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Abstract. We consider the motion of a classical particle in a random isotropic
potential arising from uniformly distributed scatterers in two dimensions. We
prove that in the weak coupling limit the velocity process of the particle
converges in distribution to Brownian motion on a surface of constant speed,
i.e. on the circle. The resulting equation for the probability density of the
particle is related to the Landau equation in plasmas.

Introduction

We consider the classical motion of a point particle in a random potential U(x)
in the van Hove limit: Let Uω(x) be a realization of the random potential and let
x(ί), v(ί) denote position and velocity of the particle given by

x(ί) = v(ί), x(0) = xo,

v(ί) = - εVUω(x(ή) = eFω(x(ί)), v(0) = v0.

Clearly (x(ί), v(ί))t>0 is a stochastic process (on the probability space of the random
potential). We study the distribution of

(xε(ί), vε(ί))t,>0, x
b{t) - vε(ί), vβ(ί) = y(t/ε2)

as ε-»0.
Kesten and Papanicolaou showed that under some mixing assumption on the

(non-conservative) force F the processes (xε(ί),vε(ί))ί>0 converge in distribution to
a diffusion process (x°'(ί),v°(ί))ί>0 as ε->0 when the space dimension is larger than
2 [1]. (See [2] for a quantum mechanical version.) The two dimensional case was
left open.

The dimensionality comes into play since in three or higher dimensions
trajectories (x°(ί)) of the limit process do not intersect themselves, whereas in the
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two dimensional case they typically will. One may convince oneself easily that the
presence of self-intersections contribute strongly to the "Non-markovianness" of
the motion, thus "making it harder for the limit to become markovian" if at all.

We prove here the convergence also for the two dimensional system. We restrict
ourselves for simplicity to the potential case which in addition to having an intrinsic
interest of its own can also be considered as a simplified version of a many body
system with weak interactions. A particular example of such a system is a plasma
where, under suitable conditions, the dominant dynamical effects are due to the
Coulomb interactions at "long" distances which can be treated as weak. The system
can then be described by a momentum and energy conserving non-linear
Fokker-Planck type equation—the Landau equation. A rigorous derivation of
that equation is beyond our reach at the present time, but we expect that some of
the ideas developed here will also be useful in the many body case with the same
type of "Landau scaling," ε -> 0.

In this limit the potential energy tends to zero and the limit process v° will
satisfy |v°| = |vo | by conservation of energy. Furthermore we model the random
potential U by Poisson distributed scatterers, symmetric finite range potentials V.
This reduces considerably technicalities in the proof and focuses already on the
relevant structure of the motion as arising from many independent scattering
events. Instead of scaling the process one may equivalently scale the scatterer field
Uby

ω representing a configuration of Poisson points with density ph = ε~4,(ε~2d in d
dimensions).

We consider (xε(ί),vε(ί))Γ>05 the solutions of

v t(ί)=-VC/ t(x f i(ί)), vf'(0) = vo,

and we prove the convergence to a diffusion process (x°(f), vo(ί))f>0, where v°
describes a Wiener process on the circle with radius v0.

A brief heuristic argument is as follows: Since v(t) — v0 the time Δf to cross a
scattering is roughly ε2. Therefore the change in velocity due to a single scatterer is

Assuming that the effect of (the overlapping!) scatterers is approximately additive
and noting that the rate at which the particle encounters scatterers is ~ pεε2 = ε~2,
we obtain that the total variance in time t is

Δ\2tε~2 ~ t.

This Central Limit type argument suggests the Wiener like diffusion on the circle
for the velocity. With little extra effort this argument also correctly gives the
diffusion constant.

The dimensionality enters if one looks critically at the argument, which involves
a weak dependence assumption of the single scattering events. This is drastically
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violated when the particle trajectory intersects itself. One may convince oneself,
however, rather quickly that the paths of the limit position process have no
tangential self-intersections. Hence presumably also before the limit self-crossings
are transversal and happen only finitely often. Thus the total "area of self-crossings"
is ~ ε4, and hence only finitely many scatterers are involved in rescatterings. But
since the effect of each scatterer is small (~ c) these scatterers should not contribute
to the limit.

This simple argument is probabilistic; from analytic arguments given (see [1])
in terms of perturbation expansions, it is not so immediate how to handle
non-markovian effects due to (actually occurring) self-crossings. One sees however
rather quickly that the effect of scatterers becomes additive.

An earlier announcement of the result presented here describes a proof built
on a markovian approximation and convergence of generators [3]. That (very
long) proof is different from the one given here. We prove now convergence via
relative compactness of the family of measures induced on path space by vε and
by the martingale characterization of the limit diffusion [4]. This becomes
technically simple through the use of a point process in the description of the
motion. The point process describes the places and times at which the particle
enters new scatterers. The same technique succeeds in proving the diffusion limit
of a heavy particle in an ideal gas in a semi-infinite system with elastic reflection
at the boundary in the so-called Brownian motion scaling [5].

