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Abstract. We present a detailed and complete proof of our earlier conjecture on
the classification of minimal conformal invariant theories. This is based on an
exhaustive construction of all modular invariant sesquilinear forms, with
positive integral coefficients, in the characters of the Virasoro or of the A^ Kac-
Moody algebras, which describe the corresponding partition functions on a
torus. A remarkable correspondence emerges with simply laced Lie algebras.

I. Introduction

1. The minimal conformal invariant models describe a class of massless two
dimensional field theories, with known critical properties [1]. Their anomalous
dimensions and operator content are encoded in the expression of the partition
function on a torus. The sum over states decomposes into pairs of irreducible
representations of the Virasoro algebra, with central charge c rational and smaller
than 1, yielding a sesquilinear form in the characters χh,

In this formula τ is the ratio of the two periods on the torus, and the summation
extends over a finite table of known (Λ, h) values. The non-negative integral
coefficients J^-yield the multiplicities of primary scaling operators φhj, which are
in one to one correspondence with the products χ Λ χ | of characters. Cardy [2]
noticed that modular invariance is a consistency condition on these partition
functions.

Our aim here is to present a detailed proof of the classification of these positive
modular invariants, announced in [3]. As these theories describe statistical models
at criticality, this classifies the universality classes of two dimensional critical
phenomena, pertaining to c < l , with finitely many primary observables. They
include for instance the Ising and three-state Potts models.
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Gepner [4] has observed that there exists a simpler and related problem of
modular invariant sesquilinear forms in the characters of the A[1] affine Kac-
Moody algebra - again with integral non-negative coefficients [5]. We address both
problems.

Unexpectedly, a beautiful structure emerged [3], with a classification of these
minimal invariants in terms of simply laced simple Lie algebras, or equivalently
finite subgroups of SU2 [6], the celebrated A-D-E classification. Our results were
based on two conjectures. The first was a description of the commutant of the
representation of the modular group afforded by the characters. In the meantime it
was shown correct by Gepner and Qiu [7]. After recalling the expression and
properties of the characters (Sect. II), we shall reproduce this proof for complete-
ness, albeit in a slightly different formalism [8] (Sect. III). We were led to the second
conjecture after tabulating those invariants involving non-negative integral
coefficients that were constructed using the previous algorithms. When casting
earlier findings by Cardy [2], ourselves [9,10] and Gepner [4], in the appropriate
notation, it was recognized that the diagonal entries of all these partition functions
could be interpreted as the Coxeter exponents of simply laced simple Lie algebras,
generalizing an observation of Kac [11].

We then checked that, within a natural ordering we could not find any further
partition function at least up to a high order. Since the list exhausted the A-D-E
classification, it was suggested that it was complete. This was comforted by V.
Pasquier's construction of microscopic generalized solid-on-solid models, involving
the Coxeter-Dynkin diagrams and exhibiting the predicted behavior [12]. We prove
in Sect. IV that our lists are exhaustive. The method might be qualified as intrinsic,
in the sense that it combines simple arithmetic remarks, but does not illuminate the
nature of the correspondence with other A-D-E classifications. We suspect
nevertheless that such a correspondence exists, and finding it remains a challenge. In
the final Sect. V we study the representations of the modular group related to some
of the positive invariants, and point out their connection with classical problems in
algebra and number theory, according to the discussion given in F. Klein's treatise
on the icosahedron [13].

The above method of classification can be extended to other families of
conformal field theories, such as the minimal N= 1 superconformal ones [14], or the
ZN-symmetric parafermionic models [15, 7]. Several authors have also related the
exceptional affine invariants to simpler ones pertaining to higher rank Kac-Moody
algebras [16].

It is a pleasure to acknowledge here the hospitality that one of the authors (C. I.) has enjoyed
at the University of California in Irvine, and in particular the very useful conversations with M.
Bander and H. Meyers who made him aware of reference [6]. Similarly J. B. Z. thanks D.
Altschύler, K. Kastrup, and J. Lacki for bringing this same reference to his attention. A. C.
acknowledges the Angelo Delia Riccia Foundation for partial support.

II. Preliminaries

2. As a matter of convenience we write e(x) for exp {2iπx}, C is the set of complex
numbers, Έ the set of rational integers, TL\kTL the set of integers modulo k, and
(ΊLjkΈ)* its multiplicative subgroup of integers modulo k, prime to k. The notation
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p\k(pXk) means that/? divides k (does not divide k). For a set of integers a,b,. . .
the symbol (a,b,. . .) stands for the largest (positive) common divisor of a, b,.... In
particular (a, b) = l means that a and b are coprime, in which case any rational
integer may be represented as a linear combination ra —sb. We denote by σ(n) the
number of distinct positive divisors of n, including 1. We exclude 1 from the set of
(positive) primes.

The modular group Γ = PSL(2,Z) is the group of fractional linear
transformations

τ->τ'= (1)
cτ + d

with the integral coefficients, such that ad — bc = \. A given element is therefore
associated to a pair ±A of two by two matrices in SL(2, Z). If in (1) the complex
variable τ has a positive imaginary part, so has τ', and we shall henceforth assume
that this is the case.

The modular group describes the effect of a change of basis on the ratio τ of two
generators of a lattice Λ, with (C//1 identified with a torus. Γ is generated by two
elements

T τ->τ + l , S τ - ^ - τ " 1 , (2)
satisfying

S2 = (STf = identity . (3)

For any integer k>\, Γfc, the invariant subgroup of level k is such that
A = ±/mod k. It is a non-trivial result that Γk = PSL(2, Έ)\Γk is isomorphic to the
modular group on integers modfc, PSL(2,Z/kΈ) [17]. Furthermore for k>2

order Γk = index Γk = -k3 Π ί 1 "
^ p prime \

p\k

When k = 2, A— —A mod 2, one has to omit the prefactor 1/2 and the index of Γ2 is
six. If (kί,k2) = l, the group SL(2,Έ/k1k2Z) is isomorphic to the direct product
£Z(2, TL\k{E) x SX(2, Z/k2Z) Any element of the former group gives obviously rise
to a pair of the latter, and the correspondence is clearly an injective homomorphism.
Formula (4) with the prefactor 1/2 omitted, shows that it is surjective. This entails
that the representation theory for 5L(2, Έ/kΈ) is in fact reduced to the case where k
is the power of a prime. We shall not elaborate this point further, except to note that
it obviously relates to the discussion of the following sections. In particular the
center of SL(2, TL\kTL) is made of matrices of the form yl, with y2 = 1 mod k. Let r
denote the number of distinct odd prime divisors of k, and a = 0 if k φ 0,4, a = 1 if
k = A and a = 2 if k = 0moά 8, the number of elements in the center is 2a + r. In any
representation these elements will belong to the commutant.

