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Abstract. The recent results by Bowick and Rajeev on the relation of the
geometry of Diff S ί / S 1 and string quantization in Rd' 1 are extended to a string
moving on a group manifold. A new derivation of the curvature formula
(— ff m3 +iw)<Sπ> _ m for the canonical holomorphic line bundle over Diff S1/Sί

is given which clarifies the relation of that bundle with the complex line bundles
over infinite-dimensional Grassmannians, studied by Pressley and Segal.

I. Introduction

Recently Frenkel, Garland and Zuckerman have formulated the conditions for the
consistency of string theory in the flat background lRd' 1 as conditions for Lie
algebra cohomology for the Virasoro algebra, with coefficients in the Fock space
of the string, [FGZ]. The results of Bowick and Rajeev in the Kahler geometry of
the complexified tangent bundle of DiffS1/^1 can be seen as a step toward
globalizing the algebraic approach in [FGZ], i.e. replacing Lie algebra coho-
mology by group cohomology. In this paper we shall carry out the program of
[BR] in the case of a string on a group manifold.

Let G be a simple compact Lie group and LG the space of smooth loops in G,
which is a group under point- wise multiplication of maps S1 ->G. In string theory,
the space LG can be considered either as the configuration space of a closed string
moving in the manifold G or as the phase space of an open string. Namely, let g(τ, σ)
be an open string parametrized by the time τeIR and the string coordinate

dg
σe[0,π] with the boundary conditions g'(τ, 0) = g'(τ, π) = 0; here g'= — and

dR dσ

g = — . One can then introduce a new coordinate Λ(τ, σ) by
ατ

/z(τ,σ)-exp[(g-1g)(τ,σ)4-(g"1g/)(τ,σ)],

τ,σ) = exp[(g-1g)(τ,-σ)-(g-1g/)(τ,-σ)], -π^σrg
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For each τ eR the map σi—>/ι(τ, σ) is an element of LG. Conversely, h(τ, σ) together
with initial values g(τ0, σ) determine the map g.

Our point of view to string quantization is as follows. There is a set of natural
line bundles Ek over LG, parametrized by keTL, which have a natural connection
and curvature. The curvature form in LG is

Ω(X9Y)=^-ί KXdY, (1.1)
4π s1

where tr is the trace in the adjoint representation of the Lie algebra g of G and
θ2 = (length)2 of the longest root of g. The tangent vectors of LG have been
identified as loops X, Ύ: S1 -»g. Furthermore, there is a natural metric on LG and
we can define the covariant Laplace operator A in LG. We shall think of the string
as a point particle moving in LG and the field Ω as a generalized magnetic
monopole field. The most simple quantum mechanical system corresponding to
this picture is the one described by the Schrόdinger equation

Aψ = ί^ψ, (1.2)

where φ is a section of the line bundle. However, the Laplacian A in the infinite-
dimensional space LG is a priori ill-defined. It comes well-defined when we specify a
complex structure on Ek and restrict ψ to be in the space of holomorphic sections.
In fact, A is just the generator L0 of rotations in the Virasoro algebra. Now our
system (1.2) is well-defined but it is not invariant under the reparametrization
group Diff S1, because the complex structure of Ek is not. To recover reparametriza-
tion invariance, we have to introduce a "ghost." Geometrically, this means that
we have to extend the system to consist of sections of a vector bundle B over
ΌiffS^/S1 with fiber ^Γk>λ, a subspace of Γ(Ek), the space of sections of Ek. We
have divided by S1 since the complex structure will be invariant under rotations.
Elements of DiffSYS1 parametrize the different complex structures in Ek,
connected by Diff S1 action. The existence of a Diff S1 invariant vacuum vector in B
can be reformulated as the vanishing of the curvature of B, leading to the familiar
condition 26 = k dimg/(/c + κ(g)), where K is the dual Coxeter number of g, [GeW].

A mathematically interesting by-product of the present paper is a new
derivation of the curvature formula (—ff m3 +^m)c)n? _m for the canonical holom-
orphic line bundle over Diff SYS1. This formula was computed by Bo wick and
Rajeev from the Kahler geometry of the tangent bundle of Diff SYS1, [BR],
whereas we shall obtain the same result by embedding DiffSYS1 in a certain
infinite-dimensional Grassmannian manifold whose geometry has been studied by
Pressley and Segal, [PS]. The curvature in the former is the pull-back of the
curvature of a certain canonical line bundle over the latter manifold.