In the following section we define the model and give the result. In Sect. II we
restate the theorem using stopping times which allow for an easy control of the
problematic terms in the convergence. In Sect. Ill we introduce the point process
related to the first entrances of the particle into scatterers, which is then used to
express the velocity process. The martingale decomposition of a point process [6],
first used in establishing tightness in Sect. IV, plays a central role throughout the
proof. In Sect. V we identify a unique limit process through a martingale
characterization. We prove in the appendix that the trajectories of the limit position
process do not intersect themselves tangentially. This allows us to remove the
stopping times from the convergence result.

I. Formulation of the Problem

Let (N,Ω,F,p%ε>0, denote a family of Poisson fields in U2 with densities
pε = ε~4p, i.e. the expected number of points in a measurable set A c U2 is
Eε(N(Άj) = p\A\ε~4\ A point ωeΩ represents a realisation of points, i.e. ω = {r, }ίeZ,
r£eIR2.

Let V(x) be three times differentiate and supported in (— 1,1). Then we set
for XEU2,

Vε(x)^εV(\x\/ε2l
and

Fε(x) = -F(|x|/ε2) = -VP(x).
ε

We wish to study the motion of a point particle of mass 1 in the random force



212 D. Dϋrr, S. Goldstein and J. L. Lebowitz

field obtained by distributing the "scatterers" Vε according to the Poisson
distribution with density p\ The equations of motion for position x and velocity
v are

w c(ί)5 xε(0) = 0, (1.1)
dt

d\ε(t)

dt
(1.2)

The "overlap lemma" below ensures that the sum in (1.2) is Pfc-almost surely
finite for all ε > 0 . Hence (1.1) and (1.2) define uniquely a family of stochastic
processes (xε(ί),vε(ί))f^0 on {Ω, &,PC).

We wish to study the limit in law of these processes as ε->0. Since xε(t) is
obtained from vε(f) by integration we need only consider the convergence in law

of(v e(ί))^ 0[7].
We shall prove

(1.3) Theorem. The family of processes (vε(t)\>0 converges as ε-»0 in law to a
Wiener process (v(ί))r>0 on the circle of radius v0 with diffusion constant

7^ (1.4)

and V denoting the Fourier transform of V.

(1.5) Remark. For V = (pup2)eU\ let Vp = (d/dpud/dp2\ p = \v\.
The generator of the limit process (v(ί))r>0 reads on CQ(M2):

p μ V p , (1.6)

where k k denotes the tensor product. In polar coordinates p = (p, φ),

L = Dd2/dφ2.

II. A Stopping Time Version

We choose an arbitrary T > 0 and prove convergence in law of (vε(ί))ίe[o τ ] = (vε(ί))
We shall introduce stopping times which may be removed for (v(ί)) and prove the
theorem for the stopped process.

First we realize the processes (vε(ί)) and (v(ί)) on C[0, T ] 2 , J*(C[05 Γ] 2 ) with
induced measures v\v. The convergence in law of (vε(ί)) to (v(ί)) means weak
convergence of the measures v ε to v a s ε ^ O [7].

t

For peC[0, T ] 2 , let Q(ί) = Jp(w)dw and define for any a > 0 and angle φ,
o

= inf J t; there exists s t^s^O and | Q(s) — Q(ί) | ^ a

and min p(s) p(w) ^ 0 and | P ^ ) P ^ 1 t cos φ 1. (2.1)
sϊuzt P(t)p(s) j
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If the set is empty we set τφa= T.

For KeN set

τ^ = inf {ί ^ 0; there exist sί <t1,s2<t2,...,sκ<tκ,

t = tκ>->tu for which Q(s1) = Q(t1),...,Q(s*) = Q(tx)}. (2.2)

If the set is empty we set τκ = T.
Finally let

t;ol^«o/2}. (2.3)

Clearly v(τv ^T) = 0 and the self-crossing lemma in the appendix gives that

lim v(τφ a S> T) = 0, lim v(τκ ^ Γ) = 0. (2.4)

Let
T = τ . Λ τ0,α Λ TK> (2.5)

and define on C[0, Γ] 2 a map 77 by 77p(ί) = p(ί Λ τ). Then we show that
vε = vεΠ~ι converges weakly (->) to v = v-77"1, i.e.,

(2.6) Lemma. vε -> v as ε -> 0.
The assertion of Theorem (1.3) follows from (2.6) and (2.4) by standard

arguments. (See also [1] for the "removal" of similar stopping times.)
There is a natural representation of the stopping times on (Ω, J^,Pε) using the

process (vε(ί)) The stopping times become ε-depedent: τε

φaiτ
ε

K9τ
ε

v and τε, and we
define the stopped process (\ε(t A τε)) = (vε). Note that vε is the measure induced by

ί Λ τ ε

(vε). We define (xε) by xε = J \ε

sds.