The simplest automorphic "form" under the modular group is Dedekίnd's
function, defined for Im τ > 0 (the real axis is a natural boundary) by

η(τ) = e(τ/24) Π (l-e(Λ)) . (5)
«f = l

It is convenient to use # = e(τ), \q\ < 1, giving a meaning to fractional powers of q.
Omitting its prefactor, ^ ( τ ) " 1 is the generating function of partitions. Euler's
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pentagonal identity gives the series expansion

From Poisson's formula, it follows that under a modular transformation

T »j(τ + l) = e(l/24)ί?(τ) ,

S f , ( - τ - 1 ) = (τ//)1/2ί?(τ) ,

where the square root is 1 if τ = i. For a general modular transformation

η(τ') = εA(cτ + d)ll2η(τ) (8)

with εA a 24-th root of unity. The product representation shows that η(τ) never
vanishes in the upper half plane Im τ > 0.

3. The characters corresponding to the degenerate representations of the Virasoro
algebra (abbreviated as conformal characters), follow from the work of Feigin and
Fuchs [18], Rocha-Caridi [19], and Dobrev [20]. They are labelled by a pair c, h,
with c the central charge, and h the highest weight. Let/? and/?' be a pair of coprime
positive integers, both larger than 1. For c < l , the minimal degenerate series
corresponds to central charges

and highest weights given by

h(r,S)Jrp-Spir-<p-p?=h(p>-r,p-s) , (10)
4pp

where the integers r and s are in the range 0<r</?', 0<s<p and may be further
restricted by sp' <rp, if we assume for instance /?' </?. When /?, p' are successive
integers p — m + 1 , p' =m, m ^ 2 , one has the discrete unitary series discovered by
Friedan et al. [21]. In a given representation, let d^, / ^ 0 , be the dimension of the
subspace with eigenvalue h + ί of the operator Lo in the Virasoro algebra, and
q = e(τ), the character is defined as

+ oo / (2tppf +rp-sp')2 jltpp' + rp + sp

=η(τrι Σ U 4pp' - ? 4pp'
ί = -oo \

We have included in χc>h a factor g~c/24 to simplify formulas in the sequel, where c
will be kept fixed, while h varies.

To make this more transparent, let us use the following notations. Define the
even integer N through

2 , (12)



A-D-E Classification of Conformal Invariant Theories 5

and trade the weight h for an integer λ mod N

λ = rp-sp'mod N . (13)

If r and s are chosen as indicated before, λ lies in the range 0 < λ < n, with multiples
of p and p' excluded. The total number of possible values is therefore j(p — l)
(// — 1). The reason for these pecularities follows from the symmetries of characters
as functions of A mod TV. To see this in detail, consider all possible pairs (r, s) leading
to the same value of A, i.e. of (rp —sp')2. We can think of these pairs as elements of a
lattice if, equipped with a Lorentzian metric and generated by two orthogonal
vectors a0 and ax such that a0 a0 — 1 = ax ax + 1 = a 0 &ι =0. We have the
correspondence

(14)

Let W be the sublattice generated by

psίί . (15)

The index of WΊs |det (v+ , \-)\ = 2pp' = N. By interchanging the roles ofp and/?',
define also the dual sublattice W generated by

p 1 ,
(16)

u+ v+ = u _ v_ = 0 , u+ v_ = u _ v+ =7V .

Any vector λ can be represented by its scalar products on u + , u_ as

λ = λ u+=rp—sp' λf = λ U- =rp + spf (17)

and λ — 0 (Λ/ = 0) if and only if λ = ξ\+ (λ = ξ\-) for some integer ξ. Adding an
element of W to λ leaves λ and λ' invariant mod N. In fact (i) as additive groups
^£ IW and ΈjNΈ are isomorphic, and (ii) there exists an integer ω0 mod TV such that

ω2

0 = \moά2N λ' = ω0λmodN . (18)

The mod 27Vcondition in the first equation is compatible with the fact that N being
even a shift of ω 0 by a multiple of N changes ωl by a multiple of IN. Since/? and/?7

are coprime, it is possible to find a pair (r0,^o) ( a n infinity of them) such that
rop-sop' = l.

Define λ0 = r oa o + ̂ oai ? t n e n

λo u+ = l , ωo = λO'U-.=rop + sop' , (19)

and COQ — 1 =4r0s0/?/?/^Omod 27V. The map A mod W-^λ — k u+ modN is an
homomorphism from <£\ ^ i n t o Έ/NZ. Since (λ — λλ0) u+ = 0, λ differs from λλ0 by
a multiple of v+, i.e. an element of W, thus proving (i) in the form

Multiplying both sides by u_, we get λ' = ωoλ mod N. The vector λ0 is defined up to
a multiple of v+ e W, hence ω 0 is defined mod N, which completes the proof of (18).
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The factors p and p' are the smallest positive integers such that

N <-^λ =
(20)

ωoλ= — λ mod N+-+λ = 0 mod p'

The requirement on the Virasoro representations is that ω 0 φ ± 1 mod N.
We can now rewrite the characters (11) in the form

χ-λ(τ) = χλ+ξN(τ)= -χ±ωoλ(τ) = Kλ(τ)-Kωoλ(τ) (21)
with

(22)

Under modular transformations the behavior of Kλ(τ) follows readily from
Poissons's formula and from (7)

T

both relations being compatible with the symmetries indicated in (21). The equality
Kλ = K-λ is crucial in insuring that (23a) defines a representation of the modular
group. Similarly, ω o Ξ l m o d 2 N shows that χλ has identical transformation
properties

(23b)

Σ

4. In parallel with the treatment of the Virasoro characters, one can carry out a
similar discussion involving integrable highest weight representations of the affine
Lie algebra A[1] (the SU2 current algebra) and their characters, henceforth referred
to as affine ones. Those are labelled by a non-negative integer called the level k, and
a lowest angular momentum (integer or half integer) /, such that 0^2/f^k. To
stress the analogy with the previous case, we define

λ = 2/ + l , (24)

and write the affine character [22] as

(Nt + λ)2

' ^ ^ . (25)

Here the role of λ-+ωoλ is played by the involution λ-> —λ, under which the
character is odd. The k + 1 independent characters can be chosen with index
λ = l 5 2 , . . . , £ + ! .
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Under modular transformations

T χ

i (λλ\

S /f(-t"1)=-4 X e^Wf(τ)
λλ'\ ( 2 6 )

Similar remarks apply here as it did for Eqs. (23). When iV = 4, 2 = 1, χaff reduces
to 1, leading to a well known expression for η3 due to Jacobi, the first in the series
obtained by Macdonald and Dyson [22], Similarly in the Virasoro case, when
N= 12,p = 3,p' = 2 and r = 2, s = 1, the representation is trivial, χ = 1, and Eq. (11)
reduces to Euler's identity (6).

In [3] we have looked for the possible choices of phases εr and εs such that the
transformations on integers mod N

i (λλ- ( 2 7 >
Sλλ'~εsγN-\N

generate in the subspaces of even (ε = -f 1) or odd (ε = — 1) vectors under 2-» —2, a
unitary finite dimensional representation of the modular group (keeping N even).
Using Gauss'sum, it was found that there exist 12 possibilities with

out of which two are realized in the previous cases. This enables one to get a better
understanding of the phases which distinguish (23) from (26). It would be of interest
to find representative problems for the ten remaining possibilities.

