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Abstract. For a Riemann surface with smooth boundaries, conformal (Weyl)
invariant quantities proportional to the determinant of the scalar Laplacian
operator are constructed both for Dirichlet and Neumann boundary conditions.
The determinants are defined by zeta function regularization. The other
quantities in the invariants are determined from metric properties of the surface.
As applications explicit representations for the determinants on the flat disk
and the flat annulus are derived.

I. Introduction

It is ancient lore that one can find the inverses of Laplace operators (Green's
functions) on Riemann surfaces by conformal mappings from geometries where
the potential theory problem is soluble directly. In this article I show that an
analogous result applies to the calculation of determinants of Laplacians. By
studying the variation under Weyl transformations of determinants of the scalar
Laplacian on Riemann surfaces with smooth boundaries one can construct quantities
proportional to the determinants which are invariant under Weyl transformations
as well as reparameterization of the surface.1 The techniques used in the derivation
are adapted from those used to study Weyl invariance and fix the critical dimension
in Polyakov's path-integral formulation of string theory [1,2,3],

To show the utility of these invariants, they are used to obtain explicit
representations of the determinants of the scalar Laplacian for both Dirichlet and
Neumann boundary conditions on the flat disk and the flat annulus. Zeta function
regularization is used to define the formally divergent expressions for the deter-
minants [4].

To write the invariants on a Riemann surface, M, with smooth boundaries,
δM, we use the following notation. The scalar Laplacian is

b). (1)

The method is also applicable to Laplace operators acting on higher rank tensors
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Subscripts D and N denote quantities for Dirichlet (eigenfunctions of Δ vanishing
on dM) and Neumann (normal derivatives of eigenfunctions vanishing on dM)
boundary conditions respectively.

A = J dμ is the area of M.
M

P= J ds is the perimeter of dM.
dM

K is the Gaussian curvature on M.

κg is the geodesic curvature on dM.

On M with a family of smooth metric tensors {gab}, a conformal gauge gab is
defined by writing

dab~e2φgab, (2)

where equivalence means equality up to a reparameterization. For a given gauge
we define

L(φ;βab) = ί dμKφ + f dί Λ.φ + (1/2) J dμ$ab(daφ)(dbφ). (3)
M dM -W

If $Λ& is an admissible global gauge choice on M, the invariants are2

ID = (detD4) exp [L/(6π) + (l/4π) J κ,<fe] (4)
5M

and

/N = (detj, Δ)(ί/A) exp [L/(6π) - (l/4π) J ιc, <fa]. (5)
5M

The prime in the Neumann determinant denotes that the zero mode is omitted.

II. Derivation

If [λi] denotes the eigenvalues of Δ9 the determinants can be defined by zeta
function regularization as

det; Δ = exp Y' In λt = exp — — ζ(s)
i ds

where

(6)

We will evaluate the variation in detr Δ under an infinitesimal Weyl transformation

gab^(l + 2δφ)gab9 (7)

which induces

Δ->(l-2δφ)Δ. (8)

2 For a compact surface (no boundaries) we have the invariant

/ = (det'2l)(l/A)exp[L/(6π)]
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The corresponding variation in an eigenvalue is

δλi = (ψi\δΔ\ιi,iy = -2λi(ψi\δφ\ψiy, (9)
where \l/t is the eigenfunction corresponding to λt. Also

δζ(s)=-Sγj

fδλi/λ!^ (10)
i

and

δ(ln def Δ) = - 2 lim £' < ψt I δφ \ ψt > λf s

at\ (ii)
s->0 0 i

The singularity of the integral at s = 0 which cancels the zero of l/Γ(s) arises
from the small t region. Therefore, we can split the integration range into the
intervals [0,1] and [1, oo] and discard the integration over the latter. This leads
to the representation

- lim [2/Γ (s)] ]dtts-^dμδφ G(7|7, f ), (12)
s->0 0 M

where G is the heat kernel which admits the representation

ίA,). (13)

For Dirichlet boundary conditions there is no zero mode. For Neumann
boundary conditions, there is a single zero mode with a constant eigenvector which
can be taken to be

Hence, in this case

To get the required singular terms from the t integral we use the small ί
expansion of the heat kernel which gives [2,5,6]