We may describe the features of the stopped process as follows.
(i) When the particle trajectory xε bends around and comes as close as a to

its past trajectory, then it will cross itself transversally with an angle larger than φ.
(ii) The trajectory does not cross itself more than K times.

(iii) The speed of the particle is between υo/2 and 3uo/2.
We shall prove (2.6) by first establishing tightness of the family (vε)ε. The

existence and determination of the limit will then be obtained from the
Stroock-Varadhan martingale characterization of diffusion processes. In both steps
we shall exploit the fact that the particle motion is determined by the "almost
Poisson" point process related to the times and places at which the particle enters
new scatterers. We introduce this point process next.

III. The Point Process Description

The reader should observe that for the following discussion the stopped version
of the process is not needed except for convenience to later references.

Let
T ε = { x e R 2 ; | x - x ε | ^ ε 2 , u ^ ί } . (3.1)

Tε contains all the centers of the scatterers which affected the particle motion until
time t.
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For ωeΩ let ώ = ω — ω 0 , where

; (3.2)

and for rf6c& let ί, be the first hitting time

ίί = inf{ί>0; | x ε - r t | ^ ε 2 } . (3.3)

We associate with (Ω,.^,Pε) a point process Nε on [R2 x [R+ with realizations
Nε

ω(dτ9dt) such that for feC0{U2 x ίR),

# *(/) = ί ί ^ ω ( * , Λ)/(r, t) = Σ /(Γί, ίf). (3.4)

For every measurable A c R2, the collection

Ne

α,(X,ί) = jiVe

ωμ,du) = JVe

ωμ,(O,ί))= X X > , ) (3.5)
0 Tieωt - ω 0

ωeΩ, defines an increasing right continuous jump process in t. Note that the last
statement requires proof, which consisting of standard "existence of dynamics"
type arguments, is omitted.

We use the notation Nε(A, £_) = Λ^ε(y4,(0, t)) for the left continuous version of
the process.

For every ω, Nε

ω(dr,dt) describes the positions of the scatterer as well as the
times of first entry. Note that the process N ε is locally Poisson with rates depending
on the past trajectory of the particle.

If we look at the world as seen from the particle, the above point process is
conveniently described by a point process on S x U +, S being the unit circle, where
we collect now the points tt and a^S at which the particle enters the scatterer
located at rf. The realizations are now measures on S x IR + , denoted by Nε(dσ, dt).
Clearly both point processes are isomorphic to each other.

We introduced the point process because it comes with a decomposition which
goes to the heart of the problem:

Let (^t)t>o denote the increasing family of σ-algebras generated by Nε(A,s),
s ^ t,Ae$(M2) and "ω 0 " . Then for every ^-adapted left continuous (in t) function
/ on S x U+ we have that [6]

Nε(dσ, du)f(σ, u)=\\ Mε(dσ, du)f(σ9 u)
so

where

is an J%-martingale and

so

UP*
so

+ Hp'(dσ,du)f(σ,u).
S 0

(dσ,du)f(σ-u) = Mt(f)

(dσ, du)f(σ, u) = ρε

t(f)

(3.6)

(3.6a)

(3.6b)

is an ^ t measurable left continuous process.
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Note that pε(dσ,du) (the compensator of Nε [8]) is the rate at which the particle
enters new scatterers. Although it is intuitively quite clear what the rate looks like,
one should note that one's intuition uses (correctly so) the strong Markov property
[9] of Poisson fields (see also [10]).

We shall now express \t using the above point process. From (1.2), by
integration,

vf-

which by (3.2) and (3.3) is the

with

Vt - Vo =

By (3.4) we may write this as

Let for σeS,

- * o = j ' j
R2 0

same as

t Λ τ

t

1 fi (X Γ ) uS

: Λ τ ε

J (Xs-rj

Nε(dr,du) J Fε(xε

s-r)ds + Δ\ε

0(ή.
u

t -χ + σΛ

(3.

(3.

(3.

7)

8)

9)

Then (3.8) may also be written as

v? - v0 = J J N'{dσ, du) ] Fε(xlσ(s))ds + Δ^0(t). (3.10)
5 0 u

IV. Tightness

We begin with two estimates.

(4.1) Overlap Lemma. For neN, let

Sε

n(t) — disc of radius nε2 around xε,

and let

(4.2)

Then for any λ>0, T > 0 and ε > 0

4- 4λεBT

tsj \_ nε

where

B = s\xp\V(x)\.

Proof By conservation of energy (we set υ0 = 1)

(vε)2 ^ l + 4 ε s u p N \ ( s ) B .
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Thus for
τλ = inf{ί^O;JV;(ί)^λ},

{τλ > T} cz {sup υε^l + 4λεB) c {sup xε ̂  (1 + 4λεB) T).

Let for xeU2,

Sε

n(x) = disc of radius nε2 around x.
and let

NJ(x) = |ωnSe

π(x)|.