In both the conformal as well as the affine case, the group of level 2 JV, Γ2N, is
represented by a multiple of the identity, a 24 th root of unity in the Virasoro case, or
an 8 th root in the affίne one1. As a consequence of this non-trivial property proved
in [3], Eqs. (23) and (26) generate projective representations of Γ2]V, which are in
general reducible. The phase is immaterial in the following discussion of invariant
sesquilinear forms.

We now have all the elements to state the classification problem in both the
conformal and affine case, referring to the literature for motivations and
applications. To shorten notation we shall henceforth omit the suffix which
distinguishes the affine from the conformal case, unless mandatory.

5. The partition functions (on tori) of critical models are sesquilinear forms in the
characters

= Σ Zί(τ)^AA'*A'W , (29)
λ,λ' em

1 The role of the group Γ2N in this problem had been foreseen by A. Schwimmer (private
communication)
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where the indices λ range over a fundamental domain & (within integers mod TV)
of the symmetry properties, i.e. A-> —A in the affine case (where χo"=χn = 0) and
λ-+ —λ, Λ,-» ±ωoλ in the conformal one. The coefficients Jfχχ> should satisfy the
following two conditions

(A) Z(τ) is modular invariant,
(B) Jfλλ. are non-negative integers.

An auxiliary normalization condition (unicity of the vacuum state) requires in the
conformal case Jfp-P'tP-p> = i (i.e. Jί1Λ in the unitary series). We take it to be
Λ^i,! = 1 in the affine case.

One could also generalize the problem to include frustrated partition functions,
where (A) could be relaxed to a weaker condition of invariance under a subgroup of
the modular group [23,10]. This will not be considered here.

Corresponding to the two conditions (A) and (B), the problem subdivides itself
into two parts to be treated successively: (A) To find the general form of a modular
invariant, or equivalently to study the commutant of the representation (B) To
study the positivity and integrality restrictions, in the affine and conformal cases,
respectively.

III. The Commutant

6. Let us first look at combinations such as (2.29), where the coefficients are
arbitrary complex numbers, submitted only to condition (A), i.e. modular
invariance. It is convenient to extend the range of summation for the indices λ and λ'
to Z/NZ, provided the matrix Jίλί λ, satisfies the obvious symmetry relations. If ε, ε'
take the values 0 or 1, those are

affine case (la)

conformal case (lb)

We now identify Jί with the matrix of an operator on JV-dimensional vectors with
components labelled by λ. Similarly we define two NxN unitary matrices (and
operators)

S - ' Γ

2N)

(2)

Here the δ symbol is understood mod TV; Sis the matrix of finite Fourier transform
Sλ,λ' = δλ,-λ', Sί,λf = δλ,λ1' Supplemented by the appropriate phases, and acting
respectively in the even or odd subspace under λ^>—λ, we have seen that T and S
generate the corresponding unitary representations of the modular group acting on



A-D-E Classification of Conformal Invariant Theories 9

conformal or affine characters. The phases drop out when we investigate the
conditions,

T\WT=Sy^S = Jf , (3)

which mean that ,Jί belongs to the commutant of S and Γin view of unitarity. This is
problem (A), where we may as well disregard the symmetry conditions (1) since they
can easily be reinstated at the end, and are compatible with (3).

The clue to solve this question is provided by the requirement of commutation
with T, and by the observation that elements of the commutant describe
generalizations of the symmetries which were just said to be compatible with (3).
Indeed [JV, T] = 0 implies that off-diagonal elements oϊJίλλ> can be non-vanishing
only if λ2 = λ a mod 2 TV, which is consistent again with λ defined mod TV because Nis
even. Thus, taking representative integers, (λf — λ)(λ' + λ) = 2ξN. Apart from the
obvious solutions λ'= ±λmoάN, this equation implies that λ'±λ being of the
same parity are both even, hence λr + λ = 2ξδ, λ' — λ = 2ξδ, with δδ = n{ = N/2), ξ, ξ,
δ, and <?are integers, <5 and <5 positive. Set α = (<5, δ), then α2 divides n (hence TV),
p = δjoί and p' = δ/(x are coprime, and integers ρ,σ exist such that ρp—σp' = l.
(The reader will not confuse these integers with those entering the definition of c.)
Defining ω = ρp-\-σp'moάN/cc2, we have ω2 — 1=4ρσpp' = 0moά2N/a2 and
ω + 1 ΞΞ2ρ/?mod7V/α2, ω —1 ΞΞ2σ/?'modTV/α2. Since λ/oί = ξp—ξpr

9 λf/oι, = ξp + ξp',
we find ωλ/(x = λ'/ocmoάN/(x2 or λf = ωλ mod JV/α. This necessary condition is also
sufficient for commutat ion with T. We conclude that for each divisor δofn, l^δ
rgn, we can define a pair, a = (δ,n/δ) and ω' such that ω2 = l mod2N/a2, and a
symmetric matrix

0 if oc4λ or

V * ,u • ( 4 )

L, dλ\ωλ+ξN/a otherwise
ξ mod α

which commutes with T, and, as an immediate calculation shows, also with S.
Among multiples of α, <5 is the smallest one left invariant mod TV/α and δ the smallest
one which changes sign mod TV/α, and we can shift ω by a multiple of TV/α2 to make
these properties hold mod^V. Interchanging the roles of δ and δ amounts simply to
replacing ω by — ω. For instance Ωn corresponds to α = 1, ω = 1, i. e. Ωn = /, while Ωγ

corresponds to α = 1, ω = — 1, i.e. (Ωί)λ)λ> = δλf _λ>. More generally Ωδ and Ωn/δ will
be linearly related when operating in the even or odd subspace with corresponding
projector (ί±Ω1)/2.

7. Proposition 1 [7]. The commutant of S and T is generated by the σ(n) linearly
independent operators Ωδ.

The thread of the argument is the following. We represent any operator as a
polynomial in two basic ones obeying the simple commutation relations of finite
quantum mechanics [8]. Elements of the commutant are obtained by averaging over
the group Γ generated by S and T. This provides us with a basis {Mδ} which is
equivalent to the set {Ωδ}.

Introduce in the TV-dimensional (Hubert) space J f of functions on Z/NZ two
unitary operators P and g, which generate a representation of the finite Heisenberg
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group, through

(] 1) . (5)

The analog of the canonical commutation relations reads

QP = e(l/N)PQ (6a)

and is supplemented by

QN = PN = e(l/N)NI=I . (6b)

Using Dirac's bra-ket notation (λ\\jj} = ψ(λ), we have

βμ>=e(λ/Λoμ> pμ> = μ+i> . (7)

Polynomials in P and Q generate the full operator algebra in the form

M = Σ PkQ' — Tr(MQ~'p-k) (8)
h,JmodN -N

for any operator M, as can be shown in the case of a projector \λ} (λ'\. This implies
the irreducibility of the representation, and is in fact an adaptation of the Wigner
representation in the continuum case. In view of (6a) we can assume a ''normal
ordering" with P's to the left of Q's.

