p(e^(LhΓl^cp(ek}λk

ll\-\ Thus we can replace χktΛ(f-»
with χk,Λ^-^'nΛ^c without changing anything.

Let us summarize the operations performed so far by using the concluding
formulae in the last several sections to write a complete expression for our density.

Qk + ι(v>ψ)

= Σ Σ ί^(W^Aχ(^
{xω} AM 1 1

X ζΛ™*XΛ(»Xk.Λ(* - »>nΛ™*Xk+ l,Λ^'X'Λ^ Π gk(*ω)
ω

x *Π ίZ%g~Z<Jί\β(uk+ 1)] exp [-i</l

- Σ Wίk\Π)-Q<k\uk+1, θkHkΛΰCA^)- X W?\X)1 . (5.9.6)
G X
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5./0. The Interaction for the Fluctuation Fields

Having made the scalar field translation, we regard the terms ^kjloc, R
(k\ Q(k\ F(™\ΌC

as polynomials in φ(k\ A(k}. We make some small changes and localizations in order
to obtain the standard form of the fluctuation field interaction in Λ(£\

We have the external field

flfcflL-2GkilJfifc+Jβ^

appearing in the diagrams in ̂ Moc, R(k\ Fffioc. The first we leave alone, whereas
in the second we localize the field to Ά(% } and replace it with

The kernel w8 is local and small with small derivatives and Holder derivatives. This
is accomplished in the usual fashion by replacing Gk > l o c(wk + 1), C[kl(uk+l) with the
corresponding operators with Neumann boundary conditions on an r(ek)-cube
Π The propagator composition formula [7, Eq. (2.41)] is applied, and
G k +ι(D,w f e + 1 ) is localized again.

We localize all vertices to Z(

8

k); vector field legs at a vertex are multiplied by a
smooth function Θk changing from 0 to 1 in a neighborhood of Λ(

8

k)c. We also
remove all diagrams whose combined order in λi/2 and e is greater than n. We still
consider all Pk vertices together; any P(

k

} vertex is considered as one power of λ.
Each mass renormalization counterterm is written graphically and powers
counted accordingly. The result is the interaction V(k\Λ(£\ w k 4 1 , A(k\ φ(k}), and

Here in writing Λ(^c we mean that only the terms without proper localizations are
included. The terms H^^Π) contain terms localized near the r(βk)-cube Π which
involve the small kernel w8 or have high powers of coupling constants. We have an
estimate

with κ> d as large as desired iϊn>ή(κ). This estimate comes from our analysis of
the perturbation expansion and the restrictions on the fields. We find that each
vertex results in at least a factor e/?(Lfcε/ε0)

1/4~α.
Estimates on V(k\ Q(k\ R(k} follow from the same analysis. When localized for

example to a cube of size K^/λ a^ terms [except for
Pk(αfc + 1L- 2GJ[+ l t l o c(u f c + 1)βf+ 1(M k + 1)ιp] are bounded by eβ(Lkε/ε0)

114-*, with α, β
small and positive.

In a similar fashion we modify the external scalar fields in Fffloc and eliminate
diagrams of order higher than m. Thus we write

with Fktloc(Xσ) containing the w8 terms and the higher order terms, and satisfying
Fkiloc(Xσ)^c(F). We regard Ffjoc as a polynomial in A(k\ φ(k).
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5.11. Mayer Expansion I

In this section we expand irrelevant terms down from the exponent. This operation
is done to simplify the structure of the integral in the region free of irrelevant terms.

Let us combine the irrelevant terms as follows:

Σ
x

with W£\X) containing terms with dependence in X. We combine the estimates on
the above terms to obtain

We can only Mayer-expand small terms, therefore we parcel up W£\X) into
manageable chunks. It is a simple matter to decompose W^k\X] as follows

Σ
j<k X j e B k - j - ^ W n Λ ^ ' n Λ O + i J c

Here xk is some distinguished point in X (for unity of notation) and

^}(xp X)\ ^ ej ~*e~ cr(ek) m ,

TO(*fc, X}\ £ Iep(lfφ0)γ+ ί *-«•<*<> I*! ' .

The Mayer expansion is the usual identity

expf- Σ Wlk\X)\ - Σ Π (e-W(x»X)-\). (5.11.2)

Let S4 be the set of all triplets (/, xp X) that arise in the above decomposition of
Wϊk\X), for any X. Then S4 is summed over subsets of S4. Note that e ~ w™(x" X) -1
satisfies the same bound as W^k](xp X).