Then for the square Γ = [ - (1 + 4λεBT\ 1 + 4λεBTY, we have from the above that

xeΓ

We cover JΓ by a lattice of squares y f of sides 2nε2, j = 1 5 . . .,[(1 + 4λεBT)/nε2 + I ] 2 ,
so that

{sup ΛΓJ(x) ̂  /} c {sup sup Nε

n(x) ^ λ}.
xeΓ i χeγε.

Since

where yf is a square of side 4nε2 symmetrically covering y , we obtain by translation
invariance of the Poisson field that

l+4λfT Ί 2 f ) ^ λ).f
nε

Now (4.2) follows using Markov's inequality for the exponential function.
The second estimate is

(4.3) Crossing Time Lemma. Let fn(s) and tε(s) be the first entrance and exit time
of the particle of the set Sε

n(s). Then on

we have for ε < l/16nλB' that

tε

n(s)-φ)^4nε2 (4.4)
and

where

Proof By (3.7)

Consider now a

sup sup

B

for t^tε

n(s)

particle crossing Sε

\£{t)-ye{φ))\^4nλεB',

" = sup|F(x)|.

(s) with constant velocity v̂  =

(4.5)

(4.6)

|vεte(s)), entering
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at tε

n(s) at xε(tε

n(s)). Then for the exit time £ε(s) of this particle

2nε2

 2
n S = ^

and for t < tε

n(s) we obtain from (4.6) that

1 / 2
l = « + i fi I j

Hence on (supiVε

 + 1(s) g λ} we have that

vε

vε(ί) — ^ ϋi — ΛΓ* + ι(s)4nεBr > \v\
v\

for ε as stated. Therefore ίε(s) ^ fε(s) and (4.4) and (4.5) follow.
We are now prepared to prove

(4.9) Proposition. The family (v ε) ε^ 0 is tight in C[0, Γ ] 2 .
Recall that (4.9) follows when we show the following: For all y, η>0

there exists a (5 such that for ε small enough

P ε({ sup | v ε - v ε | > y } ) < f 7 . (4.10)

|ί - s |<(5

We shall approximate vε by a process consisting of those terms which are
relevant for the limit. The irrelevant terms vanish in probability as ε -> 0. Therefore
(4.10) will in fact be established for the relevant part (see (4.24) below).

Let Sε denote the circle of radius ε2. We define for σeS

tlσ = inf {t > u;xε

u>σ(t)φSε(xl - σε2)}Λτε. (4.11)

By (3.10)

YJ _ vε - j J Nε(dσ, du) J F ε(x ε

; σ(ί0) dt'
$SΛτε "

+ {J Nε(dσ,du)')τ F*(xlJt'))dt'

+ Δvε

0(t)-Δyε

0(s). (4.12)

For ε « α (cf. (2.1)), the last three terms concern scatterers which the particle
encounters again at occasions of selfcrossings of the particle trajectory and
scatterers which at the time s Λ τε overlap xε

SA/ or which overlap the particle
initially. Recall that until τε only K selfcrossings are possible and that they are
transversal with an angle at least as big as φ. Therefore we can find a number
n(φ, a), not depending on ε, such that by virtue of the crossing time lemma (4.3) on

sup I three rightmost terms in (4.12)| ^4KB'n(φ,a)λε.
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By the overlap lemma (4.1) we may choose λ = ε~α, α < 1, and obtain that these
terms vanish in probability as ε -> 0.

We consider now the first term on the right of (4.10). We wish to exploit here
the point process decomposition (3.6). But note that the point measure integrates
here an anticipative function so that (3.6a) and (3.6b) do not hold. Our aim is
therefore an approximation of the anticipative function by a non-anticipative one.

We first expand the force F ε around

KΛt) = <(t-u) + σε2 (4.13)
for

u g t^ ίε

u,σ = inf {t > u;xε,σ(ί)eSε(xε - σε2)}Λτε. (4.14)

(Note that (4.13) describes a straight line.)
This yields

= J Fβ(xJ,σ(t'))dt'

J F'(xSiff(r'))Λ'

+ ί HKAO - xε

uJt')yV)2F*(f(u, σ51% (4.15)

with yε(w, σ, t') denoting the mean value in the remainder of Taylor's theorem.
Observe that

J F%xlσ(t'))df
u

is J^y-measurable and continuous in u.
The other terms of the expansion containing x^σ(t') are still anticipative and

we need to expand them further. Before doing this however we discuss the
magnitude of the terms we have so far.

By the overlap lemma (4.1) we need only consider the term

'J lNε(dσ'du)jF*(Kσ(t'))dt' (4.16)
S A / S u

on

where we pick n large enough (n ~ n(φ,α)), and where we allow for λ to increase
with an inverse power of ε less than 1.

