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Abstract. For the Broadwell model of the nonlinear Boltzmann equation, there
are shock profile solutions, i.e. smooth traveling waves that connect two
equilibrium states. For weak shock waves, we prove asymptotic (in time)
stability with respect to small perturbations of the initial data. Following the
work of Liu [7] on shock wave stability for viscous conservation laws, the
method consists of analyzing the solution as the sum of a shock wave, a
diffusive wave, a linear hyperbolic wave and an error term. The diffusive and
linear hyperbolic waves are approximate solutions of the fluid dynamic
equations corresponding to the Broadwell model. The error term is estimated
using a variation of the energy estimates of Kawashima and Matsumura [6]
and the characteristic energy method of Liu [7].

1. Introduction

The Broadwell model for the nonlinear Boltzmann equation is

wtJo:=~~~2\Jo~J + J-)>

in which /+, /0, /__ represent the densities of particles moving with speeds 1,0, — 1
in the x direction. The physical significance of (1.1) is discussed in [2,3]. Global
existence for solutions of the initial value problem for (1.1) is proved in [10] and the
fluid dynamic limit for (1.1) is analyzed in [3].
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Shock wave solutions of (1.1) are analyzed in [2,4]. They are traveling wave
solutions / = (/+,/<>./-) (y = x-st) solving

(l-s^/Wo2-/+/-,

-s~/o=-K/o2-A/-), (1.2)

-(1+S)|;/-=/<?-/+/-,

for — oo<y<oo with conditions

lim f{y) = g~a>, lim f{y) = ga>. (1.3)
y—> — GC y—*• o o

The limiting states g'^feϊ.gS'.g?) and g"00 = (g;»,g-α>,g:«) are equilibria
satisfying

^00^.00 /~oo\2 „ - oo~~oo /• — oo\2 /-< /|\

g + g-=(go) j g + g- =(go ) I1-4)
Moreover g00, g~ *, must be related by Rankine-Hugoniot and entropy conditions
[4], i.e.

(1.5)

Solutions of (1.2)—(1.3) can be written explicitly as hyperbolic tangents. Such a
solution is called a weak shock wave if g" 0 0 and g00 are close.

In this paper we prove asymptotic (in time) stability with respect to small
perturbations in initial data for weak shock wave solutions of (1.1). The main result
is the following theorem:

Theorem 1. There is a number δ>0 for which the following is true: Let f^x — st)

= (/i+> /io, fi-){xst) solve (1.2), (1.3) with

(1.6)

Let fi(x) = (fI + , / J 0, fι-){x) be initial data that is uniformly bounded and satisfies

2 f 2 (1.7)

Let f(x, t) = (f+,fo,f-)(x, t) solve (1.1) with f(x,t = O) = fI(x). Then there is a finite
number x0 such that for fx =/i(x-hx0? 0>

sup ? \f-Λ\2 + \fx-
t - oo

ϊί ϊ \f-Λ\2 + \fx-flx\
2 + \ft-fu\2dxdτίcδ2, (1.8)

0ί
0 - oo

o

lim f \fx-flx\
2(x,ήdx = 0. (1.9)
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Note. 1) The translation x0 can be computed directly from the initial data, as in Eq.
(3.4).

2) The existence of a unique solution f(x, i) for all time is guaranteed by the
global existence theory for the Broadwell equation [10]. For a survey of the theory,
see [9].

3) Through the Sobolev inequality, (1.8) and (1.9) imply that
lim sup \fι(xo + x — sή — f(x, 01 = 0.
ί—• oo x

4) The solution produced in [10] may in general be exponentially growing.
Our theorem shows that this is not the case for initial data close to a weak shock.
An analogous result is proved in [1] for initial data with finite total mass. In that
case the solution eventually decomposes into linear waves with characteristic
speeds ±1,0 of (1.1). In the present case, the initial state has infinite mass and the
results of [1] are not applicable. The asymptotic behavior of solutions is
approximated by the fluid dynamic limit with characteristic speeds related to the
sound speed.

The proof of this theorem is partly based on the fluid dynamic approximation,
i.e. the Chapman-Enskog expansion, for the difference between the solution / and
the shock wave fv This approximation is valid for describing the nonlinear
diffusion wave because the difference / — fx is small there. In the region of the
shock, the difference / — fx consists mainly of a linear hyperbolic wave, which
satisfies equations that are slightly different from the model Euler equations.
Analogous stability results were proved by Liu for viscous conservation laws [7]
and for the compressible Navier-Stokes equations [8]. Earlier results on stability
for the Broadwell equations by Kawashima and Matsumura (abbreviated by KM)
[6] and for viscous conservation laws by Goodman [5] and KM [6] are more
restrictive in that they impose the constraint that the initial perturbation f1 — j x

have no net (integral over x) mass or momentum, which precludes the diffusion
wave.

Following Liu, the difference f — fι is decomposed into three parts: First there
is a nonlinear diffusion wave / 2, which carries the net mass and momentum of
f — fι and is an approximate solution of the model Navier-Stokes Eq. (2.14). The
second part is a linear hyperbolic wave f3 which corrects for the local mass and
momentum errors in the diffusion wave but carries no net mass and momentum
asymptotically in time. Selection of the correct linear hyperbolic Eq. (2.39), (2.40)
for this wave is a crucial detail of this analysis. The third part is a remainder term
/4, which is estimated using a slight modification of the energy estimates of KM
[6]. These energy estimates must be supplemented by estimates of the character-
istic energy method [7] in regions where the diffusion wave is weakly expansive.
Use of this method is the main difference between the present stability result and
the result of KM [6]. In this paper the characteristic energy method is slightly
simplified to use integration along the piecewise linear approximation of the
characteristics. This was partly motivated by a suggestion from James Ralston.

The Broadwell equations are rewritten and the equations for diffusive waves
and linear hyperbolic waves are derived in Sect. 2. The equation for the remainder
and the error terms in that equation are described in Sect. 3. In Sect. 4 energy
estimates are proved and in Sect. 5 the characteristic energy method is applied. The
proof of Theorem 1 is summarized at the end of Sect. 5.
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2. The Broadwell Equation and the Model Fluid Dynamic Equations

2A. The Broadwell Equation and Shock Profile

Rewrite the Broadwell Eq. (1.1) as

Qt + mx = 0, mt + zx = 0,
(2.1)

in which ρ = / + + 4 / 0 + /_ is the local mass density, m = / + — / _ is the local
momentum and z = / + + / _ . For convenience denote now / = (ρ5m,z) and define
the quadratic form Q to be the right-hand side of (2.1).

