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Abstract. We consider a system of N hard spheres in the Boltzmann-Grad limit
(i.e. d -• 0, N -* oo, Nd2 -• λ "* > 0, where d is the diameter of the spheres). If λ is
sufficiently large, and if the joint distribution densities factorize at time zero, with
the one particle distribution decaying sufficiently rapidly in space and velocities,
we prove that the time evolved one-particle distribution converges for all times
to the solution of the Boltzmann equation with the same initial datum. This
result improves and is based on a previous paper [1], valid only in two
dimensions.

1. In a recent paper [1] the validity of the Boltzmann equation has been proved for a
cloud of gas of hard spheres in the two-dimensional vacuum. In the present paper we
extend this result to the more physically relevant three-dimensional case.

A part of the techniques necessary to obtain the present result are contained in
[1] to which we address the reader for motivations, general comments, further
references and notation. We briefly review the result of [1] and explain why that
approach fails in dimension three. Following the same notation, we denote by ΓN the
phase space of a system of N spheres of diameter d in [Rv(v = 2,3), X
= {x1v1...xNvN}, xfufe(Rv x Uv a phase point, φd the (almost everywhere defined)
time evolution of the system, (for which φd(X) = {x1(t)v1(ή... xN(t)vN(t)} is the
trajectory of the phase point X), μd(dX) = μd(X)dX an absolutely continuous,
symmetric (in the exchange of particles), probability measure on ΓN at time zero,
μd(X) the time evolved density, fd

tt t ̂  0,0 < k ^ N the joint distribution densities.
Finally Sd{t) is defined by:

{ } (1.1)

The following equation is satisfied by the family fly

\ (1.2)
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where f{ stands for fd

M and Cd

Kk+u the collision operator, is defined by formula (2.7)
of [1] and will be recalled later.

The validity of Eq. (1.2) is proved in [1] and, in a more extended and natural way
in [2], where also the history of the equation is reviewed.

In this paper we are interested in the asymptotic behavior of ff, t for large N,
keeping fixed the product, Ndy~ι = λ~x > 0.

Together with Eq. (1.2) we also consider the Boltzmann hierarchy (with initial
datum / = {/k}k=1...J:

+ ιfk+Us, (1.3)
o

where
S{t)fk{xίυ1... xkυk) = fk{xi -v1t,υί.,.xk- υkt, υk)9 (1.4)

k

Ck,k+1fk + χ(x1v1...xkυk) = λ~1 £ \dvk + 1 j dnn-(vj-vk + 1)
J - l n(υj-υk+1)^0

fk+ΛxιVι xiv'j - - • XjV'k+i)- fk+1 (xi υ1... Xjϋj... XjVk + 1). (1.5)

Here, as usual, n is a unitary vector and v'j, v'k+1 are the outgoing velocities after a
collision with impact parameter n and incoming velocities Vpυk+ι.

The solution of Eq. (1.2) and the solution of Eq. (1.3) (if any) are expressed by the

series (where f* = {/U*=i...*>S d(ί)/ d - {Sd(ί)/ί}fc = i...oo, Cdf = {(Cd/)fc}fc=i...»
= {C^/c+1//c + 1 Jfc î.,.00, and we use the convention fka = 0 if k> N)

ft = Sd(t)f«+ £ \dt1]dt2...'"]1dtnS
i(t-t1)Cά...Sd(tn)fi

> (1.6)
n = 1 0 0 0

ft = S{t)f+ Σ \dtι]dt2...'"fdtnS(t-t1)C...S(tn)f. (1.7)
n = 1 0 0 0

The study of the behavior of f\ in the Boltzmann-Grad limit rf^O, N ̂  oo,
iVd -• A~x is of great conceptual interest. Actually fd is believed to converge to ft and
a rigorous proof of this fact provides a proof of the validity of the Boltzmann
equation itself. A first step in this direction was obtained by Lanford in a well known
paper [3]. He proved the convergence of/f to ft in the Boltzmann-Grad limit for
short times (but also in more general contexts than the case of a perturbation of the
vacuum considered in [1] and in the present paper).

In [1] following the same Lanford strategy it was proved the convergence of ff
to ft for all times but only for d = 2. In fact it is possible to estimate both series (1.6)
and (1.7) by means of absolutely convergent series by estimating each term in a
suitable norm. Furthermore the convergence of the series (1.6) to the series (1.7)
almost everywhere (in the limit N->oo and d chosen according to i W 1 = λ~x)
follows by the convergence term by term of the series. Namely, rewriting the two
series (1.6) and (1.7) in the form (d ̂  0):

» = 1 0 0

•Ωd{tB)Vi{tn)Ωi(tβr
ίfi, (1.8)
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where

(1.9)

(1.10)

and introducing the following norms:

|| fj \\βJ = ess sup I fj{x1 vγ... XjVj)\ exp β £ (x? + t f), (1.11)
i = 1

(1.12)
j

it is possible to prove the following estimate (see Proportion 3.2, [1]):