II. Quantum Mechanics on LG

We shall first shortly describe the geometry of the canonical S1 bundle LG over LG
= {/:S1->G|/ smooth}, when G is a simple compact Lie group. Let DG
= {/ :D-*G\f smooth}, DC C is the unit disk and ̂  = {/: DG\f\dD=ί}. Both DG
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and 0 are groups under point-wise multiplication; &CDG is a normal subgroup
and obviously LG = DG/$. For fεDG and ge& we define

1dg)
3, (2.1)

where θ is as in the introduction, # = {x e R3 1 1| x || g 1 } and g has been extended to
B as follows: Since g = 1 on the boundary S1 = 3D, we can think of g as a mapping
g : S2 -> G (the boundary of D is identified as the north pole of S2). From π2G = 0, it
follows that there is a smooth extension g: J3-»G, to the inside of S2. However,
there is no natural way to choose the extension. One can show that the value of
exp2τπ'C(g), where C(g) is the second term in (2.1), does not depend on the
extension, [W]. We shall denote the first term (in the right-hand side) by y(/,g).

Consider the group DGxS1 with the multiplication

.(/, λ) (/', λ').= (ff, λλ' exp2πiγ(f, /')) . (2.2)

One can embed ̂  as a normal subgroup in DG x S1 using the homomorphism φ(g)
= (g,exp2τπC(g)), and LG = DG x S1/φ((^) is then a central extension by S1 of LG,
[Ml].

The Lie algebra g of LG is the Kac-Moody algebra associated to g. As a vector
space g is the direct sum of the loop algebra Lg and of the center R. Let prc be the
projection onto the center in g and denote A = — iprcg~ldg, where g'^dg is the
Maurer-Cartan one-form on LG. The pull-back of the form A with respect to the
canonical projection π : DG x S1 ->LG is

1dfΛdX, (2.3)
oπ D

where (X, a) is a tangent vector at the point (/, λ) e DG xS1. The exterior derivative
of A is 02

(dA)(X,Y)=--$trXdY. (2.4)
4π s1

We denote Ω = dA. The form A is invariant under the right action of S1 in LG (and
in fact invariant under the right action of any element of LG) and the value of A for
a vertical tangent vector (0, a) is equal to a; it follows that A is a connection form in
the principal bundle LG, Ω being the curvature form.

Let Ek be the complex line bundle associated to LG by the representation λ\- > λk

of S1 in C, keZ. The curvature of Ek is kΩ. The Schrόdinger wave function of a
string propagating on the group manifold G is an element in the space Γ(Ek) of
sections of the line bundle Ek. Let {T1, ..., TN} be an orthonormal basis of g. The
vectors τ°=Taeίnφ form a basis in the loop algebra Lg(l ^α^JV, neZ) with the
orthogonality relations <Tn

fl, T^ = δabδn^m. Elements" in the Lie algebra of LG
correspond to left-invariant vector fields on the group manifold LG in the usual
way, so the vector T£ form a basis for complex left-invariant vector fields. We
denote by V" the covariant derivative acting on Γ(Ek\ in the direction of the vector
field T£. We define the Schrodinger operator of the string to be the covariant
Laplacian
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where κ = κ(g) is the dual Coxeter number, [GO]. There are two differences when
compared to a Laplacian on a finite-dimensional group manifold. First, A does not
commute with the group action; in fact, A is the generator L0 in the Virasoro
algebra defined by the Sugawara construction

1

Σ P-m^+m^ (2 6)

since the covariant derivatives close the Kac-Moody algebra

where the Λ's are the structure constants of g,
6]=λfr. (2.8)

The invariant Casimir operator is obtained from A by extending the Lie algebra g
by the derivation [d, T£~] = nT" and defining c2 = A + d, [K]. The second difference
is that the action of A on an element ψ e Γ(Efe) is not necessarily well-defined (the
infinite sum may diverge). However, one can restrict A to certain subspaces of Γ(Ek)
which carry an irreducible representation of g and in which A is well-defined, [PS].
The subspaces we shall consider consist of holomorphic sections in a line bundle
over LG/T, where Tc G is a maximal torus. We shall give here a somewhat different
description of the holomorphic structure than in [PS].

