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Witten's Gauge Field Equations
and an Infinite-Dimensional Grassmann Manifold
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Abstract. Witten's gauge fields are interpreted as motions on an infinite-
dimensional Grassmann manifold. Unlike the case of self-dual Yang-Mills
equations in Takasaki's work, the initial data must satisfy a system of
differential equations since Witten's equations comprise a pair of spectral
parameters. Solutions corresponding to (anti-) self-dual Yang-Mills fields are
characterized in the space of initial data and in application, some Yang-Mills
fields which are not self-dual, anti-self-dual nor abelian can be constructed.

0. Introduction

Consider a gauge field V in the eight-dimensional complex space (C8 satisfying

3 3

Σ Σ 8μvzβ[yy , Vy ]
α=0 β=0

3 3

V V ΓC7 V 1
α=0 β=Q

[ P v F J = 0 , (μ,v = 0,1,2,3) , (0.1)

where (y,z) = (yo,y1,y2,y3,zo,z1,z2,z3) are coordinates of (C8, Vyμ and VZμ are
covariant derivatives, and εμvaβ denotes the totally antisymmetric tensor such that

^0123 — l

Set x = (y + z)/2, w = (y -z)/2. Witten [9] pointed out that Eq. (0.1) imply the full
Yang-Mills equations

3

Σ [VXμΛVXμ,KJ] = 0 (v = 0 , 1 , 2 , 3 ) (0.2)

on the diagonal subspace A = {(j, z) e C8 |w = 0}, and further, that a gauge field on A
satisfies (0.2) if and only if it can be extended to a neighborhood of A consistently to
(0.1) mod (w0, wuw2, vv3)

2. Here (w0, w1, w2, w3)
2 denotes the square of the ideal

generated by w0, w\, w2, and w3.
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In this paper, we rewrite (0.1) in the language of Sato's soliton theory [4, 5] and
investigate the structure of the solution space of (0.1) on the analogy of Takasaki's
work on self-dual Yang-Mills fields [7, 8]: we solve an initial-value problem of
differential equations with respect to functions with values in an infinite-dimen-
sional Grassmann manifold (see Theorem 2).

In our case, there appear a pair of spectral parameters λuλ2. The main
difference from the case of one spectral parameter is that the initial data must satisfy
a system of differential equations if the problem is solvable (see Proposition 5 and cf.
Takasaki [7, 8]).

Through the restriction to the diagonal space Δ, the totality of gauge fields
satisfying (0.1) can be regarded as a class of Yang-Mills fields including all the self-
dual or anti-self-dual fields. From our point of view, it is interesting to characterize
self-dual or anti-self-dual fields in terms of initial data. In fact, a simple
characterization is obtained (see Sect. 3) and in application, we shall construct an
example of Yang-Mills fields which are neither self-dual nor anti-self-dual (see
Sect. 4).

The announcement of our results [6] was already published in 1984. Ueno
treated the same problem independently and gave it a cohomological formulation
(unpublished).

Notations. We shall use the following standard notations: N denotes the set of non-
negative integers. Έ denotes the set of integers. C denotes the complex number field.
MΠ((C) denotes the total matrix algebra. U denotes the unit matrix of size nxn. Let R
be a ring. Then we denote by R [x] the ring of polynomials of x with coefficients in R,
and denote by i?[[x]] the ring of formal power series of x with coefficients in R.

1. Linearization

S e t ΛN i = ]

x21=z0+]/-lzί9 t21=z2-γ^Λz3, x22=z2+]/r^\z3, and t22= -zo+γ-\zx.
Then, introducing parameters λί, λ2, we can rewrite (0.1) as follows:

[-λaVXab+Vtab,-λcVXcd+VtJ = 0 (a,b,c,d=l,2) . (1.1)

Throughout this paper we discuss in the category of formal power series.
Hence the gauge potentials Atab, AXab belong to the ring of formal power series
with matrix coefficients Mn(<E) [[t, JC]], where Vtab = δtab + Atab, VXab = dXab + AXab,
t = (tn,tί2,t2l9t22)9 and x = (x i i ,* i2,*2i ? *22)

Now we "fix" the gauge, namely, restrict the freedom of gauge so that AXab = 0
for 0,6 = 1,2. (The gauge-fixing is analogous to that of Chau et al. [1] and
Pohlmeyer [3] for self-dual Yang-Mills equations.) Then (1.1) reads

l-WXab + Vtab,-λcdXcd+Vtcd] = 0 (a,b9c,d=l92) . (1.2)

More precisely, we have

Proposition 1. For any V satisfying (0.1), there exists a gauge transformation

V^Ψ = g-1Vg9geMn{V)[[t9x]]9 such that VXab=g-ιVXabg = dXabfor a,b = 1,2-
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Proof. Equations (1.1) imply that [VXab, VXcd] = 0 for a,b,c,d=l,2, which are the
integrability conditions for the linear equations

= 0 (*,6 = 1,2) . (1.3)

Thus for any AXabeMn(<E) [[t,x]] (a,b = \,2) satisfying (1.1) there exists a solution

