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Abstract. Let Z(s, R) be the Selberg zeta function of a compact Riemann sur-
face R. We study the behavior of Z(s, R) as R tends to infinity in the moduli
space of stable curves. The main result is an estimate for Z(s, R) valid for s in a
neighborhood, depending only on the genus, of s = 1. Our analysis gives an
alternate proof of the Belavin-Knizhnik double pole result, [5].
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0. Introduction

The functional determinant of the Laplacian appears in the Ray-Singer definition of
analytic torsion [13,28] and more recently in the Polyakov quantization of string
theory [4, 9, 16, 26]. An open problem is the behavior of spectral invariants for a
degenerating family of metrics. We shall consider the question for compact surfaces
with hyperbolic (constant curvature —1) metrics. For this case DΉoker-Phong
[10], Kierlanczyk [21] and Sarnak [29] have collectively evaluated the determinant
of the Laplacian on functions and forms in terms of the Selberg zeta function Z(s).
Up to an elementary factor the determinant on functions (the 0-mode is deleted) is
Z'(l). More generally if A* is the δ-Laplacian, and Δ~ the δ-Laplacian, on tensors
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f(z)dzn, then DΉoker-Phong find constants cn such that det Δ^ = e~Cn*Z(n + \}
and det'zl^ =e~Cn~iXZ(n), where χ is the Euler characteristic of the surface, [10].
Recall that for Re ^> 1, Z is calculated by a convergent formula from the length
spectrum and for all s from the eigenvalue spectrum, [18,38 (Chaps. 1 and 2)].

One way of looking at the problem of spectral degeneration is to estimate
θ(t) = Σe~λnt, the trace of the heat kernel. As a brief indication of our results we find
for m lengths {V)7=ι tending to zero that Z'(l) is bounded above and below by

m m

Π exp (-π2^ ̂ X/1 Π λn and Z(2) by Π exp (-π2/3^K;~3 DΉoker-
7 = 1 0<λ n <i 7 = 1

Phong have found that the Polyakov integrand is

cZ'(lΓ13Z(2)</W-P ,

for a constant c depending on the genus and the Weil-Petersson measure. By our
analysis Z'(1)~13Z(2) is comparable to

-13
10Πexp(4π%K

7 = 1 \0<λ n<i

The small eigenvalues are already known to be comparable to the short geo-
desic lengths (see Theorem 3.1) [11,30]. Now in Sect. 2.5 we show that
exp (— 2π2/<f/ )«|τ/ |, where τ/ is a holomorphic parameter for the deforma-

m

tion. Thus the product Z'(1)~13Z(2) has the order of magnitude of Π |τ/ |~ 2

7 = 1

x (log \ij\ terms). Masur has already observed that the Weil-Petersson measure is
m

comparable to Π I^τjl2/lτjl20°g Vl^/l)3, [22]. In conclusion the Polyakov integrand
7 = 1

has the order of magnitude of the absolute square of a holomorphic function with a
second order pole at infinity; this is in complete agreement with the Belavin-
Knizhnik result, [5]. Unfortunately our estimate relating the lengths ^ and the
holomorphic coordinates τj is not sufficient to find the contribution of the lower

m

order term Π ^/° Π ΛΓ13 a^er the change of variables.
7 = 1 0<A n <i

The analysis of the degeneration of θ(t) consists of two parts. The first is to
obtain estimates for the degeneration of a hyperbolic metric and the second to
estimate the effect on the spectrum. Before giving our precise results (see Chap. 1 for
a summary) we would like to discuss the underlying ideas.

The theory of degeneration of hyperbolic metrics was developed by Bers [6] and
Earle-Marden [12]. A brief exposition appears in Chap. 2. The first step is to study
the degeneration of the hyperbolic metric for the annulus { |τ|<|z|<l} in the
z-plane. For this basic case the hyperbolic metric, the Teichmύller space and even
the Weil-Petersson metric can be computed explicitly (see Sects. 2.2 and 2.3). In
particular the length of the core geodesic is t — 2π2/(log l/|τ|). The collar C(f) about
a core geodesic of length ^ is defined to be the subannulus of points within distance
log 2//. It is a fundamental principle that the degeneration of a hyperbolic metric for
any surface of finite topological type localizes into collar neighborhoods about the
short geodesies. Thus the example of the annulus is actually a model for the general
case. We formulate and prove precise versions of this principle. In particular by the
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simple construction of an associated surface we see that the geometry of the
complement of the collars is uniformly bounded. The introduction of the associated
surface is a key point of our approach. As a consequence we note that the functional
determinant for the Dirichlet problem of the collar complement is bounded above
and below in terms of the genus.

An important part of the degeneration theory of surfaces is the description of the
compactification divisor &^JΪg for the moduli space. We consider a simple
method for estimating the asymptotics as ε->0 of integrals over the complement of
an ε-neighborhood of Q). Provided the integrand is estimated above and below (to
the same order) by the lengths of short geodesies, the method gives upper and lower
bounds of the same order for the integral. Perhaps the method can be of further use
in the future. In the meanwhile it is immediate at least, that the bosonic (d=26)
Polyakov integral is infinite.

The idea for estimating Z(s\ s real, s>% is suggested by McKean's formula

' °° -«--(2s-ί) \ e-ξt(θ(t)-k(t)Are<i(R))dt
'W o

for Re£>0, ξ = s2— s and k(t) the elementary solution of the heat equation,
evaluated at the source, [24]. Essentially this is a Laplace transform in the variable ξ.
The poles in the range — 5- < ξ^ 0 are the transform of the terms e~ λί, 0 ̂  λ < J; from
the heat trace. Thus quite simply if we remove the contribution of the small

eigenvalues and define θ+(i)= £ e ~ λnί, replace θ by θ* in McKean's integral then

Z'(s)~* 2s —1
the left-hand side becomes —— — Y -̂  — and for the right-hand side the

Z(s) o^<i^~ s + λn

integrand is now O(e~t/4) for large t, thus the integral is convergent for Re ξ > —%.
This is our method for evaluating Z(s) for s real, s>j. The behavior of the small
eigenvalues is already known [11,30] (see Sect. 3.2) and as we shall see represents a
separate phenomenon. Thus quite naturally the problem is reduced to considering

Actually it is not so easy to obtain estimates of , s real, fixed, s > \ from
Z(s)

McKean's formula. Recall that for small time k(f) = -j—Λ + O(\) and θ*(0 =
1 0-1

i Λ W Ί \ ~ 1 /Ί /^\ &

4πt
Z'(s)

+ (9(1), thus to even obtain a finite estimate for —— the upper and lower bounds for
Z(s)

θ^(t\ t small, must each be of the form I hintegrable function I. In as much as

the small t behavior of θ#(t) is governed by the asymptotics of the spectrum, the
corresponding eigenvalue estimates must actually be asymptotically sharp.

