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Abstract. We study perturbations L=A + B of the harmonic oscillator
A = | ( — d2 + x2 — 1) on IR, when potential B(x) has a prescribed asymptotics at
oo, B(x)~\x\~aV(x) with a trigonometric even function V(x)= Σ amcosωmx.
The eigenvalues of L are shown to be λk = k + μk with small μk = O(k~y\
7 = 1/2 + 1/4.

The main result of the paper is an asymptotic formula for spectral
fluctuations {μk},

as /c—XX),

whose leading term V represents the so-called "Radon transform" of V,

V(x) = const £ ^ _ cos (ωmx — π/4).

as a consequence we are able to solve explicitly the inverse spectral problem,
i.e., recover asymptotic part |x|~αF(x) of B from asymptotics of

The standard spectral problem for a perturbation L = A + B of a differential
operator A with the given spectrum {λk(A)}f asks to (approximately) calculate the
eigenvalues of L in terms of {Afc(̂ 4)} and the perturbation. For a "relatively small"
perturbation B, the kth eigenvalue of L is

so one is asked to calculate spectral fluctuations {μk}?. The corresponding inverse
problem is then to recover B(x) from the given (admissible) sequence of eigenvalues
\λk(L)}ΐ or fluctuations {μk}f.

Spectral problems were extensively studied in various contexts for both
ordinary and partial differential operators. The best known example is the regular

Sturm-Liouville problem: L= —-̂  + V(x) on [0,1]. The old result of Borg [Bo]
dX
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gives the following asymptotics of λk,

(Λ (1)

where V2k is the 2/cth Fourier coefficient of V.
Of course (1) by itself does not provide sufficient data for the inverse problem.

The latter was resolved in [Bo] in the "two-spectra" setting: {λk}f; {λ'k}™, which
corresponds to two different values of the boundary-value parameter h:

It turned out that typically the inverse Sturm-Liouville problem does not have
a unique solution. Large isospectral families of potentials V exist both in the
periodic (Floquet) case [La, MM], where they are given by nonlinear KdV-type
evolutions; and also for two-point boundary-value problems [IMT], where the
isospectral families are characterized in terms of certain norming constants.

Turning to multivariable problems, i.e., Schrόdinger operators — A + V(x\ we
shall mention two known examples: the "n-torus" [ERT] and "rc-sphere" theory
[We, Gu, Ur, Wi].

In both cases there exist natural "isospectral deformations" of V arising from
symmetries of the problem: rotations on Sn, translations and reflections of Tn.
Those were conjectured by Guillemin to be the only isospectral families, so-called
"Spectral rigidity problem." This conjecture was proven for "generic potentials"
on Tn [ERT] and for some classes of spherical harmonics on Sn [Gu].

The method of [Gu] was based on two sets of spectral invariants: the classical
"heat-invariants" of Munakshisundaram-Pleijel {bm(V)}™=o, obtained by expand-
ing the "heat-kernel" tr(^" ί L) in powers of t, and a new class of spectral invariants,
so called band-invariant, introduced Kac-Spencer and Weinstein [We].

Let us briefly outline some basic concepts and results of the ^-theory.
The spectrum of the Laplacian —A on Sn is well known: the kth eigenvalue

λk = k(k + n — 1) has multiplicity dk = 0(kn~ *); k = 0,1,.... Introducing perturbation
V(x) destroys the underlying rotational symmetry. So each multiple eigenvalue λk

splits into the cluster {λkj = λk + μkj)% i of simple eigenvalues of L= — A + V(x),
whose distribution is described by the probability measure

dk j

As the size of the fcth cluster increases, one is interested in the asymptotic behavior
of {dρk} as /c->oo.

It turned out [We], that the sequence {dρk}™ converges to a continuous
measure βodt on R expressed in terms of the Radon transform V of V,

(flβ ) = f f f ° V>
S*(Sn)

integration over the cosphere bundle of Sn.
Moreover, the following asymptotic expansion analogous to Borg's (1) was

derived by Weinstein,
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Distributions {βo; βu ...} form a new class of spectral invariants, called band-
invariants in [We]. The O-th invariant β0 has an immediate implication to the
inverse problem. Namely, the Radon transforms of two isospectral potentials V1

V2 are equally distributed on S*(Sn). If we know the Radon transform V itself,
(rather than its distribution) we could easily solve the inverse problem. But a
multivariable function cannot be recovered from its distribution, so β0 by itself is
not enough (cf. [Gu]).