9= Σ i)miA1Λ2Λ1X22 of (1.3) such that gijkιeMn(<C)[[t,x]] and #Oooo = U
ί,j,k,l^O

This g is invertible in Mn(<E) [[t, x]] and satisfies g"1 VXabg = g'1(dXab + AXab)g

+AXabg) = dXab. q.e.d.
xab J

We shall investigate the structure of solutions to Eq. (1.2). First we note that the
system of Eq. (1.2) is nothing but the integrability condition for the linear equations,

(~λadXab + dtab + AtJw(λ) = 0 (a,b = U2) . (1.4)

Proposition 2. Atab e Mn{<£) [[t, x]] (a,b = \,2) are solutions of{\ 2) if and only if there

exists a solution w(λ)= ^ wij^ΐι^2j °f (1-4) such that woo = 1l, namely,

λvi}eMn(<£) [[t,x]] which satisfy woo = U, wu = Q ifi<0 or j<0, and

-SX2bwij+ί+(dt2b+At2h)wij = 0 ,

for any iJeZ, 6 = 1,2.

Proof of sufficiency. Suppose that there exists w(λ)= Σ wij^ϊι^2j satisfying

(1.4) such that vvOo = H. Equations (1.4) imply that iJ-°

[-λadXab+Vtab, -λceXed+VtedMλ) = 0 (a,b,c9d=\,2) 0-6)

Note that the commutator is a differential operator of order 0, namely, an element
of Mn((C) [[£, x]]. Multiplying both sides of Eqs. (1.6) by w(zl)"1 from the right, we
obtain (1.2).

Proof of necessity. For any ij'eΈ, consider a system of four equations

which is a part of the system of Eqs. (1.5). The integrability condition for the
equations (£,j) with vt̂  as the unknown function is as follows:

(^.,^,2-δ»1 2i
7«1 1)H' i-1, J = 0 , (1.7a)

(diΛn-d^JWij-^O , (1.7b)

oXίJ,2Λ'ij^~dX2dVtlbw^1J = 0 φ,d=l,2) • (1.7c)

Now we define woo — ί and wy = 0 for any i,j,eZ such that ί'<0 orj'<0. Then
(Eij) is trivially satisfied for ; '=/ = 0 and for any iJeΈ such that ί'<0 o r j < 0 . For
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/ j e N , we define vvo inductively. Assume that {w ί j}/je]Ni/+7^m are defined to satisfy
(Eij) for any iJeTN such that i+j^m. (This assumption actually holds for m = 0.)
We shall prove that for any f J e N such that i+j = mJr\, there exists w^ which
satisfies ( ΐ^ ). To prove this, it is sufficient to prove the integrability conditions
(1.7a), (1.7b) and (1.7c).

Proof o/(l.7a). (i) Equations (1.2) imply [VU2,dXιι]-[Vt^dxχ2] = Q,
(ii) By the assumption, wt-ιj satisfies (Ei^ίj). Especially,

(iii) Equations (1.2) imply [Vtl2, Vtiί] = 0.
It follows from (i), (ii), and (iii) that

= 0 .

Equation (1.7b) can be derived in the same way.

Proof of (1.7c).
(i) Equations (1.2) imply [dXlb, Vt2d] = [dX2d, Vtlb] = 0.

(ii) By the assumption, wiJ-1 satisfies (Eij-x) and W - i j satisfies (Ei-1J).
Especially, we obtain

(m) Equations (1.2) imply [P t 2 d, F t l J = O.
It follows from (i), (ii), and (iii) that

= 0 .

Thus we can obtain {wij}ιje^ satisfying (1.5) inductively (more precisely, by
using Zorn's lemma), q.e.d.

When ί=y = 0, (1.5) reads

-dXιbwίt0 + Atιb = Q , ~dX2bwOΛ+At2b = 0 . (1.8)

Therefore, to solve Eqs. (1.2), it is sufficient to solve the equations

(1.9)
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More precisely, we have

Proposition 3* The relations (1.8) give a one-to-one correspondence between

(i) solutions A = (Atab)a3b = lt2 to (1.2)
and

(ii) equivalence classes of solutions w(λ)= ]Γ wtjλΐιλ2

j to (1.9) swc/z that

\vOo = H modulo right-multiplication by v(λ)= Γ̂ Vijλ{ιλ2~
j satisfying voo = ί

and f'^°

(-ΛΆ α b + δ ί α > ( λ ) = 0 /or β,6 = l,2 . (1.10)

Proof. A surjection {solutions w(/) of (1.9) such that Woo^H}-*{solutions >4 of
(1.2)) is established by Proposition 2. Now let w(λ) and w(λ) be solutions of (1.9)
both corresponding to A = (Atab)a)b = ίt2. Set v(λ) = w(λ)~1w(λ). Then we have

= w{λ)~ι Atahw{λ)-w(λy] Atabw(λ)

= 0 .

if w(λ)9 wί O e Λ f ^ C ί ί ί Λ x l H μ f 1 , ; ^ 1 ] ] and woo = H>oo = 1l, then t (λ)

Conversely, let v(λ)eMn(<£) [[t, x]] [[λϊ\ λ^1]] be a solution of (1.10) such
that Uoo = H> and let iv(2)eMπ(C) [[ί,x]] [[λf 1^ 2~ 1]] be a solution of (1.9)
corresponding to A such that vvoo = H. Set w(λ) = w(λ)v(λ). Then we obtain
w()^GMn((L)[[t^}}[[λ;\λ2'

ι]l woo = i and

( - λadXab + dtab)w(λ) - ( - λadXab + aίαb) (w(λ

Namely, VV(Λ) is a solution of (1.9) corresponding to A. q.e.d.