The definition we shall adapt is a simple generalization of the holomorphic
structure in line bundles over the unit sphere S2 = SU(2)/U(1). For each fceZ we
can define a line bundle over S2 such that the space Γk of sections consists of
functions ιp:SC7(2)-»(C such that ψ(gh) = h~kψ(g), where g /z denotes the right
action of an element h e U ( ί ) through the matrix representation h\-»diag(/ι, h~1). If
^4ιm2(g) denotes the matrix element (jmί\D(g)\jm2y in an irreducible represen-
tation of SU(2) [spin j, m is the eigenvalue of (7(1) generator], then Γk is spanned
by the functions

The holomorphic sections can be characterized as those which satisfy the
differential equation U+ψ = 0, where L+ is the generator of S17(2) which raises the
eigenvalue m and "r" refers to the right action of S 17(2) on itself. Thus, for k ̂  0 the
space of holomorphic sections is spanned by the functions &mj with j = — k and for
/e>0 there are no non-zero holomorphic sections. Furthermore (for fc^O), the
space of holomorphic sections carries an irreducible representation of the group
SU(2).

A section of the bundle Ek over LG can be thought of as a map ψ : LG-»C such
that ψ(gh) = h~kψ(g) for g e LG and h in the center S1 of LG. Let k be positive and λ
an integral anti-dominant weight of (G, T) (i.e. λ is the lowest weight in an
irreducible finite-dimensional representation of G). We can define a line bundle
Ek'λ over LG/T such that the space of sections Γ(Ekί λ) consists of vectors ψ E Γ(Ek)
for which

(2.9)
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for t e T and g e LG. We have defined the co variant derivatives V£ through the left
action of LG on itself. Similarly, we define the operators da

n using the right action of
LG. A section ψ of Ek'λ is said to be holomorphίc if

(i) 3^ = 0 Vn>0,

(ii) Σ

whenever £α f lT
f l is in the subspace of g corresponding to the positive roots.

Pressley and Segal showed that the representation .R of LG in Γh(Ekί λ) ( = the space
of holomorphic sections), given by (R(go)ψ)(g) = ψ(gQig), is irreducible and
unitarizable with lowest weight (λ, k). [PS, Chap. 11]. Since A is well-defined by the
Sugawara construction, we have a perfectly well-defined quantum mechanical

system in Γh(Ek'λ) described by the Schrόdinger equation Aψ = i—ψ. However,

from the point of string theory this is not satisfactory, since Diff S1 is not a symmetry
group of the equation. In the next section we shall make the necessary
modifications to make the system invariant under Diff S1.

III. Reparametrization Invariance

From our construction of the central extension LG of LG it follows immediately
that a section ψ of Ek can be thought of as a function ψ : DG-»C such that

(3.1)

where / e DG and g 6 ̂ . A diffeomorphism h: S1 -^S1 can be extended to K:D-*D
as h(φ, r) = (h(φ\ r) 0 ̂  φ ̂  2π, 0 ̂  r ̂  1. There is a natural action oίhonψ given by
(/ι φ) (/) = φ(/ o h). In fact, the right-hand side does not depend on the extension ft
of h, as can be seen from (3.1) using the invariance of ω under the group Diff S2; a
diffeomorphism of S2 is identified as a diffeomorphism of D which is the identity
mapping on the boundary. To define the operator A we have needed (i) an inner
product in Lg; (ii) the complex structure defined by the splitting Lg — H + ®H_ to
positive and negative Fourier modes (= the normal ordering prescription in (2.5)).
These two structures are invariant exactly under the rotation subgroup
S1 cDiff S1; any other diffeomorphism mixes the positive frequency operators V*,
n>0, with the negative frequency operators. To recover reparametrization
invariance one can proceed as in [BR] in the case of a string in a flat space. We
introduce a vector bundle B over the manifold M ̂ DiffSV^1 with the fiber Bx at
each xeM being isomorphic with the vector space Γk*λ = Γh(Ek'λ). The space M is
contractible, [H], so the bundle B is necessarily isomorphic with M xΓkjλ and thus
the sections of B are just vector valued functions on M. Points of M represent
complex geometries on Ek'λ obtained by acting with Diff S1 on the initial splitting
Lg = H+@H_ and the inner product in Lg. The action of Diff S1 moves Γk'λ in the
space Γ(Ek). Using the triviality of the bundle B we can adopt the viewpoint that
the space Γkιλ is kept fixed but we are moving the operator A in the space Γktλ.
From the results of Goodman and Wallach, [GW], it follows that there is a unitary
projective representation 2 of the group Diff S1 in the lowest weight represen-
tation Γfc> λ of the Kac-Moody algebra Lg such that