To see what kind of control we have over this expansion, let us do a typical
estimate of the type we need:

φ0)Tn + }m (5.11.3)
\j<k

We consider first sums over XΆ such that χjtΛ = χ.. A combinatoric factor c'*αl

controls each sum over XΛ, and can be absorbed into the factors e~
ct'^\x\~ in our

bounds on e~
w(k)(Xj'x)—L If there are n such sets, we use n factors of ej ~ΛE~cr(ek\

j < k. The resulting estimate has a factor

Σ (ej ~ae~ cr(ek})n ^ exp(e) " α e ~ c/r(βk))
π = 0

at each Xpj<k, or 0(\\j = k. There remains a factor [e^(Lfcε/ε0)](" + 1)|x| from a
worst-case analysis of the unused small factors, and (5.11.3) follows.
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We also expand out the observable:

Yl(Ft^(Xσ) + FkΛoc(Xσ) + FkΛQC(Xσ))=^ Π f?.loc(*ffl) Π FUctSQ,
σ σi σ ieσi σφσ\

with F'kt loc = Ffc; loc -f Ffc ?loc, and with o^ summed over subsets of the index set for σ
on the left-hand side.

We now fix σ l 5 S4, and define A^ as follows:

^=^ u χ. u *.
Then we define Λ(£} by deleting a collar neighborhood of width r(ek) from Λ^. In
Λ(

9

fc) we attempt to remove the characteristic functions χΛ(k). Thus we write

and for each type of characteristic function in χΛ(k) we expand χ = 1 — χc, as follows:

Π χx= Σ Π (-/J
x e y l ί f c ) ^ C / l W xe^

We have similar sums over Sy C A(^' ', Sb C A$}*, Sp C A(£**, and we define J?(

9

Λ) as the
union of all r(efc)-cubes in A(g\ none of whose points are in Sx, or in bonds,
plaquettes, or blocks in Sb, Sp, Sy. The characteristic function expansion can now be
written as „,

G<*»«= Σ Π (-£)
{Sx,Sy.Sb,-Sp} compatible with yϊ(

9

k)c, AW xeSλ

x Π (-4) Π (-**) Π (-4)-
)'eSy beSb pεSp

Finally we define A(Q by deleting a collar neighborhood from A$\
These expansions complicate our expression for ρ^+i(v,ιp) in (5.9.6),

however the integral in A(^0 is quite simple now. It involves a small, local,
polynomial interaction V(k} modifying a Gaussian integral in φ(k\ A(k\ The inverse
covariance is local and bounded from above and from below. The characteristic
functions χ' are simple functions of φ{k\ A(k} keeping them bounded. The
observable is a product of polynomial pieces given by low-order perturbation
theory. Large field and nonperturbative effects have been separated out.

5.12. Conditional Integration

We exploit the simple structure in A(k}

0 by doing the integrals there with
conditioning on A^9 Λ(k^*c. The formula we use is a generalization of the
following identity for scalar fields:

~
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Here Λf is equal to the last integral, without G(φ). Thus in our expression for
ρ^V j(ι;, φ), we have now an "exterior" integral over u(k\ φ(k} in Λ(k}

0

€, whose Gaussian
piece has been replaced by

L^ζ^
i<Λ(#^4<fc>^

(5-12.1)

The "interior" integral is

\ uk+ί,A
(k\ φ(k})-] . (5.12.2)

Here .jV is defined by the last integral, but without χ'Λm, F™Λo<., or V(k\
Let us describe more carefully the calculations leading to (5.12.1). The third

form, together with Z(*m(uk + i), is a calculation of

m\λys exp[ -iO

The 4-th and 5-th forms, with Z%)c*c, are a calculation ofy 10

)Ufe^^
(5.12.3)

The factors ek/2π come from the replacement of du(k} with dA(k} for the free
variables; for the constrained variables the replacement is compensated by a
removal of the ek/2π factor from the ^-functions, see (4.6)-(4.8).

We calculate (5.12.3) by means of a translation

A(k) = A(v>, _ ΛWc*cQs*QΛ(k$*A(k) , (5. 1 2.4)

which removes the dependence on Λ(k)

0

c*A(k) in the (5-functions. In fact, δ^ Λ(k),(A(k))
}'\ and since ββs* = /,

The fourth quadratic form above is obtained by collecting the terms in the
exponential quadratic in Λ(k£*A* k\ There remains a linear form

Λ(ί£*^4(fc^ (5.12.5)
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whose expectation in the Gaussian

gives rise to the fifth form.
We remove the nonlocality in the third and fifth quadratic forms with random

walk expansions for C(k}

(k)(uk + 1) and for C(k)

(k)C*c as in (2.45) and (2.48). These obey
the usual estimates. We denote the first and'second quadratic forms by ΆΊ, and the
other three [with C(%\v(uk+ J, C^k)c*c replaced with C($vAoc(uk + t), C^k)c*c>loc] by Άs.
Altogether the exponential in (5Λ2.1) has been written as

. χ

Here W^\X) contains the terms with C^w x(uk+l) or with C^k)c*c x, and satisfies
\WjV(X)\^e~cr(e*}m. The quadratic forms' in J7 and j28 are localized near A(k}

0

c.
We make the same translation (5.12.4) in both numerator and denominator of

the normalized integral in A(fy. Terms quadratic in A(k]

0

c*A(k} cancel, but we still have
the linear forms (5.12.5) and <A(k)

0φ
(k\ AkAoc(uk+1)A(k}

0

cφ(k}y as in our last
calculation. We remove most of these forms with localized translations