2. Motions on ne Infinite-Dimensional Grassmann Manifold

Let Z - Z x Z , 7V=NxN, 7Vc = Z \ i V a n d 7? be a ring with a unity 1 For any
W ' W = Σ uVuί~ί^2~"/eΛ[[λf1

5λ2~
1]] s u c h t n a t ^00 = 1 a n c i wfj = 0 for

( i . J ) e Z

(ij')eNι\ define a matrix of infinite size ζ = (ζfcO(i,i),6Z,(fe(oeivc by the product of
matrices (wf-M_?)(U)ez,(M)eΛ- and (w ί_kjJ _ ί ) ( i ; j ) e Z ! ( k ; O e Λ / c 5 i.e. by ξ̂ {
= Σ ^f-^j-^tV/c,/?-/' where w J are coefficients of w"1, i.e. vv"1

(g,h)eNc

= Σ H ; 5 V ' ^ j Then we obtain ξH = δι

kδft if (iJ)eNc, ςlj-0 if z<fe or
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j<l, and Λaξ = ξCa (a = 1 , 2 ) , where

C\={ζk,l 'J)(i,j)eNc,(k,l)eNc •>

C2=(ζk\ί )(ί,j)eNc,(k,l)eNc

Here δk denotes Kronecker's delta. Furthermore, the converse is true:

Proposition 4. The above definition of' ξ gives a one-to-one correspondence between

i) w(λ)eR[[λϊx, λ^1]] such that wQ0 = ί,
and

ii) ξ = {ξti){i.j)GzΛkΛ)eNc, ξtiεR, satisfying the following conditions:

ξϊί = δiδ{ί if (iJ)eNc , (2.1a)

ξti = 0 if i<k^0 or j<l^0 , (2.1b)

Λ1ξ = ξC1 , Λ2ξ = ξC2 for some Nc x Nc-matrices Cl9C2 . (2.1c)

Here the inverse correspondence ξ^w(λ) is defined by wtj= -ξ°f_ •.

Proof

1) Proof of {2 Λb). If i<k, then w?-gj-hwg-k>h-i = 0 for any g,heZ because

i—g<0 or g—k<0 holds for any geZ. If j</, then wf-gjJ -hwg_ f l )h_ ί = 0 for

any g.heZ because j—h<0 or h—l<0 holds for any ΛeZ. Therefore

^ ' = Σ nf-gj-hWg-Kh-i^O iΐi<k ovj<L
(g,h)eNc

2) Proof of (2.1a). By the definition of w* , we obtain Σ ^15^/
= δ5δ5l If (Uj)eNc, i^k, andy^/, then i + k = gj + ι = h

Ikl — 2w Wί-gj~h]

i j

= Σ Σ w*-g,j-h

Σ W9
-k,hι +h2=j-l

3) Proof of (2.1c). We denote Λ = (Λ1,Λ2),ξ0 = (δlδβ\ίJ)EZΛk,l)eN,, and
<ίo for α = 1,2. Note that Λaξ0 = ξQΛa(-) for α = 1,2, and
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where we denote w{A){-)^
tξow{A)ξQ. Then we obtain

where Ca = {w(Λ)i-)}-1Λai.)w(Λ){-).

4) Mapping (i)-»(ii)->(i) is identity. In fact, if w(λ)-+ξ-^w(λ), then

= Σ

5) Mapping (ri)^(i)->(ii) is identity. Λίξ = ξC1 means ξι

kj
1J= £

(ί?,ft)e/Vc

which reads ξι

ky>j = Cij

kl when (ij) e Nc because <!$ = δffiί for (/,y) e Nc. Similarly,
Λ2ξ = ξC2 implies C U ^ ^ f 1 for (ij), (k,l)eNc. Therefore, ifΛ1ξ = ξC1 and Λ2ξ
= ζC2 for some Nc x Λ^^matrices Q , C 2, then

i

ί i + l , / V zij zq + l,h pij i V £ί>7 ^ 0 ^

(g,h)eNc h = 0 ^ _ .

i

(ί/,fi)eNc 9 = 0

This means that for any m e N , {̂ i}(i,j)6iv,(/c,/)eiv î+i=m + i a r ^ determined by
{CkOίί.jjeN.ίk.oeΛ ί̂+ĵ m Thus ξ = (ξίί)(ί>i/)ez,(k.oe^ is uniquely determined by
(Cfc/°}(/c,oeΛ'- provided that ξ satisfies (2.1a), (2.1b), and (2.1c). Now we set
ξ-+w(λ)->t Then both ξ andξsatisfy (2.la), (2.1b), (2.1c) and ξξ? = -w_k f_ z = ξg°,
from which ξ = ξ follows, q.e.d.

