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Abstract. We give a characterization of Anosov diffeomorphisms smoothly
conjugated to a toral automorphism in dimension two in term of the Lyapunov
exponents of periodic points. We also give necessary and sufficient conditions
for the regularity of solutions of the vector cohomology equations associated to
an Anosov flow in three dimensions. This allows us to prove a corresponding
conjugation theorem.

0. Introduction

In this paper we continue the study of smooth conjugacy problems for general
Anosov systems, initiated in [MM, LI]. We are concerned with two questions,
i) Given two Anosov diffeomorphisms on the 2-dimensional torus Γ2, when are they
C°° conjugated? (This question is solved in [L1 ] when they are close enough in the
C1 topology), ii) Give necessary and sufficient conditions for the existence of a C°°
conjugation between vector fields on a 3-dimensional compact manifold that
generate Anosov flows (no result of this kind was previously known).

A motivation for these questions comes from inverse spectral problems in
riemannian geometry (see [GK]), where one tries to construct isometries by
smoothly conjugating the corresponding geodesic flows. Collet, Epstein and
Gallavotti, [CEG], study them in relation with integrability properties of hamil-
tonian systems in a general sense. On the other hand, smooth conjugation problems
are interesting by themselves, and they have given rise to important and beautiful
Mathematics, as in [H].

In the case of diffeomorphisms of the torus, we probe that a C°° Anosov
diffeomorphism is C°° conjugated to a toral automorphism if and only if the
Lyapunov exponents of all periodic orbits are the same. In the second case we show
that the periods and the Lyapunov exponents of periodic orbits are a complete set of
invariants for the smooth conjugacy of one-parameter families of Anosov flows to
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one of them. This clarifies the role of Lyapunov exponents in this context, which
was not clear in view of the example in [CEG, Appendix E].

Our approach in the case of flows is close to the original approach of Moser (see
[Ma, Mo]) to the proof of Anosov's stability theorem, and to the study in [LMM] of
similar problems for hamiltonian flows. The conjugation problem is reduced to a
linear problem for vector fields. We find necessary and sufficient conditions for
the regularity of the solutions of vector cohomological equations (LXY=Z, or
/„, Y— Y=Z in the case of maps) that are interesting by themselves.

The main open problems related to these questions are the extension to higher
dimensions, and proving similar results for isolated flows instead of parametric
families of them. Finally, the study of the real analytic case is something that is
missing in the whole theory.

1. Global Smooth Conjugacy of Toral Diffeomorphisms

In this section we prove that the Lyapunov exponents of periodic points
characterize toral automorphisms up to smooth conjugacy, within the class of
Anosov diffeomorphisms on T2. We also prove that the resulting conjugation is
globally canonical if one of the diffeomorphisms is the composition of the other
with a globally canonical map.

By a globally canonical map we mean an area preserving map on T2 with
vanishing Calabi invariant in the sense of [C, B]. See [MM] for a definition of the
Lyapunov exponents of a periodic point of a diffeomorphism.

Theorem 1. Letf: T2-+T2beaCco Anosov diffeomorphism. Thenf is C°° conjugate to
a total automorphism if and only if the Lyapunov exponents of all periodic orbits are
the same. Iff is real analytic, the conjugation is also real analytic. Iff leaves the
canonical volume form invariant, so does the conjugation. If moreover f is the
composition of its corresponding toral automorphism with a globally canonical map,
then the conjugation is globally canonical.

Proof. If/is C1 conjugate to a toral automorphism defined by a unimodular matrix
A, it is obvious that the Lyapunov exponents of all periodic points are the
logarithms of the absolute values of the eigenvalues of the matrix A. We shall
assume now that the Lyapunov exponents are independent of the point, and we
shall see that/is C2+δ conjugate to a toral automorphism.

Let A be the 2 x 2 integer unimodular matrix obtained by transposition of the
matrix of/* : Hl(M, R)-*//1^, R) in the canonical basis. It is known (see [M])
that/is topologically (and even Holder) conjugate to the automorphism defined by
A. This implies that the stable and unstable foliations of/are globally defined by
corresponding one-forms άs and α". In this situation we can repeat the proof of
Lemma 4 in [MM] in a much simpler framework, since we do not have to care about
smooth dependence on parameters, constructing two one-forms of class C1+<5,
αs = φs - άs and α" = φu - ά", satisfying

f^s = λ5of , /χ = /lV (1.1)

with 0<λ s < 1 <λu. (If λs or λu are not positive, we consider/2 instead of/)
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Let us point out that as a consequence of the construction in [MM], α5 and α" are
regular along the corresponding invariant foliations, namely αs is of class Cs°° in the
sense that its components in any local system of coordinates are Cs°° according to
Definition 2.2 in [LMM], and analogously for α". In case/is real analytic, αs is of
class Cs

ω and α" is C™ . These facts are a consequence of Lemma 2.2 in [LMM] for the
C°° case, and estimate (2.16) and the comments that follow it in the same paper for
the Cω case.

