Asymptotic Inverse Spectral Problem for Anharmonic Oscillators

David Gurarie
Department of Mathematics and Statistics, Case Western Reserve University, Cleveland, OH 44106, USA

Dedicated to V. P. Gurarii on his $50^{\text {th }}$ birthday

Abstract

We study perturbations $L=A+B$ of the harmonic oscillator $A=\frac{1}{2}\left(-\partial^{2}+x^{2}-1\right)$ on \mathbb{R}, when potential $B(x)$ has a prescribed asymptotics at $\infty, B(x) \sim|x|^{-\alpha} V(x)$ with a trigonometric even function $V(x)=\sum a_{m} \cos \omega_{m} x$. The eigenvalues of L are shown to be $\lambda_{k}=k+\mu_{k}$ with small $\mu_{k}=O\left(k^{-\gamma}\right)$, $\gamma=1 / 2+1 / 4$.

The main result of the paper is an asymptotic formula for spectral fluctuations $\left\{\mu_{k}\right\}$, $$
\mu_{k} \sim k^{-\gamma} \widetilde{V}(\sqrt{2 k})+c / \sqrt{2 k} \quad \text { as } \quad k \rightarrow \infty
$$

whose leading term \widetilde{V} represents the so-called "Radon transform" of V,

$$
\tilde{V}(x)=\operatorname{const} \sum \frac{a_{m}}{\sqrt{\omega_{m}}} \cos \left(\omega_{m} x-\pi / 4\right)
$$

as a consequence we are able to solve explicitly the inverse spectral problem, i.e., recover asymptotic part $|x|^{-\alpha} V(x)$ of B from asymptotics of $\left\{\mu_{k}\right\}_{1}^{\infty}$.

The standard spectral problem for a perturbation $L=A+B$ of a differential operator A with the given spectrum $\left\{\lambda_{k}(A)\right\}_{1}^{\infty}$ asks to (approximately) calculate the eigenvalues of L in terms of $\left\{\lambda_{k}(A)\right\}$ and the perturbation. For a "relatively small" perturbation B, the $k^{\text {th }}$ eigenvalue of L is

$$
\lambda_{k}(L)=\lambda_{k}(A)+\mu_{k}
$$

so one is asked to calculate spectral fluctuations $\left\{\mu_{k}\right\}_{1}^{\infty}$. The corresponding inverse problem is then to recover $B(x)$ from the given (admissible) sequence of eigenvalues $\left\{\lambda_{k}(\mathrm{~L})\right\}_{1}^{\infty}$ or fluctuations $\left\{\mu_{k}\right\}_{1}^{\infty}$.

Spectral problems were extensively studied in various contexts for both ordinary and partial differential operators. The best known example is the regular Sturm-Liouville problem: $L=\frac{d^{2}}{d x^{2}}+V(x)$ on [0, 1]. The old result of Borg [Bo]
gives the following asymptotics of λ_{k},

$$
\begin{equation*}
\lambda_{k} \sim(\pi k)^{2}+\int_{0}^{1} V d x+V_{2 k}+O\left(\frac{1}{k}\right) \tag{1}
\end{equation*}
$$

where $V_{2 k}$ is the $2 k^{\text {th }}$ Fourier coefficient of V.
Of course (1) by itself does not provide sufficient data for the inverse problem. The latter was resolved in [Bo] in the "two-spectra" setting: $\left\{\lambda_{k}\right\}_{1}^{\infty} ;\left\{\lambda_{k}^{\prime}\right\}_{1}^{\infty}$, which corresponds to two different values of the boundary-value parameter h : $u+\left.h u^{\prime}\right|_{x=0}=0$.

It turned out that typically the inverse Sturm-Liouville problem does not have a unique solution. Large isospectral families of potentials V exist both in the periodic (Floquet) case [La, MM], where they are given by nonlinear KdV-type evolutions; and also for two-point boundary-value problems [IMT], where the isospectral families are characterized in terms of certain norming constants.

Turning to multivariable problems, i.e., Schrödinger operators $-\Delta+V(x)$, we shall mention two known examples: the " n-torus" [ERT] and " n-sphere" theory [We, Gu, Ur, Wi].

In both cases there exist natural "isospectral deformations" of V arising from symmetries of the problem: rotations on S_{n}, translations and reflections of T^{n}. Those were conjectured by Guillemin to be the only isospectral families, so-called "Spectral rigidity problem." This conjecture was proven for "generic potentials" on T^{n} [ERT] and for some classes of spherical harmonics on $S_{n}[\mathrm{Gu}]$.

The method of [Gu] was based on two sets of spectral invariants: the classical "heat-invariants" of Munakshisundaram-Pleijel $\left\{b_{m}(V)\right\}_{m=0}^{\infty}$, obtained by expanding the "heat-kernel" $\operatorname{tr}\left(e^{-t L}\right)$ in powers of t, and a new class of spectral invariants, so called band-invariant, introduced Kac-Spencer and Weinstein [We].