Note that by (4.13)

s u p | ί ε , σ - w | ^ 4 ε 2 . (4.17)

Furthermore it follows from this and the crossing time lemma (4.3) that there exists
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a constant C ̂  4 such that on Λε

n9

sup \xε

uJtf)-xε

uJt')\^Cλε\ (4.18)

Introducing the expansion (4.15) into (4.16) we may now estimate some terms
by summing absolute values on Aε

n. For the remainder in the Taylor expansion
we have on A\ by (4.17) and (4.18) that

sup
t

J
S

where

and

But by (3.(

= suρ|e1 Ve2 VF|
e l 5 e 2

l = ί f Nε{dσ,du).

2 / T Λ τε

= τ £ j J p\dσ,du)
A \5 0

by definition of τε. (The reader should note that the second inequality would be
an equality if there were no selfcrossings. In areas of selfcrossings pε(dσ, du) is zero.)

We may now choose λ = ε~a, α < 1/3 to see that the "sup" above goes in
probability to zero as ε -> 0.

The third term on the right of (4.15) yields

sup
s < ί < Γ SSΛ

To estimate this observe first that on Aε

n uniformly in u

and that

fUίσ -u< Cε2,

and thus that for some constant C

sup \\ε~yε

u\<Cλε

by the crossing time lemma (4.3)
Combining these facts one easily gets that for some constant C",

I Lu,σ Lu,σ\ ^ ^ Λ f c 5

so that

sup |xU0-xU?UI<C"/c3.
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But

sup \Fε(y)\ = BfC"λ,
ye{x;\x-δSε\<C"}ε3}

and thus on Λε

n the "sup" above is bounded by Nε(T)C2B'λ2ε3, and we may
conclude as before that this term vanishes in probability as ε -> 0.

We consider now the first order term in (4.15):

ίΛτε C

J j Nε(dσ,du) J ^ K , σ ( 0 - x U 0 ) VFε(x*5σ(0). (4.19)

A rough estimate gives that (4.19) ~λ on Λb

n.
We write

and by (3.10)

KJt') - KΛf) = ί dt" \)$ N*(dσ', du')) F (^>ff.(ί'")) df
u { uS

O S

We insert this in (4.19) and obtain

J'Λf Nψσ, du)Jdt' j dt" \) j N*(dσ', du')) F(x*,,σ,(ί'")) df
S s Λτε u u [u S u'

OS u

This is again in probability close to

j l J Nε(dσ, du) '"fat' J df i f J Ne(dσ\ du')) FB(%.t<r. (Γ)) df
SSΛ/ u u [uS u'

t" )

+ J \Nε(dσ\du')\Fε(xε

u^σ,(n)df\, (4.20)

essentially repeating the estimates on Λε

n as before and noting that by (4.4),

f ' j Nε{dσ,du) Jdt')df\U f [Nε{dσ\du'))Fε{x*u,tA

involves only scatterers which overlap areas of selfintersections or which overlap
the particle initially. Hence we may estimate this term in a similar way as below
(4.12).
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In view of (4.20) we set

y + ( 0 - y + (5) = j ' j T N%dσ,du) J dt')dt")\Nε{dσ\du')
S S A τ

ε u u u S

= J f N%dσ',du')i J NWσJuMtl^u'
ύ S Λ T

• Jdt']dt") dt"
u u u

ί Λ τe

= f f Ne(dσ'9du'){Δve

+(u',σ% (4.21)
SsAX1

where the second equality comes through a change in the order of integration.
Note that \ε

+(u\σ') is as function of u' adapted and left continuous.
For the second summand in (4.20) we set

ye_(ί)-y t-(s) = J ί ) T Nε(dσ,du)Δvε_(u,σ) (4.22)
SSΛτε

with

A vε_ (w, σ) = f dί' j at" J j ΛΓε(dσ', d*/)
u u u-4ε 2S

• J Λ ' " F ε ( x ^ ( r ) ) VFε(x«,σ(ί')), (4.23)
u

where in the last equality we split Δyε_(u, σ) into its adapted left continuous part
zlvε_(w,σ) and the "jump at u\ with

ΔiVε(u) = N\S, [0, M] ) - Nε(S, [0, M] ).

We are thus led to consider (4.10) for the "processes" y + (ί), y_(ί) and

tΛτε i ε

u σ

y ε

0 ( ί )- ί J Nε(dσ,du) J dt'Fε(xε

uσ(t% (4.24)
5 0 w

the last one representing the zeroth order term of the expansion (4.15), since we
showed that up to terms which vanish in probability when ε-*0( ~ ) ,

We shall use the following [11]

(4.25) (Tightness Criterion) Lemma. Suppose that for all ε > 0 there exists δε > 0
such that
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(i) there exist β > 0? ζ > 1 and C > 0 such that for all ε sufficiently small,

Eε(\yε

+^(t)-yε

+^(s)\(])SC\t-s\\ (4.26)

for all s,t^T with \t — s\ <<5 ε , and

(ii) for every y>0 and η>0 and ε sufficiently small

Pε({ sup |y e

+ ,_(0-y ε

+ ,-(s) |>y})<^. (4.27)
s,t£T

\s-t\<δε

Then for every y > 0 and η > 0 there exists δ>0 such that for all ε sufficiently small

P({suP |yVW-yV(s)l>y})>^

\s-t\<δ

Choosing δε = ε2 (4.27) is almost trivial by the overlap lemma (4.1). In fact on A\
it is easily seen that there exists a constant C such that

sup | y ε

+ , _ W - y V ( s ) I ^ C sup Nε(S,ls,s + δJ)λε2,
s,t£T ^ T Λ T ' :

|s-ί|<<5£

and since v\ ̂  | , the particle cannot cover more area in time δε than a ball of radius
f<5ε. Hence appealing to the overlap lemma we find another constant C such that
on Aε

n the "sup" above is bounded by Cλ2ε2 which goes to zero for the allowed
values of λ.