Remark. The matrix ξ can be regarded as an Λ^-frame in the vector space Rz,
which represents a point in an infinite-dimensional Grassmann manifold. Then
ζ( + ) = (ς/cί)(ι,/)FiV,(/c,/)eΛrc i s regarded as a local coordinate system for the Grassmann
manifold. Equations (2.1b) and (2.1c) are the defining equations for the relevant
submanifold.

Now we rewrite Eqs. (1.9):

Theorem 1. Through the correspondence w(λ)*-+ξ, Eqs. (1.9) are equivalent to the
existence of Nc x Nc-matrices Bab (a,b = l,2) such that

(-ΛadXab + dtab)ξ = ξBab (Λ,6 = 1,2) . (2.3)

Here Bab (α, Z? = l ,2) are uniquely determined by ξ if they exist, and (2.3) can be
regarded as non-linear equations for ξ as follows:

Ά pi + l i P\ ?ij V £iJ P) P®h
— °xlbCk,l +ΰtίbζkl= — L ζ-l,hVχίbζkl s

h = ° (2.4)
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Proof.

1) Proof that (1.9) implies (2.3).

( -Λ a c X a b + d,Jξ = ( -ΛadX a b + 6tJ (w(Λ) -1ξo'£o w(Λ)ξ0)

+ w(Λ) -'(- ΛadXab + d,J ξ0 \v(Λ\ _,

= w{Λyιξ0 iv(/!)(-,B a b = ς β α 6 ,

where 5 a ί ) = {vv(/l) (-,}-»(-/1α (_ ) C?. ΐ α b+ F, Jw(Λ\-,, for any α,6 = l ,2 .

2) Proof that (2.3) implies (2.4). In terms of entries, the equation (~/li 5 Λ l b + 5 t l b) c
= ξBlh can be rewritten as

lί,α l, X $ , (2.5)
(g,^)eiVc

which reads

when (i,j)eNc. Substituting this into (2.5), we obtain

(g,h)eNc

— ~ La ζ-l,hCxίbζkl

because ξ$ = δξδfί for (g, h) e Nc. The second equation of (2.4) can be derived in
the same way.

3) Proof that (2.4) implies (1.9). When /=y = 05 Eqs. (2.4) read

— °xlbζkl ~^°tlhQkl — ~~ζ-ί,O°tίbQkl 5

~~GxlhQkl -T~0t2bζkl — — Cθ,-1 ϋt2bζkl

Substituting ξ w ° = - ^ - ^ - / - w f o ^ - f c , - / , ξ w ° = - w - ^ - / , and C w 1 = - w _ f c ) 1 _ z

— WoiW_fcj-; into the above, we obtain

for any (k, I) e Nc. Thus (2.4) implies all of Eqs. (1.9) except some trivial ones, q.e.d.

To investigate the structure of the solution space of (2.2), we consider an initial-
value problem with respect to the subspace / = 0. Unlike the case of self-dual Yang-
Mills equations, we cannot solve it for arbitrary data; the data for which it is
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solvable must satisfy a system of differential equations. In fact, we have

Proposition 5. The system of equations (2.1a), (2.1b), (2.1c), and (2.3) implies that

if k^O and p + q>i-k , then δ | n δ« 1 2 ^" = O ((/,./) eZ, (kJ)sNc) ,

// /^0 <m</ P + q>j-l , then d*2id«22ξίi = Q ((ij)eZ, (k,l)eNc) .
(2.6)

Under the conditions (2.1a), (2.1b), and (2.1c), Eqs. (2.6) are equivalent to the
following equations:

If p + g = i+l , then δί1 1δj? I ϊ^? = O , (p,q,i^0, /<0)

if P + q=J+l , then dp

X21dl2ξ
0

k(ΐ = 0 , (p,qJ^0, k<0) (2.7)

1) It is obvious that (2.6) implies (2.7)

2) Proof that (2.4) implies (2.6). It follows from (2.1b) that ξ^h = 0 for /c>0. Thus
the first equation of (2.4) reads

-dXίbξίy>s + δtίbξli = Q (2.8)

for &>0. Thanks to this formula, the first equation of (2.6) can be proved by
induction starting from the case i—k^ —1 which is trivial. We cannot use the
formula when k = 0, but Eqs. (2.6) also hold for k = 0 because ξlki = ξo~ιkJ for any
k^.0. The second equation of (2.6) can be derived similarly.