Let us briefly outline some basic concepts and results of the S_{n}-theory.
The spectrum of the Laplacian $-\Delta$ on S_{n} is well known: the $k^{\text {th }}$ eigenvalue $\lambda_{k}=k(k+n-1)$ has multiplicity $d_{k}=O\left(k^{n-1}\right) ; k=0,1, \ldots$ Introducing perturbation $V(x)$ destroys the underlying rotational symmetry. So each multiple eigenvalue λ_{k} splits into the cluster $\left\{\lambda_{k j}=\lambda_{k}+\mu_{k j}\right\}_{j=1}^{d_{k}}$ of simple eigenvalues of $L=-\Delta+V(x)$, whose distribution is described by the probability measure

$$
\begin{equation*}
d \varrho_{k}=\frac{1}{d_{k}} \sum_{j} \delta\left(t-\mu_{k j}\right) \tag{2}
\end{equation*}
$$

As the size of the $k^{\text {th }}$ cluster increases, one is interested in the asymptotic behavior of $\left\{d \varrho_{k}\right\}$ as $k \rightarrow \infty$.

It turned out [We], that the sequence $\left\{d \varrho_{k}\right\}_{1}^{\infty}$ converges to a continuous measure $\beta_{0} d t$ on \mathbb{R} expressed in terms of the Radon transform \widetilde{V} of V,

$$
\left\langle f ; \beta_{0}\right\rangle=\iint_{S^{*}\left(S_{n}\right)} f \circ \tilde{V},
$$

integration over the cosphere bundle of S_{n}.
Moreover, the following asymptotic expansion analogous to Borg's (1) was derived by Weinstein,

$$
\begin{equation*}
d \varrho_{k} \sim \beta_{0}+\frac{1}{k} \beta_{1}+\frac{1}{k^{2}} \beta_{2}+\ldots \tag{3}
\end{equation*}
$$

Distributions $\left\{\beta_{0} ; \beta_{1}, \ldots\right\}$ form a new class of spectral invariants, called bandinvariants in [We]. The 0 -th invariant β_{0} has an immediate implication to the inverse problem. Namely, the Radon transforms of two isospectral potentials V_{1}; V_{2} are equally distributed on $S^{*}\left(S_{n}\right)$. If we know the Radon transform \widetilde{V} itself, (rather than its distribution) we could easily solve the inverse problem. But a multivariable function cannot be recovered from its distribution, so β_{0} by itself is not enough (cf. [Gu]).

The situation becomes different, however, in the context of the present work, namely perturbations $L=A+B(x)$ of the quantum mechanical harmonic oscillator $A=\frac{1}{2}\left(-\delta^{2}+x^{2}-1\right)$ on \mathbb{R}. We loosely call such operators anharmonic oscillators.

The harmonic oscillator is one of few examples (along with Laplacians on T^{n} or S_{n}) whose spectrum can be explicitly calculated: the $k^{\text {th }}$ eigenvalue $\lambda_{k}=k$ and the eigenfunction $\varphi_{k}=k^{\text {th }}$ Hermite function $e^{x^{2} / 2} \partial^{k}\left(e^{-x^{2}}\right)$.

Our purpose in the present work is to establish the analogue of Borg's formula (1) for operators L and relate its first term to the so-called "Radon transform" of the perturbation. This relation (Theorem 1) enables us to efficiently solve the inverse problems for $A+B$ in the asymptotic context, namely, to link directly "large x asymptotics of $B(x)$ " on one hand and "large k-asymptotics of spectral fluctuations μ_{k} " on the other.

According to our basic "asymptotic" philosophy we shall consider a class of perturbations described by their behavior at ∞,

$$
\begin{equation*}
B(x) \sim|x|^{-\alpha} V(x) \quad \text { as } \quad x \rightarrow \infty, \tag{4}
\end{equation*}
$$

with a trigonometric even function

$$
\begin{equation*}
V(x)=\sum a_{m} \cos \omega_{m} x \tag{5}
\end{equation*}
$$

So the input data for the direct problem consists of an exponential α in the algebraic factor as well as frequencies $\left\{\omega_{m}\right\}$ and Fourier coefficients $\left\{a_{m}\right\}$ of the trigonometric part. The inverse problem is then to recover this data (or a portion of it) from asymptotics of spectral fluctuations $\left\{\mu_{k}\right\}_{1}^{\infty}$. One can show that perturbation $B(4)$ is small (compact) relative to $A([\mathrm{RS}])$, so the $k^{\text {th }}$ eigenvalue of $L=A+B$, is

$$
\lambda_{k}=k+\mu_{k} \quad \text { with "small" } \mu_{k} \text {. }
$$

Our main result is the following
Theorem 1. Let $L=A+B$ be the anharmonic oscillator with an even potential $B(x) \sim|x|^{-\alpha} V(x)$ whose trigonometric part $V(x)=\sum a_{m} \cos \omega_{m} x$. The $k^{\text {th }}$ spectral fluctuation of L is asymptotic to

$$
\begin{equation*}
\mu_{k} \sim k^{-\gamma} \tilde{V}(\sqrt{2 k})+\frac{c_{\alpha}}{\sqrt{2 k}} \quad \text { as } \quad k \rightarrow \infty \tag{6}
\end{equation*}
$$

where constants $\gamma=\alpha / 2+1 / 4$,

$$
c_{\alpha}=\cos \left[\frac{\pi}{2}(1-\alpha)\right] \Gamma(1-\alpha) \sum a_{m} \omega_{m}^{\alpha-1}
$$

and \widetilde{V} denotes the "Radon transform" of the trigonometric part:

$$
\begin{equation*}
V \rightarrow \tilde{V}(x)=\sqrt{2 / \pi} \sum \frac{a_{m}}{\sqrt{\omega_{m}}} \cos \left(\omega_{m} \mathrm{x}-\pi / 4\right) \tag{7}
\end{equation*}
$$

Notice that (7) corresponds to a formal fractional derivative operation applied to V

$$
\tilde{V}=\frac{1}{\sqrt{\pi}}|\partial|^{-1 / 2}(I-\partial /|\partial|)[V]
$$

We call it "Radon transform" for no other reason than it formally resembles the Radon transform on $S_{n}[\mathrm{We}]$ and plays a similar role in our discussion.