II v\t)f\\*;. ^ coz\{β)λ~ι 11̂ .11̂ .(1 + r + T 1

V ^ ^ α n z ' z - 1 ) } (1.13)

for 1 > d ̂  0, 0 > β' > 0, z' > z > 0, ί(jϊ) = j
In the case of the Boltzmann hierarchy (d = 0), the estimate (1.13) is enough in

order to obtain the convergence of the series (see Remark 2, p. 195 of [1]) and,
moreover, a unique solution of Eq. (1.3) and, in particular, a unique (mild) solution of
the Boltzmann equation in case of initial factorization. The argument is simple.
Reminding that for the Boltzmann hierarchy Ωd= 1, inserting the estimate (1.13) in
the series (1.8) for d = 0, after a reordering of times and an integration over all times
(possible because of the factor (1 + ί v + 1 ) - 1 ) we are led to a geometric series
converging for large /. Roughly speaking this is same as the Lanford argument with
the time replaced by /I" 1 .

To bound the series (1.8) for d > 0, we need to control Ωd in the norm || H -̂, and
here the dimensionality of the physical space enters.

1 j

Defining l(X) =• - ]Γ (xf -f vf), we arrive, after elementary considerations, at the

formula:

KΦi(X)) = l(φt(X))+ t (tin-UM-ydW-rid, (1.14)
£ = 1

where φd(X) denotes the trajectory of a system of j particles of diameter d whose
phase point at time zero is denoted by X, φt(X) the free motion for the same system, ti

the collision times, y'hyt the positions of the two particles at the /th-collision, p\ and u'{
the outgoing and incoming velocities of the particle in y[ (see Proposition 3.1 of [1]).

Since the distributions for the j-particle system have a gaussian decay in the
velocities, we may assume that the energy of the system E is, at most, of order N.
Thus in the worst case: (a single central collision between two particles with half
energy)

l(φά(X)) = l(φt(X)) + itd^E ^ l(φt(X))

= l(φt(X)) + Ctλ-1'2ΛJd*- (1.15)

for some positive constant C. Hence, for j of the same order of N,

d l i 2 ^ d 3 ~ \ (1.16)
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which means that Ωd(t) is bounded, uniformly in t g Γ, for a sufficiently small d,
chosen according to T, if v = 2. The t dependence in Eq. (1.16), for v = 3 does not
allow us to integrate over all times, so that the argument fails.

The above considerations show that low probability events (a relevant part of
the energy concentrated on a single particle undergoing a collision) make it difficult
to control the series (1.8) for d > 0, in terms of uniform norms.

In this paper we overcome this difficulty by introducing a fictitious dynamics
which ignores the high energy collisions so that the approach in [1] applies also in
dimension three. In addition we estimate the probability that the true dynamics
differs from the new one and find that this is negligible in the Boltzmann-Grad limit.
As a consequence we prove a validity theorem for the Boltzmann equation in a
slightly weaker form: the fkt will converge to fkt weakly and not almost everywhere
as in [3] and [1]. However this does not seem a physically relevant point.

2. In this section we always assume the dimension of the physical space to be three.
We introduce the (reversible) dynamics, denoted by φ*, for a system of hard

spheres, according to the following definition. φd coincides with φd unless two
particles collide with enrgy E(i, j) = l/2(υf + vj) larger than y/N. In that case they
are not elastically reflected, but they go ahead freely. Obviously the phase space of
the system, ΓN, is slightly larger than ΓN, since overlapping of a pair of particles with
large energy are allowed. We underline all the objects which refer to this new
dynamics: e.g. y,d,fia, Sd(t\.... Exactly along the same lines leading to Eq. (1.2) (see
[1] and [2]) we have:

ί i t (2.1)
o

where

t 1 t Sdvt + ^dnniVf-Vt + J, (2.2)
7 = 1

/ (2.3)

and χ (something) denotes the characteristic function of the set in which something
happens. We remind that Cd

jk + 1 is defined as C(tk + ί provided that the indicator χ is
neglected.

By Eq. (1.14) we obtain:

l(φd(X)) £ l(φt(X)) + (2J2)tN^d, (2.4)

so that, fixed arbitrarily T > 0 and ε > 0, for N sufficiently large (depending on
Γ, λ, ε), we have (for t < T):

U ^ O I I ^ e x p ε , \\Ωd{tyι \\M^ 1. (2.5)

The last inequality follows because the last term in Eq. (1.14) is positive.
The following Theorem is consequence of the arguments in [1].

Theorem 1. Assume, for the joint distribution densities at time zero, the following
hypotheses'.