The forms αs, α" must be closed, as a consequence of the following facts, since
αs Λ αu is a volume element with/*(αs Λ α") = λsλuas Λ α", taking cohomology classes
we see that λsλu=ί. Then, if Xs, Xu form the dual basis to α5, α", we have

and by the hyperbolicity of /* on C° vector fields, we have [Xs, Xu] = 0, hence
ί/αs = ίfaM = 0.

Notice that as a consequence of the regularity of αs and α", we have
Xs e C1 +δ n Cs°° and Xu e C1 +δ n CM°° . In case/is real analytic, oo can be substituted
by ω.

Let αo,αo be the translation invariant one-forms in the same cohomology
class of αs and α" respectively, and let ψ\ ψu be C2+δ functions on T2n verifying

and αu = o$ + dι/Λ We define

Ψ\T2->T2 ,

where XQ, Xβ form the dual basis of OQ, OQ Then

^ = Λ + ̂ s ^os + ̂ " ^o-^ + (αs-αS)^0

s + (α"-αS)^ ,

so that
(yu . (1.2)

It is obvious then that Ψ is a local diffeomorphism. Its injectivity can be proved
now as follows : on one hand, Ψ sends stable leaves for/into stable leaves for A, ma
monotonous way (the leaves are one-dimensional). Since the leaves are not closed
this implies first that different leaves are sent to different leaves, and then that
different points are sent to different points. Thus, we have proved that Ψ is a
diffeomorphism of class C2+δ. (The injectivity of Ψ can also be seen as a
consequence of the strong expansivity properties of the lifting of /on the universal
covering of T2n, or it can even be shown by a simple argument using degree theory).

In this situation, by (1.1) and (1.2),

(?Po/o!p-1)*α5 = A sαS and (ψofo Ψ~^^ = λVQ ,

so that ψofo ψ'1 differs from A by a translation, let us say Tυ. An elementary
computation shows then that

Let us see now that h = Tw°Ψis of class C°° if/is C°°, and it is real analytic if/is
so. By (1.2),

h' Xs = X% , h'-Xu = X$ . (1.3)
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Since Xs is of class Cs°°, by (1.3), the derivative of h along the stable manifold of/
with respect to arc length in the same direction of Xs is also of class Cs°°, and this
implies that h is of class Cs°°. In a similar way, one proves that h is of class Cu°°. This in
turn implies that h ~ 1 is of class Cs°° n Cu°° with respect to the foliations defined by A .
Since these foliations are of class C°° (they have actually straight lines as leaves), an
elementary argument using Fourier series shows that h is of class C00. The above
argument can be used in the case of a real analytic / to show that h is then real
analytic (see [LMM, p. 43]).

The statements concerning the area preserving case are simple to prove now :
first of all, since A is an invertible matrix with integer coefficients, it preserves area
up to sign; since it is the matrix corresponding to/* on Hl(T2,Έ), it is area
preserving. Moreover,

Since h *ω is equivalent to Lebesgue measure, it follows from the transitivity of/that
it equals a constant times ω, so h is area preserving.

Assume now that/and A are cohomologous in the sense that/o A ~1 is globally
canonical. Since they are isotopic there is a vector field /e C°°(Γ2, IR2) such that
f—A +/ Then f° A ~l = I+f° A ~1 is cohomologous to the identity, so according
to [CZ, Theorem 6], / A ~l (and so/) has vanishing average over T2.

Since A =/*, the conjugation equation implies that A o /z* = /z* o A, and since h*
has integer coefficients this implies that A* is a power of A substituting h by itself
composed with the inverse of that power, the conjugation still holds for the new h,
and A* is the identity. Then h = /+/?, where /zeC°°(Γ2,lR2), and the conjugation
equation says that

Integrating both sides of this expression on Γ2, and using the fact that the
integral of /vanishes, we see that

ί^=A j h ,
T2 T2

and the hyperbolicity of A implies that the average of h vanishes. Again by Theorem
6 in [CZ], this means that h is cohomologous to the identity. This finishes the proof
of Theorem 1 .

2. The Cohomology Vector Equation, and Smooth Conjugacy of Anosov Flows

In this section we give necessary and sufficient conditions for the regularity of
solutions of the vector cohomology equations /* Y— Y=Z, and LXY=Z, where /
is a C°° Anosov diffeomorphism on the 2-dimensional torus Γ2, and Xis a C°° vector
field that generates an Anosov flow. It is well known that the first equation always
has a solution, and the same is true for the second equation modulo multiples of X.
However, the solutions are in general only continuous. This fact is closely related to
the fact that nearby Anosov systems are only C° conjugated in general (up to
reparametrizations in the case of flows), according to Anosov's structural stability
theorem.
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The conditions for regularity that we find are of a cohomological character,
since they are relations between sums or integrals along periodic orbits of
expressions involving the values of coordinates of Z and their derivatives. Our
results (Theorems 2 and 3) cannot be extended to higher dimensions, since the
invariant foliations are not regular enough. However, there should be results
analogous to Lemmas 1 and 1' that hold in higher dimensions.