The analogy with continuous quantum mechanics is pursued if we notice that S
and T generate in their adjoint action the canonical group [i.e. transformations
preserving (6)]

r(Q\τJ Q \ ( 9 a )

\P)

More generally if we define the symbol

' , (10)

{{ {T={kJ-k) . (9b)

Clearly [k9 £} only depends on k, / mod 2N, but they are only independent mod N,
since {k + aNJ + bN}=(-\)kh-^{kJ}.

Any automorphism stf is a product of 5's and T's acting as

V (11)

where the two-by-two matrix is an element of Γ2N = SL(2,Z/2NΈ). In particular

\ -

o / ' - Λ O " • ( 1 2 )
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Setting respectively (k, *f) = (l, 0) or (0,1), we get values of P\ Q' which obviously
verify (6), thus on the one hand the map {&,/}-» [k\ t'} is the resultant on operators
of canonical transformations. On the other hand we know that the above two
matrices in (12) generate SL{2,Z). Thus we have a bijective map,

U )eSL(2,Z/2NZ)^^ , (13)
c a)

which allows us to identify both groups. The next step is to write Ωδ in the Wigner
form (8). Now recall that δ = ap\ δ = n/δ = (χp and (/?,/?') = 1. The claim is that

Ωδ = - £ P2δyQ2dze(δ2yz/n) . (14)
" >',zmodn/<5

Indeed recall that (Ωδ)λiλ> is different from zero for

λ = xδ+yδ , λ'=xδ~yδ mod N

with xeZβδX, yeZβδZ, and

^ xmod2ό y mod 2 δ

where the factor 1/2 accounts for double counting. Inserting this in Eq. (8) yields

Ω4 = -ί- Σ pkQe Σ
*-N k,ίmodN xmod2ό

y mod 2 δ

=Λ? Σ pkQ{ Σ
^N kJmoάN jcmod2ό

y mod 2 <5

= ί Σ P2δyQ"eVyδ/N
W £ mod N

ymodlδ

Setting S = 2zδ, with zmod <5, we get (14). It is nice to verify, using (11) and (14),
that S and T commute with Ωδ.

To find a general element of the commutant Gepner and Qiu's idea is to average
the adjoint action of the group Γ2N = SL(2, Z/2NZ) on an arbitrary element. From
the representation (8) it suffices to average this adjoint action on each PkQέ'.
Let \ΓΊ denote the order of Π. Set

X Σ

\Γ2N\ f t V 27V )f U ,

where $4 <rΛ Ί)eΓ2N. The second expression follows from the definitions (10)

V d)
and (11). Clearly any element of the commutant is a linear combination of the M^j
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with k and / ranging mod N(i.e. Mk + ξN^+ξ>N = Mk^). Furthermore M^ vanishes if
k and / are not both even. Indeed the kernel of the map Γ2N^ΓN is given by the
eight matrices

Ί+αiV

yN

Averaging (15) over this invariant subgroup leaves Mύ invariant and multiplies the
coefficient of pak+c^Qbk + d^ by

1 ^
e\~

This is non-vanishing only if both k' = ak + cέ and ί' = bk + d/ are even. The linear
transformation is invertible mod 2, hence k and / are also even. Thus in (15) we may
as well assume the indices even which allows us to write Mk^ = M2k>2^ as

Mk , = - 1 - ΣJ^^cd^ + 2bckΛ p2{ak^)Ql{hk^

where the structure of the formula has in fact reduced the average to Γπ

? and k and ί
are defined mod^i. It also follows from the preceding that for any element in Γ",

(abk + cdί + 2bckί\

Pick representatives k and / in the range 1 to «, let d = (k, ί) then mγ and m2 exist
such that m1k + m2^ = d. The matrix

//d nil

-k/d m2

is unimodular,

— kid m2) ' \ n

The process can be repeated by introducing δ = (n, d) = (k, /,«),

We conclude that σ(π) linearly independent operators Mδ = M0^δ can be defined,
labelled by divisors of n,l^δ^n,

generating the commutant.
Linear independence follows from the fact that two distinct divisors δ and δ'

have disjoint orbits under Γn mod n. Indeed if δ and δ' divisors of n in the range
1 to n were on the same orbit, we would have

cδ = ξn , dδ = δ' + ξ'n .
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Thus, since δ\n, δ' would be a multiple of δ and interchanging their roles, δ a
multiple of δ\ an impossibility if δ is distinct from δ'.

It is now easy to complete the proof. We can split Ωδ as a sum,

δ n/δ

Ωδ=~ Σ MS(y,Z,n/3) , (19)
n y,z = l

using the fact that s>/tΩδjtf = Ωδ for any element of Γ2N. [Recall that (x,y, z) is the
greatest common divisor of x,y,z.] This relation is of a triangular form,

Ωδ = Σ Aδδ, Mδ, with Aδδ> =~γ \Γn/δ'\. It can therefore be inverted to yield Mδ in
<5|<5' n

terms of Ωδ , so that the Ω's as well as the M's can be used to generate the
commutant, thus completing the proof of Proposition 1.

When n is prime, σ{ή) = 2, and the representation splits into two irreducible ones
acting on the even or odd subspaces.

IV. A-D-E Classification

8. In this section we derive the classification of partition functions in both the affine
and conformal cases. The difficulty stems in each case from the oddness property
under multiplication by Ωί, or Ωωo respectively, if we keep the convention to write
the invariants in terms of χλ, λ mod N.

We first look at the affine case, writing Z as

Σ \ ) Xλ'W (la)
λ,λ'modN \δ\n Jλλ'

Recall that χξn = 0. Divide the integers mod TV different from zero moan into two
disjoint sets: U and L with representatives lying respectively in the intervals
\i^λ^Ln—\ and n + l^λ^2n — l. Therefore L= —U mod TV, and a fundamental
domain ® is ϋ. We have (Ωδχ)λ = (Ωn/δχ)-λ=_-(Ωn/δχ)λ and (Ωδ)λλ, = (Ωδ)-λt-λ..
This allows us for each factorization n — δδ to replace in (la) cδΩ + cδ-Ωδ- by
(cδ—cδ)Ωδ or {cδ~cδ)Ω^. We use whichever of the two combinations has a non-
negative coefficient, and rewrite Z as

Z(τ)= Σ
^ λeU \δ\n / λ,λ'
λ' mod N

= y
λ,λ'e\

with cδg:0, and cδ>0 implying cnjδ = 0. The coefficient of χf χx should be one. But
only Ωn and Ωx contribute to it, and with the above conventions cί=0, cn = l. The
matrices Ω have non-negative integral coefficients. We want to ensure that this is
also true for the matrix within curly brackets in the second expression (lb). Using
the previous conventions, we have for the required solutions the following result,
announced in [3] as a conjecture.