We establish now (4.26) for δb — ε2 and β = 2, starting with yε_. Observing (4.22)
and (4.23), we obtain

({ <^ε

J Nε{dσ9du)Δ\ε_(u,σ)

{) Nε(dσju) Ydf)dt")
S j Λ T

ε u u u

ί Λ τ ε 1 2

j j pε(dσ,du)Δ\εL(u,σ)
v ε
° s Λ τ

j j p'idσju) ] dt'ldt'Ίdt'"

dt'] dt") dt'

(4.28)

where we used the splitting (3.6) and a binomial inequality. Furthermore the
martingale measures integrate continuous J^-measurable functions so that (3.6a)
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holds. We may therefore apply Burkholder-Davis-Gundy inequalities [8], or, since
we only take the square, the quadratic variation formula which yields for example
that

ί mε{d

r t Λ τε

U J pε{dσ,du)A\Uu,σ)
ί Λ ί Λ 2

j J pε(dσ9du)Δ\Uu,σ)[

2

j f pε{dσ,du)ΔvL(u,σ)> , (4.29)
S 5 Λ ί ε J /

where the last equality comes from the continuity of the measure ρ\
Before time τε we have a simple bound on the rates (cf. below (4.18))

pε{dσ,du) g\p εε 2dσdu = \pε~2dσdu, σe[0,π). (4.30)

Let Nε be the Poisson number of points with the density

\πpε~2du.

Clearly, Nε is a Poisson domination of Nε for example in the sense of correlation
functions (see e.g. |9|).

In view of (4.23) we easily estimate with (4.17), and observing the Poisson
domination that, for example

Eε(Avε_{u, σ)Δ\ε_(u\ &)) <; Cε4E(Nε{[u - 4ε2,u + 4ε2])iV£([u/ - 4ε2,u + 4ε2])

^Cε\

where C, C are appropriate constants, the latter coming from Schwartz's inequality
and translation invariance.

Thus for the first term on the right of (4.28) we easily get that

ζ

()

for some constant C".
Equation (4.29) and all the other terms may be handled the same way, producing

= 2 in (4.26) for \t-s\^ε2.
Next we observe that Δ\\ is by (4.17) essentially the same as Δ\ε_, and to show

(4.26) for yε+ is therefore only a repetition of the foregoing without the extra term
coming from the "jump at uΓ

Therefore the conclusion of Lemma (4.25) holds, and hence we are left with
showing (4.10) for yε

0 (cf. (4.24)). For this let

denote the first entrance and exit time of the particle of the tube Γε, t ^ T, at the
i-th selfcrossing. We define a new point process Nε(dσ,du) by

on the set NSC = [0, T\^^[Tε

u T ε

2 ]u ••• (4.31)
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and on [0, T] — NSC,Nε(dσ,du) is a Poisson point measure with intensity

βε(dσ, du) — — pε2\ε

u dσdu v 0.

We denote the appropriate probability space by (ί2, J^, Pε)(J^ r

By the argument on the effect of selfcrossings following (4.12) we need only
show (4.10) for

= f f Nε(d<r,du) f (4.33)

We shall obtain this by showing (4.26) for %, t — s ^ ε2. (4.27) follows then almost
verbatim as before.

Since the compensator of Nε(dσ,du) is given in (4.32), we easily have that by
rotational symmetry

ϊβ°{dσ,du)]F'(&lJt'))dt' = O.
S u

Hence for y > 0, by the splitting (3.6) applied to Nε and by (4.34),

j j Nε{dσ,du) f dt'Fε{xlσ(t'))

(4.34)

2 + γ

j f mε(dσju)jdf¥ε(xε

ujn)
SSAτ

ε u

2 + γ

<CEι βε(dσju)[ j dtf¥ε(xε

ujt
f))dt>

y/2

where we used the Burkholder-Davis-Gundy inequality on the martingale (note
that mε integrates a continuous ^-measurable function) and for the last inequality
the bound (4.30) with (4.17) and t — s^ε2. C and C are constants depending on
y and B'.

Thus Proposition (4.9) holds!

V. The Martingale Problem

We established tightness of the family (v ε ) ε > 0 Every limit point of subsequences
(vεn)εn has support in C[0, T ] 2 . We obtain uniqueness by showing that all limit
points satisfy the martingale problem associated with the diffusion process vt given
in Theorem (1.3). It is sufficient to establish the martingale problem for the functions
p and p p|4|.