We apply the described results to the study of smooth conjugacy problems for
one-parameter families of Anosov flows on 3-dimensional manifolds in Theorem 4.

We introduce now some notation. For a fixed C°° Anosov diffeomorphism on
T2 we assume that Xs, Xu are global C1 +α n Cs°° (respectively C1 +α n CM°°) sections of
the stable and unstable bundles respectively, as at the beginning of the proof of
Theorem 1. We define the functions λ]eC^(M\ jeZ, by flXs = λ]Xs. By the
contractivity of/on stable directions, there are constants C> 0, λ e (0,1) such that

\λ](x)\^Cλj , V x e M , V/eN . (2.1)

Given a continuous stable vector field Ys we define the continuous function Ys by
Ys= Ys - Xs. In case Ys is of class Cs

fc, so is Ys. We use the analogous notation for
unstable vector bundles. Finally, if Y is a continuous vector field, we denote by Ys,
Yu its components in the decomposition TM = ES®EU. If Y is of class C1 +α, so are
Ys and Yu.

Theorem 2. Let f: T2^T2 be a C°° Anosov diffeomorphism, and Y be a continuous
vector field. IfZ=f% Y— Y is of class C°°, then Y is of class C°° if and only if for any
periodic orbit of period N,

Σ ( J Γ ' Z . ) ( * , ) = * Σ λi(xj) Z,(xj-d (X λϊ)(xJ+1) , (2.2)

and similarly for the unstable component Zu of Z.

The proof of Theorem 2 will be postponed until we prove an analogous result for
flows (Theorem 3). Before stating the corresponding result for flows we introduce
the appropriate notation.

By the stable foliation of an Anosov flow φt in a 3-dimensional manifold M we
mean the foliation by (one-dimensional) contracting leaves. The corresponding
foliation by (two-dimensional) stable manifolds of orbits will be called the center-
stable foliation. A map or function will be said to be of class Cs

fc, just as in [LMM]
where these spaces were introduced, if its restriction to each center-stable manifold
is of class Ck and the fc-jets of these restrictions depend continuously on the point in
M. Finally, it will be said to be of class €χ when it satisfies the corresponding
properties on orbits of the vector field X that generates the flow.

We assume that the vector fields X\ Xu are CαnCs°° (respectively CαnCI<

co)
sections of the stable and unstable bundles respectively. Notice that as a
consequence of the results in [P] we cannot expect XSίU to be of class C1. We define

r

the function /seCs(M) by LXX
S = 1SXS

9 and we set Ls(r,x0) = l(ls°φ-v)(x0)dυ,
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Fs(r, Jt0) = exp [—Ls(r,.x0)]. Since the flow is Anosov, there exist A^elR, C>0
such that

. (2.3)

Just as in the case of diffeomorphisms, given a continuous stable vector field 7s

we define the continuous function 7S by 7s = Y S - X S . If 7s is of class Cs

fe, so is 7S.
We use the analogous notation for unstable vector fields. Finally, if 7 is a conti-
nuous vector field, we denote by 70, 7s, 7" its components in the decomposi-
tion TM = IRJf φ£s 0 Eu. If 7 is of class C1, 7s is of class C,1 and 7" is of class C*,
since the center-stable and center-unstable foliations are of class C1+α (this well-
known fact is proved for Anosov diffeomorphisms in [HP, Theorem 6.3]. The proof
can be trivially adapted to the case of Anosov flows).

Theorem 3. Let X be a C°° vector field on a 3-dimensional compact manifold M;
assume X generates a transitive Anosov flow. Let Y be a vector field of class Cx. If
LXY=Z is of class C°°, then Y is of class C°° if and only if for any periodic orbit γ of
period T,

}(XsZs)(y(t))dί = \ }\(XsP)(y(t)) Fs(r,y(t}) ZMt-r))drdt ,
o F \± ,y(v)) i o o

(2.4)
and similarly for the unstable component of Z.

Remark. For a fixed Anosov flow and a fixed vector field Z, all the functions
appearing in (2.4), namely Zs, F

s, Is depend on the choice of a non-vanishing stable
vector field Xs of class Cs°°. However, if (2.4) holds for one choice of Xs, then it also
holds for any other choice. This is a consequence of the proof of Theorem 3 that will
be given below, since we shall prove that if (2.4) holds for a specific choice of Xs, then
7 is smooth, and we shall also prove that 7s being smooth implies that (2.4) holds
for any choice of Xs.

Proof of Theorem 3. The proof is based on the following two lemmas:

Lemma 1. Let Ys be a stable vector field of class Cx. IfLx YS = ZS is of class Cs

fc, k ̂  1,
then Ys is of class C* if and only if for any periodic orbit γ of period Γ, (2.4) holds. The
corresponding statement for unstable vector fields is also true.