Z'(s)
Furthermore to obtain a finite bound for ——-, j < s ̂  1 the estimates for θ#(t) must

be of the form O(e~t/4) for t large.
Our plan is to use the uniformly bounded geometry of the collar complement

and the standard eigenvalue comparison theorems to reduce the problem to
estimating θ#(t,DC(έy) and θ*(t,NC(£)), the traces with small eigenvalues
excluded, for the Dirichlet and Neumann problems of a collar. A collar has a
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rotational symmetry which can be used (separation of variables) to further reduce
the considerations to a Sturm-Liouville (1-dimensional) problem. We find the
estimate

where θι(0= Σ exp( —8π2fc2/), a quantity independent of t. In particular the

degeneration of the spectrum of a collar is independent of the boundary values. By a
further analysis we find that (see Sects. 4.2 and 4.3)

for t>l as ^->0 .

We would like to compare this case to that of a flat Euclidean torus of meridian ε/2
and area 1. Let the spectral counting function be Nε(x)= φ{λn for ε-torus, λn^x}
and Nt (x) the spectral counting function for a compact hyperbolic surface R; with

one short geodesic of length f . Then for fixed x, 7Vε(x)/diam (ε-torus) ->— 1/jc and

2 π
Nt(x)/diam(Rt)^>— x — . In both cases the rescaled counting function

π y 4
converges to a universal expression, the counting function of a 1 -dimensional
problem. Our analysis confirms one's intuition. The clustering of the spectrum for a
collar and a torus occurs only for the rotationally invariant functions, a 1 -dimen-
sional eigenvalue problem. Obviously the intuition is for low frequency waves
traveling across a long cylinder. The comparison breaks down for the waves which
oscillate along the meridians. In the Euclidean case the corresponding eigenvalues
tend to infinity, while in the hyperbolic case the lowest frequency for a particular
rotational mode actually remains bounded. The apparent similarity of the spectral
divergences is more elementary than that predicted by Polyakov's vanishing of the
conformal anomaly, [4]. We are merely considering the Laplacian on functions.
Furthermore the divergence is the same whether the collar separates (the tachyon)
or does not (an internal line of the diagram).

Our detailed analysis is guided by two conjectures. Let

= Σ (1 — e~(s+ky)2 be the contribution to the Selberg zeta product of a single
k = 0

geodesic of length /.

Conjecture 1. There exists a constant c, such that given a compact set Ka {Re s > j),
there exist positive constants α and /?, depending only on K and the genus, with

α< ZM / FT Qf(i /Λ FT^\ΛJ I 11 <=-£ \Λ-> ^ j) 11
<c 0<λ n <

for s e K.
We prove that the conjecture is true for a neighborhood, depending only on the

genus, of 5 = 1 and for RQS> 1. For Res<2- the symmetry of Z and the behavior
of JΓ force the quotient to be unbounded as the //->0.
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If Rτ^R0 (Rτ smooth, R0 a surface with nodes) we write R0 — {nodes}
4

= SΊu . . . uSq, a union of components and define Z(s,R0)= Π Z(s,Sk). The
k = l

Selberg zeta function Z(s, Sk) is defined by the infinite product over geodesic lengths

00

Z(s,Sk) = Γi Π (l-e~(5+k)'ω)2 for Re5>l
γ k=0

and has a meromorphic continuation to the entire 5-plane, [38,40].

Conjecture 2. For Re s > ?

We establish the second conjecture also for a neighborhood, depending only on
the genus, of 5=1, and for Re5>l. Again the symmetry of Z shows that the
statement is false for Re s<j.

Both conjectures imply that the order of the zero of the limit of

Z'(s,Rτ)l Π 3?(s,έj) at 5=1 is the number of components of ^0-{nodes} (recall
tj<c

that Z(s) has a simple zero at s = 1). This is no surprise, the values Z(l) and Z'(l) are
finite multiplicative in the eigenvalues and q — \ eigenvalues are approaching zero.

1. A Discussion of the Results

First we should make two comments on our notation. In passing from one theorem
to the next we may not choose new notation for our constants. Also we shall write all
eigenvalues as non-negative and the first is always jq (be it 0 or not).

Chapter 2. The fundamental example of degeneration is the family {zw
= t\ |z|, \w\9 \t\<l} considered as a fibre space over the disc [\t \ < 1}. The t ή= 0 fibre is

{\t\ < \z\ < 1} with hyperbolic metric I - — — esc ( π - — — 1 The t = 0 fibre is

(we remove the origin by convention) (|z| < 1} u (|w| < 1} with metric

on each piece. In order to have an idea of Teichmύller space and degeneration, by
analogy with this example, we describe the tangent and cotangent spaces of this
family and also the Weil-Petersson metric. In the proof of Lemma 2.1 we show how
to estimate the degeneration of a hyperbolic metric on a compact surface in terms of
this example. The method is an improved version of Masur's argument, [22].

There are several definitions of a collar which are essentially equivalent. The
fundamental point is that there exists an absolute constant c* (the collar constant)
such that if a geodesic y has length /(y)—^ then the geometry of a tubular
neighborhood C(£(y)) of y of width 2 log 2// depends only on /(y), i.e. is otherwise
independent of the surface y lies on. To see that the geometry of the collar
complement is uniformly bounded we introduce a construction. Given a surface R
remove the collars about the short geodesies and double the remaining surface to
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obtain R, the fattened double. R has a Finsler metric (a continuous line element) and
the important point is that the moduli space {R —Finsler metrics}/Diff is compact
(Lemmas 2.2 and 2.3).