(5.1) Proposition (Martingale Problem). Let L be as in {1.6). For every s,te[0, T]
and every smooth and bounded cylinder function φs depending only on p(w), u g s,
pgC[0, T ] 2 we have that for f = p and f = p p ,

lim v{ ίf(p(0) - f(p(s)) - ' T Lf(p(t*))dw 1 Φs) = 0.
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Proof. By (1.6)

μ 2 \ (5.2)

2v. (5.3)

To show (5.1) for f = p is equivalent to showing that

limEεi K - vε - J L\ε

uds Φ* = 0, (5.4)

where Φε is the function Φ at p = vε.
By (4.12)

ί Λfε(dσ,du) f dί'F e(xί,(ί')UΦ +o(l), (5.5)

where o(l) accounts for the selfcrossing and overlap terms in (4.12): By the
argument below (4.12) and the overlap lemma (4.3) we obtain easily that these
terms are bounded in l}(dPε) by

Cλε + C T- £ε(sup Ktφa](s)χ(sup N^φa)(s) > λ))

= Cλε + CT-] Pε(sup Nl(φjs) > x)dx = o(l), (5.6)

where C, C" are appropriate constants depending on Φ, 5' and n(φ, a) and A ̂  e~α,
α < l .

Introducing now the expansion (4.15) into (5.5) we arrive in accordance with
(4.24) by estimates very similar to (5.6) at

Eε((vε

t - yε

s) Φε

s) = £ε((yε_ (ί) - yε_ (s) + yε

+ (ί) - vε

+ (s) - yfi

0(0 ~ To{s))Φε

s) + o(l),

where we substituted (4.21), (4.22) and already did the step (4.33). But by (4.34)
and the martingale property

Now define y+ _ by replacing everywhere Nε by Nε in y + ! _, which we can do at
the cost of another error o(l), essentially repeating the arguments of before. We
shall therefore show that

-(u,σ) + 4v f(u,σ)} =0, (5.7)
ε - 0 \ \ S S Λ τ «

and that
/ / fΛτε iε

uσ r t"

lim£ε( Φε(j j Nε{dσJu)J d\!\df \ df
ε->0

•Fε(xε

>σ(r)) VFε(xε,σ(ί')) - 7 L V ^ M ) ) - 0. (5

We start with (5.7). Recall that (in view of (4.21) and (4.23)) Nε integrates in (5.7)
only adapted left continuous processes; thus decomposing 7Vε as in (3.6) the



226 D. Dίirr, S. Goldstein and J. L. Lebowitz

martingale part vanishes and we may replace Nε by ρε. Next we change the order
of integration in the term coming from y + (corresponding to going in (4.21)
backwards from the second to the first equality). We thus arrive at the following
expression for the expectation in (5.7) (with an error o(ί))

Ί β*(dσju) Jdf)dt" J \Ne{dσ\dυ!)
Λ τ

ε u u u-4-t,2S

+ j J N\dσju) j dt'\dt" Wfidσ'Ju')

S s Λ τ

£ u u u S

jΛ///Fe(x^ i<T,(r)) VFc(xS>(T(ί/))j\ (5-9)

Let

pε

u(dσ\du') = -vε

u dσfpε-2duf v 0, (5.10)
and note that in variation norm on [w, tε

Utσ]

\\βε

u~pε\\< sup K - v M .

Furthermore let

We replace now in the first expectation in (5.1) pε(dσ, du), Φh

s and VFε(x^σ(ί/)) by
the "shifted" pε

u^^2(dσ,du), Φε

s-^2 and VFε(xj| σ u _ 4 ε 2 ( ί / )) , and again by estimates
very similar to previous ones this produces an error o(l). (For the VF term recall
the argument before (4.14).) But then Nε(dσ\du') integrates only #M,-measurable
functions, so that from the decomposition of Nε only pε(dσ\du') survives. We may
then shift back again at the cost of o(l).

In the second expectation in (5.9) we shift pε(dσ\du') to ρε

u(dσ\du') and
Fε(x^ ^(£w)) to Fε(xε

u^σ,M(t'")) so that Nε(dσ,du) integrates nonanticipative func-
tions, and thus also here only the compensator part survives.

We thus come from (5.9) to

E[Φε

s\[)τpε(dσ,du)Jdtf)df J \p\dσ\du')

jF(x^σ.(t"')) VFε(x;yί')K"
u

/ ί ί A τ £ i^σ t> t"

+ Eε\ ΦbA f f pHdσ.du) f dir ίc/ί'7 ί [ pb{dσ',duf)
\ L "̂  i Λ τκ M u u $

(5.12)

Note that the integral over the force in the second expectation above may as well
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start from u. Therefore combining the expressions in both expectations they become

( Λ t f tlσ t< t"

J J βε(dσ,du) } dt'\dt" J β%dσ\du')
S s Λ τ

c u u - oo

Fixing all variables we do the integration over u' first: by (5.10) and (5.11)

t" t"1

J dM'Ffc(vJ;(ί'"-u') + σ'ε2) = j tfu'F^ί'" - w') + σ'ε2)

since F is a gradient of a potential. (Note that if this were not the case the limit
process would not live on the sphere, see [1].) Hence (5.12) is σ(l), and (5.7) follows.