«Ξϊ2

n even ί; 6

« = 12

« = 18

« = 30

Ω,,

Ωn + Ω2

Ω 1 2 + Ω3 + Ω2

Ω 1 8 + Ω3 + Ω2

Ω 3 0 + Ω5 + Ω3

(Λ«-i)

(Dnβ + 1)

(E6)

(Ei)

+ Ω2 (£o)
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Proposition 2. For the affine partition functions the following set of possibilities is
exhaustive:

(2)

In (2) we give the combination £ cδΩδ occurring in (1). We have two infinite series,
labelled A and D, and three exceptional cases, labelled E. The index on A, D or E is
the rank of the corresponding simple Lie algebra. The correspondence is clarified in
Table 1, which gives the expanded form of the partition function. The coefficient of
the terms χ ί χ λ , l ^ λ ^ w - l , is the multiplicity of λ in the list of the Coxeter
exponents for the corresponding algebra, and n is its Coxeter number.

The A series starts at n =2, for which the only character is the trivial one χx = 1.
Similarly the D series starts with n = 6. When n = 4, the corresponding formula yields
the same result as the A3 invariant.

It is explicit in Table 1 that the above set of partition functions fulfills all
requirements. What we shall now show is that the list is exhaustive.

The Ωδs occurring in (2), apart from Ωn = I, have indices with very low prime
values 2, 3 or 5. This is reminiscent of the orders of the prime cyclic subgroups of the
rotation symmetry groups of regular solids. There exists a close connection between
simply laced simple Lie algebras and finite subgroups of SU2 up to conjugation. We
return to this point in the next section.

9. The proof of Proposition 2 is constructive and involves three steps, Lemmas 1-3.
We set aside the case of the principal invariant with cδ = 0 except cn = l. For each

divisor δ\n, \<δ<n, such that cδ>0, we define α(<5) = (δ,n/δ) and ω(δ) as before,

Table 1. List of affine partition functions in terms of Ai1} characters

π=4ρ+2

» = 4 ί β δ 2

« = 12

n = 18

« = 30

n - 1

Σ t Ix.l2

Σ IXAI2

odd = 1

2 ρ - l

= Σ
Λ odd = 1

4 ρ - l

Σ I/AI2

λodd=l

IZ1+Z7

IXl+%17
2 +

+ KZ3+7

2 ρ - l

λ odd = 1

IZA + % 4 ρ + 2 - λ l 2 + 2 | χ 2 ί ? + i i 2

2ρ-2

λ even = 2

%4 + x8l2 + lz5 + Zul 2

IZ5+Xl3|2 + l%7+Zll|2 + IX9

15)Z* + C.C]

19 + Z29|2 + IZ7+Zl3 + Zl7 +

4,-1

Eb

2

Ei

Ω 1 2 + ί 2 3 + Ω2

β 1 8 + Ω3 + Ω2

Ω3o + Ω 5 + Ω 3 + Ω2
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such that oj2(δ)~l mod IN jet2. Consider in (lb) the factor of χf

Z l + Σ CδXω(δ) ,
<5,α(<5) = l

arising from those δ 's such that α((5) = 1 and ω((5) G (Έ/NZ)*, which for 1 < (5 < « are
all distinct from ± 1 . It follows from our previous requirements that ω(δ)eU.
Indeed if ω(S)eL, cδχω(δ) = — cδχ-ω{δ) would be a negative contribution to Z, and
there would be needed a δ\ with α((5') = l and ω(£') = — ω(δ) = ω, such that
(cδ' — cδ)χω is a positive contribution to Z, i. e. cδ> — cδ > 0. But α = 1, ω' = — ω means
(5' = w/<5, and this was excluded by convention. We conclude that all the ω (<5)'s such
that α((5) = l have to belong to £/, the corresponding coefficients being positive
integers. Similar reasoning will recur frequently.

The identity relating affine characters for levels k = n—2 and k' = -y — 2, α21«, [3]

Σ λαΛ + ίN/«(τ;^) = αZA(τ;iV/α

2) , A mod 7V/α2 (3)
£ mod α

shows that both sides vanish if Π = OL2, since χλ(τ;τV=2) = 0. Hence in this case
(βαχ)A=:0, and the corresponding term may be disregarded in (1).

Define α ^ as Inf {(x(δ) δφn, c ^ O } . We have

Lemma 1 (i) oCmm— 1 o r 2, (ii) if cCmin — 2, ίAe unique possible partition function

corresponds to Ωn + Ω2 (n = 0 mod 4).

It is useful to represent geometrically the integers mod jVona circle of radius
Njlπ as regularly spaced at distance 1. The upper semi-circle represents U, the lower
one L. For α(<5) = α > l , the points λ' = ωλ + ξN/<x, are the vertices of a regular
polygon with α edges and vertices, in short an α-gon. It is clear that if α ̂ 4 at least
two vertices belong to Lu{0,«}, one of them being certainly in L. These negative
contributions to Z have to be compensated by positive ones. Consider the factor of
χjmm(τ) in Z. By definition of α ^ , only Ωδs such that α(δ) = α ^ contribute and the
factor is

X α m i n ( τ ) + Zu Cδ La Xo)otmin + ξN/amin '
ό,α(ό) = α n i i n ξ m o d α m i n

Suppose first ocmin^4. Then each α-gon involves at least two terms in L which
have to be compensated. The case where only one term is in L would require
0 ^ = 4, and a set of indices 0)0Lmin-{-ξNlciLm{n ranging over 0, n/2, n, 3n/2 mod N
(n = 0 mod 42). Since ω is invertible mod n/4 ( = 2N/oξ,in), oξ,in = 42 is a multiple of/?,
the only possibility being « = o4 in, the case discarded by Eq. (3).

Since each α-gon in the above sum has at least two terms in L, and the coefficient
of Xχmin(

τ) is 1J ̂ w o possibilities of cancellations are open: (i) the negative terms are
compensated by positive ones of the same α-gon (ii) a negative term pertaining to δ
is compensated by a positive one from a δ1 contribution. In case (ii) the
corresponding multipliers ω and ω' have to satisfy

ω'OminΞ-ωOmin mθd JV/Omin ,

or equivalently ω'~ — ω mod N/cx^^. But this is excluded since it would imply
δδ' = n. In case (i) we have 2ojΞθmodiV/α^ in, hence 2^0mod7V/a2

nin; and this is
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possible only for n = α^ in, α(<5) = α^n, also excluded. Thus if α ^ were to be larger or
equal to 4, one would find negative coefficients in the factor of χίm i n .

If 0 ^ = 3, beyond the two previous cases, which as above are excluded, there
exists a third one with a 3-gon (an equilateral triangle) with a unique point
in L compensated by χαmin = χ3 with the cδ coefficient being 1. But then ω = — 1 mod
iV/9, so that the corresponding contribution is X-3 + χ-3 + ;v/3 + X-3-;v/3 a n d
±N/3 — 3e £/u{0,n}. Thus 3 + 2ft/3Ξ>ft, meaning 9^n and since 9\n, n = 9. Again
we find an excluded case: n = o£ιin, cc(δ) = (xmin. This proves part (i) of the lemma.