Global Validity of the Boltzmann Equation 83

i) They are continuous functions in (U3 x U3)j^d= {X\\xi-xk\>d for iφk,i,
k = 1,..., jd x 0}, vanishing on the boundary of (U3 x U3)J^. There exists an infinite
sequence of functions {// }7 =i...o o continuous on (U3 x U3)jfsuch that

lim fj = fjfor all uniformly on compact sets of (U3 x R3)jf. (2.6)

ii) There exists C1 > 0 such that, for z0 > 0 and β0 > 1

ll/'ll^o^Ci. (2.7)

Then, there exists an increasing positive function y = y(β0) such that, if λ~1z0<γ(β0),
then:

lim/£ f = /7. fa.e. (2.8)
d->0~

Moreover, for any T > 0, z = zoe, β = β0 — 1 and d sufficiently small,

sup \\f* \\z

β < const. (2.9)
ί < T

Proo/ In what follows it is convenient to extend fd

kt (as well as/j*>t) to the whole
space([R3 x U3)\ by putting fd

kJ(X) =0(fd

kt(X)= 0) if X is such that | ^ - x̂ l < Jfor
some i ̂  j (in case E(i, j) 5Ξ ̂ /iV).

The estimate (1.13) is obviously valid also for Vd(t) and hence, by iterating the
estimates (1.13) and (2.6) n times for the nth term of the series (1.8), with In
ZJ/ZJ-i^n'1 and βj^1 = βj-\- n~λ j = \ ...n, we obtain (after reordering the times
and integrating up to infinity) for an arbitrary fixed T > 0 and d sufficiently small:

^ ! ) - 1 (2.10)

with z = zoe, β = β0 - 1 and C 2 > 0.
Therefore the series (1.8) is converging for λ~1 small, uniformly in N and d, (this

implies (2.9). The statement (2.8) follows by a direct inspection of the convergence
term by term (see [3] and also [4] for a revisited version).

We are now in position to prove the main result of this paper.

Theorem 2. Under the hypotheses i) and ii) of Theorem 1, if λ~1z0<γ(β0),

0 = J / M 0 (2.11)

for all fc> 0 and all bounded continuous functions g:(U3 x [R3)fc-> IR.

Proof We have:

Πfl - fk,t)g = Hit - h,t)g + S(fltt - LUQ (2.12)

The first term in the right-hand side of (2.12) goes to zero as a consequence of
Theorem 1. In fact the integrand vanishes almost everywhere and is uniformly
bounded by an integrable function (by 2.9).

Denoting by G:(U3 x Rψ-^IR,

G(X) = g{xuυί...xkvk) for X = (x1,v1...xNυN) (2.13)
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we have, by Liouville Theorem (which holds also for φ_d

t)

J(/ί. t-fi,)g = ldXG(X){ϋ<{X) - μd

t(X)}
= μx{G(φUX))-G(φt(X))}μd

0(X). (2.14)

Defining:

BN=[jBN(i,j), (2.15)

BN(ίJ) = {X\\xi-xj\ = d, E(i,j)>y/N, (t;i-ι;7.) (x i-x i)>0}, (2.16)

BN(T)= U φtt(BN), (2-17)

we realize that {G{φd(X)) - G{φd(X))} is zero unless XeBN{T). Therefore the right-
hand side of Eq. (2.14) is bounded by 2\\g\\^d

0{BN{T)\
To estimate the /^-measure of the "bed set" BN(T) we take advantage by the

following, so-called, special flow representation.

Consider the following map

Ψ:BN(T)->BN(T), Ψ(X) = (Y,t) iίψ_ttY = X, YeBN, (2.18)

BN(T) = {(Y,t)\YeBN,OSt<φ(Y)},

φ{Y) = s\ip{l>O\φL,YφBlf}. (2.19)

Then Ψ is an almost everywhere defined one to one bimeasurable map.
On the Borel sets of BN(i, j) we defined the following measure:

(2-20)

where dy^ is the Lebesgue measure of the sphere of center xt and radius d and

n.. = (xj - xί)/\xj -Xi\. Denoting by dσ the Borel measure on BN whose restriction
on BN(i, j) is daip we have the following formula:

Ψ(Y)AT

j F(X)dX= \dσ{Y) j dtFiψ-'iZήl (2.21)
BN(T) BN 0

where g is any bounded measurable function, and

ψ (Y) A T - min (φ (Y\ T). (2.22)

By virtue of the estimate (2.9) we obtain, for F = μd

0:

μd

0(BN(T)) ^ ]dt J dσ(Y)tit(Y) (2.23)
0
 BN

^ Σ ]dt$fit(xi,vhypυj)χ(E(iJ)>^N)

dxidyi dv^Vj n^-iVj — vt)

^ A{T)N2d2 exp { - H{T)yjN}, (2.24)
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where A(T) and H(T) are two positive constants not depending of N. Therefore
μQ(BN(T)) goes to zero in the Boltzmann-Grad limit and this achieves the
proof. O
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