Formula (8) gives the leading coefficient $b_{0}(k)=\tilde{V}(\sqrt{2 k})$ is the asymptotic expansion of $\mu_{k}\left(\right.$ or $\left.\mu_{k}-\frac{c}{\sqrt{k}}\right)$, namely

$$
\begin{equation*}
\mu_{k} \sim k^{-\gamma}\left(b_{0}+\frac{1}{k} b_{1}+\ldots\right) \tag{8}
\end{equation*}
$$

Other coefficients $b_{1}, b_{2} ; \ldots$ could also be calculated, (cf. [Ur]) but we shall not pursue it here.

Expansion (8) is analogous to Borg's (1) or Weinstein (3). One notable difference however is the k-dependence (oscillatory behavior) of coefficients $b_{0} ; \ldots$ determined by function $V(x)$.

The latter provides a crucial link to the inverse problem. Precisely, given an admissible sequence of fluctuations $\mu_{k} \sim k^{-\gamma} F(\sqrt{k})$ with a trigonometric function $F(x)$, we proceed in three steps.

1) Exponential $\gamma=\frac{\alpha}{2}+\frac{1}{4}$ (consequently $\alpha=2 \gamma-1 / 2$) can be found as an upper bound

$$
\begin{equation*}
\gamma=\sup \left\{p>0: \lim _{k \rightarrow \infty} k^{p} \mu_{k}=0\right\} \tag{9}
\end{equation*}
$$

2) Assuming periodicity (or quasiperiodicity) of $F(x)$ we can reconstruct the period T (or quasiperiods $T_{1} \ldots T_{n}$). Notice that the sequence $\{\sqrt{k}\}$ is dense (and uniformly distributed [KN]) modulo any $T>0$ or a tuple $T_{1} ; \ldots T_{n}$.

So any continuous function $F(x)$ on the torus $T=[0, T]$ or $T^{n}=\left[0, T_{1}\right] \times \ldots \times\left[0, T_{n}\right]$ is uniquely determined by its values at $\{\sqrt{k}\}$. Moreover, the oscillation of F on any subsequence

$$
N(x, \varepsilon)=\left\{j:|x-\sqrt{j}|<\varepsilon \bmod \left(T_{1} ; \ldots T_{n}\right)\right\}
$$

has to diminish as $\varepsilon \rightarrow 0$, i.e.,

$$
\begin{gathered}
O(x, \varepsilon)=\sup \left\{\left|i^{\gamma} \mu_{i}-j^{\gamma} \mu_{j}\right|: \text { all pairs } i, j \in N(x, \varepsilon)\right\} \rightarrow 0 \\
\text { as } \varepsilon \rightarrow 0
\end{gathered}
$$

Thus the effective reconstruction procedure will screen all values of T (or a tuple $T_{1} \ldots T_{n}$) at which the oscillation $O(x ; \varepsilon)$, as a function of parameters $T\left(T_{1} \ldots T_{n}\right)$, drops down as illustrated in Fig. 1.

Fig. 1. Oscillation as a function of T in the periodic case
3) Once the periods $\left\{T_{1} ; T_{2} ; \ldots\right\}$ are found (or prescribed) we can reconstruct a trigonometric function $F(x)$, i.e., its frequencies and Fourier coefficients.

Namely, we write

$$
F(x)=\sum b_{m} \cos \left(\omega_{m} x-\pi / 4\right)=\sum\left(\frac{b_{m}}{\sqrt{2}} \cos \omega_{m} x+\frac{b_{m}}{\sqrt{2}} \sin \omega_{m} x\right)
$$

m being a tuple of integers $\left(m_{1}, \ldots, m_{n} \ldots\right)$ and ω_{m} meaning the corresponding frequency

$$
\begin{equation*}
\omega_{m}=2 \pi \sum_{i} \frac{m_{i}}{T_{i}} \tag{10}
\end{equation*}
$$

From the uniform distribution property of $\left\{\sqrt{k} ; \bmod \left(T_{1} ; \ldots T_{n} \ldots\right)\right\}$ we recover the $m^{\text {th }}$ coefficient as

$$
\begin{equation*}
b_{m}=\sqrt{2} \lim _{k \rightarrow \infty} \frac{1}{k} \sum_{1}^{k} j^{\gamma} \mu_{j} \cos \left(\omega_{m} / \sqrt{j}\right) \tag{11}
\end{equation*}
$$

Let us remark that $\cos \omega_{m} x$ could be replaced with $\sin \omega_{m} x$ in (11), as sin and \cos Fourier coefficients of F must be equal by the definition of the Radon transform (Theorem 1) for any even perturbation B. This provides an additional compatibility condition on the admissible spectral data $\left\{\mu_{k}\right\}_{1}^{\infty}$.