Assume now α ^ = 2, and consider the coefficient of χf. This is

<5,α(<5)=2

The two points 2ω and 2ω + n can be in three sets of positions. In the first one, these
are the points ±n/2 mod TV, i.e. 4ω = «mod N. This is the excluded possibility
n = 4. The second possibility is that 2ω = 0 mod n, excluded by ω2 = 1 mod n. The
configuration where terms from δ and δ' compensate each other is excluded as
before. The only remaining case is that there exists a unique δ, such that α((5) = 2,
cδ = \, and by choosing the representative ω mod N/4, we have 2 ω = — 2 mod TV,
2ω + neU, meaning that the negative term χ2ω is compensated by χ2. Hence δ = 2,
n = 4k, ω= —1 mod 2k.

The partition function contains Ωn + Ω2 plus a sum over <5's such that a(δ)^3.
For 2 G U, (Ωn + Ω2)χλ is equal to χλ if i is odd and to χn _ λ for A even. To discuss the
occurrence of other Ω's we can retrace the steps of the proof of part (i), replacing the
contribution of Ωn by the one of Ωn + Ω2, which amounts to replacing χλ by χn _ λ if A
is even in the factor of χ*. The same arguments exclude any cc(δ) ^ 3, and proves part
(ii) of the lemma.

Lemma 2. If n is odd the unique possibility is Ωn.

Assume on the contrary that there exist additional possibilities. Since n is odd,
we know from Lemma 1 that α ^ = 1. Let us show that this leads to a contradiction.
Consider the coefficient of χ*v with 2γ <n. Since n is odd the only contributions are
from <5's such that α(<5) = 1, which by hypothesis must be present. The coefficient
reads

α(<5) = l

We know already that all these ω's e U, and choose representatives 0 < ω < n. Let us
show that 2yω has also to belong to U. Suppose on the contrary that some δ is such
that 2yωeL. Then the corresponding negative contribution has to be compensated
by some ω' (possibly 1), requiring 2y(ω + ω/) = 0 mod N. Let first y = 1, thus ω + ω'
is smaller than N and 2 (ω + ω') smaller than 27V. This leads to 2 (ω + ω') = N, i. e.
ω + ω'=n. But ω and ω' are odd, by ω2 = l mod 2N, thus ω + ω' is even while n is
odd. We conclude that ω<n/2. The argument can be iterated. For instance if 4 <«,
we cannot have 4ωeL. Again an ω' would be needed for compensation, and
4(co + ω')Ξθ mod N. By the previous bound, 0<4(ω-f ω')<2τV, so that the only
possibility is 2(ω + ω') = n, where the right-hand side is odd, leading to a
contradiction. Hence ω is smaller than n/4. Thus for any y such that V e U, 2γω e U,
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and a positive representative is smaller than n/2y. Let now y be such that 2y<n
<2)I + 1, pickO<ω<π/2 ) >, and recall that if δ = n/δ, CO<5EEE£ mod TV. But δ is a divisor

of n larger than 2, since n is odd. Hence <5 < 2y ( -— | < 2y and ωδ< — V = n. Thus
\o/2J 21

o)δ = δ mod N means ωδ = δ,ω = ί contrary to the assumption that it corresponds
to a divisor δ>2. The lemma is proved.

The two previous lemmas restrict the search of further non-trivial solutions to
the cases n even and α ^ = 1. We assume in the sequel n even, and will study the effect
of multiplication by ω's, such that CO2ΞΞ\ mod 27V ( α = l ) , ωeU, on integers λ
belonging to U* = (Z/JVZ)* n U. Let also L* = {7LJNΈ)* n L. The following is in fact
the crucial arithmetical observation.

Lemma 3. Let n be even, nή=\2 and 30, N=2n, ωe U*, ω2 = l mod 27V, ω=t=l, and
ω φ / ί - l if n — 2 mod 4, then there exists λe (7* such that ωAeL*.

For each such ω there is an associated factorization of n — δδ, (δ, S) = l. The
following pairs are excluded by hypothesis: {«, 1} and {1,«} (ω = 1 or ω = —lφU*)
for any n even; {2,«/2} for n = 2 mod 4 (α = 1, ω = n - 1 ) ; {3,4} for « = 12; {2,15},
{3,10}, {5,6} for n = 30. The cases to consider are 2<δ<Ί)<n or 2<Ί><δ<n.

We search a representative of λeU* in the range 0<λ<n, such that a
representative Λ' of ωA is in the range — n < ωλ < 0. Since <5 and <5 are coprimes, we
look for λ and λ' in the form

λ =μδ + ρδ

λ' = μδ — ρδ

with 0<μ<δ,0<ρ<δ, μ and ρ prime respectively to δ and 5". Since n is even, one in
the pair δ, δ is even, the other odd. The above conditions imply λ prime to δ and <3,
hence ion = δδ, hence to N=2n since «is even. Requiring 0 < λ < n and — n < λ' < 0
yields

(5a)

As — and -=. should be positive irreducible fractions, smaller than one, the two
δ δ

lower bounds are irrelevant. If a solution μ, ρ exists, then a fortiori so does the
solution 1, ρ. Thus it is sufficient to look for ρ in the range 0 < ρ < S, prime to δ, such
that

It is easy to convince oneself that no such ρ exists in the excluded cases of the lemma.
In all other cases we exhibit a solution ρ. We distinguish several possibilities:

(i) 2<δ<δ<n = δδ, set ρ = l I Eq. (5b) holds since -^<-< 1 — - I
\ o 2 o
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(ii) 2<δ<δ<n, δ is even. Then <5"is odd, of the form <5 = 1 +2k, k> 1. Set ρ = k

= —_—. Clearly (ρ, δ) = \. Since δ>δ>2, Eq. (5b) is satisfied.

δ
(iii) 2<δ<δ<n, δ odd, (5 = 0 mod 4. Choose ρ=- — 1 for δ>4.

The case <5 = 4, hence δ = 3 is one of the excluded possibilities, then<5 = 4&, k> 1,
ρ = 2k — 1 >1. Any common factor of ρ and δ would have to divide δ— 2ρ = 2,
hence, ρ being odd, we conclude (ρ, δ) = 1 and ρ/<5 < 1. Since (3 is odd larger than 2,

<5Ξ>3, so - ^ - and 1-1/(5^2/3, while | = Γ i s f o r f c > l bounded by - — ^ |
ό 3 6 ) 2 4/: 2 8 c )

1 1 1 3 ρ 1 2 1

(iv) 2 < (5 < e> < /7, (5 odd, (5 = 2 mod 4. The case where (5 = 6 and δ odd, prime to
Sin the interval 2 < δ < δ, requires δ = 5 which is excluded by hypothesis. Thus <5"> 6.
If 5"= 10 the possible <5's are 3, 7, 9. The pair (5 = 3, J = 10 is excluded by hypothesis.
For (5 = 7 or 9, ρ = 3 is a solution. We can now assume δ = 2k, k odd ^7'. Take
ρ = k — 2 odd. Again any common divisor of ρ and (^divides 4 and since ρ is odd this
common divisor has to be 1, thus (ρ, <5) = 1 and O<ρ/<5<1. Now 1/(5 ί§ 1/3,

1-1/(5^2/3. On the other hand ^ < - < l — - , while the condition ρ/δ>-^-
o 2 o 3d

means 3k — 6>2k, i.e. k>6 which is the case. The lemma is proved.