Λ(k}> — Λ(k}» r<(k) fi* fit T r - 1 /l(k)c*cπs*π\ Λ(k)c* A(k)
Ά ~Λ ~~^Λ(Vc*cΛoc° σk,\oc°(1 ~~ ̂  Λ\Q y, \1)ΛIQ Λ •>

Terms quadratic in A(k}

0

c*A(k} or Λ(k}

0

cφ(k) cancel as before, leaving the following
integral:

Here dμ($kί is an uncentered, normalized Gaussian measure,

", (/ - d*σk: loc5C!ί(W«, loc)δ*σk> locd(I - L~ ' Λ

x C!ί{fco,.loc(wt+ ι))^t.,oc(«k+ O^foV)] (5.12.7)

This measure has covariances C(

ΛL^tc, C(^k)(uk+l), and nonzero means reflecting
the terms linear in Λ(^φm" or A(flc*cAw"1."



Abelian Higgs Model 303

After the conditioning our density assumes the following form:

= Σ Σ Σ Σ Σ f Π
{XM} Λ(M S4 σ, AM j = 0

v - s ιwrwfe)v> I^JLOA^}? Ύ r~ v π
X 0Λ(k)>*c{V/y,U )0ΛW'*nΛW'^ I ̂  \L^ } Uw-//lWn/|W^/|(^//c+l,^W' 11 ,

x Π F(k)Joc(Xσ) Π (e~W<°
σφσi

xexp

(5.12.8)

The next two sections will focus on deriving a cluster expansion for the dμ(k}

(k)

integral in (5.12.8)

5.13. Decoupling of the Small Field Region

We give a cluster expansion for the dμ^ integral in (5.12.8). The purpose is to
remove the dependence of the small field integral on the boundary fields. The
cluster expansion has two parts; Mayer expansion of the interaction, and
interpolation of the covariances of dμΛ(k).

Let us divide A(k} into its elementary r(efc)-cubes Π(α) We assign to Π(α) all
bonds O, x + eμy with x e Π(α). Note that V(k\Λ(k,\ uk+l, A(k\ φ(k}) involves A(k}\Λ<^
φ(k]\Λ(h) only. Thus we localize the fields φ(k\ A(k} in V(k} by writing

φ(k} = ̂  D(«)φ(k) 9 A(k) = ^ ΏMA(k) t

α α

We associate to any collection of localization cubes a smallest connected union of
cubes containing them (call it 7). Summing over all terms in V(k} and over
localizations giving rise to Y, we obtain a decomposition.

V ( Λ uk+
Y

The last term includes all terms independent of A(k\ φ(k\ We have an estimate
|F(/c)(7)|^^(LV^o)1/4~α Note that 7 contains at most a few cubes.

Next we Mayer-expand the interaction

Λ+ιM(k),0(k))- Σ
x

Sγ
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Here SY(S5) is the set of all Y's (X's) that arise in a term in the Mayer expansion.
We decompose Λ(k^ into elementary regions {Di}ι e/ which are connected

unions of Π(α) Two Π(α) are included into a Π/ if one of the following conditions
hold:

(i) They are both in some Y, YeSY,
(ii) They are both in some X, X eS5,

(iii) They both contain sites or bonds within r(ek) of some Xσι, σv eσl.
(iv) They are both in a connected component of A(k\c.
For the decoupling of the Gaussian measure, we interpolate the covariance

with parameters ^e[0, 1], z'e/, which turn off interactions between Π* and Π/
The factors δ((QA(k)"} (b')} in the measure constitute an interaction between blocks.
It is convenient to treat them directly, so we trade them for a fictitious integration
dB, where B is a field on Λ(^c*c. We insert 1 = Λ/"1 JdJ3exp(-l/2<5,5» and
translate A(k}" by Q5*B to obtain

μ^n^Λ^
= Jf ~ 1 J dA(k}"dBe ~ 1/2<B> B>δ(QA(k>" + QQs*B)δAx(A(k)")f(A™" + QS*B] .

(5.13.1)

The translation does not affect (5Λx, and by (1.2.19) we have QQS* = L Integrating
out B yields

^ ~ 1 j dA(k>" exp [ - ±(A (k}\ Q*QA(k}"}~\δ^(A(k}Ίf((I - Q**Q)A(k>") .

Thus we have a new quadratic form for Λ(k}

0

c*cA(k}", namely

β*β + (/ - β*βs)3*σfcι locδ(/ - βs*β) . (5.1 3.2)

This is still bounded below on the subspace determined by δAx(A(k)f'): our lower
bound on d*σkΛocd implies a lower bound

Applying (5.13.1) to numerator and denominator of the dμ($M-integral in
(5.12.8), the Λf 's cancel, and we obtain

° 7 ffieσi ' YeSY

x Π (e~w*(X)-\)= T
/4 Y6J 'i

where /(D,) is the product of all the factors under the dμ(k)

(k) integral above that are
localized in Πr (Factors localized in A^ are assigned to the Π/ intersecting the
corresponding component ofA(£{c.) Our construction of the Πj ensures no overlap
of factors between different Π/s. Everywhere yl(/c)// appears as (/ — Qs*Q)A(k)". The
expectation < > t is in the measure

-— rfΦ|yl(k)(5Ax5yl(k)*(/l(/c)//)exp[^<Φ,zlΦ> + <Φ, J^>].