Chapter 3. The final theorem (Theorem 3.6) summarizes the discussion. Given R
with m short geodesies, associated collars C1 , . . . , Cm and such that R has q
components we wish to estimate θ+(f). As further notation we write θ(t, P, ή) for the
heat trace of the eigenvalue problem P with the first n eigenvalues deleted. Examples
for P are DC the Dirichlet problem for a collar C and ER, OR, the even and odd
functions on R (R has the doubling reflection). The theta function θι(t) was defined
above. By eigenvalue comparison arguments we find that there exists a ρ > 0 such
that

m

θ(t,OR)+ £ θ(

^θ(t9ER9q)+fi

7 = 1

and the first eigenvalue for each term is bounded below by ρ.
Chapter 4. By an elementary version of the Selberg trace formula we find

e~t/4

θ(l, DC)^k(t) Area (Q + -= log - + c
'Tit \ *

where again k(f) is the elementary heat kernel evaluated at the source. Thus
*-'/* 1

- log - is an upper bound for the divergence in / of θ(t, DC}. For a lower bound

we consider only the rotationally invariant functions on the collar. The correspond-
ing trace already contributes the same /-divergence; the remaining spectrum is
bounded in (. Theorem 4.4 is our final bound for the trace of the heat kernel. In

Sect. 4.5 we compare our estimate for the eigenvalues: κn is of order (- +1 —
\diam

with the estimate of S.Y. Cheng: κn + 1 <(- + ( — 1 ), both for a compact
~\4 \diamy J

surface, [8].
Chapter 5. We combine our considerations and McKean's formula to estimate

Z(s). By a standard argument &(s, /)^exp (-π2/3/)/1"2s for Res positive. We
consider a surface R with short geodesies of lengths {/JJLi There are three
estimates with the constants depending only on the genus (except as noted).

1. There exists a neighborhood N of s=l such that given a compact set
1} there exists a positive constant A(K) such that for

L < 7M/ FT <¥(* /Λ FT-̂  z^\3) I j[ j^ <=i> ^>3, t/jj j^ ±

2. There exists a positive constant B such that

Π expί-π^X/1 Π
7 = 1 0 < A n < i
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3. For TV as defined above

j=ι

for Rτ->R0, uniformly on compact subsets of7Vu{Res>l}. Results 1 and 2 are our
estimate for the Polyakov integrand.

Chapter 6. We combine our results to obtain an estimate for the Polyakov string.
In Sect. 6,2 we compare our estimate, given in terms of geodesic lengths, to that of
Belavin-Knizhnik, given in terms of holomorphic coordinates [5]. Section 6.3 is a
review of the Fenchel-Nielsen geometry of a neighborhood of the compactification
divisor. Finally in Sect. 6.4 we combine our methods to show that the bosonic
integral is divergent. To this end let S> c Jίg be the divisor of Riemann surfaces with
nodes, τ a holomorphic parameter for the transverse direction to Q) and (/, θ) the
Fenchel-Nielsen coordinates for the transverse. The variable τ parametrizes a
family Rτ of Riemann surfaces. Recall that the pair (/, θ) is determined from τ as
follows: first solve the constant curvature equation, — Δq log ρ= —1 on Rτ, then
find the length / and twist θ for the geodesies in particular free homotopy classes. By
using the maximum principle we are able to estimate solutions; in Sect. 2.5 we find
the comparison ^~2π2/log l/ |τ | between the length and holomorphic parameters.
Given that the Laplacian occurs in the constant curvature equation it is not hard to
imagine that the lower order terms for the above expansion could involve the small
eigenvalues. We do not know the answer to this question and are thus unable to find
the lower order terms for the asymptotics of the Polyakov integrand. A discussion of
these terms is contained in [39].

2. Collars and the Degeneration Paradigm

The fundamental observation on the degeneration of 2-dimensional conformal
structures and similarly hyperbolic metrics is that the deformation localizes into
collar neighborhoods about the short geodesies. This is very nice since the geometry
of a collar is essentially independent of the surface it is completely determined by
the length of the core geodesic. Ideally, the asymptotic behavior on the moduli space
Jίg of an analytic invariant of a Riemann surface would be given by computing the
invariant for the collars. The purpose of this chapter is to give an exposition of the
techniques for and examples of rigorous arguments following this intuition.

In Sect. 2.2 we discuss the paradigm for the general case, the degeneration of an
annulus. The special feature of the annulus is that everything can be worked out
explicitly. Indeed in Sect. 2.3 we give the correspondence between tangent
(respectively cotangent) vectors to Teichmϋller space and Beltrami (respectively
quadratic) differentials on the surface. We also calculate the Weil-Petersson metric
and find its asymptotic behavior. Section 2.4 is a review of the basic facts about
collars. In Sect. 2.5 we show how the case of an annulus is used to construct
deformations of a compact surface with nodes. An estimate for the comparison
between the hyperbolic metrics of a family of annuli and a family of compact
surfaces is given in Lemma 2.1. Finally, a method for bounding the geometry in the
complement of the collars is given in Sects. 2.6 and 2.7.
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2.2 We start with a fibre space ̂  over the disc D = {\t\ < 1}. ̂  is the analog of the
universal curve, (universal curve = the fibre space with ρ-fibre, ρ 6 Mg, the Riemann
surface represented by ρ (modulo symmetries)) and D is the analog of the moduli
space Jig. The locus «^={zw> = f | |z | , | ιv | 5 | f |<l}, the degeneration fixture, is a
complex manifold fibering over D. To have an idea of the geometry consider the real
points of 3F. The fibres are hyperbolas moving to the coordinate axes and passing
through. An alternate description is given by domains in (C and hyperbolic
geometry. The f Φ O fibres are the annuli { |/ |<|z |<l} with complete hyperbolic

metrics dsz = \-—— esc
' log|z|\
n- —

dz
The t = 0 fibre is singular and is the

siogi*ι V log i / i
union of the discs {|z| < 1} and (|w| < 1} joined at the origin. To obtain a hyperbolic
metric remove the origin, then each punctured disc has a complete hyperbolic

metric, i. e. on {0 < Izl < 1 } ds2 = I - 1 . The first observation is that ds2 -*dsQV l z | i o g | z | y
real analytically in (log l/\t\) 1 uniformly for |z|, \w\ > ε. This is essentially optimal
since the metrics evaluated at |z| = \t\1/2 are not even asymptotic. In particular it is
false that the metrics converge uniformly to the limiting metric. A second
observation concerns the length of the closed geodesic in the ί-fibre. The geodesic is
|z| = |*!1/2 and has length / = 2π2/(log