The shock wave solutions of (2.1) [corresponding to solutions of (1.2), (1.3)] are
traveling waves (ρ,m,z)(x, t) = (ρu m l 5 z1)(ξ = x-sή solving

(2.2)

with limiting values

lim (ρumuzί) = (ρ?,mf,zf),

which are in equilibrium,

satisfy Rankine-Hugoniot conditions

and satisfy an entropy condition

lim
£->• — oo

(2.3)

(2.4)

(2.5)

(2.6)

For any limiting states satisfying (2.4), (2.5), (2.6) a unique solution of (2.2), (2.3) is
easily constructed [4].

For the sake of definiteness we assume that (ρ1? m1? zL) is a forward shock wave,
which here just means that the shock speed s is positive. The speed s also satisfies
the stability condition [4]

^liQΐ CG,mϊco)>s> λ2(ρf, mf) (2.7)

in which λu λ2i satisfying λλ <0</ Jι2, are the characteristic speeds of the model
Euler equations [cf. (2.13)] described in the next section.

The explicit form of the shock wave is given by

(2.
Qι

m1

1
— ~ 2

/ 0
/ ^L
U

— OO

— oc

~ Q
- m 0 0

T 0 0

i n w h i c h x is a n a r b i t r a r y c o n s t a n t , w i t h κ = (\ + 3 s 2 ) (16s) γ(ρ * — ρ 0 0 ) [ 4 ] .
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2B. Model Fluid Equations

By assuming that / = (ρ,m,z) is a local Maxwellian satisfying β(/,/) = 0 at every
(x,ί) and by dropping the third equation of (2.1), the following model Euler
equations are obtained:

ρf + mx = 0, mt + ί(ρ,m)x = 0, (2.9)

in which

έ(ρ9m) = ρF(u) (2.10)

with

u = m/ρ, F(u) = (2]/T+3u* -1)/3. (2.11)

The Euler Eqs. (2.9) can be rewritten as

= 0 (2.9;)
\m/t \a/o m/o/ \m/x

with

α = (ρ-f)/4, b = (ρ + 3f)/4. (2.12)

The characteristic speeds of (2.9') are

m — j/m 2 4- 4α£> 2α

26

_
2^ - m + |/m 2

If the components /+, / 0, / - of the solution / are initially nonnegative, they remain
nonnegative [1]. For such a solution |M| ^ 1 (i.e., the average velocity is no larger
than the molecular speed) and α > 0 , b>0. Thus /L1<O</L2

A better approximation of (2.1) is given by the model Navier-Stokes equations,
which are obtained from (2.1) through the Chapman-Enskog expansion [3] as

0, mt + z(ρ,m)x = 0, (2.14)

in which

z(ρ,m) = z(ρ,m)-v(u)ux. (2.15)

The viscosity function v is

v(u) = 2(l-F(u))(\ + 3u2y312. (2.16)

The Euler equations (2.9) have discontinuous shock wave solutions, while the
Navier-Stokes equations (2.14) have smooth shock profile solutions, which
approximate the shock wave solutions of the Broadwell equation (2.1) if the shocks
are weak.

Just as for the real Navier-Stokes equations [8], the shock waves are
compressive; that is the associated characteristic speed λ2 (for forward shocks)
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decreases across the shock. As a consequence, λu λ2, a and b defined by (2.13) are
strictly monotone across a viscous shock wave for (2.14). For a weak shock
wave of (2.1) KM [6] showed that

— (/ 1 )<0, — (/L)<0, (2.17)
δξ oξ

in which λuλ2 are evaluated at the shock wave / = fv Also since the shock wave is
forward (with approximate speed λ2\ and since the shock wave decays exponenti-
ally away from its center, it satisfies

|3f/i+Vx/il<^μ2j,
,-y|*-*l ( Z 1 8 )

in which χ+ = 1 for x>st, χ+ =0 for x<st, χ_ = 1 — χ+, and γ is some constant.

2C. Diffusion Waves

Liu [7] showed that, for a viscous conservation law such as (2.14), a small
perturbation of a constant evolves approximately as a diffusion wave. For the
forward shock wave solution (ρ l 5 m1? zx) of (2.2), the diffusion wave (ρ2, m2) moves
backward, and so it is a perturbation of the limiting state (ρ[~ °°, mf °°, z± G0). As in
[7], the diffusion wave solves

(2.19)

in which

)-zΓ G O . (2.21)

From now on we write /2Ξ(ρ2>m2>^2) The error terms e1 ? e2 are chosen as in
Sect. 3 of [7] so that (2.19), (2.20) is equivalent to Burger's equation.

To be precise, f2 is uniquely determined by the following properties:
(i) (QI + QΪ"0' ^2 + mΓ°°) n e s o n t n e integral curve of the right eigenvector r t

through^ (ρΓ^mΓ 0 0),
(ii) Xi=Ίi(ρ 2 + £i co,m2 + mί

 co) — λi °° is a self-similar solution of the Burgers
equation, i.e.

2l/π/ά + (exp(κ:δ/2|/α)-l) f a~ιl2e'ξ2dξ , (2.22)

(2.23)

The quantities rγ and αΞα+(ρ1~
GO,m^00) are defined in (2.26), (2.28) below, K has

value 1 or — 1 for diffusion wave with positive or negative mass. Here κό replaces δ
in [7], since we now take δ > 0.

For the construction of the diffusion wave from Burger's equation, the viscosity
matrix of (2.14) must be expressed in the basis of left and right eigenvectors of the
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convection matrix of (2.9') The viscosity matrix is

0 0

^ — amb"3 aρb~

The left eigenvectors l± and right eigenvectors r+ of the convection matrix are

^ ^ (2.25)

V=\ ^ - 3 ^ - 3 l (2 2 4 )

r t = ( - 2b/l/m2 + 4αb, 1 - ml]/rnF-
(2.26)

r2 = (2ί?/[/m" + 4fl̂ , l + m/|/m2 + 4ab)f.

In the coordinate system r l 5 r2, the viscosity matrix becomes

(2.27)
\ι2/ \«+ α_y

with

_ ±m(26-ρ) + ρ|/m2 + 4αb α
α + - Γ i ^_ ^ Γ - 3 . (2.28)

Using the facts that a>0,b>0 and |F(w)| < 1, it is easily shown that the diagonal
elements of (2.26) are positive, i.e. α± >0, which is needed for the construction of
the diffusion wave f2.

Define

Ω t = {(x, ί), ί ̂  0, x ̂  0}, Ω2 = {(x, t), t ̂  0, x ̂  0}.

It follows as in Sect. 5 of [7] that the set Ωγ can be divided into two parts Ω+ and
Ω_ such that the characteristics for (ρ2 ?

m2) a r e compressive in Ω_ and weakly
expansive in Ω+, i.e.