The situation becomes different, however, in the context of the present work,
namely perturbations L = A + B(x) of the quantum mechanical harmonic oscil-
lator A = ̂ ( — δ2 + x2 — 1) on JR. We loosely call such operators anharmonic
oscillators.

The harmonic oscillator is one of few examples (along with Laplacians on Tn or
Sn) whose spectrum can be explicitly calculated: the kth eigenvalue λk = k and the
eigenfunction φk = kth Hermite function eχ2/2dk(e~χ2).

Our purpose in the present work is to establish the analogue of Borg's formula
(1) for operators L and relate its first term to the so-called "Radon transform" of the
perturbation. This relation (Theorem 1) enables us to efficiently solve the inverse
problems for A + B in the asymptotic context, namely, to link directly "large x-
asymptotics oϊB(x)" on one hand and "large /c-asymptotics of spectral fluctuations
μk on the other.

According to our basic "asymptotic" philosophy we shall consider a class of
perturbations described by their behavior at oo,

B(x)~\x\-"V(x) a s *->°°> (4)

with a trigonometric even function

V(x)=Σamcosωmx. (5)

So the input data for the direct problem consists of an exponential α in the
algebraic factor as well as frequencies {ωm} and Fourier coefficients {am} of the
trigonometric part. The inverse problem is then to recover this data (or a portion of
it) from asymptotics of spectral fluctuations {μfc}J°. One can show that perturba-
tion B (4) is small (compact) relative to A ([RS]), so the fcth eigenvalue of L = A + B,
is

λk = k + μk with "small" μk.

Our main result is the following

Theorem 1. Let L — A-\-B be the anharmonic oscillator with an even potential
B(x)~\x\~aV(x) whose trigonometric part V(x)=Σamcosωmx. The kth spectral
fluctuation of L is asymptotic to

/ ^ as /c^oo, (6)

where constants y = α/2 + l/4,

ca = cos [f (1 - α)]Γ(l - α) Σ M 4 " ' ,
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and V denotes the "Radon transform" of the trigonometric part:

V^ V(x) = λ/ϊfk Σ -% cos(ωmx - π/4). (7)

Notice that (7) corresponds to a formal fractional derivative operation applied
to V

We call it "Radon transform" for no other reason than it formally resembles the
Radon transform on Sn [We] and plays a similar role in our discussion.

Formula (8) gives the leading coefficient bo(k) = V(\/ϊk) is the asymptotic

expansion of μk I or μk — I, namely

V ]/ϊcJ

( ^ ) (8)

Other coefficients bu b2\... could also be calculated, (cf. [Ur]) but we shall not
pursue it here.

Expansion (8) is analogous to Borg's (1) or Weinstein (3). One notable
difference however is the fc-dependence (oscillatory behavior) of coefficients bo;...
determined by function V(x).

The latter provides a crucial link to the inverse problem. Precisely, given an

admissible sequence of fluctuations μk~k~γF(\/k) with a trigonometric function

F(x\ we proceed in three steps.

1) Exponential γ = — -\— (consequently α = 2y —1/2) can be found as an upper

b o u n d y = supί/»0: lim ^ = 01. (9)
{ fc-00 j

2) Assuming periodicity (or quasiperiodicity) of F(x) we can reconstruct the

period T (or quasiperiods ^.. .7^). Notice that the sequence {]/k} is dense (and

uniformly distributed [KN]) modulo any T > 0 or a tuple T^.-.T^

So any continuous function F(x) on the torus Γ = [ 0 , T] or

Tn = [0, T J x ... x [0, TJ is uniquely determined by its values at {]/fc}. Moreover,

the oscillation of F on any subsequence

N(x,ε) = {j: |x- j// |<εmod(7i; . . .T B )}

has to diminish as ε^O, i.e.,

O(x,ε) = s\ip{\iyμi-jyμj\: all pairs iJeN(x,ε)}->0

as ε->0.

Thus the effective reconstruction procedure will screen all values of T (or a
tuple T .̂ .TJ at which the oscillation O(x ε), as a function of parameters

Γi. .TJ, drops down as illustrated in Fig. 1.
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Fig. 1. Oscillation as a function of T in the periodic case

3) Once the periods {Tγ T2 ...} are found (or prescribed) we can reconstruct a
trigonometric function F(x), i.e., its frequencies and Fourier coefficients.

Namely, we write

F(x) = Σbm^os(ωmx-π/4)= £ (-— cosωmx+ —

m being a tuple of integers (m l5 ...,mn...) and ω m meaning the corresponding
frequency

From the uniform distribution property of {]/k; mod(Ti ... Tn...)} we recover
the mth coefficient as

bm = j/2 lim 1 Σ ^.cos(ωml//). (11)
fc-^OO /v 1

Let us remark that cosωmx could be replaced with sinωmx in (11), as sin and cos
Fourier coefficients of F must be equal by the definition of the Radon transform
(Theorem 1) for any even perturbation B. This provides an additional compati-
bility condition on the admissible spectral data {μk}?.