For the second lemma we need some extra notation. Given a C°° one-
dimensional vector subbundle Eu of ΓM, transversal to the center-stable subbundle
Es, and given any continuous vector field 7, we define ΫseEs, 7"e£" by
γ= 7S~+ 7". If 7 is of class Cs°°, then 7s", 7" are also of class C,00.

Lemma 2. Let Y be a vector field of class Cx. IfLx Y= Z is of class C00, then 7" is of
class Cs°°.

We show now how Theorem 3 is a consequence of these two lemmas, and than
their proof will be given.

Assume that 7is a C°° vector field. By the remarks preceding Lemma 2, 7s is of
class Cs morevoer, Lx 7

s = Zs is also of class Cl, so we can apply Lemma 1 and we
see that (2.4) is satisfied. The corresponding formula for the unstable component is
proved in the same way.
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Assume now that Lx Y= Z is a C00 vector field and it satisfies (2.4). Let Eu be a
smooth subbundle of TM as in Lemma 2. According to this lemma, Ϋu is of class
Cs°°. Assume

Ϋ*=Ϋs + μX , (2.5)

where 7s e Es. Then Lx Ϋ
s is the stable component of the Cs°° center-stable vector

field Z - Lx Ϋ
u. Since the splitting £s~= £s © IRJT is of class Cs°° , we see that Lx Ϋ

s is
a stable vector field of class Cs°°. Since Y= Ϋs + μX+ 7", we see that

. (2.6)

Taking the stable components in both sides we have

Since both (7")s and Lx( 7")s are of class C*, by Lemma 1, (Lx 7")s satisfies the same
condition Zs does in (2.4) by our assumption on Z, and the linearity of (2.4) on Zs,

/ V, \

„
— LX\ΎU\ also satisfies that condition, so again by Lemma 1, Ys is a Cs°° vector

o Λ
field.

On the other hand, taking components along X in (2.6) we see that Xμ is the
component along X of Z — Lx 7", so it is of class Cs°° . By Lemma 2.2 in [LMM], μ
itself is of class Cs°°. This proves that Y= Ϋs + μX+ Ϋu is of class Cs°°.

A similar argument shows that if the unstable component of Z satisfies the
condition that corresponds to (2.4), then 7is of class Cu°°. By Lemma 2.3 in [LMM]
it follows that 7 is of class C°°. This finishes the proof of Theorem 3.

Proof of Lemma 1. The fact that Zs and 7s being of class C* implies (2.4) has a local
character for each periodic orbit y; it is actually a simple property of attracting
periodic orbits of flows in two dimensions, since only the local stable manifold of 7
is involved. The proof goes as follows:

By the definitions of /s, Ys and Zs, the equality LXY
S = ZS is equivalent to

S . (2.7)

By (2.3), the previous expression implies that

. (2.8)

Since Fs(a + b,x) = Fs(a, φ-b(x)} Fs(b,x), we see that on γ,

n*o) ̂  Σ ί F*(kτ+ r> *o) zM-r))drdt
k=o o

1 τ

= - - - f Fs(r9x0) zs(γ(-r))dr . (2.9)
Fs(Γ,jc0)-l ί

If we differentiate along Xs in (2.7), taking into account the definition of Is and (2.9),
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we see that

[X(x jg] (y (0)=(X'z,) (7(t))-(xsιs) (y(θ) r,(y (/))
= ( X s Z s ) ( γ ( t ) ) - ( X Ί s ) ( y ( ί ) )

Integrating the above expression between t = 0 and T, the term in the left cancels out
and we get (2.4).

Let us assume now that Zs satisfies (2.4). Consider the sequence of functions

Ys"(x0) = } Fs(r, x0) - ( Z s o φ _ r ) (Xo)dr .
0

Then by (2.8), Ys= lim Y; uniformly on M, each 7S" is of class Cs°° on M, and its
H— >• oo

derivative along Xs can be computed directly:

0 0

Adding and subtracting the integral of [(XΊS) - Ys] °φ-r, and using (2.8),

= } {[XsZn-(Xsls) Y s ] o φ _ r } ( χ 0 ) d r
o

Γ ί η
+ J [(^s/s)oφ_r](χ0) J exp -J (/So0_ r_u)(x 0)^

o o L o J

•(Zsoφ_r_t)(χ0)dtdr

(2.10)

In the second integral we make the change of variables f= r, 7— r + 1, and change the
order of integration. In this way we get the sum of two integrals, one over 0^r^7
^ n, and the second over 0 ̂  r ̂  n ̂  7. The first of these two integrals cancels out with
the last term in (2.10), so we have, using (2.8) again,

Ϊ7(x0) = {[XSZS-(XS1S) Y s ] o φ _
o

oo n Γ t

+ j j exp - J (/s o φ_o) (Xo)dv [(XΊS) o φ.r] (Xo) (Z, o <£_,) (xjdrdt
n 0 L r
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Since Xs is of class C1 +α, Is is of class Cα, so Xs Zs -(Xs Is) - Ys is of class Cα. By (2.4)
and Livsic's theorem (see [Li]), there exists a Holder function H on M of class €χ
such that

XH=XSZS-(XΊS)ΎS .