δ ^ ^ ) < 0 m (2_, i % ^ > 0 in fl+. (2.29)
OX OX

Moreover Ω± are characterized by (with y defined in (2.23))

y^y^y^y,)} if κ = ί,

} if κ=-ί, [ ' }

for some constant yγ, as shown in Fig. 1. Define also Ω + (ί) = Ω± n {(x, τ): 0 < τ < t},
{ ή for i=l,2.

The nonlinear diffusion wave satisfies the following bounds (cf. (3.8) in [7]):

2\ + \u2\^cδ(t+lΓll2e->2, (2.31)

+ \)e-> \ (2.32)

y\2 + \)e->\ (2.33)

3 + l ) e - v 2 , (2.34)

2 2 , (2.35)
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t

κ = -} κ=]

Fig. 1. Regions £> + , Ω_, Ω2 in (x,ή for the two cases κ = \ and κ= — 1

in which y is defined by (2.23). Moreover since f2 is determined through its
eigenvalue λu it follows that

I, |5 f/2 |<c|3ΛI, (2.36)

(2.37)

Using (6.12), (6.13), (3.5) of [7], the error terms el9 e2 satisfy the bound

ί)~3/2(W2 + l ) ^ " v 2 . (2.38)

2D. Linear Hyperbolic Wave

A linear hyperbolic wave (ρ3, m3, z3(ρ3, m3)) is needed as in [7] to compensate for
the errors el9 e2 in (2.19), (2.20). The equations for ρ3, m3 are

(ρ3, m3)(x, t)-+0 as t->co,

in which

(2.39)

(2.40)

with A, B, M depending on (ρ1? m l 5 z t) and {g2,m2)) as

2.41)

The form of z3 is chosen so that f2 + /3, together with the shock wave / l 5 forms an
accurate approximate solution [cf. (3.11)]. Clearly from (2.19), (2.20), and (2.39),

— f
at — co

(2.42)

for ί^O. Thus if the net mass and momentum of the initial perturbation is
contained in {Q2,m2) + (ρ3,m3), it will remain there for all time. Moreover the
construction in Sect. 3 of (ρ2,m2) and (ρ3,m3) guarantees that

(2.43)
\m2
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in which c is a constant and r± °° = rt(ρf°°, m^G0) is the right eigenvector defined in
(2.26).

As shown in [7] the error terms (eu e2) have a good form and decay rate. The
initial data is appropriately chosen as in [7] so that /3->0 as ί->oo. It follows that
/ 3 = (ρ35 m3,z3), with ρ3, m3 solving (2.39), has the following decay properties (cf.
Theorems 7.5, 7.6 of [7])

l2\y\]-3l2}9 (2.44)

1Γ 3/2(i/i.l + i/2.l)} - (2.45)

3. Wave Decomposition of the Solution

The equations are reformulated here in terms of ρ, m, z. Consider initial data
fj = (ρ7, ml9 Zj) (x) that is a perturbation of a given forward shock wave solution
(ρι,muzi)(ξ), i.e.

{ρl9 ml9 Zj) (x) = (ρ1? m^zj (x) + (ρ\ rri, z') (x, 0) (3.1)

with (ρ', m', z') ( , 0) e Lι{x) and lim (ρ'3 m', z') (x, 0) = 0. The solution (ρ, m, z) (x, t)
x—*• ± 00

of the Broadwell equation with this initial data is written as

(ρ, m, z) (x, t) = (ρ 1, m1, zx) (x - si) + (ρ', m', zr) (x, ί). (3.2)

From (2.1) the solution has two time-invariant quantities, mass and momen-
tum, i.e.

ί (Q')(x,t)dx= J (ρ')(x,0)dx (3.3)

for all ί > 0 . For a weak forward shock wave the jump [ ρ l 5 m j
= (ρ1

+G0,m1

+G0)-(ρ1~
00,m1"

00) is nearly equal to the right eigenvector r2(ρ1"
00,m1;

00)
defined in (2.26). It follows that [ρ l 5 m{\ and ^lίρΓ^j^Γ00)1" a r e linearly indepen-
dent and that the net perturbed mass and momentum can be written as a linear
combination of them, i.e. for some constants c and x0,

J (ρ', rri) (x, ήdx = cδr^ρϊ °°, m~λ

 o c ) t + x 0 [ρ 1 ; m j . (3.4)

Note that
00

J {(ρumι)(x-\-x0-~st)-(ρί,mι)(x-sή}dx = x0[ρumi']. (3.5)
— GO

Thus for convenience we can take x 0 in (3.4) to be zero after replacing
(ρ 1,m 1,z 1)(x-5ί) in (3.1), (3.2) by (ρurnuz1)(x + x0-st).

With x 0 set to zero this way and c defined by (3.4), the solution {ρ9m,z) is
decomposed into the shock wave, diffusion wave, linear hyperbolic wave and
remainder, i.e.

3

{ρ,m,z){x,t) = (ρuml9zί){x-st)+ Σ (Q» ™i>Zi(Q» mi)) {*, 0
i — 2

m*,z*)(x,t). (3.6)



112 R. E. Caίlisch and T.-P. Liu

The diffusion wave {ρ2,m2,z2) satisfies (2.19), (2.20) the linear hyperbolic wave
(ρ3,m3,z3) satisfies (2.39), and together they satisfy (2.43).

Combine the equations for (ρbmbzi)(i= 1,2,3) together with Eq. (2.1) for
(ρ,m,z) to obtain the following equation for (ρ^m^z^):

The initial data for ft = (ρ^, m^, z^) is defined through (3.6) since the initial values of
(Qi9mi9Zi) i = l,2,3 are already chosen. Because of (1.7) /^ satisfies

for t = 0. Because of (2.43) and (3.4) with x0 = 0, /^ has no net mass or momentum,
i.e.

J (Q*9mJ(x9t)dx = 0. (3.8)
— oo

We wish to show that (ρ, m, z)-^(ρ l5rn1,z1) as t->co. Since (ρί,mi,zί)->0 for f = 2,3,
we need only show that (ρ^m^zJ-^O.