l = h X, (3.2)
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where X\-+h X is the natural action of Diff S1 on the elements of the loop algebra
Lg, (h - X) (φ) = X(h ~ 1(φ)). Infinitesimally, 2 is just the Sugawara representation of
the Virasoro algebra. Since A — L0 is also defined by the Sugawara construction, A
has automatically the expected commutation relations with the representation 2\
infϊnitesimally \LwA\ = nLn. We recall the commutation relations of the Virasoro
algebra, [GO],

ίLn,Lm-]=(n-m)Ln + m + ̂ Φ2-!)^,-., (3.3)

where c = k dimg/(/c 4- K).
The projective action of Diff S1 in the space Γ(B) is

(h ψ)(hί)=@(h)ψ(h~1hί)9 (3.4)

where h^eM and ψ: M-+IΪ'λ is a section of B. It will be also useful to think of the
sections of the bundle B as functions ψ: Diff S1 ->ίf'λ such that ιp(hs) = s+<xψ(h) for
seS1, where α is the lowest eigenvalue of L0 in the space Γk'λ. This is equivalent to
thinking of the sections as functions M-»ίϊ'A, since the fibering DiffS1->M is
trivial.

Theorem 3.1. There are no non-zero Diff Sl invariant vectors in Γ(B).

Proof. The complex vector field /„ = iemφ -— on the circle is acting through
aφ

in Γ(B); here <£n denotes the Lie derivative acting on a function, corresponding to
the generator /„ of Diff S1. Since

we get

It follows that the only vector satisfying ρ(/n)φ = O V n e Z is φ = 0. Π

Remark. The above result can be interpreted in terms of the geometry of the
bundle B. The formula (3.5) defines a connection in the bundle: the covariant
derivative in the direction of the vector field on M generated by the left action of /„
is given by the right-hand side of (3.5). The curvature of the connection is the two-
form

curvature^, ίj = [ρ(/J, ρ(/J] - ρ([lΛ9 /J) = ~ φ2 - l)δΛf _ m . (3.8)

The non-existence of the Diff S1 invariant vacuum vector in B can now be traced to
the non-vanishing of the curvature of B.

The curvature (3.8) is related also to Berry's phase. Namely, let B° be line
bundle over M such that the fiber B% at a point hmoάS1 in M is spanned by the
vector @(h)90 in Γfe'A, where <90 is the lowest weight vector. We have a family Δ(h)
= <$(h)Δ 3t(h ~x) of Hamiltonians parametrized by elements of M. The multiplicity of
the lowest eigenvalue α of L0 is one and L0$0 = αθ0. Then α is also an eigenvalue for
each A(h) and the corresponding eigenspace is B®. Using the section ψ(h) = ^(h)B0

we can compute the connection and curvature of £°, with the help of the general
formula in [S]. The value of the vector potential to the direction of the left-
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invariant vector field /„ is

d

(3.9)

where ε is the project! ve factor,

®(A1)®(fc2) = ®(Λ1fc2)eβ(Λl *2). (3.10)

In fact, we have considered the vector potential as a one-form on Diff S1 (and
not on M), using the representation of the sections of B° as equivariant functions
on Diff S1. The curvature is , ^

curv(/n, / J = lm Aί/J - ίw - 4(0 - (̂[ς /J) = ( ̂  φ2 - 1) + 2na ] δn> _m ,
V1Z y (3.11)

the term 2mδnί _ m coming from the term <S0, Ln90> = α^π>0 in (3.9). The curvature

(3.11) is equivalent to (3.8) in the sense that after the redefinition L'0 = L0 — - the

two forms will be equal. Thus we can say that the non-existence of the DiffS1

invariant vacuum in B is related to the non-zero Berry's phase (3.1 1) in the line bundle
B° for the family A(h) of Hamiltonians.

Next we shall introduce a ghost field such that the new system will have an
invariant vacuum in the case 26 = /cdimg/(/c + τc).