3) Proof that (2.7) implies (2.6). We shall prove the first equation only. (The second
one can be proved similarly.) Since ζld = ζo~ιk'j for k^.0, it is sufficient to show that

if p + q>i , then ^ u θ « 1 2 ^ = 0 . (2.9)

We shall prove this by induction o n / The casey = 0 is just (2.7). Assume that (2.9)
holds for any j^m. When k = 0, the second equation of (2.2) reads

9=0 g=0

Differentiating both sides, we obtain

Σ Σ Σ(Λlq
L L \ v I I _ I ° ° °°

g=0 r = 0 r Λ /

i f n 4 - Λ S Ϊ t h p r , P P piq pί.m _ A u r Λ A pUU(*r Pi P~ r p * q ~ s pi- g,m _ A pr ps z gO _ A

ir p-\-q>ι, men c/ X l l o X l 2 ς O s ϊ - i — u ana euner cXίl oXί2 ςo,-i — u or c X l l (7 X l 2 ςg z — u
holds by the assumption of induction. Thus (2.9) holds for j = m + \. q.e.d.

Conversely, for any initial datum satisfying (2.6) (or (2.7)) we can solve the
initial-value problem:
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Theorem 2. For any ξi0) = {ξJ8)iS){ij)ezΛk,l)eN', ξ8)ijeMn(<E)[[x]] satisfying (2.1a),
(2.1b), (2.1c), and (2.6) (or (2.7)J, there exists a unique solution ξ to the initial-value

(2.3), and ξ\t=o = ξ(o\ The solution ξ has the following form:

ξ^ξWΎ1 , (2.10a)
where

? ( £ X ) ^ , (2.10b)

(2.10c)
?( + ) — f£i.Λ

—{Qkl)(i,j)eN,(k,l)eNc

Proof of the uniqueness. Set

and

Then (1.9) are recursion formulae for wijkl(λ):

ί j k I

~ Σ Σ Σ Σ (dχiiWlO;i-p,j-q.k-r,l-s)WpqrS(λ)

etc. Thus {wijkι(λ)}Ujfkj^0 are uniquely determined by woooo(λ) if they exist. This
completes the proof because of the one-to-one correspondence w(λ)<^>ζ in
Proposition 4.

Proof of the solution formulae

1) Let

,g%= [A = (Aιά)(ij)eNcΛkfl)eNc\Ajάe Mn(<E) [[x]], there exists an integer m such that Ak{
= 0 if i —k^m or j — l^m},

^^{ξ = (ξι

k

Ίd(ίj)ez,(kj)sNc\ξίiιeMn(€) [[x]l there exists an integer m such that ξg
= 0 if i—k^m or j — l^m},

and^[[ί]] = J Σ ςf

M is a (C-algebra on which y l β ( _ ) e ^ ( ί / = l ,2) and ̂ Xαb (α, b = 1,2) act. #" is a right
.^-module with .^-action defined by multiplication as matrices. Aa(a = 1,2) and
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dXab(a,b = l,2) act on 3F from the left. Since £ ( 0 ) e J ^ ,

is well-defined as an element of
The following proposition is important because it means that the system of Eqs.

(2.1c) and (2.3) defines a motion on an infinite-dimensional Grassmann manifold:

Proposition 6. The system of equations (2.1c) and (2.3) is invariant under change of
frame: let ξe^[[t]] andCa,Babe0£[[t]](a,b = 1.2) satisfy (2Ac) and(23). For any
invertible element Pe@[[t]], set ξf = ξP, C'a = P~ιCaP, andB'ah = P~ι(Bah~CadXah

+ dtab)Pfor a,b = l,2. Then ξ',Cά, andB'ah(a,b = \,2) also satisfy (2.1c) and(2.3).

Proof. The following calculation proves the proposition:

Λaξ
f = ΛaξP = ξCaP = ξPP-iCaP = ξ'CUa = h2) ,

{-AadXab + ctab) ξ' = {-Aa dXab + dtab) (ξP)

= ξ'B'ab(a,b = l,2) . q.e.d.

2) In terms of entries, the definition of ς can be written in the following form:

1 1

(2.11)

Since ς ( 0 ) satisfies (2.6), we obtain

^ i = 0 if z < ^ ^ 0 or y < / ^ 0 . (2.12)

3) It follows immediately from the definition of ξ that

4) There exist C l 5 C2eM[[t]] such that

Λaζ=ξCa(a=\,2) (2.14)

This can be proved as follows: let w{0)(λ)+->ξ{0) through the correspon-
dence in Proposition 4. Then ξ{0) = w(O)(/l)~1^ow

(O)(/l)(_), where ιv(0)(yl)(_)
2 2

= tξow
(O\A)ξo. Set yl(_) = (yl1 (_ J,/l2 (_ )) J i ) (/l)= Σ Σ ^ Λ A α b , and /)(yl(-))

2 2 fl=1 b = 1

= Σ Σ /'α6^α(-)<5χαb We note that /lαξ o = ξoylα (_ ) for # = 1,2 and hence that
a=l b=l
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P(Λ)ξo = ξoP(Λi-)). Then it follows from the definition of ξ that

Σ Σ (AJT

k^O K j^O J-

and that

where Cβ = {exp [PiA^^w^iA)^}-1 Aa{^ exp [P(A-))]w(0)(^)(-). The in-
vertibility of exp [P(Λi-))]w{0)(Λ){-) in St[[t]] follows from the
fact that exp[P(/l(_))]w(O)(/l)(_)|ί=o = ̂ (O)(yl)(-) and that w(0)(Λ)(_)
= (^?-kj-ι)(ij)eN^(k,i)eNc is ίnvertΐble in ^ .