First we rearrange the right-hand side G in (3.7). Decompose G as

f2 + f3, Q + Q{ft, Q, (3.9)

in which fi = {ρi,mi,zi), f^^iρ^m^z^). The parts of G containing /„, are

G(/i + / 2 . Λ) = ΐO4e* + M/n,, - Bz J ,

β(/ 3 . /*) = i (β 3 -
 23)ρ* + i«3"i* " Ϊ(Q3 + 323)z*, (3-10)

β(Λ, /*) = ̂ (0*= ™*> z*) = i {(e* - z*)2 - 4(zί - ml)},

in which 4̂, B, M are defined in (2.41).
For the linear hyperbolic wave, z3 = z3(ρ3,m3) was chosen in (2.40) so that

/ 2 ./ 3 ) = 0. (3.11)

Also use the equation for fx to find that the inhomogeneous part of G is
H = Hi+H2 + H3, in which

X9 (3.12)

(3.13)

(3.14)

since Q{fΓao,f{~ao) = (zΐco)t = {mϊco)x = 0. The term Hi is the error in the third
equation of (2.1) in which / is replaced by a solution f2 + / f °° of the Chapman-
Enskog expansion (i.e. a solution of the model Navier-Stokes equations). A
straightforward calculation in Appendix A shows that

# l = - (F2 - u2F
f

2)e1 - F'2e2 - F'2{v2u2x)x + (v2u2x\ - f (v 2 u 2 j c ) 2 , (3.15)

in which F 2 = F(wi" °° -f u2), v2 = V(M[" °° + w2).
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Because of (3.8) it is natural to introduce

(φ,ψHx9t)= J (Qvm*)(y9t)dy (3.16)

with (φ, ψ)(x = ±oo,ί) = (0,0). Integrate the first two equations of (3.7) and
eliminate z^ to rewrite this system as

ψt + (A/B)φx + (M/B)ψx = B ~ \Wxx - ψtt - Γ(φx, ψχ9 - ψt)

-H-Kiφvψvψt)), (3.18)

in which H = H1+H2 + H3 is defined in (3.12)-(3.14), Γ is defined in (3.10) and

-Uρ3 + 3z3)ψt. (3.19)

4. Energy Estimates

In this section energy estimates are derived for the system (3.17), (3.18). These
estimates are the same as the estimates of Kawashima and Matsumura [6], except
for small changes caused by the inclusion of f2 in A, B, M and the terms H and K.
However, because of these small changes, the energy estimates do not close: on the
weakly expansive region Ω+ of the diffusive wave f2, a second set of characteristic
energy estimates are needed and are derived in the next section.

First change variables from (x, t) to (ξ, t) with ξ = x — si and s the shock speed.
Note that f2 is not a traveling wave with speed s; thus in the present problem A, B,
M depend on t as well as ξ, in contrast to [6]. Rewrite (3.17), (3.18) as

LΛ&vΉO, (4.1)

L2(φ,ψ)=-Γl9 (4.2)

in which

L2(Φ, ψ) = (Ψt ~ sψξ)t - s(ψt - sψξ)ξ -ψξξ + Aφξ + (M- sB) ψξ + Bψt, (4.3)

Γt = Γ(φξ, ψξ, - (ψt - sψξ)) + K(φξ, ψξ, ψt - sψξ) + H.

The initial data for (4.1), (4.2) is

(φ, ψ) (ξ, 0) = (φ09 Ψo) (ξ), Ψt(ξ, 0) = sψOξ- z*(ξ). (4.4)

Define the following three norms for ψ, φ :

N.it)^ sup (||φ,VII2W+11^,111^)), (4.5)

l/2

' ( 4 > 6 )

, (4.7)
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in which || || = || | | 0 and || ||fc is the /cth Sobolev norm in space, e.g.

/ oo \ l / 2

\\Φh={ lJ2 + ...+{d\φ)2dξ]j . (4.8)

In these definitions we could replace ξ by x everywhere (without any changes) and
d

to —
dt

correspondingly change —

Before proving the energy estimates, we derive two lemmas concerning the
shock wave / l 5 diffusion wave f2 and linear hyperbolic wave /3. Define
A+ = lim A(ξ, t\ B+ = lim B(ξ, t). Note that A + , B+ are positive and do not

ξ-+ ± oo ~ £-> ± oc

depend on t.

Lemma 4.1. Lei /^ be α forward shock wave solution of (1.1) wiί/i strength δ, i.e.
satisfying (1.6). Lei / 2 έ>β α corresponding diffusive wave solution of (2.19), (2.20), /or
initial data fj—fi of magnitude δ i.e. satisfying (1.7). // δ is sufficiently small then

(i) There are positive constants c, C, and K, independent of x, t, and δ, such that

c<A+-κδ<A(ξ,t)<A_+κδ<C,
(4.9)

c<B+-κδ<B{ξ,t)<B_ + κδ<C, sAξ<κδ.

(ii) There is λ>0 such that sup Dι<0 for /=1,2,3 in which
ξ

λ), D2 = λ{λ-B),

D3 = M2-4{A-λ){λ-B).

(iii) Let λ, β be constants. If β is small enough then

for ξ>0
\-κ\λίx\ for ξ<0 [ U j

for some constant K.

Proof This lemma was proved in [6] for the case of a shock, i. e. f2 = 0, with K = 0 in
(i), (iii). In that case ^ = 0. Since \f2\<cδ, the inequalities (4.9), (ii) are only slightly
perturbed. Since \f2ξ\ + \f2t\^cδe~yt for ξ>0 and \f2ξ\ + \f2t\^Φix\ for ξ < 0 the
inequality (4.10) is derived.

The second lemma describes bounds on H, K, and Γ.

Lemma 4.2. Let H = Hλ+H2 + H3, K, Γ be defined by (3.12H3.14), (3.19), (3.10)
Denote

(\φ\ \Ψ\ \Φ\ \\ \ έ \\ \\ \ \ ) . (4.11)
Then

t), (4.12)

J $(\K\ + \Kξ\)Fdξdt^cδNί(t)N2(t), (4.13)
0

if. (4.14)



Stability of Shock Waves for Broadwell Equations 115

Proof of Lemma 4.2. First derive pointwise bounds on H ;, K, and Γ. For Hι use
(3.15), (2.32-2.35), (2.38) to obtain

, I + \Hlξ\ S c(\e1\ + \e2\ + \u2xx\ + \u2xt\ + \u2x\
2 + \u2xu2t\)

(4.15)

in which y = (x~ λt)/2]/aI. In estimating H2, use (3.13) and the fact that fx — f
and / 2 have nearly disjoint supports as seen from (2.8) and (2.31), so that

For H3 use (3.14), (2.44), (2.45) to estimate

Estimate K using (3.19), (2.44), (2.45) to obtain

Finally estimate Γ = Γ(φξ,ψξ, —ψt + sψξ) from its definition (3.10) as

It follows that

S( sup
V

] (\H2+ H2

ξdξ)ι'2dτ ^
o

ίl) (\Φξ\ + \Φξξ\ + \ψξ\ + \ψξi\ + \Ψ,\ + \ψtξ\)dξdτ

ί sup
o ξ

ί
o ξ

l /2

sup ||0,

x {\φξ\ + \φξξ\ + \ψξ\ + \ψξξ\ + \ψt\ + \ψtξ\)2dξdτ

£ sup (\

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

which concludes the proof of the lemma.
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Now we proceed with the energy estimates, following the analysis of
Kawashima and Matsumura [6]. There are four such estimates presented in
Lemma 4.3; they are analogous to Lemmas 3.5-3.7 of [6].