We have simplified the notation by writing Φ = (A(k}", φ(k}"}, dΦ\Λ^>
= dA(k}"\Λ(k)c*cdφ(k}"\Λ(k), A(klcΦ = (A(klc*A(k]", A(klcφ(k}"\ and so on. The quadratic
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and linear forms A and 3F are obtained in the obvious fashion from (5.12.7),
replacing Λ(^*cA(k)" with (\-Qs*Q)Λ(^*cA(k)". The linear form is localized near
the boundary of A^.

To preserve positivity and boundedness properties of the inverse covariance,
we define our 5-dependent inverse covariance by taking convex combinations of
inverse covariances with Dirichlet boundary conditions. For an arbitrary subset Γ
of / we define Dirichlet forms:

e

where Π c= U '— ' / ? an<^ a^ °Perators are restricted to the subspace A(k)"(ΓytX) = Q.

Next we define an operation

aΓAΓ = AΓur >

and we define a quadratic form for s = {si}iel:

4= Π [(1-̂  + 5^= Σ Π(l-*i) Π Mr-
iel Γc/ ieΓ ieI\Γ

Note that by resumming the expansion above and using the fact that for i" φ i or i\
or for i = ί', Πi(^π ϊ"^)Πi' = Πi^Πi / ' we obtain that

Using the theorem on unit lattice operators in [6], we can invert this operator to
yield an exponentially decaying covariance CS = ( — A S ) ~ 1 .

To give our expansion, we use the fundamental theorem of calculus to write

Π/(Πi)\ = Σ Sdsr^-(
ιeί I 1 Γ C / OSΓ \ιel / Sr

Here sr specifies sf = 0 for ί φ Γ , dsr= f j dst, c/dsr= [] d/dsb and <*X Γ is the
ίeΓ ieΓ

expectation with quadratic form A^Γ instead of A. To calculate the ^-derivatives,
note that the first derivative produces a term

Φ i iel

Subsequent derivatives either hit factors s7 already pulled down or bring new terms
down with new truncations. After all derivatives are performed, we set the
remaining Sj to zero, so only terms with no s7 multiplying them survive. The result
is

/ l/Ί/2
= Σ Sd§Γ Σ ( π

i Γc/ pairings p = {pγ} of Γ \ 7 ~ 1

Recall that we have a linear term in the measure, <?<φ"^>. With this term,
integration by parts replaces Φ by C&(δ/δΦ) + C^ (see Eqs. (12.2), (12.3) of [3]
where a similar expansion is used). We integrate by parts all fields appearing in this
formula. Each Φ contracts through a Cs to another Φ, to an /(Π/)5 or to J^. If a
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closed loop forms, or if a train of covariances beginning and ending in 3F forms,
then the term disappears with truncation. Thus we have only trains beginning with
a δ/δΦ and ending in either δ/δΦ or 3F. The sum over pairings and the sum over
ways of arranging the contractions combine into a sum over walks {ωα)αeπ, ω = (z\,
iii -> ZM) involving the sites in α, an element of a partition π of Γ. Thus letting 3>
denote the partitions of Γ, we have

= Σ ί dsr Σ ( Π I Σ
ΓCI πe^(

(5.13.3)
ie/ / lr

The 1/2 for the δ2/δΦ2 term compensates for the fact that we count a walk as being
different from its reverse. The combinatoric structure of (5.13.3) is very similar to
that of the GJS cluster expansion [9].

Let us examine the factorization properties of this expansion. The form A has a
range less than l/2r(ek). The /(Πi) do not couple different Πi Hence only adjacent
Πj with Sj ΦO interact in the above formula. Thus our expression for

d/dSf I Π /(Πi)} factorizes over the connected components of Γ. (Here we say
V e / I *ι

that Πi is connected to Π t ' if they abut on a hypersurface of any dimension.) The
expression also factorizes over the Πi' z'e/\Γ. Call the factorization regions
clusters.

It is worth mentioning here that only clusters intersecting Λ(k\c have any
dependence on Λ(k$φ(k\ A(k]

Q

c*A(k\ This is because &, A(k)-A(k]\ φ(k}-φ(k}" are
nonzero only in A(k\c. Thus we have finally decoupled clusters that do not intersect
Λ(k\c from the large field regions - at least in so far as the fields u(k\ φ(k} are
concerned. There is still dependence on the block fields υ, ψ which have yet to be
integrated over and decoupled. We denote by Λ(k}

2 the set of sites in clusters not
intersecting Λ(k{c.

We give now the expression for the polymer activities of this expansion. Given
some region X, a union of Πp we sum Γ over all subsets of {/ e / : Πi C X}, such that
X is a single cluster. Writing

we have

Σ π /'
Here 5 = {s f : Π / C X}, and < > Sr t x is defined by integrating over the fields in X only.