Finally, the trigonometric part V of perturbation B is obtained by inverting the
Radon transform

where frequencies {ωm} and coefficients {bm} are given by (10), (11).
We shall summarize the inversion procedure in the following.

Corollary, (i) The admissible spectral data for the inverse problem consists of
sequences

with a trigonometric function F(x) whose sin and cos Fourier coefficients (11) are
equal.
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(ii) The inverse problem has a unique solution B(x)~\x\~aΣamcosωmx, whose

parameters: a = 2y — l/2; frequencies {ωm} and coefficients {am = |/ω^fcm} are given

Remark 1. The above uniqueness result can be compared to [IMS] and [MT].
The first paper showed that isospectral classes of the Sturm-Liouville problem
have typically a unique even representative, whereas the second derived the same

result for the isospectral class of the harmonic oscillator — ^ + x 2 .
dxι

Our corollary extends these results to "asymptotic" isospectral classes of the
harmonic oscillator perturbed by even potentials B(x).

In the rest of the paper we shall outline the proof of Theorem 1. Our argument
is based on the "averaging method" of Weinstein [We], whose origins go back to
the classical work on celestial mechanics. Precisely, we observe that the spectrum
of the harmonic oscillator Λ = ̂ ( — d2 + x2 — 1) consists of integers {O l;...} and
replace perturbation B by the average of its conjugates

B= -5-7 eitABe~itAdt. (12)
2π o

So instead of L = A + B we study operator L=A + B. The main advantage of
averaging is that both terms A and B now commute. So spectral fluctuations {μk}
become nothing but eigenvalues of 5, which greatly facilitates calculations.

In order to pass from {μk} to {μk} we need to show that spectra of L and L
become approximately equal as fc-> oo. The reason for the asymptotic proximity of
spectra is "almost unitary" equivalence of L and L. Namely,

Lemma (cf. [We]), (i) There exists a skew symmetric operator Q so that

"small remainder R." (13)

(ii) The remainder R satisfies the following operator inequality (in the sense of
comparison of selfadjoint operators)

\R\ = (R*R)1/2^cA~il/4+a) with constant c > 0 . (14)

From the lemma we immediately get an estimate of proximity of eigenvalues
and λk = k + μk5

/2^0 as k-+oo. (15)

So large /c-asymptotics of μk and μk are equal modulo small (higher order) error

To prove the lemma and to calculate the leading asymptotics of {μk}f we shall
use a form of pseudodofferential calculus to be introduced now.

Symbol classes Sm(— oo <m<oo) consist of smooth functions σ(x,ξ) on the

phase-plane {(x, ξ)} =1R2, which at large radius r = γx2 + ξ2 admit an asymptotic

expansion ^
σ~ £ α/ m ~V ω Λ

j=o



Asymptotic Inverse Spectral Problem 497

Coefficients {α,-} and phase-factors {ω^ } are assumed to depend smoothly on
the polar angle 0 = 3,rccosx/r. One example is the potential

which belongs to S~a.
The harmonic oscillator A has an elliptic symbol α(r, θ) = r2/2, whose fractional

powers can serve to "gauge" operators of classes Sm. With each symbol σ(x, ξ) we
associate a pseudodifferential (or Fourier integral) operator K = σ(x, D),D= — idx,
defined by the Weyl convention

(Ku)(x)= i - Ueiξ'ix~y)° {^γ-\ ή u(y)dξdy.

Two basic results of pseudodifferential calculus will be used here.

Proposition, (i) Operators B = b(x,D) of order zero, (beS°) are L2-bounded.
Consequently beS~m implies

\\BAm/2u\\ ̂ const | | t t | | , equivalently \B\=(B*B)1/2SCA-m/2. (16)

(ii) Product (composition) of two operators Bγ e Smi and B2 e S™2 has "A-order"
= mγ +m2, in the sense of (16), namely

The first statement follows from the Calderon-Vaillancourt Theorem and the
fact that our class S° is included in the standard class So 0 = {b(x, ξ): \d^dβ

ξb\ ̂  Caβ

allα,β}(see[Ta, Chap. 13]).
The proof of the second statement is somewhat longer and will be outlined in

the Appendix.
Now we proceed to the lemma.
The intertwining operator Q is constructed following [We] as