Finally, the trigonometric part V of perturbation B is obtained by inverting the Radon transform

$$
F \rightarrow V(x)=\sqrt{\frac{\pi}{2}} \sum b_{m} \sqrt{\omega_{m}} \cos \omega_{m} x
$$

where frequencies $\left\{\omega_{m}\right\}$ and coefficients $\left\{b_{m}\right\}$ are given by (10), (11).
We shall summarize the inversion procedure in the following.
Corollary. (i) The admissible spectral data for the inverse problem consists of sequences

$$
\mu_{k} \sim k^{-\gamma} F(\sqrt{k})
$$

with a trigonometric function $F(x)$ whose \sin and \cos Fourier coefficients (11) are equal.
(ii) The inverse problem has a unique solution $B(x) \sim|x|^{-\alpha} \sum a_{m} \cos \omega_{m} x$, whose parameters: $\alpha=2 \gamma-1 / 2$; frequencies $\left\{\omega_{m}\right\}$ and coefficients $\left\{a_{m}=\sqrt{\omega_{m}} b_{m}\right\}$ are given by (9)-(11).

Remark 1. The above uniqueness result can be compared to [IMS] and [MT]. The first paper showed that isospectral classes of the Sturm-Liouville problem have typically a unique even representative, whereas the second derived the same result for the isospectral class of the harmonic oscillator $\frac{d^{2}}{d x^{2}}+x^{2}$.

Our corollary extends these results to "asymptotic" isospectral classes of the harmonic oscillator perturbed by even potentials $B(x)$.

In the rest of the paper we shall outline the proof of Theorem 1. Our argument is based on the "averaging method" of Weinstein [We], whose origins go back to the classical work on celestial mechanics. Precisely, we observe that the spectrum of the harmonic oscillator $A=\frac{1}{2}\left(-\partial^{2}+x^{2}-1\right)$ consists of integers $\{0 ; 1 ; \ldots\}$ and replace perturbation B by the average of its conjugates

$$
\begin{equation*}
\bar{B}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i t A} B e^{-i t A} d t \tag{12}
\end{equation*}
$$

So instead of $L=A+B$ we study operator $\bar{L}=A+\bar{B}$. The main advantage of averaging is that both terms A and \bar{B} now commute. So spectral fluctuations $\left\{\bar{\mu}_{k}\right\}$ become nothing but eigenvalues of \bar{B}, which greatly facilitates calculations.

In order to pass from $\left\{\mu_{k}\right\}$ to $\left\{\bar{\mu}_{k}\right\}$ we need to show that spectra of L and \bar{L} become approximately equal as $k \rightarrow \infty$. The reason for the asymptotic proximity of spectra is "almost unitary" equivalence of L and \bar{L}. Namely,

Lemma (cf. [We]). (i) There exists a skew symmetric operator Q so that

$$
\begin{equation*}
e^{Q}(A+B) e^{-Q}=A+\bar{B}+" \text { small remainder } R . " \tag{13}
\end{equation*}
$$

(ii) The remainder R satisfies the following operator inequality (in the sense of comparison of selfadjoint operators)

$$
\begin{equation*}
|R|=\left(R^{*} R\right)^{1 / 2} \leqq c A^{-(1 / 4+\alpha)} \quad \text { with constant } \quad c>0 \tag{14}
\end{equation*}
$$

From the lemma we immediately get an estimate of proximity of eigenvalues $\lambda_{k}=k+\mu_{k}$ and $\bar{\lambda}_{k}=k+\bar{\mu}_{k}$,

$$
\begin{equation*}
\left|k^{\alpha / 2+1 / 4}\left(\mu_{k}-\bar{\mu}_{k}\right)\right| \leqq c k^{-\alpha / 2} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty \tag{15}
\end{equation*}
$$

So large k-asymptotics of μ_{k} and $\bar{\mu}_{k}$ are equal modulo small (higher order) error

$$
\mu_{k}-\bar{\mu}_{k}=O\left(k^{-\gamma-\alpha / 2}\right)
$$

To prove the lemma and to calculate the leading asymptotics of $\left\{\bar{\mu}_{k}\right\}_{1}^{\infty}$ we shall use a form of pseudodofferential calculus to be introduced now.

Symbol classes $S^{m}(-\infty<m<\infty)$ consist of smooth functions $\sigma(x, \xi)$ on the phase-plane $\{(x, \xi)\}=\mathbb{R}^{2}$, which at large radius $r=\sqrt{x^{2}+\xi^{2}}$ admit an asymptotic expansion

$$
\sigma \sim \sum_{j=0}^{\infty} a_{j} r^{m-j} e^{i \omega_{j} r}
$$

Coefficients $\left\{a_{j}\right\}$ and phase-factors $\left\{\omega_{j}\right\}$ are assumed to depend smoothly on the polar angle $\theta=\arccos x / r$. One example is the potential

$$
B(x) \sim|x|^{-\alpha} V(x)=r^{-\alpha}|\cos \theta|^{-\alpha} \sum a_{j} e^{i r \omega_{j} \cos \theta}
$$

which belongs to $S^{-\alpha}$.
The harmonic oscillator A has an elliptic symbol $a(r, \theta)=r^{2} / 2$, whose fractional powers can serve to "gauge" operators of classes S^{m}. With each symbol $\sigma(x, \xi)$ we associate a pseudodifferential (or Fourier integral) operator $K=\sigma(x, D) ; D=-i \partial_{x}$, defined by the Weyl convention

$$
(K u)(x)=\frac{1}{2 \pi} \iint e^{i \xi \cdot(x-y)} \sigma\left(\frac{x+y}{2} ; \xi\right) u(y) d \xi d y .
$$