We obtain the following expressions for the dμ^-integral in (5.12.8):

ΣΣe-κ<Έ.w^» Σ Πgι(Xa[) = e-v<i>w^>) Σ Πg2(^α). (5J3.4)
Sγ S5 {^Γα} f i l l i n g A(M α {Jα} α

Here g2(^α) is obtained by summing over Sγ, S5 compatible with Xa (each Y9 X is
contained in XΛ or the corresponding component of Λ(k[c):

= Σ
SV Ss compatible w i t h Xx



Abelian Higgs Model 307

Let us estimate g2(Xa) now. Each time some cubes are joined into one Π* by an
e-vw(Y)_ί or an e-w«<\x)_^ we get a factor β/?(Lfc

ε/ε0)
1/4~α or e~cr(ek\ Each time

some Πj's are joined, we have ^-derivatives, which produce functional derivatives,
chains of co variances Cω(α), and factors SF = 0(e~cr(ek)). Functional derivatives
hitting χ-factors farther than l/2r(ek) from Λ($ produce factors e'cp(ek)2 after
integrating with respect to A(k}", φ(k}". These derivatives are supported at \A(k}"\
^cp(ek) or \φ(k}"\^cp(ek) (here we use the fact that the translation vanishes). Thus
we can use the arguments at the end of Sect. 14 in [3] to extract the factors e"cp{ek}2

from the Gaussian measure. Functional derivatives hitting e~v(k)(Y} yield factors
eβ(lϊε/εo)1/4~*. Functional derivatives hitting /-factors within ^r(ek) of Λ($ are
connected through Cω(α) to Λ(k\, so we get small factors e~cr(ek) from the exponential
decay of the operators Cs and A in Cω(α). Altogether we have small factors at each

end of C0)(α) (except for contractions to FJ*loc(^σι).) If the walk ω(α) wanders
through more than a few cubes, we begin to pickup factors e~cr(ek\ These control
the sum over walks and partitions, and the factorials, as in [9]. (Factorials can be
produced when many functional derivatives hit the same object, for example a
characteristic function.)

Altogether, we typically get at least a small power of β/?(Lfcε/ε0)
I/4~α in every

cube of Xa. The exceptions are when cubes are in a component oϊA(f\c, when they
support some F™tloc(Xσι), or when XΆ is a single cube. We must allow for divergent
factors such as (I}ε)~m at F™loc(Xσι), where m depends on F. Estimating the sums
over Sv, S5, and the sums in the cluster expansion leads to combinatoric factors

Qxp((eβ(Lkε/sΌ)ίl4-Λf\XΛ\)9 β'>0.

Such factors are easily beaten by the small factors described above for nonexcep-
tional cubes. For the cubes in Λ(k\c or for a single cube, we have to include the
proper volume factor in our final estimate.

In sum, we have the following bound or g2PQ:

The product over σ ] runs over σ1eσ1 such that Xσι C Xa or Xσι is in a component
of A(klc overlapping Xa. If \XΛ\ = 1, with no Ff loc-factors, then we have the more
precise bound |g2(^α) — l|^^(L fcε/ε0)

1/4"α, obtained from the same estimates on
the Sγ, S5 sums, and from extremely small factors when a /-factor is replaced by 1.

5.14. Resummation and Extraction of the Perturbation Expansion

The estimates in the last section show that the basic volume dependence or
pressure for our expansion is naively of the order of (^(Lfcε/ε0)

1/4~α/'. We need to
do better in Λ(k\, the region that has been decoupled from the large field regions.
We improve our expansion in A(k\ by computing the pressure and the expectation
of Ff;loc as perturbation series plus remainders of the order of (^(Lkε/ε0)

1/4~α)Λ + 1,
(^(Lkε/ε0)

1/4~α)m+1, respectively. The remainder terms are so small that they can
be treated like the large field effects and ignored in the expansion at the next scale.
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The perturbative terms exhibit renormalization cancellations, and so obey the
bounds we need for the next step.

To extract the perturbative terms, we resum the decoupling and Mayer
expansions in A(k}

2. Note that W^k\X] φ 0 only for X at the boundary of A(k]

Q. Thus
J/K5

(k)-terms will not appear in the resummed expansion. We obtain for the
expansion in (5.13.4)

Σ
{X<x} « ί^α) overlapping Λ^c α

where

) = Σ V(k\Ύ}.
YCΛlk2

Recall that A(k}" = A(k\ φ(k}" = φ(k} in Λ(k\, and that y4(/c)// has been replaced by
(/ — Qs*Q}A(k}" everywhere in the integrand.

We treat zF(A(k}

2) as follows:

where z(A(k\) = zF^l(A(k\), and we give expansions for ZF/Z and logz. The first
expansion will give rise to F£+ l j l o c plus remainders, the second to ^k + i,\oc P

ms

remainders. We consider only logz for the moment.
Define zt(A(k}

2) for t e [0,1] by replacing V(A(k}

2) with tV(A(k\\ replacing χ(cp(ek),
(I-Qs*Q}A(k}} with χ(cp(tek), (I-Qs*Q}A(k}\ and similarly for χ(cp(ek), φ(k}\ Thus
the restrictions and the interactions disappear at t = 0, at which point we have a
purely Gaussian expectation.