Q=^2S(2π-t)B(ήdt, (17)
2nι o

where B(t) denotes the conjugate eitABe'itA. Both operators B (12) and Q (17) are
ψDO's of classes Sm, whose principal symbols can be calculated from symbols of
conjugates {B(t)}. The latter according to the so-called Egorov Theorem is
obtained by composing "symbol B" with the Hamiltonian flow {expfHj of
symbol A, a(x, ξ) = ̂ (x2-\-ξ2), i.e.,

where Ha = xdξ-ξdx. Then

\ lit \ 2π

σB= —- j σBoQχptHadt= —- J B(xcost+ ξsinήdt,
zπ o 2π o

which yields in polar coordinates (r, θ)

I 2π

<*B = <rB(
r) = ^r J B(r cos ήdt.

λn o
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Remembering that B^\x\~<xV(x) we can write σB as

σB = r-«-π[ cos-«tV{rcosήdt. (18)
π o

Given a trigonometric function V(x) — Yjamcosωmx asymptotics of integral
(18) at large r is computed by the stationary phase method. Both end-points of
integral (18) contribute to its asymptotics: critical point, t = 0, and singular point,
ί = π/2.

The contribution of the first (t = 0) is

- r ~ α " 1 / 2

cos(ωmr-π/4)-r~α"1 / 2F(r),

the trigonometric series representing the Radon transform V of V as defined in
Theorem 1.

The second point (ί = π/2) contributes

C'OL - c a °° dz Γπ Ί
— Σamωm ——•> with constant cα = J cosz — = c o s —(1—α) m l — α ) .
r r o z |_2 J
Combining two contributions we get

σ = r - a ~ 1 / 2 F ( r ) + —. (19)
r

Formula (19) will be essential in calculating the eigenvalues of B. It also shows that
the symbol of B belongs to our class iS"α~1/2.

Similarly one calculates the principal symbol of the ψDOQ, (17),

σ (r, θ)=^~. 7 B(r cos(ί - θ)) (2π - ήdt
2πι o

= — <>B ~ ^-T 7 5 ( Γ CO^ ~ θ)) tdt >
i 2πι o

whose order is also — (α+1/2).
To establish the intertwining relation (13) for eQ we start with an easily verified

commutation formula

[A 6 ] = w- ϊ ( 2 π - *) ̂ ' (0 rfί=^5 - 5).

2π o

Application of standard algebra yields
AeQ-eQA = ί(B-B)+ 1~{(B-B)Q + Q(B-B)}+Rί. (20)

oo ^ n— 1 _

The remainder Ri= £ — J] Qn~1~j(B-B)Qj in (20) consists of products of
3 n\ j=o

ψDO's, Q, and B — B, which belong to our classes S~m. We can apply the Proposition
to calculate the ",4-order" in the sense of (16) of each product Qn~ι~j(B~B)Qj.



Asymptotic Inverse Spectral Problem 499

Notice that the second statement of the proposition extends from two to any
number of factors BίB2...Bn, so

\Q«-i-J(B-B)Qj\^CA-s; with s = (n-l)(α

We continue algebraic transformations and rewrite (20) as

AeQ-eQA = eQB-BeQ + R. (31)

The new remainder R=^[B-B; β] + ... has "border" = 2α +1/2.
Now the first statement of the proposition (Calderon-Vaillancourt) applies to

show that

which proves the lemma.
The main lemma reduces the problem of asymptotics of {μk} to asymptotics of

eigenvalues {μk} of the average operator B. To complete the proof of Theorem 1 it
remains to observe that the principle symbol (19) of operator B is

In other words operator B represents a function of the operator ]/ΪA, which is
approximately E

The error term B — Bo has a lower ",4-order" according to the proposition.
Therefore, the /cth eigenvalue μk of 5, consequently the kth fluctuation μk of L, is
approximated by c

(2k)-W(\/2k)+ -±
<2k

r

as was claimed in Theorem 1.
Remark 2. Asymptotic formula (6) for μk also yields the limiting distribution of
"average" spectral fluctuations. This result was obtained in the earlier version of
our work [Gur]. Namely, by analogy with (2) we introduced measures

dQk{t)=\iδ(t-Γμ^, or I | ^ ί - / ^ . _ ^ if α > l / 2 . (22)

The weight factors {/} in (22) take into account the algebraic rate of decay of

μk=o(k-η.
Then we have proved the following

Theorem 2. Sequence dρk converges to a continuous measure βo(t)dt on IR (0th band
invariant) whose density βo(t) is equal to the distribution function of the "Radon
transform" V, considered on the torus T or Tn.