2.3. An example of obtaining the limiting behavior of a quantity on Jέg from the
annulus example is Masur's calculation of the Weil-Petersson metric. Recall that
the tangent (respectively cotangent) space of Teichmύller space is isomorphic to a
quotient of the space of Beltrami differentials (respectively the space of holomor-
phic quadratic differentials), [35]. To make the analogy of J^ over 2 to the genus g
universal curve <£g over Jtg we must find the Beltrami differential on the Riemann

surface {|ί| < |z| < 1} that corresponds to the tangent vector — on the moduli space D

as well as the quadratic differential that corresponds to dt.
We consider the tangent vector first. The quasiconformal map /(z) = z|z|s, s

real, maps the annulus { |/ |<|z |<l} to {|/|s+1 <|z|<l}. For s = Q, (/s)z-=z/2z
d\t\s+1

is the Beltrami differential and furthermore — - — = t \og\t\. Thus (ft)z = st(fs)z

= — : - — - is the Beltrami differential on {\t\ < \z\ < 1} representing — at t eD.
2t log \t\ z όt

The next item is to find the quadratic differential representing dt. The Teichmuller

theory of the annulus tells us that the differential is c ( — 1 for c real and that the

pairing is by integration [35]. Thus \=(—,dt\ = - ( — - — -\(-^\dE, where dE

is the Euclidean form and the domain is{ | f |< |z |<l}. Evaluating the integral we find

-/
that dt is represented by φ =

The definition of the Weil-Petersson pairing involves projection onto the
harmonic Beltrami differentials. This step may be avoided by computing the
dual metric for quadratic differentials. By definition <Λ, dty = J \φ\2λ~2 dE, where
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λ2 = (—-—— esc ( π — I 1 is the density for the hyperbolic metric. In brief the

result of integrating over the annulus {|/| < |z| < 1} is (dt, dty = \t\2 ί — log l/\t \ ) , the

Hermitian (complex form) pairing on the holomorphic cotangent space. The

Riemannian (real form) W-P metric is then ds2

WP=—-~—— 3. As a check we

point out that this agrees exactly with our formula dτ Λ df for the W-P volume form
[33]. In particular if (τ, /) are Fenchel-Nielsen coordinates (see Sect. 6.4) then from
the paradigm the change of variables is ^ = 2π 2/(logl/|f |) and 2πτ// = argί
= Imlogf.

2.4. For the above model the collar is the subannulus {\t\e2κ^\z\^e~2π} of
{\t\ < \z\ < 1}. The main result is that there exists a positive constant c# such that if
the length έ of a geodesic γ on a surface R satisfies ̂ c#, then the standard collar
embeds isometrically about y, [23,27]. With the degeneration fixture we can check
that as ^f—>-0 a collar converges to the union of a pair of disjoint (area 1)
neighborhoods of cusps.

We review the basic properties of the collar. A standard model for the collar is
described as a quotient of the upper half plane H. The deck transformation z^e^z
generates a cyclic group Yf with H\Te a hyperbolic annulus with core geodesic of
length /. By definition the standard collar is the Γf quotient of the wedge {/ < arg z
< π —/}. Let R be a compact surface with hyperbolic metric. Consider y a geodesic
on R of length / ̂  2c#, where c* is the collar constant (we shall make a finite number
of adjustments to its definition in the following chapters).

1) The standard collar is isometric to a neighborhood of γ, the collar about
y

2) Collars about distinct geodesies are disjoint and there are at most 30—3.
3) The injectivity radius of ^-{collars} is bounded from below.

2
4) The width of a collar is ~2 log-, its area &2 and each boundary is of

length w l . {

Geodesies of length at most c^ will be called short geodescis.

2.5. We would like to explain how the degeneration fixture is the model for the
general case. To do this it is easiest to start at infinity, the compactification divisor Q)
of Mgτ and then move back into MQ. A point of ̂  represents a Riemann surface R
with nodes. By definition a neighborhood of a pointy of R is complex isomorphic to
either {|z|<ε} or {zw = θ||z|, |w|<ε}. Obviously in the latter casep is a node. To
parametrize opening the node first identify U— {zw = 0| |z|, \w\ <ε} with the 0-fιbre
of a family {zw = ί| |z|, \w\ <ε, \t\ <ε}. A deformation of ReJlg which opens the
node is given by varying the parameter t. Specifically for t φ 0 the fibre of the family
is a single annulus obtained by identifying (|ί|/ε < |z| < ε} with {\t|/ε < \w\ < ε} by the
map w = t/z', the boundaries {|z| = ε}, (|w| —ε} of the respective z and w annuli are
independent of / and are attached to R — U in the same way as for U itself.

In order to elaborate on the above idea we shall recall Masur's description of a
finite manifold cover of a neighborhood of R0e@^^g, [22; 37, pp. 37, 50].
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Denote by p1,. . . ,/?m the nodes of R0 for the node pi the punctures at and b{ of
R0-{pι,...9pm} are paired. Let t/={|z |<l}; £//, t/?, / = ! , . . . , m be disjoint
neighborhoods of the punctures at and ̂ . Now choose local coordinates zt: Ul -> t/
and W ; : U2^U with ^(α^) = 0 and wt-(&i) = 0. Fix an open set ̂  c R0 disjoint from
the sets Ul, £7?. Beltrami differentials μ7 with support in f are chosen to span the
tangent space of the (product) Teichmuller space of R0 — {pi,.. . ,pm} (the dimen-
sion is 30— 3— ra). Given s = (sί9. , . ,5 ι

3^_3_m)6(C3^"3~m for a neighborhood of

the origin the sum μ(s) = Σsjt*j satisfies ^(^H^ < 1, and thus a solution ωμ(s) of
j

the Beltrami equation exists. The surface ωμ(s)(R0) = Rs is a quasiconformal
deformation of R0.