Thus we define perturbative terms for the action,

and a remainder

Here < )f is the interacting expectation

with χ'Λ(k),t defined as above replacing p(ek) with p(tek).

We express each d/dt as a sum £ (d/di)Γ where (d/dt\ acts only on the ί before a
— y

particular term F(/£)(7) in Fw or in a particular χ-f actor. We cluster expand as
before each integral making up the truncated expectation values <(d/dt)yι;
. . . (d/dt\. + 1 yt. Let H C { 1 , . . . , n + 1 } specify which observables are included in one
of the integrals. lίJeH then we have a factor (d/dt)y. in the integral. The partition
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{Πi} of Λ?2 is determined by the sets Y from e~
tV(k)(Y}-\ factors, and by sets Y

from V(k\Y] factors differentiated down. The expansion takes the form

Σ T\g3(Hp,Xe). (5.14.3)
jeH\"T/yj / i . Λ W {Xa} f i l l i n g Λ[kj β

Here HβcH specifies which (d/dt)yj have supports intersecting Xβ.
The polymer activity g3 is essentially the same as g2, but with additional

observables, namely the (d/dt)y-ΐactors determined by Hβ. Also, the interaction and
characteristic functions have been partially interpolated away, and there are not
FK^-terms.

If \Xβ\ = l, Hβ = §, we write g3(ψ,Xβ)=\ +g'3(0,^/?) and the above expansion
holds again, but without the condition that {Xβ} fill Λ(k}

2. The {Xβ} must cover all
cubes connected with the (d/dt)y , jeH. Let us drop the prime, and prove that

(5.14.4)

We use Xβ\Hβ to denote the set of cubes with no (d/dt)yj factors, jεHβ.
The proof of this estimate is similar to the one for g2. We mention only the new

features. Each factor F(/c)(Y) in [] (d/dt)yj produces a factor eβ(Lkε/ε0)
1/4~a in the

final estimate. This is obtained in the Gaussian integration estimate, using the fact
that V(k\ Y) is a small polynomial in A(k\ φ(k\ [The restrictions disappear as ί-»0,
so V(k\Y] cannot be replaced by its supremum.] The factors e~tV(k)(Y} — l can be
bounded as before, because the coefficient ί in front of V(k}( Y) plus a small power of
ek easily beat the bounds A(k\ φ(k}^cp(ek). Each /-derivative of a χ-factor in χ^w.f
gives at least a factor eβ(Lkε/εQ}1/4'~a. This follows because with χ'(l, x) = d/dxχ(l,x),
we have

a k A(k}

dt " k 9 cp(tek)

and similarly the n-ih derivative in t of χ(cp(ek), A(k}) is bounded by t n times a
function bounded by a constant and supported in clp(ίek)^\A(k)\^c2p(tek). After
integration over A(k\ we obtain factors cί~πe~cp(ίek)2^(^(Lfcε/ε0)

1/4~α) Similar
bounds hold for </>(k). The bound for Hβ = ψ, \Xβ\ = 1 was obtained for g2, and the
same proof applies here.

Returning to our expansion, let us sum first over {Hy}, the partition of H
determined by the {Xβ}. Denote the Xβs with Hβ φ 0 by Xy; the Xβ with Hβ = 0 by
Yδ. The expansion (5.14.2) becomes

Σ Σ
{Xy},{Yδ}nono\erlapping

Each Xy must cover and connect all the ί-derivatives specified by Hy. Next we
reorganize this expansion in order to extract the truncated expectation values
(5.14.2). This involves adding and subtracting terms in a scheme familiar to one in
[10]. We insert factors

1 if X, Y do not overlap,
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and similarly factors u(Xl9X2), u(Yl9 Y2). We extend the sums over { X y } , {Yδ} to
nonoverlapping sets; however the corresponding subsets of H remain the same -
no duplication of t-derivatives. We put u = 1 -f a and expand in the usual manner.
This enables us to factor out the normalization zt(A(f2) to obtain

π ίd} \- v y v11 1 - j τ l / - L L L
jeH \ai/y}/t {Hy}e0>(H) { X y } (Yι,...,YB)

x~Σ Π a(&)l\g3(HΓXy) Π g3(Φ,Yί).
D[ G J^eG γ δ=l

Here 3? denotes pairs of clusters (lines) and G runs over graphs of such lines in
which each Yδ is connected directly or indirectly to some Xr The connected
components of G define a partition of H which corresponds to the partition in the
formula

- Σ
j

Thus we have a formula

"[<*)])- ΣjeH L \aι/γjJ/t {Hγ}e&(H)
Σ Σ
Xv\ (Yι,....YB)

X ^ T Σ Π θ(j5?)Πg3(tfy,*y) Π
° - Gc g'eGc y δ=l

where Gc runs over connected graphs involving all clusters XΓ Yδ, and hence all of
H.