Lemma 4.3 (Preliminary energy estimates). Let φ, ψ solve (3.17), (3.18) with δ
sufficiently small Then for some constant c

ί \\v>ξ,Ψt\\2dτ
o

Jf \λlx\ψ2dxdτ
β + W

t)N2{t)2), (4.23)

ii) \\φξ(t)\\2+ j \\φξ\\2dτ-c(\\ψξ,ψt(ή\\2+ ί \\ψξ,Ψt\\2dτ)
o \ o /

(t) + δN1(t)N2{t) + Nί(t)N2{t)2), (4.24)

ί \\ψφψξξ\\2dτ-c] \\φξ,ψξ,Ψt\\2dτ
0 0

ι(t)N2(t)2), (4.25)

t)2). (4.26)

Note that ψt(0)= — z^.(0). A suitable linear combination of the four estimates
(4.23)-(4.26) results in the main estimate of this section.

Lemma 4.4 (Principal energy estimate). Under the assumptions of Lemma 4.3,

N^t) (NM -cδ- cδN2(ί) - N2(t)2) + JV2(ί)2 ^ ciV^O)2

+ ί ί \λlx\ψ2dxdτ. (4.27)
0 Ω + (ί)

The norms Nu N2 are defined in (4.5), (4.6). The proof of Lemma 4.4 is
immediate. Bounding the integral on the right of (4.27) is the object of Sect. 5.

Proof of Lemma 4.3.
(i) Proof of (4.23). Following [6] define

ΞΞ -ψξL1+A~ί{ψt-sψξ)L2=-A~1(ψt-sψξ)Γί,

Integrate over — oo <ξ< oo, dropping some terms through integration by parts.
After some rearrangements, one finds that

1 \_B(ψt - sψξ)
2 + M(ψt - sψξ)ψξ ~ Aψ2~]

ξ-sψ2l-(A-1)ί[_Uψt-sψξ)
2 + Ίψϋ + lli>

(4.29)
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-tUA~ι B)tψ
2 +(A-ι)tψ(ψt-sψξ) + ±s(A-%tψ

2-] + ίlξ. (4.30)

Add LHSX + ALHS2 (here λ is unrelated to the eigenvalues λj} to obtain

sψd)Γ1, (4.31)

in which

« λs , . _,

jψξ- λψ(ψt - sψξ)],

The quantities Ex, E2, E2, E3, E4, G are the same as in [6] except that A, B, M
depend on f2 as well as fu and hence on ί as well as ξ.

It follows as in [6] from Lemma 4.1 that

ξ , (4.33)

E3^c(ψ2

ξ+(ψt-sψξ)
2).

Since \(A-%\ + \(A~ι)t\<(\λlx\ + \λ2x\)<δ, then

(ψtsψξ)),
ι)t\ψ2,

for any small β>0. By choosing δ and β small enough, it follows using (iii) in
Lemma 4.1 that

->t)ψ2, (4.35)

in which χ + = 0 for xeΩ^uΩ2, χ+ = 1 for xeΩ + .
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Now integrate the various terms in (4.31) over — cc<ξ<co and 0 < τ < ί to
obtain

0

-cδN^tf-c] J \λlx\ψ2dxdt, (4.36)
0 Ω-f (ί)

±(ψt-sψξ))Γi\dξdt^c]s(\Γ\ + \K\ + \H\)Fdξdt
o

.(ή + δN^ήN^ή + N^ήN^t)2).

Combine these together to obtain (4.23).
(ii) Proof of (4.24)-(4.26). These estimates are proved as in [6] and (i) with very

little change.

5. Characteristic Energy Method

t

The object here is to estimate N3(ή2 = J j (\λίx\ + \λ2x\) (φ2 + ψ2)dxdt on the right-
o

hand side of the energy estimate (4.27) in Lemma 4.4. Rewrite the system (3.17),
(3.18) for φ, ψ by diagonalizing the left-hand side. As in (2.25), (2.26) the convection
matrix

[A,B MIB]
 i5Λ)

has right eigenvectors r 1 ; r2, left eigenvectors ll912 and eigenvalues λx, λ2 given by

r! = ( - B/D9 - (M - D)/2DY, r2 = (B/D, (M + D)/2D)t,

λ1={M-D)/2B, λ2 = {M + D)/2B,

in which D = (M2 + 4AB)ι/2 and M, A, B are defined in (2.41) and depend only on fx

and f2. Define characteristic variables θu θ2 by

(5.3)

which satisfy

c(φ2 + ψ2) <Θ2 + Θ2

2< C(φ2 + ψ2),

C{φl + V)2) + C( | / l x | + μ 2 j ) (φ 2 + xp2), (5.4)

etc. for some constants c, C independent of x, ί, δ. The characteristic form for (3.17),
(3.18) is

2
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We first obtain an energy estimate from the characteristic form:

Lemma 5.1. For δ small enough,

\\θ(x,t)\2dx + ± fj \λ2x\02

2dxdτ + \ ί | \λXx\θ\dxdτ
Ω2{t) Ω-(t)

Σ ίί \λJx\θfdxdτ+ JJ \λlx\θ2dxdτ
*j Ω/t) β + (()

119

(5.6)

Proof of Lemma 5.1. Multiply the characteristic form equation (5.5) by θt and
integrate over — oo<x<oo, 0 < τ < £ ,

j 0?(x, t)dx-)] λixθf dxdτ = J 0?(x, 0) dx

Γ
f J 0 f

Ί
-Vtί-^-X-ίO U^τ. (5.7)

Throughout this analysis we use the fact that )H depends primarily on fx in Ω2 (i.e.
x>0) and on f2 in Ωx (i.e. x<0).

First we partly handle the second term on the left by noting that, from (2.17) for
Ω2 and (2.29) for Ω_ and for some γ,

Thus

for (x,ί)6ί2_, (5.8)

for (x,t)eΩ2. (5.9)

Ω_(ί)
\λlx\θ\dxdτ- J j \λ2x\θ2

2dxdτ

Ω + (ί)

Next use the bounds

^) on Ωi9

>) o n

which follow from (2.18), (2.36), (2.37), to estimate (integrating by parts)

ίί θ, Σ Uk + Uώ rkdxdt
Ω,(l) k = l \Ω,(t)

ίί ^ Σ
Ωj{t) k = 1

^ i ίί θj\λjx\dxdt + c ίί θfl^
Ω,(f) Ωj(ί)

for some constant c.
Next since ΰ " 1 is bounded,

(5.10)

'

(5.12)

(5.13)

+ H)dxdt ^ c((5 + δN2(t) + N 2( (5.14)
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from Lemma 4.2. Finally use \Bx\ + \Bt\<c(\λlx\ + \λ2x\)<cδ and φx= ~ψt to
estimate

Combine (5.7), (5.10), (5.12)—(5.15) to obtain the desired estimate (5.6) and complete
the proof of Lemma 5.1.