Now to parametrize the opening of the nodes. The map ωμ(s) is conformal on
£//, U2 and therefore z, and vv f also serve as local coordinates for ωμ(5)(C/ I),
ωμ(s)(E/?) ciωμ(s)CR0). Given σ = (^,.. ., σm) e (Cm, |σ f | < 1 we construct the surface
Rσ s as follows. Remove the discs (0 < |zt | ̂  |tf t-|} and {0 < \wt\ ̂  |σj} from ^s. Attach
{|ai |<|Zi |<l} to {Vi|<:|w;|<l} by identifying z, to σjwi. The construction is
complete the tuple (σ, .s1) parametrizing ^σ)S provides a local complex coordinate
chart #.

In the following we shall refine Masur's discussion to establish an estimate for
the length /t of the geodesic, homotopic to the core of the σrannulus. From the
degeneration fixture we expect an answer /t ~2π2/(log l/l^l) or equivalently
/ ί logl/ |σ ί |^2π 2 .

Lemma 2.1. Given ε>0 there exists a neighborhood ^Oc=^ of R0 such that for
(σ,s}e%0,

\2π2-Si\ogl/\σi\\<ε / = l , . . . , m

and on each σrannulus the Rσ s hyperbolic metric is asymptotic to the degeneration
fixture.

Before the proof we follow Masur and review an argument of Ahlfors, [3]. Let λ
and λ^ be metrics of constant curvature — 1 for a non-compact surface S (neither
need be complete); the curvature equation is A log λ = λ2, A log λ^ = λl. Thus A
log (λ/λ^) = λ2 — λ2^ and the maximum principle provides that log (λ/λ#) cannot
have a positive local maximum. Thus on a compact subdomain K^S, λjλ^. is
bounded by the greater of 1 and the maximum of the ratio on the boundary. This is
Ahlfors' observation.

Proof of Lemma 2.1. The key point is to make a judicious choice of the charts zf

and W j in Masur's discussion. The argument is illustrated by the case zί9 wί; to
simplify notation we omit the index. Since a and b are cusps of 7?0-{nodes} we can
choose charts z and w such that the hyperbolic metric of ^0-{nodes} restricts on t/1

*^ j on{0<|C|<c 0 } forz-Candforw-C(c 0 <l isthecollar

constant for cusps). For the construction of the coordinate σ we shall use the
subfamily (zw = σ||z|, \w\<c0, \σ\<c2} of the degeneration fixture with the re-
striction hyperbolic metric on each fibre, denoted by Aσ.

The subfamily has a second hyperbolic metric. In Masur's discussion the
subfamily is realized as a subdomain of the surface RσtS. The hyperbolic metric of
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^σ?s-{nodes) restricts to the subfamily; denote the restriction by λσ>s. Our first
estimate is a comparison of Λ0 and λσ>s. By definition of the charts z and w we have
that λ0 ?0 — Λ0. By a result of Bers [6], away from the nodes, λσtS varies continuously
with (σ, s). Thus given ε > 0 there exists a neighborhood <&0 of R0 such that (1 — ε) λσ>s

^Λ^O + έ)λσtS for \z\=cJ2; \w\ = c0/2 and (σ,s)e<$0. This is the first estimate.
The second estimate is for the deformation fixture (zw = σ| |z|, M, |σ| < 1}. As

discussed in Sect. 2.2 the hyperbolic metric Λσ of the σ-annulus converges to the
metric of the 0-fibre for |z| fixed and for \w\ fixed. Thus there exists a δ > 0 such that
(ί-έ)Λ0^Λσ^(l+έ)Λ0 for \σ\<δ and \z\ = c0/2, \w\ = c0/2. This is the second
estimate.

Now on the compact subannulus {2|σ|/c0^|z|^c0/2}, σΦO, we apply the
Ahlfors argument to λσίS/Λσ and to Aσ/λσtS. Denoting by M and m the maximum
and minimum of Λ/λ on the boundary of the annulus, then min (l9m)^Λ/λ
^max(l,M). With this estimate the problem is reduced to considering the
behavior on the boundaries of the subannuli. Combining the first and second
estimates (assume |σ|<<5) we find

In summary we have that (1 — ε)2^/Lσ/Aσ > s^(l H-ε)2 on the entire subannulus.
Recall by the Bers result ε->0 as (σ, ,y)->(0, 0) and thus the Rσ>s metric is asymptotic
to the deformation fixture.

Finally, as an application we estimate the lengths of the core geodesies. Recall
that the Λσ geodesic has length L = 2π2/log (l/|σ|) and the Aσ > s geodesic has length /
bounded as (1 — ε)2^L//^(l +ε)2, the desired conclusion.

2.6. We have seen that the degeneration of a hyperbolic metric is associated to the
formation of wide collars about short geodesies. An important point is the behavior
of the metric in the complement of the collars. It is known that in the collar
complement the geometry is uniformly bounded. We shall establish this result by an
explict construction. The idea is to start with a surface R, remove the collars about
the short geodesies and glue the resulting boundaries in pairs to construct an
associated surface R. In fact the set of associated surfaces {R\RεJίg} form a
compact subset of Jίg. The last observation will be essential for estimating the
spectrum.

We start with the construction. The basic idea is illustrated for the case of an
annulus A. If the covering transformation is z-></z, then a fundamental domain is
{l <\z\<e*} and the standard collar C lifts to the wedge {V<argz<π — /}. Choose
a smooth monotone function φ such that φ(t) = 2£ for £^c% and φ(£) = π/2
for £^.2c%. We define the standard subcollar SC as the quotient of
{φ(/)<argz<π — φ(O} The plan is to consider C — SC and identify the inner
boundaries. Letting w be the coordinate of the new space then

— — φ(f) \ 1 for /<argz<φ(/) and

exp — n — — φ(f} ] } for π — φ(?f)<argz<π— £
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w varies in the wedge / — φ(/)<arg w— — <φ(/)— f . The deck transformation

z->/z is compatible with the above glueing and thus we can form the quotient of the
w-wedge to obtain the associated surface (by definition) C. The restriction of the
hyperbolic metric ds2 of A to C — SC defines a Finsler metric (a continuous length
element), the associated metric, (3s2) on C. It is the geometry of C that we wish to
consider. By definition (ds2) in w = rew polar coordinates is

(4",— 2

The width of C is bounded below independent of f the width is 2 J esc 0d$ « 2 log 2

^for small /. The second observation is that the closed curve on C covered by

argw = — is the shortest in its free homotopy class; its length is /csc2/^j f°r

small Λ

An important observation concerns the curvature of (3s2). For argwφ —

the metric is smooth and certainly has curvature — 1. For argw = — the metric

- Λ - ι ι ,2coincides with the comparison metric dsc— - -. - r- and in general

(ds2) ^ ds2 . The comparison metric has curvature — 1 . In brief (3s2) has a supporting
metric with curvature — 1 . This is precisely the hypothesis of the Ahlfors-Schwarz
lemma, [3].