10. We complete the proof of Proposition 2. For any n larger than 2 (recall that
7? = 2 is the trivial case with a unique χ1 = 1), the choice Ωn leads to the principal
invariant (type A) and is the unique possibility for n odd according to Lemma 2. We
then look for additional terms Ωδ with ω Φ + 1 , when n is even ^ 4 . By Lemma 1,
these additional terms are such that αmin = Inf α(<5) = l or 2. If 0 ^ = 2 the only
possibility is Ωn + Ω2 (and n = 0 mod 4). Thus we are left with the case where n is even
and αm i n = .l.

Consider the coefficient of χ*(τ) in (lb) for any λeU*. Only those Ώ/s such that
α((5) = l contribute, and by hypothesis some of them occur with a positive
coefficient (in which case δ~ njδ does not occur). To those δ 's correspond ω's which
all must have the property that for every λeU*-+ωλeU* (we include ω = l,
corresponding to Ωn). Indeed if ωλ e L*, then for positivity, another ω' must occur,
such that ω'λeU* and ωλ + oϊλ = 0 mod TV. Since λ is invertible mod TV by
hypothesis, this requires ω + α/ = 0 mod N, or δδ'' = n, a case excluded by con-
struction. Lemma 3 controls this property. We study in turn n = 0 or 2 mod 4.

(i) n = 0 mod 4. If « φ l 2 , all terms Ώδ, <5=|=H with 0,^ = 1 a r e excluded. Then
c în = 2, £>„ + Ω2 is the only non-trivial possibility (D type). For « = 12 an additional
solution i2 1 2 +i2 3 + i22 can be found by inspection (Eβ type).

(ii) « Ξ 2 mod 4, α ^ cannot be 2 (22/t//7), hence for a non-trivial solution
αmin=l According to Lemma 3, if/?φ30 the only possible additional term with
α((5) = l is Ω2 (co = n — \). Its coefficient has to be unity [if we look say at the
coefficient of χf(τX i e. (Ωn + c2Ω2)χ2(τ) = (/ί — c2)χ2( τ)] Thus beside β π (^ type)
and ί2n + ί22 (D type), we have in this case, if «Φ30, as only further possibilities Ωn

Σ cδΩδ, where all α's are odd.
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We are going to show that for n φ 18, all c/s must vanish. The proof parallels the
one of Lemma 1. Let again o^ i n ^3 be the lowest possible value among those
occurring in the additional terms. Look at the coefficient of χ*min(τ), where the first
term contributes Zαmin(

τ) + Xn-αmin(
τλ a n d only those Ω$s with α(^) = όcmin will yield

further contributions. Recall that the corresponding index of χ will range over the
vertices of a regular polygon with ά ^ vertices. As in Lemma 1, indices λ belonging
to L from these polygons cannot be compensated by the positive ones from the same
polygon or from those of another polygon (with the same number ά ^ of vertices).

This leaves as the only non-trivial possibility a unique polygon (a unique Ωδ), the
negative terms being compensated by α ^ and n— α^n with αmin = 3 or 5 (with at
most two vertices in L). The coefficient of Ωδ has to be one. Let ω correspond to δ. If
the polygon has two vertices in L, we must have

ωάm i n + ξNjS^^ = - a,™ mod N ,

inΞΞ - (fί - α ^ J Iϊlθd N

for some ς m o d ά ^ . Set /? = 2 α ^ i n g ^ l 8 , and subtract both terms, obtaining
AVomίn = n - 2 ^ + ρN for some integer ρ, i.e. q [(2ρ + l)άm i n —2] = 1. Thus q = 1 and
όζnin = 3, excluding α ^ = 5. If o^in = 3, it is not possible for the equilateral triangle to
have a single term in L compensated either by 0 ^ = 3 or n —3 as in the proof of
Lemma 1. The only possibility left is therefore « = 18.

The only exceptional cases are « = 18 and « = 30, which are readily studied
separately, with the result quoted in Proposition 2. This concludes the main proof of
this paper.

11. Similar results hold in the conformal case. For the proof we refer to [3,4]. It is
simpler to return to the original notation, where the conformal characters are
labelled by two integers r, s mod 2p' and 2p respectively [and (p,pf) = 1], with the
appropriate symmetries. Then the role of TV = In in the affine case is now played by a
pair {2p\2p}.

Proposition 3. (i) Acting on the conformal characters, the general elements of the
commutant are equivalent to tensor products Ωό>® Ωδ in an obvious notation where
δ'\p',δ\p.

(ii) As a result the conformal partition functions can be specified by a pair of
elements in Table /, where the role ofn isplayedbyp' andp. Sincep andp' are coprime,
one of them is odd, the corresponding invariant being of the A-type. This yields two
infinite series and three exceptional pairs of models.

These partition functions are reproduced in Table 2. As special case we have the
unitary series, with/? and/?' replaced by two consecutive integers [21].

The method extends to minimal supersymmetric conformal theories, presented
in detail in reference [14]. For completeness Table 3 gives the corresponding
exhaustive list of positive integral invariants for the unitary theories.

Similarly Gepner and Qiu have applied the affine invariants to parafermionic
theories [15,7].
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Table 2. List of partition functions in terms of conformal characters. The unitary series
corresponds to p'=m — 1, p = m or p=-m — 1, p' = m, m = 3,4,. . .

p' = 4ρ

p' = 12

, ' = 18

1

2 2

1
2

1

p ' - l

rΣ

%
p - 1

Σ I
6 = 1

p - 1

Σ

p - 1

Σ \Xrs\2

ί 4v+ 1

f 4 ρ - l

[ o d Σ 1 1 * .

ίlχ l s + x . l 2

r | χ i s + χ i 7 s .

2 ρ - l

rodd = l

2ρ-2

r even = 2

~~MZ4s i %8sl ' l%5s ι Z l l s l j

! + IX5S + Λ3SP + iZ7S + B l S

2

(E6,AP-i)

I p i

^ Σ

Table 3. List of unitary superconformal partition functions: χ, χ are characters of highest weight
representations of the superconformal algebra, in the Neveu-Schwarz sector χ includes minus
signs for fermionic descendants, χ are characters in the Ramond sector. The indices (p',p) are
(m,m + 2), or (m + 2,m) by exchanging r<-+s. A detailed description is given in [14]

Λ m - 1 m + 1

ί Σ Σ {l̂ l
Λ m-ίm+1

7 Σ Σ us!2

1 V
odd odd

1 C 2

[s=l
even odd

1 P ! Pι

7 Σ Σ (\χr
4 l l

s = l r = l
odd odd

2ρ-2

" Σ (XrSχp-rs
r = 2
even

1 P 2

2 Σ
^ 2

Σ
r=2
even

even odd



A-D-E Classification of Conformal Invariant Theories

Table 3 (continued)

P'"2

Σ
r=2
even

r=1
odd

I p ' - l

T Σ {lZrl
odd

I p ' - l

+7 Σ
4

7 Σ
4

- Σ {lZrl
dd

Σ
odd

4 Σ̂ (Ap'-^Es)

Vo Miscellanea

12. Some of the invariants listed in Tables 1 and 2 are related, as a consequence of
the triviality of lowest characters (Jacobi's and Euler's identities)

Y

in conjunction with the formulae

Σ ZΪ

c m o d <x

Taking Λ = 1 , 7̂  = 4, 12 in (2a) and (2b) respectively, yields

• = o

- i

£^ /(12/' + l)cΛ ? ^ /

<f = 0

α-J

(la)

(2a)

(2b)

(3a)

(3b)
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The only cases relevant here are obtained for low values of α,

k = β -yf = 2 , zf~zf = A , (4a)
ιβ 7 5 v }

f f _ι_v a f f v a f f

(N=ίβ)

If—Ifx

/y — , // — conf conf _ -I ^-conf ^conf _ 4

(N = 48) ° ~ ' ZΛ7,A2-
ZD5,A2-

[ •

For any higher value of α, it may be seen that the identities (3) relate invariants with
indefinite signs.