Since Ni and N2 can be bounded through the energy estimate (4.27), we now
only need to find bounds on the three integrals on the right of (5.6):

Ί = ίί \λlx\θ2

2dxdτ,
Ωi(ί)

7 2 = JJ \λ2x\θ\dxdτ and / 3 = \\ \λlx\θ\dxdτ.
Ω2(t) Ω + (t)

The estimates are derived using the characteristic energy method developed by Liu
[7], Actually we use a somewhat simplified version in which integration is
performed along piecewise linear approximations of the characteristics. Although
simpler, this version is less robust since its validity depends in an additional way on
the shock being weak.

Write the eigenvalue )H as piecewise constant part λt plus an error λb i.e.

in which

λi(x,t) =

(5.16)

(5.17)

Define approximate, piecewise linear characteristics X^τ, t, x), X2(τ, t, x) (cf. Fig. 2)
satisfying

X (^ i χ) = Jΐ.(χ. Ί) X (t t x) = x (5 18)

x2

x = s t

Fig. 2. Piecewise linear characteristics Xγ and X2
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i.e.

: + λϊ(τ — t) if x>st,X1>sτ

v , + , x + λ7(τ — t) if x<st,X,<sτ

—j— (x — λι t) + λγ τ if x>st,X1<sτ

f x + λί (τ — t) if x > st

Note that X2 is not defined past the time that it intersects X2 = sτ. Equation (5.5)
can be rewritten as

Θu + Xiθix= Σ θ$it + λilκ)'rk + B-\xpxx-ψu-Γ--K-H)-Tίiθix (5-19)
fc=l

Multiply by 0f and integrate along Xt to obtain

0

\Ψxx -ψtt-Γ-K-H)- Ziθix\ (Xί(τ, t, x), τ)dτ + 6^.(0, t, x), 0)2.

For any non-negative function g(x, t) we integrate to get

} ί gθf dxdτ = i ί f Sty { Σ θk(lit + λ ,y rk

0 0 [k=l

+ B~1(ψxx-ψtt-Γ-K-H)-λiθiA(x,τ)dxdτ+ j {Gθf){x9O)dx
J " C O

^ U ί G0; { Σ θk(lit + 1,-U rt + B~\Ψxx-ψtt-Γ-K-H)-Zβ

+ J (Gθf)(x,0)dx, (5.20)
2-00

in which

G(x, τ) - j g{Xi(σ, τ, x), σ) -~ (σ, τ, x)dσ,

(5.21)

G(x,τ)= ^

The inequality in (5.20) follows from the non-negativity of g and (dXJdx).
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Since X2 can only be extended forward for a finite time, until it hits the line

x' = st\ define dX2/dx = 0 for σ past that time. Note that ( -r—^ I is piecewise
constant and bounded, i.e. for σ > τ , Xt(σ,τ, x) satisfies \ x

dXx _ ί l

\

x

for (x>sτ,X1>sσ) or (x<sτ,Xι<sσ)

dx \(s~λϊ)(s-λϊ)~ι for x>sτ,Xι<sσ,

Ί for (x>sτ9σ<(s-λ^)~ι(x-λ^τ)) or

For three different choices of g we shall utilize (5.20). For each choice the
various terms on the right-hand side of (5.20) will be estimated as:

t 00

J J "PkVΊt'
0 - o c

f J λββ^Gdxdτ
0 - o o

0 - α c

J (\λlx\ + \λ2x\)θ2dxdτ

t 00

ί ί
0 - c o

t oo \ l / 2 / f oo \ l / 2

^[$ $ θldxdt) J J (λfifθfdxdτ)
0 -oo / \ 0 -oo /

t oo \ l / 2

j J (λfifθfdxdτ) ,

ί oo

0 - o

(5.23)

(5.24)

^ί) (<5 + <5iV2(t) + iV2(ί)2), (5.25)

Since G(x5ί) has a jump discontinuity along the line x = st, write

d
—

in which G(x) is the size of the jump in G at (x,t = s~ίx) and Gx, Gt are regular
functions. We need a bound on integrals along the line x = st. From Eq. (3.18),

ψft < c{φ2

x f + ψ2

xx
tl Since J J H2dxdτ < cδ2 and

o
u t n e n Λe Sobolev inequality implies that

\ + ψ2)(sτ,τ)dτ^2^\ ]
0 O - o o

(5.27)
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Now we are ready [using (5.4)] to estimate the terms in (5.20) containing ψxx, ψtt:

t oo

ί ί
0 - o o

t oo

- ί ί
O - o o

+ G((B ~ ι)xθtΨx - (B ' \θiΨτ) + B ~ HGΛΨX - GAψτ)l dxdτ
OO

J G L / J Ή
— 00

t

^ C(SUp jCr|) J
o -

+ c(sup|G|)

+ c(\ 1
\0 -oo

+ c(sup|G|)

+ c(sup|G|)

+ φup|G|)

^c(sup|G|)(JV

+ cN2(t)ί]
vo

00

- OO

G-

a
f oc

O(1

2 ( 0 2

00

J
— 00

Jo o

2 2 1.2

00

- CO

2 V/2/

\ l / 2

Θ2(θ)dx)

\ l / 2

Θ2(t)tiχj

+ N2(t)N3(t)

(G2

 + G2)θ2d

\rφτG

Ψx

xo

' t OC

(i
\-00

( 1

+ JV

xrfτ

(C

ψf

1/2

T

^ ί 00

\0 -co

•(O)dx

(ί)dxj

2)

l τ + J Gθ i β- 1 vφ:>ίΓ 1 x)ώc
0

\ l / 2

(l^ix +\λ2x\)θ2dxdτ\

2 2 V ' 2

x τj

r
1/2

sτ,τ)dτ J

l/2

. (5.28)

Combine (5.20), (5.23)-(5.25), (5.28) to obtain

Lemma 5.2. Let g be non-negative and define G by (5.21). Then

\$gθ2dxdτSφuv\G\){δN1(t) + Ni{t)2 + Nι(t)N2{t)2 + N2(t)2 + N?){t)2)
o

ft oo \l/2

+ cN2(t) f f ((IG) 2 + G2 + G2)θ2dxdτ
\0 -oo /

vl/2

(5.29)

Since Nu N2 are bounded through Lemma 4.4 and we are in the process of
bounding JV3, it will suffice to show that (sup \G\) < δ and to bound the two integrals
on the right of (5.29) for each case.