Two basic results of pseudodifferential calculus will be used here.
Proposition. (i) Operators $B=b(x, D)$ of order zero, $\left(b \in S^{0}\right)$ are L^{2}-bounded. Consequently $b \in S^{-m}$ implies

$$
\begin{equation*}
\left\|B A^{m / 2} u\right\| \leqq \text { const }\|u\|, \quad \text { equivalently } \quad|B|=\left(B^{*} B\right)^{1 / 2} \leqq C A^{-m / 2} \tag{16}
\end{equation*}
$$

(ii) Product (composition) of two operators $B_{1} \in S^{m_{1}}$ and $B_{2} \in S^{m_{2}}$ has " A-order" $=m_{1}+m_{2}$, in the sense of (16), namely

$$
\left|B_{1} B_{2}\right| \leqq \operatorname{const} A^{\left(m_{1}+m_{2}\right) / 2}
$$

The first statement follows from the Calderon-Vaillancourt Theorem and the fact that our class S^{0} is included in the standard class $S_{0,0}=\left\{b(x, \xi):\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} b\right| \leqq C_{\alpha \beta}\right.$ all $\alpha, \beta\}$ (see [Ta, Chap. 13]).

The proof of the second statement is somewhat longer and will be outlined in the Appendix.

Now we proceed to the lemma.
The intertwining operator Q is constructed following [We] as

$$
\begin{equation*}
Q=\frac{1}{2 \pi i} \int_{0}^{2 \pi}(2 \pi-t) B(t) d t, \tag{17}
\end{equation*}
$$

where $B(t)$ denotes the conjugate $e^{i t A} B e^{-i t A}$. Both operators $\bar{B}(12)$ and $Q(17)$ are $\psi D O$'s of classes S^{m}, whose principal symbols can be calculated from symbols of conjugates $\{B(t)\}$. The latter according to the so-called Egorov Theorem is obtained by composing "symbol B " with the Hamiltonian flow $\left\{\exp t H_{a}\right\}$ of symbol $A, a(x, \xi)=\frac{1}{2}\left(x^{2}+\xi^{2}\right)$, i.e.,

$$
\sigma_{B(t)}=\sigma_{B} \circ \exp t H_{a},
$$

where $H_{a}=x \partial_{\xi}-\xi \partial_{x}$. Then

$$
\sigma_{B}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sigma_{B} \circ \exp t H_{a} d t=\frac{1}{2 \pi} \int_{0}^{2 \pi} B(x \cos t+\xi \sin t) d t
$$

which yields in polar coordinates (r, θ)

$$
\sigma_{B}=\sigma_{B}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} B(r \cos t) d t .
$$

Remembering that $B \sim|x|^{-\alpha} V(x)$ we can write σ_{B} as

$$
\begin{equation*}
\sigma_{B}=r^{-\alpha} \frac{2}{\pi} \int_{0}^{\pi / 2} \cos ^{-\alpha} t V(r \cos t) d t \tag{18}
\end{equation*}
$$

Given a trigonometric function $V(x)=\sum a_{m} \cos \omega_{m} x$ asymptotics of integral (18) at large r is computed by the stationary phase method. Both end-points of integral (18) contribute to its asymptotics: critical point, $t=0$, and singular point, $t=\pi / 2$.

The contribution of the first $(t=0)$ is

$$
r^{-\alpha-1 / 2} \sqrt{\frac{2}{\pi}} \sum \frac{a_{m}}{\sqrt{\omega_{m}}} \cos \left(\omega_{m} r-\pi / 4\right)=r^{-\alpha-1 / 2} \tilde{V}(r)
$$

the trigonometric series representing the Radon transform \widetilde{V} of V as defined in Theorem 1.

The second point ($t=\pi / 2$) contributes

$$
\frac{c_{\alpha}^{\prime}}{r} \sum a_{m} \omega_{m}^{\alpha-1}=\frac{c_{\alpha}}{r}, \quad \text { with constant } \quad c_{\alpha}=\int_{0}^{\infty} \cos z \frac{d z}{z^{\alpha}}=\cos \left[\frac{\pi}{2}(1-\alpha)\right] \Gamma(1-\alpha)
$$

Combining two contributions we get

$$
\begin{equation*}
\sigma_{B}=r^{-\alpha-1 / 2} \tilde{V}(r)+\frac{c_{\alpha}}{r} \tag{19}
\end{equation*}
$$

Formula (19) will be essential in calculating the eigenvalues of \bar{B}. It also shows that the symbol of \bar{B} belongs to our class $S^{-\alpha-1 / 2}$.