We use this to give an expansion for the remainder from the perturbation
expansion of the interaction:

#*(Λ(ίl)= Σ Wg*(X).
X C Λ l f j

Here W^k}'(X} is obtained by summing only over {X}}, (Yl9 ..., YB) which fill X,
summing over {y7 } with suppt(d/dί)v C X, and integrating over t as in (5.14.2). It is
now a standard exercise to estimate the expansion, using (5.14.4). The result is

(We allow adjustments in β, α, β', keeping them small.)
We make some modifications in the perturbative terms to achieve the standard

form of the interaction, ^k + ijoc We give random walk expansions for the
propagators C^L, C(^(uk+l) produced in this step. The leading terms, with only
propagators C%> loc, C$k)>loc(wfc+ J, we transform further. The others, localized in
region X, have a factor of e~

cr(e^\x\t We also consider as remainders any terms
whose order in λ and e is greater than n.

We wish to replace CΪL loc with C($c. Recall that C(k} is the Dirichlet inverse to
(5.13.2), and we define C^;loc by cutting off the kernel when the arguments are
separated by 0(r(ek)). C{k)

c was defined in (2.9), starting from the inverse to δ*σk>locδ
on the appropriate subspace. The replacement of C^k)>loc with Cj] loc produces
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terms localized near Λ(k}

2

c. These terms are bounded by a small power of coupling
constants, ^(Lfcε/εo)1/4~α To make the replacement of C ]̂ loc with Cj^, note that
the former always appears between two operators as (/ — βs*β)C$],ιoc(/ — Q*βs).
This differs from C|̂ c by a small, local operator, since after replacing Cj£ϋ>loc with
C ]̂5 we have an identity

( T _ n * ns\ c^ c^ -u Γι(o ~ cr(ek)\
(* \L\l) — ̂  ~^loc ' ^V^ )•

Thus after removing some 0(e~cr(eι<}) remainders, we have our standard covariance

We compose propagators, using also terms from
^const(^8C)) For gauge field propagators, we apply (5.5.11). For scalar field prop-
agators, we use the identity 2.42 from [7]:

There are also small (0(e cr(ek))) terms involving G f c j l o c(M f e + 1) — G f c(Π,w f c + 1),
Cl^Mfc+O-C^ίΠ^fc+i), and G f c + 1 < l o c (M k + 1 )-G k 4 ι (D 5 w f c + ι), and boundary
terms as above involving C^k) s l o c(wk + 1) — CJoJ.(wk + 1). We end up with scalar field
propagators Gη

k+ 1 > loc(wk + j). For simplicity we extend the localizations of vertices in
all diagrams back to /ϊ(

8

fc) (for gauge fields we use a smooth localization function).
This produces more boundary terms. Then the terms produced in this step
combine with the old terms Fc

(^st(Λ(

8

fc)) to produce the full interaction ^+ ι.ιoc(^(8 O
Altogether we have written

Σ
X

If we put W^(X)=W^}'(X}+W^"(X\ then W?\X) obeys

ε0)
ll4-«)β'^, otherwise.

We apply a somewhat different procedure to extract the proper perturbative
terms from the observable. We integrate by parts in the Gaussian expectation
(5.14.1). Each F*loc(XσJ is a polynomial in A(k\ φ(k}; those fields can be contracted
via covariances C$M or C ( k }

( k ) ( u k + l ) to other observables, to χ'Λ(k), or to the
interaction. After each integration by parts, we replace the covariance by C$c or
C[ol(uk + 1) an^ giye a random walk expansion for the difference. For each term, let
X be the union of the cubes covering the Xσι and the regions from the random walk
expansion. A connected component of X is called complete if a contraction to χ'Λ(k)

occurs, if a term from the random walk expansion occurs, if at least m -f- 1
interactions have been differentiated down, or if the term is constant (all legs
contracted). We stop integrating by parts fields in complete components of X.
After sufficiently many integrations by parts, all components ofX will be complete.

We break up the observable according to the connected components oϊX. The
components containing contractions to χ'Λ(k), terms from the random walk
expansions, or at least m-\-\ interactions are called remainder components {Xr}>
The other components are called constant components {Xc}, since the observable
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there is independent of A(k\ φ(k}. We can arrange the construction so that the {Xc}
are determined once the remainder components are specified. Summing all
possible diagrams in Xc gives the observable for the next step there, Fk + ltloc(Xc).
Summing all terms in Xr gives an observable Fkfΐem(Xr). Then the result of the
integration by parts is

~= (Π^IOCPU) = Σ UFL

k+lΛoc(X
Z \ f f l Λ {Xr} C

where ( - X is the interacting expectation at t = \.
Having extracted the desired perturbative terms Fk + lΛoc(Xc), we need to finish

the calculation of the remainders by giving a cluster expansion for (γ\ Fk TQm(Xr)\ ,
\ r ' I 1

with appropriate bounds. We use essentially the same expansion as before, Mayer-
expanding F(ίc)(Y)'s and interpolating the Gaussian measure. Finally the polymer
expansion 11 = 1+ a permits us to factor out the normalization. Without going into
details, it is clear that the result can be written in the following form:

= Σ l\Gk(Xr.) Π Ft+ltloJ(Xe).
{Xr'} r' c:Xc<tuX,>

The Xr, are disjoint, and each one covers at least one Xσί, the support of one of the
observables F™loc.