We will now check that the construction of C can also be carried out for the limit
case { = 0. Recall from Sect. 2.2 that the 0-fιbre of ̂  is the union of {0 < \z\ < 1 } with

metric ( -— - — ) and {0 < \w\ < 1} with metric ( —— - — ] . It is easy to check
\\z\log\z\J l \\w\\og\w\J

that the limit of the collar is C = (0 < \z <e~2π} u (0 < \w\ <e~2π} the limit of the
subcollar is SC={θ<\z\<e'4π}u{θ<\w <e~4π}. We shall now describe the
construction of C for this situation. Consider C — SC and identify the inner
boundaries {|z|=e~4π}, {|w|-^~4π} to obtain C={e~2π<\v\ <e2π} (i.e. v = e4πz,

with comparison metric ds2 = ( - ) . The analogous statements for

the width, area, and length of the core curve as well as the behavior ofds2. are valid
for this case also.

Now we shall explain how the case of an annulus is the model for the gen-
eral case, a Riemann surface R with nodes {/?ι,. . . ,/?m} (ra^O). Consider
R — {piί... ,pm] with its hyperbolic metric. By the collar result a collar neigh-
borhood C of a short geodesic (/^c^) or a collar neighborhood C of a pair of
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punctures is isometric to the collar for an annulus. Perform the above construction
replacing each collar C of R with the associated C. This is the construction of R, the
associated surface. R is a compact surface without nodes, has a smooth conformal
structure and so by the uniformisation theorem has a smooth hyperbolic metric

Lemma 2.2. With the above notation,
1) There exists a positive constant α such that the shortest (ds2) curve not

homotopic to a point has length at least α.
2) (ds2)^Λ(R).^
3) The set {R\Re^g} of associated conformal structures (modulo

diffeomorphisms ) is compact.
4) The set ofFinsler metrics (modulo diffeomorphism) {3s2 \ R e M^ is compact.

Proof of I) . Let 7 be a closed curve on R, not homotopic to a point. The first case to
consider is that γ does not intersect the surgery locus. For this case y can be
considered as a curve (not homotopic to a non-nodal point) on the original sur-
face R. There are two subcases : y is not homotopic to one of the short geodesies or a
node, thus by definition £(y) ^ c^ or 7 is homotopic to a short geodesic or a node but
disjoint from the corresponding subcollar. We saw above for the basic construction
that ^(7) is bounded below in this situation.

The second case is that 7 does intersect the surgery locus. There are two subcases.
First consider that y also contains a point outside the associated collar C. In this
situation t(y) is bounded by half the width of the collar which is itself bounded
below. The only remaining situation is that y is contained in the collar C. Since 7 is
not homotopic to a non-nodal point it must represent a positive power of the core
geodesic. We saw above that there is an absolute lower bound for the length of 7 in
this circumstance. The proof is complete.

Proof of 2). By the construction of R the metric (3s2) has a supporting metric of
curvature — 1. The conclusion follows from the Ahlfors-Schwarz lemma, [3].

Proof of 3). By 1) and 2) for an associated surface R the length of the shortest
Λ(R) geodesic is at least α. Recall that the set of surfaces with minimal geodesic of
length at least α is a compact subset of Jtg, [25].

Proof of 4). This is a reformulation of the result of Bers [6, Sect. 3] that the
hyperbolic metrics of a family of nodal surfaces varies continuously away from the
nodes.

2.7. A basic technique for estimating the spectrum is to write the domain as a union
and then estimate by the union of the spectra of the components. Accordingly we
can try to think of the eigenfunctions of the entire domain as closely approximated
by those of the components. The goal of Chaps. 3 and 4 is to show that the
divergence of the spectrum of a compact surface is due to the divergence of the
spectrum of the collars. A key step is to isolate and bound that part of the spectrum
associated to the collar complement. The plan is to derive this result from bounds on
the geometry of the complement. The argument is simplest for a variant of the
construction from the previous section.
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Start with a surface R (possibly with nodes), remove the standard subcollars
about the short geodesies and double the resulting surface to obtain R, the fattened
double. In general R is not connected but the total genus is bounded since the Euler
characteristic is 2χ(R).

The discussion of the previous section applies directly and we have that the
doubled metric (ds2) has a supporting metric of curvature — 1. R has a smooth
conformal structure and by the uniformisation theorem a smooth hyperbolic metric
Λ(R}. The proof of Lemma 2.2 may be applied verbatim.

Lemma 2.3. With the above notation,
1) There exists a positive constant α such that the shortest (ds2) curve not

homotopic to a point has length at least α.
2) (ds2)^Λ(R\
3) The set {R\ReJtg} of fattened double conformal structures (modulo

diffeomorphisms) is compact.
4) The set ofFinsler metrics (modulo diffeomorphisms) [ds2 \ R e M^ is compact.

Finally to expedite certain technical arguments it may also be convenient to
consider R—SC = R — (J SCJ9 one half of the double, as a Riemannian manifold

with boundary. The geodesic curvature of a boundary component is an elementary
function of the length of the removed core geodesic; the curvature is bounded in
terms of the collar constant. An alternate formulation of Lemmas 2.2 and 2.3 is that
the set of Riemannian manifolds with boundary {R— SC\Re^g} (modulo
diffeomorphisms) is compact relative to the C°° topology on the space of
Riemannian metrics.