Similarly one calculates the principal symbol of the $\psi D O Q,(17)$,

$$
\begin{aligned}
\sigma_{Q}(r, \theta) & =\frac{1}{2 \pi i} \int_{0}^{2 \pi} B(r \cos (t-\theta))(2 \pi-t) d t \\
& =\frac{2 \pi}{i} \sigma_{B}-\frac{1}{2 \pi i} \int_{0}^{2 \pi} B(r \cos (t-\theta)) t d t
\end{aligned}
$$

whose order is also $-(\alpha+1 / 2)$.
To establish the intertwining relation (13) for e^{Q} we start with an easily verified commutation formula

$$
[A ; Q]=\frac{1}{2 \pi} \int_{0}^{2 \pi}(2 \pi-t) i B^{\prime}(t) d t=i(\bar{B}-B)
$$

Application of standard algebra yields

$$
\begin{equation*}
A e^{Q}-e^{Q} A=i(\bar{B}-B)+\frac{i}{2}\{(\bar{B}-B) Q+Q(\bar{B}-B)\}+R_{1} \tag{20}
\end{equation*}
$$

The remainder $R_{1}=\sum_{3}^{\infty} \frac{1}{n!} \sum_{j=0}^{n-1} Q^{n-1-j}(\bar{B}-B) Q^{j}$ in (20) consists of products of $\psi D O$'s, Q, and $\bar{B}-B$, which belong to our classes S^{-m}. We can apply the Proposition to calculate the " A-order" in the sense of (16) of each product $Q^{n-1-j}(\bar{B}-B) Q^{j}$.

Notice that the second statement of the proposition extends from two to any number of factors $B_{1} B_{2} \ldots B_{n}$, so

$$
\left|Q^{n-1-j}(\bar{B}-B) Q^{j}\right| \leqq C A^{-s} ; \quad \text { with } \quad s=(n-1)(\alpha+1 / 2)+\alpha
$$

We continue algebraic transformations and rewrite (20) as

$$
\begin{equation*}
A e^{Q}-e^{Q} A=e^{Q} \bar{B}-B e^{Q}+R \tag{31}
\end{equation*}
$$

The new remainder $R=\frac{1}{2}[\bar{B}-B ; Q]+\ldots$ has " A-order" $=2 \alpha+1 / 2$.
Now the first statement of the proposition (Calderon-Vaillancourt) applies to show that
which proves the lemma.

$$
|R| \leqq c A^{-(\alpha+1 / 4)}
$$

The main lemma reduces the problem of asymptotics of $\left\{\mu_{k}\right\}$ to asymptotics of eigenvalues $\left\{\bar{\mu}_{k}\right\}$ of the average operator \bar{B}. To complete the proof of Theorem 1 it remains to observe that the principle symbol (19) of operator \bar{B} is

$$
\sigma_{B}=r^{-\alpha-1 / 2} \widetilde{V}(r)+\frac{c_{\alpha}}{r}
$$

In other words operator \bar{B} represents a function of the operator $\sqrt{2 A}$, which is approximately

$$
\bar{B} \approx(2 A)^{-\gamma} \widetilde{V}(\sqrt{2 A})+c_{\alpha}(2 A)^{-1 / 2}=\bar{B}_{0} .
$$

The error term $\bar{B}-\bar{B}_{0}$ has a lower " A-order" according to the proposition. Therefore, the $k^{\text {th }}$ eigenvalue $\bar{\mu}_{k}$ of \bar{B}, consequently the $k^{\text {th }}$ fluctuation μ_{k} of L, is approximated by

$$
(2 k)^{-\gamma} \tilde{V}(\sqrt{2 k})+\frac{c_{\alpha}}{\sqrt{2 k}}
$$

as was claimed in Theorem 1.
Remark 2. Asymptotic formula (6) for μ_{k} also yields the limiting distribution of "average" spectral fluctuations. This result was obtained in the earlier version of our work [Gur]. Namely, by analogy with (2) we introduced measures

$$
\begin{equation*}
d \varrho_{k}(t)=\frac{1}{k} \sum_{1}^{k} \delta\left(t-j^{\gamma} \mu_{j}\right), \quad \text { or } \quad \frac{1}{k} \sum_{1}^{k} \delta\left(t-j^{\gamma}\left(\mu_{j}-\frac{c_{\alpha}}{\sqrt{j}}\right)\right) \quad \text { if } \quad \alpha>1 / 2 \tag{22}
\end{equation*}
$$

The weight factors $\left\{j^{\gamma}\right\}$ in (22) take into account the algebraic rate of decay of $\mu_{k}=O\left(k^{-\gamma}\right)$.

Then we have proved the following
Theorem 2. Sequence d ϱ_{k} converges to a continuous measure $\beta_{0}(t) d t$ on \mathbb{R} ($0^{\text {th }}$ band invariant) whose density $\beta_{0}(t)$ is equal to the distribution function of the "Radon transform" \widetilde{V}, considered on the torus T or T^{n}.