Notice that it is at this point of the proof where we need the transitivity of X.
Substituting this in the above expression we see that

Xs Ys"(x0) = (Hoφ

The first two terms are bounded in absolute value by a constant independent of «,
and the same happens to (7s o φ _ n ) ( χ 0 ) . Finally, by (2.3),

J Fs(n -r, 0_Λ)))' P"/s) ° Φ- J exp[-K-C(n-r)]dr
0

is also bounded by a constant independent of n.
This implies that Ys — lim Y" is uniformly Lipschitz along center-stable

n-+ oo

manifolds. Then it is differentiable along center-stable manifolds almost everwhere,
and by (2.7), XYS is also differentiable almost everywhere along center-stable
manifolds. Since X, Xs are C00 vector fields along these manifolds, XXs Ys exists in
the sense of distributions on any center-stable manifold, it is a bounded function,
and the same argument of the beginning of the proof of this lemma shows that

XXSYS = XSZS-(XΊS)YS .

By Lyvsic's theorem, Xs Ys is a Holder function, so Ys is of class C*. But this implies
that the right-hand side in the above formula is of class C* the proof of Lemma 2.2
in [LMM] gives then that Xs Ys is of class C*, hence Ys is of class Cs

2. The bootstrap
argument can be continued to prove Ys is of class Cs°°. This finishes the proof of
Lemma 1.

Proof of Lemma 2. Given τ e R, consider the vector field Xτ = X+ τZ. By Anosov's
persistence theorem, Xτ generates an Anosov flow if τ is close to 0.

By the smooth dependence on parameters in Anosov's structural stability
theorem (see Theorem A.I in [LMM] for a detailed proof), there exists a C°° family
of homeomorphisms λτ, and a C00 family of continuous functions on M ξτ, such that
hτ conjugates the flows of X0 and ξτ-Xτ. Moreover, hτ transforms the center-stable
manifold of x0 e M with respect to X0 into the center-stable manifold of hτ(x0) with
respect to Xτ.

Lemma 2 will be a consequence of this and the smooth dependence of the center-
stable spaces on parameters, as stated in the follwing lemma:

Lemma 3. Let Xτ be a C™ family ofC™ vector fields that generate Anosovflows on the
compact 3-dimensional manifold M. Then the map that sends each (x,τ)εMxI to the
center-stable subspace E^τ ofXτ at x is of class C1 as a section of the Grassmanian
bundle over M. Moreover, its derivative with respect to t defines a Cs°° map. IfTis aC°°
vector field, the derivative of E^τ along T is also a Cs°° map.



326 J M. Marco and R. Moriyόn

Taking Lemma 3 for granted, we shall finish the proof of Lemma 2. We restrict
ourselves to a small neighbourhood of an arbitrary point Xo e M, where we assume
Eu is generated by djdxl for some system of coordinates (xι,x2,Xs). We can also
assume that the local center-stable manifold of x0 with respect to X0 is given by

Xί=0, X0 = d/dx2, and E*tΐ is generated by - — \-m{(x) - — , for 7 = 2, 3, where
uXj ox i

m{, dmj

τ/dx1 and dm(\dτ are functions of class Cf for τ — 0, and they are of class
C1 jointly on x and τ.

Then the center-stable map of Xτ through Λt(x0) is given by a function
*ι=*?τ(*2,*3) satisfying

- = mj

τ(ητ,x2,x3) , 7 = 2,3

and

where (xl,x2)xl) are the coordinates of AT(0, Λ^,.^).
By the smooth dependence of solutions of ordinary differential equations on

initial conditions and parameters, ητ can be differentiated with respect to τ, and we
can also differentiate the last two expressions with respect to τ. If we denote
derivatives with respect to τ by , and taking into account that η0 = 0, we get the
following making τ = 0 :

and

f/o(*2,*3) = *o (2-12)

By (2. 12), the component along Eu of A' at points of the center-stable manifold of
xQ is just ή0. By (2.11), this map is of class C00 along that center-stable manifold.
Moreover, since mj, dmJ

0/dx1 depend continuously on the choice we made of the
parametrization of the center-stable manifold, the component along Eu of A' is of
class Cs°° on M. We claim that this component is also the component of Y along Eu,
and this will finish the proof of Lemma 2. To see this we differentiate

with respect to τ at τ = 0, and we have

Since LXY=Z, we see that Y=liQ —ηX, where Xη = ξQ. Taking components along
Eu on the center-stable manifold of x0 our claim is proved, and this finishes the proof
of Lemma 2.