In view of such linear relations one may at first think that our classification is
redundant. Let us stress on the contrary, that we have classified all modular
invariant sesquilinear forms in the characters, and that it is non-trivial that a
constant can be expressed in such a form. The physical interpretation of Eq. (4) is
more obscure. They imply that the spectra of eigenvalues of Lo ? Lo in the models of
type D10 and EΊ, for instance, differ by nine copies of the state with h = h = c/24
= kβ(k + 2) = 1/9. These remain to be understood in terms of concrete realizations.

13. Should we have expected to find an A-D-E classification? What is the precise
relation with Lie algebras? Unfortunately we have no clear answer to this question.
Amazingly there exist other A-D-E classifications, such as the one of discrete
subgroups of SU2 [6], isomorphic to factor groups of the modular group. Hence it is
tempting to study in some detail the representations of the latter afforded by the
combinations occurring in the partition functions.

Consider in particular the three exceptional affine partition functions cor-
responding to n — 12,18, 30. The corresponding SU2 subgroups are (the covering
groups of) the tetrahedral group ( J / 4 the alternate group of permutations on four
objects), the octahedral group (5^.), the icosahedral group («s/5).

We start with the E6 case.

ZE6 = \Xi+Xi\2 + \X5JrXn\2jr\X4 + X8\2 . (5)

Call the successive combinations y1,y2,yi>> They can be parametrized, using the
Dedekind function as

π
1

- 1
e

η(τ)

(6)
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so that we can also write

z -
/

η[
10

+ η
(τ

K
+ l\

1

2 )

10

,|10 (7)

exhibiting in a straighforward fashion modular invariance, since the three terms are
permuted under a modular transformation. To prove (6) use the fact that both
sides transform identically, and that their ratio is bounded in the upper imaginary τ
plane. It is easier to express the action of the modular group on the combinations

u

V

w

in which case under S

S

- e (

y\

1

and

w -

v -

w-

5/48

~ > 2

R =

-+u

—>w

l/2 1/2

1

^/2 Z l Z 7

J'S' we have

u

R = TS v

w

e (5/48) (fc-h;

Zs Zn) 5

-^e(-5/24)M

-e(5/24)r .

(8)

(9a)

It is clear that these generate permutations up to 24th roots of unity on u, v, w and
that ZEβ = \u\2 + \v\2 + \w\2, as well as uvw = 2e(5/48) are invariant. Moreover
S2 = R3 = 1 is obvious. Remarkably, if we look at the action of the modular group,
not on M, v, w but on their 12th powers, we find that

,,12

,,12

U
12 .,,12

12
ίr -> — u

w12->-v12

(9b)

These transformations can be interpreted on the vector with coordinates u12, v12,
and w12, as a reflection (determinant = — 1) in a plane through the first axis and at
45 degeees to the 2 and 3 axis for S, and as a rotation of 2π/3 (determinant = +1)
around an axis with coordinates (1, — 1,1). Take a cube with center at the origin,
with vertices (ε1,s29ε3); c1 = ±\. Inscribe a regular tetrahedron with a subset of
these vertices such that ε1 ε2 % = +1 Then (9b) generates the group ^ 4 of
permutations of these four points, the full symmetry group of the tetrahedron
including reflections. The invariant subgroup of proper rotations, the tetrahedral
group jz/4, is generated by transformations containing an even number of 5's.
Symmetric functions of 24th powers of u, v, w are rational function of y(τ), the
invariant modular function. For instance,

,,24

which follows from the fact that the equation

X3-j1/3X+16 =

(10)

(lla)
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has for its three solutions

(lib)

In any case we see some loose connection between ZEβ and the tetrahedral group J / 4

isomorphic to PSL (2,Z/3Z).
In the EΊ case, n = 18, the partition function is in fact related to the D10 one as in

(4b)

If we set

then

= 3 Z - 3 , Z D l 0 =

(12)

(13a)

Z =

Define

ι+ιΛl
3 η\τ)

1 \ -i

\ Ά \ 9

3 η\τ + [

3 ηHτ + ί-1) '
^ = 1 2

τ + 2

1+9
η3(τ)

(13b)

(14)

The action of the modular group becomes

(15)

We see that on the cubes yj, S and T generate the tetrahedral group J / 4 again, if we
let yj correspond to the four vertices of a regular tetrahedron. In this case we fail to
find a correspondence with the octahedral group. Symmetric functions in the yj are
modular invariant, and expressible in terms of 7.
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Finally we look at the E8 case, n = 30.

(16)
Set

(17)

where the indices run over (Z/30Z)* in two groups.
Since under T

( 1 A /49

Γ5 acts as multiplication by e (5/12). It is a theorem [17] for such a low power that
the conjugates of T5 generate all of Γ5, and therefore Γ5 — PSL (2, Έ/5Έ) acts on the
ratio of the two jμ's. This group is in fact isomorphic to the icosahedral group, itself
isomorphic to ,z/5.

Indeed with

u = ω + ω~ι =

T z(τ + l) = ω2z(τ) ,

If as in Klein [13] we introduce the "isobaric" polynomials in z (i.e. polynomials
which under a modular transformation are multiplied by a power of the
denominator)

V=z(z10 -11 z 5 - l ) ,

£T-z 3 O + l-522(z 2 5 -z 5 )-10005(z 2 O + z10) , (21)

F = z20 + l+228(z 1 5-z 5)-f494z 1 0

of respective degrees 12 (adding 00 as a root of V\ 30 and 20, their zeroes on the
Riemann sphere are the vertices, the mid-edge points, and the mid-face points of a
regular icosahedron. The following identity holds

F3 = E2 + 1Ί28V5 . (22)

Thus in this case, there is a definite indication of a relation to the icosahedral group.
The ratios E2\F'i and V5/F3 are modular invariants related to j .

We would describe further examples, without giving a neat solution to the
problem raised at the beginning of this section. It is therefore left as an open
question to unravel the connection between integrable and/or critical two
dimensional field theories, simple Lie algebras and finite rotation groups.
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Note added in proof: After sending to the editor the manuscript of this paper, we received a paper
by A. Kato, Mod. Phys. Lett. A2, 585 (1987) which contains a proof of our Proposition 2 along
similar lines.