Here the trigonometric part $V(x)$ is assumed to be periodic or quasiperiodic. This result follows immediately from Theorem 1 and the equidistribution property [KN] of sequence $\{\sqrt{k}\}$ modulo any period T or a tuple $\left(T_{1} ; \ldots T_{n} \ldots\right)$. Indeed, as $k \rightarrow \infty$,

$$
\left\langle f ; d \varrho_{k}\right\rangle \approx \frac{1}{k} \sum_{1}^{k} f \circ \tilde{V}(\sqrt{2 j}) \rightarrow \frac{1}{T} \int_{0}^{T} f \circ \tilde{V} d x \quad \text { or } \quad \frac{1}{T_{1} \ldots T_{n}} \int_{0}^{T_{1}} \cdots \int_{0}^{T_{n}} f \circ \tilde{V},
$$

But Theorem 2 can also be established directly in the following steps (see [Gur]):
(i) Replacing fluctuations $\left\{\mu_{j}\right\}$ of $A+B$ in (22) by eigenvalues $\left\{\bar{\mu}_{j}\right\}$ of \bar{B} via the lemma, i.e., approximating $d \varrho_{k} \approx d \bar{\varrho}_{k}=\frac{1}{k} \sum_{1}^{k} \delta\left(t-j^{\gamma} \bar{\mu}_{j}\right)$.
(ii) Interpreting $\left\langle f ; d \bar{\varrho}_{k}\right\rangle$ as $\frac{1}{k} \operatorname{trace}\left[f\left(A^{\gamma} \bar{B}\right) \mid E_{k}\right]\left[\right.$ or $A^{\gamma}\left(\bar{B}-c_{\alpha} A^{-1 / 2}\right)$ in case $\alpha \geqq 1 / 2]$. Here operator $f\left(A^{\gamma} B\right)$ is restricted on the linear span E_{k} of the first k eigenfunctions of A (Hermite functions).
(iii) Applying the Szego limit theorem to approximate trace $\left[f\left(A^{y} \bar{B}\right) \mid E_{k}\right]$ by the phase-space integral $\iint_{\frac{1}{2}\left(x^{2}+\xi^{2}\right) \leqq k}$ symbol $f\left(A^{\gamma} \bar{B}\right)$, and finally
(iv) Explicitly calculating the principal symbol of \bar{B} as in (19).

Appendix. Proof of the Proposition

We want to show that the product of two $\psi D O^{\prime}$'s, B, and B^{\prime}, in classes S^{m} and $S^{m^{\prime}}$ has " A-order" $=m+m^{\prime}$, i.e.,

$$
\begin{equation*}
\left|B B^{\prime}\right| \leqq c A^{1 / 2\left(m+m^{\prime}\right)} \tag{A1}
\end{equation*}
$$

The standard way to establish (A1) would be a composition (product) formula for Weyl symbols

$$
\begin{equation*}
\operatorname{symbol}\left(B B^{\prime}\right)=b \# b^{\prime} \sim \sum_{k=0}^{\infty} \frac{1}{k!}\left\langle b\left(\frac{\overleftarrow{\partial}_{x} \vec{\partial}_{\xi}-\vec{\partial}_{\xi} \overleftarrow{\partial}_{x}}{2 i}\right)^{k} b^{\prime}\right\rangle . \tag{A2}
\end{equation*}
$$

Here we adopt the convention of equipping the derivative operations $\partial_{x}, \partial_{\xi}$ with arrows that indicate which of two functions, b or b^{\prime}, is subjected to it. Unfortunately expansion (A2) does not apply to oscillatory symbols $b=r^{m} e^{i r \omega}$ of classes S^{m}, since differentiations $\partial_{x}, \partial_{\xi}$ do not reduce their r-order.

The proper "composition rule" of such oscillatory symbols should involve the whole machinery of "Fourier integral operators." However, we are able to circumvent the ensuing technical difficulties by introducing a form of "abstract symbolic calculus" based on the operator A. Let us note that (A2) still makes sense (consists of decreasing-order terms) if one of two symbols is of "classical type,"

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} b\right| \leqq c_{\alpha \beta} r^{m-\alpha-\beta} ; \quad r=\sqrt{x^{2}+\xi^{2}},
$$

in particular, $b=r^{s}=\operatorname{symbol} A^{s / 2}$.
Moreover, the commutator of two operators $B \in S^{m}$ (of classical type) and $B^{\prime} \in S^{m^{\prime}}$ belongs to $S^{m+m^{\prime}-1}$. Indeed, the principal symbol of $\left[B ; B^{\prime}\right]$ is equal by (A2) to the Poisson bracket

$$
\left\{b ; b^{\prime}\right\}=\left\langle b\left(\frac{\overleftarrow{\partial}_{x} \vec{\partial}_{\xi}-\vec{\partial}_{x} \overleftarrow{\partial}_{\xi}}{i}\right) b^{\prime}\right\rangle
$$

which in polar coordinates becomes

$$
\frac{1}{r}\left(b_{r} b_{\theta}^{\prime}-b_{\theta} b_{r}^{\prime}\right) \in S^{m+m^{\prime}-1}
$$

It follows, in particular, that

$$
\begin{equation*}
\left\|A^{s-m / 2+1 / 2}\left[A^{-s} ; B\right]\right\| \leqq C, \text { for all } B \text { in } S^{m} \tag{A3}
\end{equation*}
$$

Guided by (16) and (A3) we shall introduce classes \mathscr{S}_{m} of (compact) operators on the Hilbert space $L^{2}(\mathbb{R})$ that satisfy
(a) $\left\|B A^{m / 2}\right\| \leqq C$, consequently $|B|=\left(B^{*} B\right)^{1 / 2} \leqq C A^{-m / 2}$,
(b) iterated commutators $B_{k}=\left[A^{-s_{1}}\left[A^{-s_{2}} \ldots\left[A^{-s_{k}} ; B\right] \ldots\right]\right.$ satisfy $\left\|B_{k} A^{-m / 2-s-k / 2}\right\| \leqq C_{k}$ for all $k=1,2, \ldots$, where $s=s_{1}+s_{1}+\ldots+s_{k}$. Condition (b) essentially means that each commutation operation $B \rightarrow\left[A^{-s} ; B\right]$ sends class \mathscr{S}_{m} into \mathscr{S}_{m+s}. We have already shown that class \mathscr{S}_{m} contains all operators in S^{-m}, m playing the role of the "formal A-order" of such B.