To show (5.8) is a matter of computation:
By (5.10), (4.13) and the martingale property we are led to consider

MφUί ί βb(dσ,du)Ydt')dt")dt'"
\ IS s Λ τ

ε u u u

U T tu,σ t' t"

ΦεA j du~ϊ J yu-dσ j dt'\dt"\dt'"
SAT"

vlit'" — u)/ε2 + σ) -^-VFε(vf.(ί' — u)/ε2 -f σ) > I.
ε ]/

After routine manipulations one sees that the integrand of the u-integral may be
written as

p J dσ] df ) dt" J ώ ' " F ( v ; r

= p J dσ] dt' J dt"(t'-t")

0

= -ρ\d2τ \ dττF(r-hv^τ) VF(r) = "by symmetry"
- 00

J
- oc

2k f

by PlanchereΓs theorem. One finally observes that

and comparing with (5.2), (5.9) follows by virtue of (5.4).
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The checking of the martingale property for the function pp is very similar to
the above and its presentation is therefore omitted.

Appendix

We present here briefly an argument for proving (2.4).
t

Let v(ί) be as in Theorem (1.3). Since x(ί) = jv(s)ds is almost surely a C1-curve,

one may easily convince oneself that we need only show

0 > O

Clearly

P| {τφ>a ^T}c:TS = {there exist s<t^T, such that
0>O
α>0

x(s) = x(ί) and v(s) = v(ί) or v(s) = - v(ί)}.

Hence we show that tangential selίintersections have probability zero:

Lemma. v(TS) = 0.

Proof. We shall use the following facts:

(A.I) (x(t),y(t))t>Q is Markovian.
(A.2) The conditional probability distribution of the random variable (x(ί),v(ί))
given (x(s), v(s)) is absolutely continuous with bounded density for ί > s.
(A.3) v(t) = 1 for all ί.
(A.4) v(ί), t ^ 0, is Holder continuous with exponent α < ^.
(A.I) is clear. (A.2) follows from the hypoellipticity of the operator

3 d τ

δί dx

(A.3) is clear and (A.4) is a well known fact about Brownian motion.
Let tke[0, T], /CGN be an enumeration of the rationals. Clearly

TS = [j TS(k),

where

TS{k) = {there exist s, ί ^ T, s < ίk < ί, such that

x(s) = x(ί) and v(s) = v(ί) or v(s) = - v(ί)},

and thus the lemma will follow from

v(ΓS(fc)) = 0, keM. (A.5)

By (A.I), (X(M), v(M))tt<ίk and (x(u), v(u))M>ίk are independent, given (x(tk), v(ίfc)). Hence
for the conditional measure

g lim v(there exist 5, ίe[<5, T] such that x(s) = q(ί)

•and v(s) = q(ί) or v(s) = - q(ί)) = lim v(T(q, δ)\ (A.6)
0
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where we used translation invariance of the process and q(f), t ̂  T is a realisation
of x(t), t ̂  T.

We show now that the right-hand side of (A.6) is zero. Then (A.5) follows from
integration.

Draw a tube of thickness 2/n, neN around q and split [0, T] into disjoint
intervals [£",ί"+1) of lengths Γ/n, i = l,...,n. At each ί" cut the tube orthogonal
to the curve q to obtain segments A" and clearly | A" \ < C/n2 for all i and some
constant C. Now because of (A.3) for x intersecting q we must have for some ί and

j , x(ί")eA", and for the intersection to be tangential there must be some
tiel" = K - i , ί " + i ] and some fje/" for which

v(ϊ?)=±q(fj).

By (A.4) there is a K such that

|q(ί)-q(ί7)|^X(2T/nr? ίε/J,

and hence

v(r?)eff5 = [ - K(2T7n)α ± q(^), ± q(f?)

Thus we have that

sup |v(ί)-v(s)|<(7>) 1 / 4

v( <; sup

v\ ^ sup | v (£)-vθ) |^(7» 1 / 4

'\t-s\<2T/n

by (A.2). Since \Anj\ :g C/w2, the first term goes to zero as n-> oo. For the second
term note that for given K and α > 1/4 and n large enough,

sup |v(ί) — v(s)| •

t-s\<2T/n

sup \y(t)-y(s)\<K{2T/n)a

\t-s\<2T/n

sup |v(ί)-v(s) |<(Γ/n) 1 / 4

Now the first set increases with K to the full space, hence the probability of the
last set will go to one as n -> oo, and the probability of its complement will go to zero.
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