The estimate from the characteristic energy method is
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Lemma 5.3. For δ sufficiently small,

if \λlx\θldxdτ+ ff \λ2x\θ2dxdτ + ff \λlx\θ2dxdτ
Ωι(t) Ω2(t) Ω + (t)

,(0 + N1(t)N2(ή) ( j Θ2(sτ, τ)rfτV/2 . (5.30)

Proof i) Estimate on \λlx\θ\. Let g = Xι\λlx\ in which χ1 = l for x<0, Xi=0 for
x>0. Then

i λίx(x, τ)-{-0(<5e~y('*'+τ)), (x, τ)eί2+ ,

0, (x,τ)eΩ2.

The relevant characteristics in (3.52) are X2 which are entirely contained within
Ω 1 =Ω + uΩ_ (cf. Fig. 2) and in Ωλ the characteristics are straight lines so that
dX2/dx=\. Fix (x,τ)eΩ1 and denote

(5.32)

Depending on the sign of K and the location of (x, τ), the T/s take on the values τ, oo
(endpoints), τ — x/λ2 (intersection with x = 0), or T satisfying

y1=y(X2,T) = (X2(T,τ,x)-λ;T)/(y/uT) = (x~λ2τ + (λ2 - A Π T)/(j/αT) X5.33)

[intersection with (Ω + , ί2_ border)]. It follows that for (x, τ) large, T=0(x) + 0(τ),
and thus that for each /

(5.34)

with c a constant independent of x, τ, (5.
In Ωί9 {d/dσ)λι{X2{σ9τ,x\σ) = λ2λix + λίσ and μ i σ |<cδ( l +σ)~ 3 / 2 . Thus

T2 T4 oo

J \λlσ\dσ+ j | / l σ | d σ ^ j c^(l +σ)"3/2rfσ^C(5(l + τ ) ~ 1 / 2 . (5.35)
Ti T 3 τ

Using dX2/dx = 1, (5.35) and (5.31), we may write

G(x,τ)= I Alx(X2(σ,τ,x),σ)ίiσ- j Alx(X2(σ,τ,x),σ)dσ

ΐ j τ)- 1 / 2 , (5.36)

since (2.31) implies that λι = λϊ +0(1 + τ ) " 1 / 2 for x<0. Next differentiate G to
obtain

I G J H λ ί Γ 1 Σ βi{(dxΊdλ2λlx{X2{Ί\9τ9x)9Td
i 1

(5.37)
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in which βt= ± 1. Similarly,

\Gτ\Scδ(l+τ)~3/2. (5.38)

Moreover G = 0 for x > 0 and |X£|<c5(l + τ ) " 1 / 2 for x < 0 . Therefore

sup|G| <cδ,
ί 00 ί OO

J f ((7HG)2 + G2

x + G2)θ2dxdτ^cδ2j f ( l + τ Γ ^ d x ί i τ ^ c ^ N Λ r ) 2 . ^ )
O - o o O - o o

Using (5.39) in (5.29) establishes the bound (5.30) for the integral of \λlx\θ\.
ii) Estimate of \λlx\ θj. Let g = χί \λlx\ as in (i). Now the relevant characteristics

are Xχ(σ, τ, x) with X : < 0 which may enter Ωλ from Ώ2 and may cross Xx = sσ as
well as y = yλ. Thus (dXJdx) (σ, τ, x) has values 1 for x < sτ and (s — Af)/(s — λ^) for
x>sτ. Denote

[T1

1Γ2] = { σ : τ ^ ( I ι ( ( 7 τ x ) ( 7 ) e f l + } ,

Depending on the sign of K and the position of (x, τ), each 7] takes on one of the
values sλ=τ, s2=co (lower and upper limits), s3 = (x —λj~τ)/Λ,f,
S4.=: —(s — λϊ)(x — λϊτ)/λΐ(s — λf) (intersections with Xί=0 for 0<x<sτ and
5τ<x respectively), or s5 satisfying y = yx, i.e.

yι ^
]/GCS5

There are three possibilities depending on whether x<0, 0<x<sτ or x>sτ;
however in each case Xι(s5,τ,x) = dίx + d2τ-\-λ^s5 (with three different positive
values of du d2). Thus

s5 = ocyΐ 2(d1x + d2τ)2, dxs5 — 2dxaiy ϊ 2(dίx + d2τ), dτs5 = 2d2ocy^2(dίx + rf2τ),

|A l j c (A' 1 (s 5 ,τ J x) > s 5 ) |^cδ(l+s 5 )- 1 .

For i<5, \dxSi\ + \dτSi\<c and |A1;c(σ = s i ) | ^ c ^ ( l + τ ) ~ 1 . Thus for each i^L5,

! . (5.42)

Evaluate G as
r2 τ4

G(x,τ) = κ1 j A l xrfσ-κ 2 j 2 l x dσ + 0(e~ y τ),

in which κu κ2 are piecewise constant, having a jump along x = sτ and taking on
values either 1 or {s — λϊ)/{s — λ^). As before λlx may be replaced by (d/dσ)λ1 by
adding in terms proportional to λlσ so that G = G(xyτ) satisfies

Σ A
i

(5.43)
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in which the ̂ -function part of Gx, Gt is ignored as in (5.26). That part is
compensated for by the integral along x' = st' in (5.30). Also for all x,

τΓ^ + cμj. (5.44)

Thus
sup|G| <o,

0 0

^ cδ2N1(t)2 + cδ3N3(t)2 (5.45)

Substitute (5.45) into (5.29) to complete the estimate for \λίx\θ2 in (5.30).
iii) Estimate of \λ2x\θl. Let g = χ2\λ2x\ with χ2 the characteristic function of

Ω2(t), i.e.

fμ2jc(x,σ)|, x > 0

[0, „ _

„ , + , ( 5 4 6 )
— Λ 2 x ( / 1 ( x —5σ)) + O((5^ 1Aiχι + σ ^ ) ? χ > 0

0, x<0'
The relevant characteristics here are Xι(σ, τ, x) with Xx > 0 (i.e. Xί e Ω2). In Ω2 the
Xί characteristic has piecewise constant slope, so that for σ > τ ,

l if (x>5τ,X1>,sσ) or (x<sτyX1<sσ)

(s-λϊ)/(s-λt) if x>sτ,X1<sσ

[T l 5 T2] = {σ: τ < σ, Xx(σ, τ, x) >sσ},

If x < sτ so that Z\ < sσ for all σ > τ, set Tγ = T2 = τ. We can identify 7] as Tx = τ,

| τ , if x < s τ
2 ~ [(x-^τV^-An, if *>sτ

T _ ίτ-x/Af , if x<sτ.
3 " \(λϊ)(λ;)/(λϊ)λ; x>sτ.