The advantage of embedding S^{-m} into larger classes \mathscr{S}_{m} is that the latter are easy to multiply, maintaining the right order. Namely,

In particular,

$$
\begin{equation*}
\mathscr{S}_{m} \cdot \mathscr{S}_{m^{\prime}} \subseteq \mathscr{S}_{m+m^{\prime}} . \tag{A4}
\end{equation*}
$$

$$
\left|B \cdot B^{\prime}\right| \leqq \text { const } A^{-1 / 2\left(m+m^{\prime}\right)}
$$

as was claimed in part (ii) of the proposition.
To demonstrate (A4) we observe that property (a) in the definition of \mathscr{S}_{m} is equivalent to

$$
\|B u\| \leqq C\left\|A^{-m / 2} u\right\| \quad \text { for all } \quad u \in L^{2}(\mathbb{R})
$$

Choosing any pair $B \in \mathscr{S}_{m} ; B^{\prime} \in \mathscr{S}_{m^{\prime}}$ we need to show
($\left.\mathrm{a}^{\prime}\right)\left\|B B^{\prime} u\right\| \leqq \mathrm{const}\left\|A^{-\frac{m+m^{\prime}}{2}} u\right\|$,
($\left.\mathrm{b}^{\prime}\right)\left\|\left[A^{-s_{1}} \ldots\left[A^{-s_{k}} ; B B^{\prime}\right] \ldots\right] u\right\| \leqq C_{k}\left\|A^{-\frac{m+m^{\prime}}{2}-s-k / 2} u\right\|$, with $s=s_{1}+\ldots s_{k}$. To demonstrate (a^{\prime}) we write

$$
\begin{equation*}
\left\|B B^{\prime} u\right\| \leqq C\left\|A^{-m / 2} B^{\prime} u\right\| \leqq C\left(\left\|B^{\prime} A^{-m / 2} u\right\|+\left\|\left[A^{-m / 2} ; B^{\prime}\right] u\right\|\right), \tag{A5}
\end{equation*}
$$

and then apply (a) and (b) with $k=1$ to both norms in (A5).
Similarly (b^{\prime}) with $k=1$ is established by writing $\left[A^{-s} ; B B^{\prime}\right]=\left[A^{-s} ; B\right] B^{\prime}$ $+B\left[A^{-s} ; B^{\prime}\right]$, then estimating each of two terms as in (A5). For instance

$$
\begin{aligned}
\left\|B\left[A^{-s} ; B^{\prime}\right] u\right\| & \leqq C\left\|A^{-m / 2}\left[A^{-s} ; B^{\prime}\right] u\right\| \leqq C\left(\left\|\left[A^{-s} ; B^{\prime}\right] A^{-m / 2} u\right\|\right. \\
& +\left\|\left[A^{-m / 2} ;\left[A^{-s} ; B^{\prime}\right]\right] u\right\| .
\end{aligned}
$$

In a similar fashion one estimaties higher commutators $\left[A^{-s_{1}} \ldots\left[A^{s_{k}} ; B B^{\prime}\right] \ldots\right]$. Thus $B B^{\prime}$ belong to $\mathscr{S}_{m+m^{\prime}}$, which proves the proposition.

Acknowledgements. We would like to thank the referee for constructure criticism and helpful suggestions, and E. Harrell for fruitful discussions on the subject of the work.

References

[Bo] Borg, G.: Acta Math. 78, 1-96 (1946)
[Gu] Guillemin, V.: Adv. Math. 42, 283-290, (1981); 27, 273-286 (1978)
[Gur] Gurarie, D.: Band invariants and inverse spectral problems for anharmonic oscillators. Preprint 1986
[ERT] Eskin, G., Ralston, A., Trubowitz, E.: Contemp. Math. 27, 45-56 (1984)
[IMT] Isaacson, E., McKean, H., Trubowitz, E.: Commun. Pure Appl. Math. 36, 767-783 (1983); 37, 1-11 (1984)
[KN] Kuipers, L., Niederreiter, H.: Uniform distribution of sequences. New York: Wiley 1974
[La] Lax, P.: Commun. Pure Appl. Math. 28, 147-199 (1975)
[MM] McKean, H.P., van Moerbecke, P.: Invent. Math. 30, 217-274 (1975)
[RS] Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. II. New York: Academic Press 1975
[Ta] Taylor, M.E.: Pseudodifferential operators. Princeton, NJ: Princeton University Press 1981
[Ur] Uribe, A.: J. Funct. Anal. 59, 3 535-556 (1984)
[We] Weinstein, A.: Duke Math. J. 44, 83-92 (1977)
[Wi] Widom, H.: J. Funct. Anal. 32, 139-147 (1979)

Communicated by B. Simon

Received January 13, 1987