3. Bounding the Eigenvalue Spectrum of a Surface by the Spectrum
of the Collars

3.1 In Chap. 2 we saw that the degeneration of a hyperbolic metric is concentrated
in the collars about short geodesies. Naively one might expect the same behavior for
the spectrum. Any short geodesic divergence should come from the spectrum of a
collar. Specifically, the divergence of the spectrum of the union of the collars might
closely approximate that of the surface. For eigenvalues (positive by convention)
above a ̂  we shall establish a precise form of this statement with Theorem 3.6. For
eigenvalues below ̂  this is actually false. In the latter case the behavior also depends
on the location of the collars in the surface, not just their geometry (see Sect. 3.2).
For example if exactly one geodesic is pinched (/-»0) then λ± -»0 if and only if the
geodesic separates the surface.

Section 3.2 is a review of the behavior of the small eigenvalues (<$•). They will
always be treated separately. If a surface R is written as a disjoint union of R-
{subcollars} and {subcollars} then the Neumann and Dirichlet spectra of the pieces
provide bounds for the spectrum of R. This classical result is noted in Sect. 3.3. In
the next section we present a variant of the classical estimate, the analogous result
but with the small eigenvalues removed. Section 3.5 is devoted to estimating the
difference between the trace of the Dirichlet and Neumann heat kernels for a
subcollar. The main result, Theorem 3.5, shows that the difference of the traces is
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bounded, independent of the length of the core geodesic of the subcollar, by the heat
trace of a 1 -dimensional eigenvalue problem. We combine our considerations in the
final section and show that the heat trace of R is estimated by the Dirichlet heat trace
of the collars and the heat trace of the collar complement.

3.2. We review the known results for the small eigenvalues. By convention we
consider the eigenvalues as non-negative and with our (non-standard) indexing the
first is /q , even if it is 0. An analysis of the small eigenvalues is contained in
[7,11,30].

An ^-disconnect D is a collection of disjoint simple closed geodesies disconnect-
ing the surface R into n pieces. The length L(D) is simply the sum of the lengths of
the geodescis. Let Ln(R) = mm LCD), where the minimum is over all /^-disconnects
for a surface R. D

Theorem 3.1 [11, 30]. There exist positive constants oq and α2 dependig only on the
genus such that

for \^n^2g-

An estimate for the first eigenvalue above \ was given by Buser : κ4g-ί ^5-, [7].

3.3 An argument by comparison theorems is formal to emphasize the organization
we wish to introduce certain abbreviations

κn(P) = nth eigenvalue for the eigenvalue problem P .

Examples.

R a compact surface, /-
NSC s standard subcollar with Neumann boundary condition

DSC a standard subcollar with Dirichlet boundary condition (w = 0),
PI u P2 the union of two eigenvalue problems, as a Hubert space direct sum of

operators.

Now consider a surface R with short geodesies (f ^ c#) ̂  and associated collars
SCjJ= 1 , . . . , m. Recall the construction of the fattened double R (see Sect. 2.7) and

~ m

let q(R) be its number of components. We shall abbreviate R—SC for R — (J SCj

and N(R-SC), D(R -SC) for the Neumann and Dirichlet problems of R -SC.
We start with the classical estimate [31]

/ \ / \
κn[N(R-SC)v 0 NSCj}^κn(R)£κn(D(R-SC)υ (J DSCΛ . (3.1)

\ j=ι / \ j=ι /

By construction the double R has a continuous, piecewise smooth metric with
doubling symmetry r. L2(R) is the direct sum of two subspaces: E, functions even
with respect to r and (9, functions odd with respect to r. The smooth functions are
dense in each subspace and the spectrum is defined as the successive infima of a
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quadratic form (the gradient integral). The spectral decomposition is the direct sum
of the decompositions for the even and odd subspaces [41, esp. Sect. 5]. Denote by
ER the spectral problem for the even subspace and by OR that of the odd subspace.
It is immediate that ER is identifiable with N(R-SC) and OR with D(R-SC).

3.4. The goal of this section is to bound the trace θe(t, R) of the heat kernel of R
(with small eigenvalues excluded) below by that of OR (J DSCj and above by

ER (J NSCj. We must remove the small eigenvalues from the discussion; they

are essential for estimating Z'(l) and (3.1) is totally inadequate. In particular
κί(NSC) = 0 and κ2(NSC)-+0 as /->0 as contrasted with κ1(DSC)>k, [11].

To compare spectra we introduce the trace of the heat kernel. We shall consider
the trace θe(t, P) of an eigenvalue problem P with a certain number of small
eigenvalues excluded

θe(t,P)= £ *-*»' , (3.2)
«>β*(P)

/ m \

where e+(NSC) = 2, eφ(ER) = q(R), e*(R) = 2m + q and eJORv \jDSCj]
\ j = ι J

= 2m + q(mis the number of short geodesies and q the number of components of R)
and as always

Corollary 3.2. With the above notation,

m

)£θe(t,ER) + Σ θe(t,NSCj)
.7 = 1 / j=ι

and there is a lower bound ρ, depending only on the genus, for the eigenvalues in each
sum as well as for θ(t, OR).

Proof. The left inequality follows from the right side of (3.1) and that the exclusion
numbers are the same. The right inequality would also follow from (3.1) provided
we knew that the first 2m + q eigenvalues ofER u NSC were excluded. This presents
no difficulty since any other exclusion produces a larger trace.

Now to consider the lower bound on the eigenvalues. The result is contained in
the work of Cheng-Li, [36]; for the sake of exposition we shall give an alternate
proof. The multiplicity of 0 in the spectrum of R is q, the number of components.
Thus κq + ί(R) is positive and each eigenvalue depends continuously on the metric.
By Lemma 2.3 there exists a positive lower bound β for κq + ί(R). Now the 0-mode of
R occurs for ER and thus β also bounds the OR spectrum. For the traces in the
above inequalities the smallest eigenvalues occur on the right-hand side. In the next
section we shall see that κ3(NSCj)>^ and it was noted above that κ1(DSCj)>^.
Finally, the multiplicity of 0 in the spectrum of ER is simply the exclusion number.
Thus β is a lower bound for the spectrum of ER. Set ρ = min {β, $} and the proof is
complete.