5) It follows from (2.13) and (2.14) that ξ is a solution of the system of (2.1c) and
(2.3) for Bab = 0(a,b = \,2). ?(-)6^[[ί]] follows from that ξe^[[t]l and ?(_} is
invertible in &[[t]] because ζ(-)\t^o==(^k^β)a,j)eN^(k,i)eN^ = ̂ ^^- Then
Proposition 6 says that ξ = ξ(ξ(_))~i e^[[t]] satisfies (2.1c) and (2.3). Equation
(2.1a) follows from the definition of ξ. Thus the last to prove is (2.1b). Let

= 0 if i<k^0 or

.βr

ι = {ξe&r\ξι

ki = 0 if i<k^0 or y</^0} ,
and

^ i [[']] = { Σ tit^ie

Then 0lγ is a subring of 01 and #"t is an ̂ -module, ξ is an element of
and ς(_) is an invertible element of ^i[[ί]] because of (2.12). Therefore
ξ = ξ(ξi-))~ί e^Ht]]. This completes the proof of Theorem 2.

In summary, by choosing the proper frame, the time evolutions in the initial-
value problem can be regarded as evolutions defined by linear differential
equations, and the solution space of (1.9) is faithfully parametrized by the solution
space of Eqs. (2.6)[or (2.7)] in the subspace t = 0.

3. Relation to the Yang-Mills Fields

First we describe the procedure for obtaining Yang-Mills potentials from any
solution of Eqs. (1.9) (or (2.4)):



Witten's Gauge Field Equations 167

Proposition ?„ Given any solution of Eqs. (1.9) (or (2.4),), set

— (?) ^ 0 0 -\-d C00 )

Substitute

into the above. Then A = (AXQ ,AXι, AX2, AX3) gives a set of Yang-Mills potentials (i. e.
a solution of the system (0.2),).

Proposition 8. Let V and V be gauge fields in (C8 satisfying (0.1). If V and V are
gauge-equivalent as Yang-Mills fields in the diagonal sub space A, then they are gauge-
equivalent in (C8.

Proof. If V and V are gauge-equivalent as gauge fields on A, there exists
^ g ( ) ) [ ι 2 3 ] ] X μ g ; μ g μ y , , ,
V = g ~x V 'g in (C8. Then V is gauge-equivalent to V' by definition and VXμ = VXμ on A
for μ = 0,1,2, 3. It is sufficient to prove that V and V are gauge-equivalent.

First we note that Eqs. (0.1) are rewritten in terms of Vx and Vw as follows:

Σ
(3.1)

[ ^ , ^ v l = [^M,Px v](^v = O,l,2,3) .

Expanding F with respect to w as

^ μ = ̂ + Σ Λ?μ'v
α , Al = Al(x)eMn(€)[[x0,x1,x2,x3}} ,

αeN4

F»v = 6»* + Σ ^ S μ

w * - ^ : μ = ^ - κ ( * ) e M " ( C ) [[^o, xi, *2, x3]] ,
αεlN4

and substituting this into (2.1), we obtain

Σ Σ
K = 0 λ =• 0

+ Σ Σ
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β

where e0 = (1,0,0,0), ^=(0,1,0,0), e2 = (0,0,1,0), e3 = (0,0,0, 1 ) G N 4 . We may
3

assume without loss of generality that Σ ^w~eμ = 0 f° r any αelN4 by virtue of
μ = 0

gauge transformation. Then {Λt£μ}αe]N4,μ=o,u,3 and {^μ}αeN
4,μ=(u,2,3 are re-

cursively and uniquely determined by {AXμ}μ=Of 1,2,3- Finally, we prove the
existence of such gauge transformation. Let m be any positive integer and let

|α|=m j^O \ |α |=m /

3 3

and hence Σ ^w"/μ= Σ Λ-^~eμ—nig^ if |α |= m. Thus for any given A, we define
μ = 0

9m=^ - Σ QmW f inductively by
a\=m Jm^l

3

μ=0

= Q

and set gf= Π Qj

For any self-dual Yang-Mills field V, i.e. covariant derivatives VXμ = dXμ

+ AXμ(x) satisfying

[VXμ,VXv) = (ί/2) Σ Σ £ ^ [ ^ , ^ 1 ^ ^ = 0,1,2,3) ,

α = 0 β = 0

define a gauge field V on C 8 by

Vv =dv +J3 V , J3V = Λ X (v) ,

K = δ*» + K ' ^ = ° (^ = 0,1,2,3) .
Then we obtain

[ ^ , ^ = (1/2) X Σ εμv*β[Py.,Py,] '

α=0 β=0

[? Z μ ,U = 0 , (3.3)