To start with, we shall give a new derivation of the curvature of the canonical
holomorphic line bundle over M. Following Pressley and Segal, [PS], consider a
direct sum of Hubert spaces H = H+@H_ (with dimH± = oo) and the subgroup
GLt of the connected component of the general linear group GL(H) consisting of
operators

:
such that both b and c are Hubert-Schmidt operators, tτ(b*b) < oo and tr(cfc) < oo.
The group GL1 has a non-trivial central extension which can be described as
follows, [PS]. Let Q consist of all triples (g, q, λ) e GL± x GL(H+) x C x such that
aq~ 1 — 1 is of trace-class; Q inherits a group structure from its constituents and the
subgroup N={(l,q, dεtq)\qeGL(H+), q — 1 trace class} is normal. The central
extension is (52̂  — Q/N. The central projection of the Maurer-Cartan one-form on
(5ί̂  defines a connection in the principal C x -bundle ^L^ί->GLί which has the

Cuτv(δ1g9δ2g) = tτ(δ1bδ2c-δ2bδ1c)9 (3.13)

where

are tangent vectors at g e GL1? [M2]. Since (3.13) does not depend on the diagonal
blocks, we may consider its restriction to the unitary subgroup U(H) as a two-form
on the Grassmannian manifold

Gri = U(H)r\GLJU(H +) x U(H.) . (3.15)
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Let now H be the completion of the space of smooth vector fields on S1 with
respect to the L2 inner product and H+ (respectively H _) the subspace spanned by
Fourier components with positive (respectively non-positive) index. The group
Diff S1 acts unitarily on H by

(h X)(φ) = \g\φ)\ll2X(g(φ))9 (3.16)

where g is the inverse of h : S1 -+S1. From the discussion in [PS, Sect. 6.8] it follows
that (3.16) gives a homomorphism DiffS1->GL1. However, this map is not
continuous. Instead, the composite map

is continuous and even smooth with respect to fhe standard Frechet topology of
Diff S1, [H]. The circle S1 cDiff S1 is mapped to one point in Gr1? but DiffS1/^1

-^Grί is one-to-one. We shall compute the curvature of M as a pullback with
respect to the embedding M-^Gr^.

To compute the curvature we need the infinitesimal action of Diff S1 in H; but
from (3.16) it follows that this is precisely the adjoint action of the algebra of vector
fields on itself. Using the basis in H given by the generators /„, we can compute the
matrix representing lp,

(/p)»m=[/pU» = (p-^»,p + «.

Thus the curvature form on M is

2-ι 2-ι vp/MmUg/m« 2-ι 2_ι V^/wmUp/mw
m^O n > 0 m ^ O n > 0

=(-ff«3+i^,,-,. (3-18)

This agrees with the results of Bowick and Rajeev, [BR], including the coefficient £!
Let F be the line bundle over M obtained as the pull-back of the canonical line

bundle over Grv The ghost field in string quantization is now a section of the dual
bundle F*. The complete string wave function is a section of the bundle B = F*®B
over M; note that the fiber of B is isomorphic with the fiber Bx = Γk'λ.

Theorem 3.2. The curvature of the bundle B is

curv(ln, / J - —- n3 + ί -

2 — c
In particular, for c = 26, after redefining the DiffS1 action in B by L0 = L0+ ,

there is a ΌiϊϊS1 invariant vacuum in B given by ψ(h) = ξ(h)&(h)QQ, where ξ(h) is a
phase factor.

Proof. The curvature in the product bundle B = F*(S)Bis the sum of the curvature
of F* and the curvature of B; on the other hand, curvature F* = —curvature F.
Infinitesimally, the DiffS1 action on the sections of B is given by the co variant
derivatives to the directions of the vector fields /„. Taking account that the base
space M is contractibel, the existence of a covariantly constant section is
equivalent to the vanishing of the curvature. Let first ψ(h) = @(h)9>0. The action of
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the generator /„ of Diff S1 on ψ is given by

~@(e-'l»h)S0\t=0 + LnΨ + V(h , ln)ψ

t= n+ V(h; ln)ψ

= -Ln + jt «*«-"", Λ)|(=0 @(h)30 + Lπφ + V(h; />

= v(h /„)- Φ'HΌUo VKΛ), (3.19)

where V(h\ ln) is the connection form on the bundle F* (corresponding to the
curvature (3.18)). Thus ψ is covariantly constant up to a phase; using the vanishing
of the total curvature we know that it is possible to redefine the phase oft/; such that
the new section is covariantly constant. Π
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