Proof of Lemma 3. The fact that E^τ has C1 dependence on x and τ is a direct
consequence of the Cr section theorem (Theorem 3.5 in [HPS]). The corresponding
result for Anosov diffeomorphisms on T2 is proved in the first part of Lemma 4 in
[MM], and the same proof can be extended immediately to our case.
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Consider two vector subbundles of TM, E\ Eu, and assume they are uniformly
close enough to Eτ

s, £" for |τ| <ε0. Then the center stable space Ex>τ is the graph of a
linear map στ(x)εL(Ex, Is"), uniformly close to 0. The invariance of Exτ under the
flow implies that

σ t(ΛW) -(/t

nW+//2W σt(x))=/I

21W+/τ22W στ(x) , (2.13)

where fτ is the time-( — 1) flow of Xτ, and the tangent map fτ'(x): TxM^TfτMM

defines corresponding linear maps fίj(x) under the splittings TXM=EX®EX and

We want to take derivatives with respect to τ in (2. 1 3), but the dependence on τ of
the fibers where each linear map is defined would make the resulting formula
unuseful if we did it directly. Instead of that, we shall first compose with suitable
fibered maps that send the fiber over fτ(x) to the fiber over f(x).

Given two points in M close enough, we consider the linear map
LXίy : TXM-+ TyM given by parallel translation along the shortest geodesic that joins
x and y with respect to some fixed riemannian metric, and we set

fίj(x) = L/oWt /τ(JC) f?(x) e L(ΓXM, 7}o(Jc)M) .

Applying L/o(x)j/τ(JC) to both sides of (2.13) we get

<?τ(/o(*)) •(7t11W+7τ12W 'στ(x))=fτ

21(x)+fτ

22(x) -στ(x) . (2.14)

If we differentiate (2.14) with respect to τ we have

+/τ

12 W στ W +/τ

12 W στ(x)) =/τ

21 (%) +/τ

22 W στ(x) +/22 (x) στ (x) .

(2.15)

If we denote for a given section σ of L(ΓM, ΓM),

Fτ<r(fo(x)) = Lfo(X)tfτ(x) σ(fτ(x)) Lfτ(x)ίfo(x}eL(Tfo(x}M, 7>o(JC)M) ,

then we see that στ = Fτστ, so that since Fτ is linear, στ = /ζστ + jpτστ. Using this and
applying Lfτ(x}ίfo(x} to both sides of (2.15), we have

fτ(x],fo(x}(Fτστ)Lfo(x},fτ(x}] [/τ

n (x) +/τ

12 (x) σt(

+ στ(/τ (x)) - Lfo(x)tfτ(x) tfτ

ll(x) +/τ

12(x) στ(x)] + στ(/τ (x))

-/T

12(x) στ(x) = L/τ(x),/o(JC) [/τ

21(x) +/τ

22 W στ(x)] +/22W - στ(x)

or, equivalently,

στ(ΛW) - L/?2(x) -στ(/τ(x)) -/τ

12W]σtW [/τ

n (x) +/τ

12W - σ.W]-1

+ {Lfτ(x},fo(x} [J21 W +7τ22 W στ (x)] -στ(f(x))

' Lfo(x},fτ(x} ' β11 W +/τ

12 W - στ W]} [Λ11 W +Λ12
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The right-hand side in this expression defines a Lipschitz fibered map on the
linear bundle L(TM, TM) over/τ. This map involves στ, which is not C°°, but only
Cs°°, so it is of class Cj?β, where ̂ s is the foliation of L(TM, TM) whose leaves are
the unions of the fibers of all points in a center-stable manifold of/τ. Moreover, it is
a fiber-contracting map, since only the first term contributes to the Lipschitz
constant along fibers, and both /τ

22(X) and (//H*))"1 are uniformly contracting,
and the whole term involves small perturbations of them if £s~ Eu are close enough
to £s, Eu respectively. Then Lemma 3 will be a consequence of the following
variation of the Cr section theorem :

Lemma 4. Letf: M-^M be a diffeomorphίsm, π : E-+M a fiber bundle, and F: E-+E
a Lipschitz fiber contraction over f. Assume 2F is C° "foliation by C°° leaves, invariant
with respect to f , and uniformly contracting. If F is of class C^^ then the invariant
section is of class Cj£ .

The proof is identical to the usual proofs of the Cr case in [HP, Sh, HPS], and
will be omitted.

Using Lemma 4 we see that στ, and hence the derivative of E^τ with respect to τ,
is C°° along stable (strictly contracting) directions. We shall prove now that it is also
C°° along the flow of X (that is, it is in the class Cχ\ These two facts imply that it is
of class C;° .

The Cx regularity can be proved as follows : the subbundles E* of TXM are the
kernels of suitable C1nCs°° one-forms αj satisfying

L nS _ 1 S ̂ S
Xτ ατ — Λτ ατ

for some C1 n C™ functions λ* which show also C1 dependence with respect to τ.
Differentiating the above expression with respect to τ we see that

which can be seen as an ordinary differential equation for ατ along the integral
curves of Xτ with €χ coefficients. It follows that ατ, and hence Es, are of class Cχ° .