>±l/(8π)(5 j dsκg

dM

(15)

where

δL = J dμ Kδφ + I ds Kgδφ. (16)
•W" dM

Only the ί-independent terms give rise to the required (1/s) singularity after
integration. The variation δφ is reparameterization and gauge invariant. If we
choose a coordinate system and a gauge gab so that
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the quantities appearing in δL are related to those for the metric gab by

s = eφds. (17)

na is the inward pointing unit normal vector to the boundary. Then we can write

δL(φ;gab) = J dμKδφ + j dsκgδφ + J dμ(Δφ)δφ - J d$(ή dφ)δφ. (18)
M dM M dM

If gab defines a global gauge choice, we can integrate the third term on the right
by parts, and the boundary term will cancel the last term. However, for a local
gauge choice which requires dividing the surface into coordinate patches, integ-
rating by parts gives nonvanishing contributions from integrals over the internal
boundaries between different patches. Assuming that a globally admissible gauge
choice has been made, Eq. (18) can be integrated to obtain [2]

L(Φ,$ab) = ί dμKφ + j dsκgφ + (1/2) J dμgab(daφ)(dbφ). (19)
M dM M

There is a constant of integration in the definition of L which depends on our
choice of gab. Suppose φ-^φf under a change of gauge gab-^gab, where

Then

L(φ,gab) = L(φ',gab)-L(σ,gab). (20)

Putting everything together we have

Δ) = l/(6π)δL+ l/(4π)(S \dsκg

Integrating gives the reparameterization Weyl invariants of Eqs. (4,5).

III. Applications

A. Flat Disk of Radius r. For Dirichlet and Neumann boundary conditions the
eigenvalues of the Laplacian are determined respectively as solutions of

= Q, and J ' ^ r ) = 0.

We cannot solve these explicitly to find the eigenvalues. However, the flat disk is
related by a Weyl transformation to the stereographic projection onto the
equatorial plane of the hemisphere of radius r with the standard polar metric.

The eigenfunctions on the hemisphere are the spherical harmonics with / + m
odd for Dirichlet and l + m even for Neumann boundary conditions. The
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corresponding eigenvalues are

2 ___^,. , , ,Dirichlet
λl = 1(1 + l)/r2 with degeneracy = 1 ' 1 ' τ (22)z v (/+!, Neumann

The determinants are defined as

det^ 4 = exp [ - 2 In (r)ζ(j?)(0) - ζ^(0)], (23)

where

For the zeta function prime denotes differentiation.
These zeta functions can be evaluated by the method used to calculate the

determinant for the sphere in App. C of ref. [3]. The results are

fD(0) = l/6, fN(0)=-5/6,

&(0) = 2ζi(-l) + (l/2)ln(2π)-l/4,

ζJv(O) = 2&( - 1) - (1/2) In (2π) - 1/4, (24)

where ζR(s) is the standard Riemann zeta function. Take the flat metric on the
disk as the gauge choice. Then

£ = 0, κg=l/r.

The metric for the hemisphere projected onto the disk is

ds2 = 4dzdz/[l + M2Λ2]2. (25)

The gauge parameter on the hemisphere is

φ = ln(2/[l + |z|2/r2]) (26)
with

Φ\m = ®
For the hemisphere

L(φ,δab)= J dzrfz|z|2/[r2 + |z|2]2 = 2π(ln2-l/2). (27)
\z\<r

The invariants of Eqs. (4, 5) enable us to express the determinants on the flat
disk as

detz>^l-2-1/6π~1/2r-1/3exp[-2^(-l)-5/12]

det^-2-1/6π1/2r5/3exp[-2Γκ(-l) + 7/12]. (28)

B. Flat Annulus of Radii r1<r2. The flat annulus is related by Weyl scaling to a
cylinder of length / and unit circumference with a flat metric. The cylinder can be
represented in the complex w-plane by a rectangle of unit width and length / with
the sides at Re w = 0 and Re w = 1 identified. The cylinder is mapped onto the
annulus in the z-plane by

z = r2 exp (2πiw) (29)
with

2π/ = ln(r2/r1).
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Take as the gauge the metric of the cylinder

ds2 = dzdz/(2π\z\)2, (30)

Then for the flat annulus
φ = ln(2π|z|) (31)

and
L(φ,gab) = ί dzdz/(4\z\2) = πlnfo/rj. (32)

r1<|z|<r2

For the cylinder the eigenvalues of A are

lm,n = (2πm)2 + (πn//)2 (33)
with

meZ
and

n ̂  1, Dirichlet

n ̂  0, Neumann.

The evaluation of the zeta-function regulated determinants is essentially the same
as the calculation for the torus in ref. [7], and gives

detD A = detJv A = 21 exp [ - π//3] [/(exp [ - 4πί] )] " 2, (34)

where / is the partition function

i

Equating the invariants for the flat annulus and the cylinder gives the
determinants for the annulus,

detj)2l = (l/π)(r1/r2)
1/3ln(r2/r1)[/([r1/r2]

2)]-2,

det^ = 2π(r1/r2)
1/3[(r2)

2-(r1)
2][/([r1/r2]

2)]-2. (35)
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