[^μ,^zJ = 0 (|/,v = 0,l,2,3) ,
which imply Eqs. (0.1). Thus all the self-dual fields belong to the class of Yang-
Mills fields given by the restriction of Witten's gauge fields (0.1). Note that the
trivial extension (3.2) is the unique one up to gauge equivalence by virtue of
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Proposition 8 and that Eqs. (3.3) are gauge-invariant. Therefore, if any gauge
field V satisfies (0.1) and its restriction to the diagonal subspace A is self-dual,
then V satisfies (3.3). Conversely, suppose that a gauge field V satisfies (3.3). We
may assume that ΆZμ = 0, because such a gauge can be taken by virtue of the
equations [VZμ,VZv] = 0 (μ, v = 0,l,2,3). Then 0 = [Vyμ9 VZJ = [Pyμ, 3 J = ~dZvAyμ,
i.e., Ayμ = Ayμ(y). Set AXμ = Άyμ(x) and VXμ = dXμ + AXμ. Then we obtain [VXμ, VXv]

3 3

= (1/2) £ X εμvΛf[rXa, VXβ] and F , μ = ^ μ | w = 0 . Thus we have
α = 0 β=0

Proposition 9. The solutions V o/(0.1) which correspond to self-dual or anti-self-dual
fields on Δ are characterized by

[F Z μ 5 FzJ = 0 (μ,v = 0,l,2,3)
or

[ F ϊ μ , F , v ] = 0 ( / i , v = 0,1,2,3) (3.4)

respectively. All the self-dual or anti-self-dual Yang-Mills fie Ids can be obtained in this

way.

Rewriting (3.4) in terms of ξ, we obtain

Proposition 10. (i) A solution ξ to the system of Eqs. (2.1a), (2.1b), (2.1c), and (2.3)
corresponds to a self-dual field on A if and only if it satisfies

p2 £ 0 , 0 _ 3 f) ^ 0 , 0 _ ^ 2 £ 0 , 0 _ Λ /o <;\

(ii) A solution ξ to the system of Eqs. (2.1a), (2.1b), (2.1c), and (2.3) corresponds
to an anti-self-dual field on A if and only if it satisfies

p)2 £ 0 , 0 _ p) ps £ 0 , 0 pi £0,0 A /Q S\

Proof. We prove (i) only. Noting that (x2 1, x12 ,^21^22) a r e t n e coordinates of
z-space, we can see that (3.4), the integrability in z-directions is equivalent to the
following system:

[VX2a,Vt2b] = 0 (a,b = l,2)

The first two equations are trivial since we assume that the gauge field satisfies
(1.1). Substituting VX2b = dX2b and Vt2b = dt2b—dX2bξo^-1 into the rest of them, we
obtain (3.5). q.e.d.

Remark. (3.5) or (3.6) is not stable under the time evolutions.

In fact, we have

Proposition 11. Suppose that ξ satisfies the system of Eqs. (2.1a), (2.1b), (2.1c), and
(2.3) and corresponds to a self-dual (anti-self-dual) field on A. Then

if p + q^i-k9k^O,r + s>j-l, then dp

Xlιdi12dXlld
s

Xl2ξ^ = O ,

(if p + q>i-k,r + sZj-l, /^0, then d^d^d^d^ξ^O) .
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Under the conditions (2.1a), (2.1b), and (2.1c), Eqs. (3.7) are equivalent to the
following equations:

If p + q^i and r + s> --/, then d ^ d l ^ ^ ^ = 0 .
(3.8)

(If p + q>-k and r + s^j, then d^δ^d^d^ξiΐ^O.)

Proof By using (2.8), the proposition can be reduced by induction to the case
p = q = i = k = 0. (Note that ξίi = ξo~ιkJ if k^Q.) Moreover, by using (2.2), it can
be reduced to the case7 = 0, i.e. 3£21δ£22<!;o?=0 if r + s> -/, or dX2ίd

s

X22w0j = 0 if
rjrs>j. By using the second equation of (1.9), it can be reduced to the case7 = l
which is nothing but (3.6). This completes the proof. (The latter half of the
statement can be proved as in Proposition 5.)

Theorem 3. A solution ξ to the system of Eqs. (2.1a), (2.1b), (2.1c), and (2.3)
corresponds to a self dual (anti-self-dual) field on A if and only if its initial datum ξ(0)

satisfies (3.7).

Proof Suppose that c ( 0 ) satisfies (3.7). Differentiating both sides of (2.11), we can
see that ξ also satisfies (3.7):

If p + q^i-Kk^O, r + s>j-l, then dξ^d^δϊJ^O . (3.9)

Set
\A satisfies (3.7)} ,

\ξ satisfies (3.7)]
and

Then Mz is a subring of 0l2

 a n d -^3 is an ̂ 3-module. It follows from (3.9) that

l ς{-)9ς(--\ε&Λ[t]] Therefore ξ = Z lC-\e.^[[t]]. q.e.d.