The main source of concern in estimating Gk(Xr>} is that we only have bounds
\Fk Λoc(Xσι)\ :gc(Lfcε)~m(c)e ~ m'(c\ coming from our estimates on perturbation expan-
sions of observables similarly for Fk + 1 ιoc(Xc). Here m(c), mf(c) depend on the terms
in F in Xσι or Xc. By performing sufficiently many integrations by parts, we have
arranged for enough small factors to beat these large factors in the remainder
terms (at least if Xr, is not at the boundary of Λ(Q). Near the boundary we have
potentially large covariances C^Moc - C^ or C%iloc(uk + l)-C^c(uk + l), so we

make use of the proximity to Λ^ to provide the necessary convergence. These
considerations lead to the following estimate:

x Π [c(Lkε)~m(c)e~m/(c)].
XσίCX:dist(Xσv,A(kjc)<r(ek)

To summarize the results of this section, we have

Σ Π g2(xj Σ Π G^Γ )
{ X x } overlapping Λ<fi>c a. {Xr>} r'

x Π ί ί +i.iocWexp-^L^μ^-Σ^'WV (5.14.5)

5.15. Second Mayer Expansion and Scaling

in this section we recover the induction hypothesis for k + 1 instead of k, and write
a formula for the hole functional gk+ι(Xω) First we Mayer-expand the irrelevant

terms:

) = Σ Π (e~wP(X)-l). (5.15.1)
S6 XeS6
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We define

Λ (^=Λ?>\ u x\(jx, \ U x<\
\XeS6 \r' \c:XcΓΛX*Φ,XeS6

it is a region now completely free of irrelevant terms. We write

Π FL

k + , . loc(Xc) = Π nL+ 1 , loc(Xc.) Π FL

k+ 1 f loc(Xff,) , (5.15.2)
c:X c.ί u,X,' c' σ'

where {σ'} = {c: Jf.C/ίf]}, and {c} are the rest.
By inserting (5.14.5), (5.15.1), (5.15.2) in (5.12.8), we obtain the final form of the

density ρk+1(v,ψ).
We now scale this density from 7}<k + 1) to T}k+1\ putting ψL(y) = L~(d~2}/2

ιpl(L~ l y ) . If we define

then the integral of ρ(v, ψ1) is equal to the integral of ρL(v, ψL). Thus we define the
(fc-hl)th normalizing energy to be

7 f\

δk + ι=δk + EM+-^-(\QgL)\T*+" . (5.15.3)

Let us describe how the scaling affects a few of the objects that will be needed in
the next step. Defining f(k+l\p) = (ίek+ι)~l logί (p), we have that

and thus in Λ(£}* we have

w^i.^ίβ^expC-i^L-1^^,^-1^^

as in the induction hypothesis (4.2). The quadratic forms become

The interaction and observables are scaled and written as ^ fe+ι.ιoc(/l(

8

k)) and
Fk+ ι,ioc(Xσr)> respectively. Propagators and vertices appear scaled to the L~lη
lattice. The scaled form of the normalization factors is given in (4.6), (4.9).

Let {Xω>} be the components of Λ(QC, and let Xω, also specify Λ(*]cc\Xω, and a
collection {^ω} of sets from the previous step. We exhibit the factorization of most
of the terms in ρk+ ^(v, φ) by writing

Qk+ι(v,ψ)= Σ J Π
[Xω'} 7 = 0

= / f c +ι.^>' Π g fc+ι(^co') Π Fk+lAoc(Xσ.) Π
'
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which is in the form of our original induction hypothesis, (4.1). The hole functional
has the expression

g*+ι (*«>')= Σ
S4, σi, ΛMr\Xω>, {X*}, [X> / } , S6 compatible with Xω

~

xΓJg« Π n.,oc(^) Π (e--»ti<^>-l)
cυ σφσ, X^C.Xa,' (j.Xj,X)eS4

x Π g2(*,) Π Gk(Xr.) Π (e ' W^(X) - 1 ) Π *\ + 1 . loci*,-)
ct i ' XεSύ c':Xc CXω

Γ 8

xexp - Σ ̂ *J-.̂

(5.15.4)

Compatibility means that the summations run over sets associated only with
Xω, and that the sets would have given us Xω, in the course of our constructions.
Specifically, this implies a certain "density" of terms leading to convergence
factors, and compatibility of the sets with the layered structure imposed by the Λ(£\

We have discussed the estimates on many of the elements of the expansion in
gk + 1. However, we cannot complete the estimates until after extracting conver-
gence from the large field conditions. This is accomplished only after integrating
over the final v9 ip in the last step. These problems, and the problem of decoupling of
the final fields, will be considered in a subsequent paper.
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