Finally, if T is a C°° vector field, we have to prove that the derivative of E^τ

along T is a Cs°° map. This can be reduced to the previous case as follows. First, we
can just look at the case τ = 0. If φt , t e R, is the flow of Γ, we consider Xt = φf X0 .
Let Eχit be its corresponding center-stable spaces. Then Es

φt(x}^ = φiE*tt, and by the
previous case it can be differentiated explicitly with respect to t. This finishes the
proof of Lemma 3.

We give now a proof of Theorem 2. It follows closely that of Theorem 3. Only
those parts of the proof which are not direct translations of the case of flows will be
worked out in detail.

Just like Theorem 3, the proof of Theorem 2 is based on two lemmas, as follows :

Lemma Γ. Let Ys be a continuous stable vector field. IfZs =/# Ys — Ys is of class Cs

fe,
k^.1, then Ys is of class Cs

k if and only if for any periodic orbit of period N, (2.2) holds.
The corresponding statement for unstable vector fields is also true.

Assume now that Eu is a C00 one-dimensional vector subbundle of TM,
transversal to the stable subbundle Es. Given any continuous vector field 7, define
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γs E £S? γu e £u by imposing γ=γ*+ γ«m if Y is of class Cs°° , then 7s, f" are also of

class Cs°° .

Lemma 2' .If Y is a continuous vector field and Z =/# F — y w of class C °°, ί/ze« F" w 0/

The proof of Theorem 2 from the above two lemmas is identical to the case of
flows and it is left to the reader. On the other hand, Lemma 2' is a consequence of
Lemma 2 : given Y and Eu on M, if the corresponding suspended flow is defined on
M=Mx IR/~, we can construct a corresponding vector field Ϋ on M by

y(*,0= Σ x(*-j) fίY >
7= -oo

oo

where χ e C^( — 1,1) satisfies Σ χ(ί —7) = 1 (notice that the above infinite sums
7 = - oo

have at most two non-vanishing terms), and then

Lg/gtΫ= Σ 7L\t-j) fίY=l- Σ *'('-/) -(/^-/Γ^)
}— — 00 ^ j = - o o

is a Cs°° vector field on Mif Z=/# Γ— Γis of class Cs°° on M. Lemma 2, applied to Ϋ
and a smooth extension of Eu to M gives the desired result.

The proof of Lemma 1 ' is similar to that of Lemma 1 . The only place where the
translation from the language of flows to diffeomorphisms is not obvious is at the
proof of the sufficiency of (2.3) for the regularity of 7s, so we give the details now.

Assuming that Zs is of class Cs°° , we consider the sequence of Cs°° functions

Differentiating along Xs, and manipulating as in the proof of Lemma 1 ,

7=0 7=0

= -Σ (xszs-(xsλt) (γsof-i)]of-j
7=0

n oo

+ Σ Σ {(xs^}°f~i} (^°f~i~l) (zs°f-
i-k-ί)

j = 0 k = Q

-Σ JΣ [(^βλf)°/"fc] w-k-io/-*- ι) (zβo/-/) ,
7-0 k = 0

7-1

where we have used that λ] = Π (λ\ ° f ~k) in order to compute its derivative along
oo k = 0

Xs, and that Ys= - Σ λs

k-(Zs*f~k\ since Z=f*Y-Y.
k = 0

Defining new indices J=j, k=j + k in the first double sum, and interchanging
the order of summation, we get two sums, one for 0 ̂ j^k^n — 1 and another for
O^J^n^k. The first one cancels out with the last double sum in the previous
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expression, so we have

n

7 = 0

oo n
I V"1 V"1 r/ TΛS ι s\ f~JΛ ( ' ) ι s f~ϊ~^\ (Γ7 f~n~k — l\

By (2.2) and Livsic's theorem (see [Li]), there exists a Holder function HonM such
that

Substituting this in the above expression, and taking into account that
λs

n + k = λs

n.(λs

kf-
n\ we see that

and the absolute value of Xs Fs" is bounded by a constant independent of n as a
consequence of (2.1). From this one gets that Ys= lim 7S" is uniformly Lipschitz on

n-> cc

stable manifolds. The remaining part of the proof of Lemma 1 ' is completely similar
to that of Lemma 1 . The details are left to the reader. As a consequence of Theorem
3 we have the following result on smooth conjugacy of Anosov flows in 3
dimensions.

Theorem 4. Let Xτ, — a < τ < a, be a C™ family 0/C°° transitive Anosov vector fields
on a compact 3-dimensίonal manifold. A necessary and sufficient condition for the
existence of diffeomorphisms gτ, — a < τ < α, satisfying

is that for any smooth family yτ of periodic orbits of Xτ both the periods and the
Lyapunov exponents ofyτ are independent ofτ. Moreover, in such a case the gτ are a
C™ family of C™ diffeomorphisms.