As before for each ί, |3t7;| + l^^l < c. Note that XX(T^ τ, x) = 0. Now evaluate G as

+ 1 f ί
3

(5.50)

since λ2 has total variation of size δ. Next

(5.51)
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since \λ2x(0,T3)\^cδe~yT^cδe~yτ. Similarly

Also in x>05 \λ2\^c\λ2x\^cδ. Thus

sup|G|<c<5,

127

(5.52)

t)2. (5.53)

Substitute (5.53) into (5.29) to complete the estimate for \λ2x\θ2 in (5.30). This
completes the proof of Lemma 5.3.

Note. The same estimation method does not work for j j \λ2x\θldxdτ, because
Ω2(t)

the X2 characteristics have endpoints on the line x' = st' on which \λlx\ is large.
Fortunately this term was estimated in Lemma 5.1. t

We finish the characteristic energy estimates by estimating j Θ2(sτ,τ)dτ. For

x^st, °

Thus
(5.54)

ix^s~ι j Θi(x,s~ιx)2dx + J
0 si

0 s τ [k=l

B-1(ψxx-ψττ-Γ~K-H)-Xiθix\(x,τ)dxdτ+
1

Estimate various terms separately as

I lθt Σ θk{lu + kkx)-rkdxdτ
t oo

~ 0 -oo

0

0 sτ k = 1

0 sτ

by Lemma 4.2. Next since \<Xi\^c\λ2x\<cδ for x > 0 ,

ί QO / ί oo \ 1/2 /1 oo

j j Xββtedxdτ S[Π θfjxdτ J J
0 sτ \0 0 / VO 0

(5.55)

(5.56)

(5.57)

(5.58)
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Finally, using (5.27) in the last step,

\] B-'θ^-ψJdxdτ
0 sτ 0 sτ

+ (B'1)τθiψτdxdτ +

- J B~le^x{x,t)dx- I
st 0

,O)dx- i B~1θiψτ{x,s~1x)dx
o

J Θ2(^τ,
l / 2

Sc\ N1(

"Ί- (5.59)

Combine (5.55)-(5.59) to obtain

+ N2(t)2+N1(t)N2(t)2 + N3(t)2-]

Θ2(sτ,τ)dτ] , (5.60)

from which it follows that

Lemma 5.4. For δ sufficiently small,

\ Θ2(sτ,τ)dτ^
o

j + N2N2

2 + N2

2 (5.61)

Now combine (5.30) of Lemma 5.3 with (5.61) of Lemma 5.4 to obtain, after
some recombination.

ff \λlx\θ2

2dxdτ+ JJ \λ2x\θ2

1dxdτ+ Π \λlx\θUxdτ
Ωi(t) Ω2(t) Ω + (t)

^ cδ(δ2 + N2 + NjN2 + N2 + δ~ 1 / 2 N 2 ) (t).

Combine this with (4.27) of Lemma 4.4 to obtain

(5.62)

2. (5.63)

Next combine (5.62) with (5.6) of Lemma 5.1 using the inequality

3(t)2^c JJ \λίx\02dxdτ + c JJ \λ2x\θ2dxdτ
Ωi(t) Ω2(t)

to obtain

ιN
2

2 + δN2 + N2)} + cN2 (5.64)
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Finally combine (5.64) with (5.63) to obtain

N^N.-cδ- cδN2 - cN2 - cδNι N2) + Nj^ cN^O)2 + cδ3. (5.65)

This inequality implies that either Nι and N2 are both small or that N1, N2 are of
0(1) size independent of δ. However since JVl5 N2 start off with size δ2 and are
continuous, they must remain small, it follows that, for N^O) sufficiently small,

^ cδ2 + cNx(ΰ)2. (5.66)

By assumption \\φ,ψ\\2(0)2+ | |3 ίφ||1(0)2^Cί52. This establishes the main result of
this paper.

Theorem 5.1. Let δ be sufficiently small, then for any ί^O,

sup {\\φ,ψUτ)2 + \\dtψUτ)2}+\\\Φx,Ψ»Ψt\\2ιdτ^cδ2. (5.67)
O^τ^ί 0

Finally we prove Theorem 1. Since φx = ρ%, ψx = m^ ψt= — z^, then

t

sup IIQ^m^z^||t(τ)2 + j \\ρ^m^zj2dτ^cδ2. (5.68)

Since this inequality is also satisfied by (ρ2, yn2, z2) and (ρ3, m3, z3), we obtain

sup \\(ρ-ρ1Um-mι),(z-zι)\\ι(τ)2+ } | | ( β -ρ 1 ),(»j-»i 1 ).(z-Zi)

° (5.69)

Use the formula for / in terms of ρ, m, z and the equation for f in terms of fx and /
to obtain

sup J (f-h2 2 ff?d

ί+ ί ί (/-/1
0 - o o

which is the inequality (1.8).
We now prove (1.9). From (4.25), (4.26) and integration of ψt times (3.18), we

have t2

:ϊΦx,Ψx\\i(1>i) + c ί \\Φx>Ψx,Ψt\\ldτ
ίi

ί2 00

2ί ί
tx - o o

T h i s i m p l i e s (by i n t e g r a t i o n of tλ) t h a t

\\ψxx,ψxx\\2(t)ύc j H ^ φ ^ φ J l ^ τ + c j j \λlx\ψ2dxdτ. (5.71)
1 1

j j
ί - 1 ί - 1 - oc

The estimate (5.66) implies

S\\Φx,ψx>Ψt\\2idτ+$ J
0 O - o o

which is slightly stronger than (5.67). It follows that the right-hand side of (5.71)
tends to zero as f—>>oo. This proves (1.9) and concludes the proof of Theorem 1.
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Appendix A. The Chapman-Enskog Error for the Broadwell Equation

Suppose that ρ, m and z = z(ρ,m) satisfy the model Navier-Stokes equations with
errors, i.e.

ei > mt +
 z(Q >m)x = e2, (A.I)

with u = m/ρ and

in which F and v are given by (2.11), (2.16). The third Broadwell equation

= Q(f,f)) then has the error

. (A.2)

To calculate E, first eliminate z = ρF — vux to get

(A3)
The undifferentiated terms vanish due to the definition of F. Next eliminate time

derivatives (ρF)t using the Navier-Stokes equations to obtain

1-F'e2}. (A.4)

The terms in the first bracket, which are linear in first derivatives, vanish due to the

choice of viscosity v. Therefore

(A.5)
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