Here the trigonometric part V(x) is assumed to be periodic or quasίperiodic.
This result follows immediately from Theorem 1 and the equidistribution

property [KN] of sequence {]/k} modulo any period T or a tuple (Tx; ...Tn...).
Indeed, as &->oo,

\ i ^ ] or - i - ) 1 ...)"foγ,
h-lfi o o
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But Theorem 2 can also be established directly in the following steps (see
[Gur]):

(i) Replacing fluctuations {μ7} of A + B in (22) by eigenvalues {μ3) oϊB via the
1 k

lemma, i.e., approximating dρk&dρk= γYJδ(t—jyμj).
1 ι

(ii) Interpreting (f;dρk) as - trace lf(AyB)\Ek] [or Ay(B-caA~1/2) in case

α ^ l / 2 ] . Here operator f(AyB) is restricted on the linear span Ek of the first k
eigenfunctions of A (Hermite functions).

(iii) Applying the Szego limit theorem to approximate trace \_f(AyB)\EJby the
phase-space integral j$ symbol f(AyB\ and finally

2 2

(iv) Explicitly calculating the principal symbol of B as in (19).

Appendix. Proof of the Proposition

We want to show that the product of two ψDO's, B, and B\ in classes Sm and Sm> has
"yl-order" = m + rri, i. e.,

\BB'\^cA1/2{m + mΊ. (Al)

The standard way to establish (Al) would be a composition (product) formula for

Weyl symbols ^ _ ->- Nfc

symbol (BB') = bφb'~ £ — ίb I x ξ~ ξ x) b'\ . (A2)

Here we adopt the convention of equipping the derivative operations dx, dξ

with arrows that indicate which of two functions, b or b', is subjected to it.
Unfortunately expansion (A2) does not apply to oscillatory symbols b = rmeιrω of
classes Sm, since differentiations dx, dξ do not reduce their r-order.

The proper "composition rule" of such oscillatory symbols should involve the
whole machinery of "Fourier integral operators." However, we are able to
circumvent the ensuing technical difficulties by introducing a form of "abstract
symbolic calculus" based on the operator A. Let us note that (A2) still makes sense
(consists of decreasing-order terms) if one of two symbols is of "classical type,"

in particular, b = rs = symbol As/2.
Moreover, the commutator of two operators BeSm (of classical type) and

B' e Sm> belongs to Sm + m'" *. Indeed, the principal symbol of [B\ F ] is equal by (A2)
to the Poisson bracket

which in polar coordinates becomes

Ubrb'θ-bθb'r)eS"
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It follows, in particular, that

\\Λs~m/2 + 1/2lA-s;B']\\^C, for all B in Sm. (A3)

Guided by (16) and (A3) we shall introduce classes £fm of (compact) operators
on the Hubert space L2(R) that satisfy

(a) \\BΛm/2\\SC, consequently \B\={B*B)ll2^CA-m'2,
(b) iterated commutators Bk = \_A~Sι\_A~S2...[_A~Sk\ £] . . . ] satisfy

\\BkA~ml2-s-kl2\\^Ck{oτ all fc = l,2,..., where s = sί+s1 + . . .+s f e .
Condition (b) essentially means that each commutation operation B^>\_A~S\B~]
sends class ^m into ^m+s. We have already shown that class ίfm contains all
operators in S~m, m playing the role of the "formal ^4-order" of such B.

The advantage of embedding S~m into larger classes £Pm is that the latter are
easy to multiply, maintaining the right order. Namely,

In particular,

as was claimed in part (ii) of the proposition.
To demonstrate (A4) we observe that property (a) in the definition of ^m is

equivalent to
\\Bu\\^C\\A-m/2u\\ for all ueL2(ΊR).

Choosing any pair Be^m\ B' e^m> we need to show

(a') | |££'u| | ^ const M 2 u\\

- -s — k/2
(b') \\lA-sK..lA-Sk;BB']...-]u\\^Ck\\A 2 u\\, with s = Si + ...sk.

To demonstrate (a') we write

\\BB'u\\ ^C\\A~m/2Bfu\\ SC{\\BΆ-ml2u\\ + | | [^-m / 2;B']w| |), (A5)

and then apply (a) and (b) with k = 1 to both norms in (A5).
Similarly (br) with k=ί is established by writing [A~S;BB'] = [A~S;B]B'

; F ] 5 then estimating each of two terms as in (A5). For instance

In a similar fashion one estimaties higher commutators [A ~Sl... \_ASk\ BB'~\...].
Thus BB' belong to ^ m + m', which proves the proposition.
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