Remark. According to R. Mane (talk at the workshop on Dynamical systems,
CTIP, Trieste, June 1986) the periods of periodic orbits are by themselves a
complete set of invariants for smooth conjugation of Anosov flows with C1

invariant foliations (in particular geodesic flows). This is a consequence of a
theorem by Feldman and Ornstein that gives C1 conjugacy. A. Katok has
announced a proof of the fact that the C1 conjugacy implies C°° conjugacy, based
on the techniques of [LMM]. The techniques of [LI] also give a proof of this fact.

Proof of Theorem 4. The necessity is obvious. We prove the sufficiency of the
conditions, so we assume the periods and Lyapunov exponents of corresponding
orbits are the same. Differentiating (2.16) with respect to τ we see that it suffices to
show that there exists a C°° family of C00 vector fields Hτ satisfying

LX*H*= (2 17)



Invariants for Smooth Conjugacy 331

First we shall prove that there exists a continuous family of CXτ vector fields Hτ

satisfying (2.17), and then we shall prove that dXJdτ satisfies the conditions of
Theorem 3, so that the Hτ are actually of class C°°.

The existence of the Hτ is a consequence of the constancy of the periods, as we
shall see now. By the version in [LMM, Appendix A], of Anosov's structural
stability theorem, there is a C°° isotopy hτ and a C°° family of C°° functions ητ such
that

The same proof of Anosov's theorem gives that both ητ and h f X τ and their
successive derivatives with respect to τ are Holder functions of order α for some
fixed α > 0 depending only on Xτ (the only changes are in the functional setting,
where one has to consider spaces of Holder functions and sections of vector
bundles; in the proof of Lemma A. 7 one has to prove that all the functions and
sections that appear are Holder, but this is a consequence of the invariant subspaces
of the flow being Holder, see [Sh, Corollary 5.19]).

If we differentiate our last expression with respect to τ at τ = 0, taking into
account that ηQ = 1 and h0 = Id, we see that

)+-
dXτ

dητ

dτ τ = 0

By the constancy of the periods of the periodic orbits, the integral of ητ along
each periodic orbit of X0 is equal to the period of the orbit. This means that the
average of ητ — 1 along any periodic orbit of X0 vanishes, so by Livsic's theorem,
since ητ — 1 and its successive derivatives with respect to τ are Holder functions,
there exists a C°° family ψτ of Holder functions such that ητ-\=XQψτ. Then, by our
last equality,

dXτ

dτ
τ _

' °~
dXτ -L

X
τ=0

Since this can be done for any particular value of τ instead of τ = 0, our claim is
proved. We shall see now that dXτ/dτ satisfies the conditions of Theorem 3.

As a consequence of our hypothesis about the periods of periodic orbits, given
any periodic orbit y of X0 there exists a C°° family of C°° diffeomorphisms hτ such
that 7 is a periodic orbit of h f X τ for every τ. By Theorem 1 in [F] applied to the flow
defined by the family Xτ on M x R, we can make a further conjugation (we still call
hτ the resulting isotopy) in such a way that the previous property still holds and the
local stable manifold of y with respect to X\ =hfXτ is independent of τ.

We consider coordinates (0, x) e S1 x / on these local stable manifolds in such
a way that Xlτ=T~1d/dθ on S1 x {0}. We can also take them in such a way that
XQ = Γ"1 d/dθ — Tλd/dx, where λ is the Lyapunov exponent of y. This is a direct
consequence of Sternberg's theorem, [St], on the linearization of contractive maps
in the real line, which allows one to assume that the Poincare map of XQ along the
stable manifold of a point in y is linear.
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Assume now that on the stable manifold of y,

The Lyapunov exponents of X\ along y are the same as those of

which can be computed explicitly :

By the hypothesis about the Lyapunov exponents, the derivative with respect to τ of
the above expression vanishes. Since

we see that
1 d2V

For τ = 0, d/dx is a stable vector field, as a consequence of the explicit expression of
XQ, and dVτ/dτ is the component oΐdX^/dτ along the stable direction. Since the C°°
stable vector field d/dx can be extended from the local stable manifold of y to a C™
non-vanishing stable vector field on M, we see that dX^/dτ satisfies (2.4) when τ = 0
for a particular stable section and, by the remark made after the statement of
Theorem 4, it also satisfies (2.4) for any global non-vanishing stable vector field Xs.
Since Xτ = g?X} with gτ = h~l and g0 = ld,

dXτ Λ*#

dτ

where Gτ is the vector field that generates the isotopy gτ. By Theorem 3, LGQX^
satiesfies (2.4), and this proves that dXτ/dτ also satiesfies (2.4) for τ = 0. By
Theorem 3 again, the solution HQ of (2.17) is of class C°°.

The above argument can be carried out for any τ, since τ = 0 did not play any
particular role. This finishes the proof of Theorem 4, since the C°° dependence on
the parameter τ holds independently of any assumption on periods or Lyapunov
exponents (see [LMM, Appendix A]).
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