4. Special Solutions

Proposition 12. Let w(λ)<-*ξ through the correspondence in Proposition 4,
wi0\/.) = w(λ)\t==0 and ξ{0) = ξ\t = 0. Suppose that w(λ) satisfies (1.9). Then the
following (i), (ii), (iii), and (iv) are equivalent one another for any p.qelN:

(i) If i>p or j>q, then wjJ ̂ O .
(ii) IfΊ>p orj>q, then wfj = 0.

(iii) Ifk<~p or l<-q, then ξ$)ij = όι

kδ{ί for any (iJ)εZ.
(iv) If k< —p or l< —q, then ξιJι = Oι

kδ{ί for any (iJ)εZ.

Proof

Proof that (ii) implies (iv). When (ij) e Nc, (iv) is trivially satisfied because of (2.1a).

Therefore we assume that (iJ)eN. If k< —p, then ξι

kj= — ^ w*-gj-hwg-kth-ι
(y,h)eN

= 0 because g —k^ — k>p for g^O. If/< —q, then ξι

kj= — £ wf-gj-hwg-kih-ι
(g,h)eN

= 0 because h —I7tl>q for h^O.
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Proof that (iv) implies (ii). If ί>p orj>q, then wtj= — £°'°__y = 0 because —i< —p
or - / < - 9 .

Equivalence of (i) to (iii). This can be proved similarly.

Equivalence of (in) to (iv). It is obvious that (iv) implies (iii). We shall prove that (iii)
implies (iv). Let

^4 = {A e Mx IA satisfies (2.6) and

Aι

ki = δι

kδ{ί if i^k<-p o r j^l<-q},

#4 = {ξe^i\ξ satisfies (2.6) and

ξ# = <5k<5/H if i^k<-p or j^l<-q)
and

T h e n ffl4 is a s u b r i n g of 021 a n d # 4 is a r ight ^ . - m o d u l e o n w h i c h AadXab (a,b = \,2)

act. If £<°>e^4, then ξ= Σ Λ ί Σ Σ ' ^ « U V 0 > e ^ [ [ / ] l , and hence
p^O P \β = l b = l /

ξ ( _ ) G^ 4 [[ί]] . Therefore ξ = J(J ( _ ) )~ 1 e#4[[/]]. This completes the proof.
Thus, starting from an initial value w(0)(λ) which is a polynomial of λΐι, Λ2"

 J , we
obtain such a solution.

Now we shall illustrate a simplest non-trivial example. Let

Then ς«<o ) i O =^Σ H f J ^ H - ^ ^ - H ^ * ^ if ^O and / = - ! , and
9=0

otherwise. c S ) O j = - Σ ^Sh*-^-\,H= -Hί°/

)*w(

1

o

o

)ifj^0andA:= - l , a n d ς β ) O / = 0
h = 0

otherwise. We can see that wf0

] * = ( - wf0

})1 and that vt̂ 0/ * = ( - M^) 7 ' because w(λ) ~x

= y ί ? + I (-^io^C-^oiV'^Γ1'^"-7. Therefore (2.7) is written as

i.ko \ ι J
^ I 1 ^ Γ 2 1 " P { ( M ° o ) ) i < ) } = 0 for /7 = 0, l , . . . , ί + l ,

(4.1)
^ . o ^ ' I K i W o ^ O for ^ = 0 , 1 , . . . J + l .

Since (4.1) reads δ λ l l ^ ° 1

) = δ X l 2 ^ 0

1

) = βX21wf0

) = δχ22vv(

1

0o) = 0 when i=j = 0, the gauge
field corresponds to a self-dual Yang-Mills field on A if and only if

di2A°i=SX2ίδX22w& = dl2w^ = 0 , (4.2)

and corresponds to an anti-self-dual Yang-Mills field if and only if

^2 uAO)_p p u,(0)__p2 ,..(0) Λ (A OΛ

Now set vvfo^^ixf j+c^x^, w$ = c21X2i+C22X22, caheMn(<£) for α,fc = l,2.
Then (4.1) is satisfied for i=j = 0. Equation (4.2) is equivalent to c11 = c 1 2 = 0 and
(4.3) is equivalent to c2Λ — c12 — 0. On the other hand, noting that Af^ = 2cabxab for
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a,b = l,2, we see that if the gauge field V is abelian, then [cab, cde] = 0 for a, b, d, e

= 1,2. Note that the gauge field V corresponds to an abelian Yang-Mills field on A if

and only if V is abelian itself. Now set, for example,

Cn ~E2\ = ( < 5 i 2 < 5 j l ) i = l , . . . , n , j = l , . . . . n >

C \ 2 = E?>2 = ( ^ i 3 ^ j 2 ) i ^ l , . . . , n J = l , . . . , n •>

C22 = £I54 =

Then wg? w^ = wf0 w$ = 0 and especially (4.1) is satisfied for i ̂  0 and; ̂  0. Neither

(4.2) nor (4.3) holds because cabφ0 for α,6 = 1,2. The gauge field is not abelian

because [ c n , c 1 2 ] , [̂ '215̂ 22]H= 0. Thus we obtain a gauge field corresponding to a

Yang-Mills field on A which is not abelian, self-dual nor anti-self-dual.
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