Asymptotics of the Selberg Zeta Function on Moduli Space 299

3.5. The standard comparison of the Neumann and Dirichlet problems provides
that θ(t,DSC)<ϊθ(t,NSC). We shall now show a reverse inequality, θe(t,NSC)
^θ(t,DSC)-\-Θ1(t), where θ± is a fixed theta function. Our plan is to use the
rotational symmetry to separate variables and reduce the problem to one
dimension. Then we can use the interlacing of the Neumann and Dirichlet
eigenvalues for a Sturm-Liouville problem.

The collar is a subdomain of the quotient H\(z-+efz}. To simplify matters
consider w = u + iv = logz and H is mapped to the strip {O<v<π}; the trans-
formation z-+e*z is represented as w->w + / and the hyperbolic metric is
simply csc2v\dw\2. The subcollar SC={2£ <argz<π— 2/} is represented as

By separation of variables we write an eigenfunction as f(v)exp(2πiku//),

where k is the rotational mode number. The Laplacian is sin2 v ( -r-j- +^y ) an(^ tne

eigenvalue equation (recall τc^0) is

= -κf(υ) . (3.3)

For NSC then/has domain [2/, π — 2/] with/' vanishing at the endpoints for DSC
f has the same domain but vanishes at the endpoints. For each fixed k we have two
Sturm-Liouville problems (1 -dimensional, 2nd order, self adjoint) NSC(k) and
DSC(k). A special feature of Sturm-Liouville is the (reverse) comparison

κn(DSC(k)^κn+2(NSC(k)\ [31] . (3.4)

Roughly speaking the shift in index is explained by observing that a DSC(k)
eigenfunction satisfies two linear equations : vanishing at the endpoints. We shall
use this inequality to bound the Neumann spectrum below by the Dirichlet
spectrum; all that remains is to estimate the first two eigenvalues of NSC (k} from
below.

To this end multiply (3.3) byf(v) esc2 v and integrate by parts on [2/, π — 2/] to
obtain

dv = κ J f2(v)csc2vdv

and trivially

(2πk)2 If2(v)dv^2κ $f2(v)csc2vdv

We shall now estimate the right-hand integral. The maximum of / 2 esc2 v on
[2^, π — 2*f ] occurs at the endpoints where the value is approximately ^ so /2 esc2 v
^2- (for £ small). Substituting leaves 8(πfc)2 ^K, the integrals having dropped out.
(An upper bound Ck2 can be obtained by using a test function vanishing on [4/, π
— 4/] and rising linearly otherwise.) A lower bound for the first eigenvalue is also a
bound for the higher eigenvalues. We have proven the following.

Corollary 3.3. For each k φ 0,

θ(t, NSC(k)} ^θ(t, DSC(k)} + 2 exp ( -
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We see now that the smallest eigenvalue of NSC with a non-zero mode number
is at least 8π2. By [11, 30] the first two eigenvalues of NSC are <% (for / small).
Thus the exclusions for θ(t,NSC) are in the 0 rotational mode and by (3.4)
κ3(NSC(θy) ^ Kl(

Definition 3.4.
oo

0^)= Σ exp(-8π2£2/)

Theorem 3.5. With the above notation,

Proof. Each rotational mode is treated separately. For the 0-mode two eigenvalues
are excluded from NSC and (3.4) provides the remaining estimate. For λ ΦO the
estimate is Corollary 3.3. The proof is complete.

We would like to point out two senses in which θ^ is small. First Θ1 is independent
of /, the length of the core geodesic. Next if we consider Θ1 as a heat trace then the
spectrum λk~ck2 is that of a 1 -dimensional problem.

3.6. Recall the lower bound ρ of Corollary 3.2.

Theorem 3.6. With the above notation,

m

θ(t,OR) + £ e(

Furthermore, the lower bound and upper bound satisfy B(t) ~ Area (R)/4πtfor small t
(but not uniformly in R) .

Proof. The right side is Corollary 3.2 and Theorem 3.5. The left side follows from
Corollary 3.2. In particular the spectrum for OR u (J DSCj is bounded below by ρ,

thus each of the 2m + q excluded terms is bounded above by e~Qt. The inequality is

now clear. Finally, we consider the small time asymptotics. Recall that θ±(t) ~~ r /j/ί
for small / and thus this term is lower order. By WeyΓs asymptotic law the problem
is reduced to finding the area for each term. Now for the spectrum OR = D(R ~SC)
and ER = N(R —SC), and thus each of these problems has the area of R — SC. The
conclusion now follows from Area (7?—

Remark. The key feature of the final estimate is that the Dirichlet spectrum appears
on both sides of the inequality.

4. Estimates for the Trace of the Heat Kernel

4.1. The small eigenvalues have been removed from the heat trace θe(t) to obtain an
expression for the Selberg zeta function Z(s) valid for s near 1. The next step is to
find the divergence of the trace θe(t) for *f->0. By the Trace Formula θ(t) is a sum of
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contributions, one for each geodesic. We shall show that the /-divergence
1

log -, as /-+0, is as simple as possible; the sum of the contributions for
e~t/4

πt
the non-short geodesies is uniformly bounded. Actually this is not quite sufficient.
We need that θe(t) is the sum of the contributions of the short geodesies and a term
of order O(e~εt), for ε>0, ε independent of R, t^l.

By the estimate of Cheng (see Chap. 1, Sect. 4) one knows ahead of time that
the divergence of θe(t) is due to the accumulation of eigenvalues near ^. Now θ(t)
is the Laplace transform of the spectral counting function N(x)= #{κn^x}. As
such the small x behavior if N(x) is measured by the large t behavior of θ(t).
Specifically the large ί-behavior of ^ e~Knt is the transform of the accumulation

κn — ~
of eigenvalues at %.

By Theorem 3.6 the problem is now reduced to the case of a subcollar with
Dirichlet boundary data. This is an ideal situation: the spectrum starts above %,
[11], and as we shall see in Sects. 4.2 and 4.3 the spectral divergence is due to the
rotationally invariant functions. In Sect. 4.4 we combine our arguments to obtain
the final estimate for θe(t). In Sect. 4.5 we compare the spectral divergence for a
hyperbolic surface to that of a Euclidean cylinder and also we comment on Cheng's
estimate.

4.2. We would like to give an upper bound for θ(t,DSC). The heat kernel is not
known explicitly and thus we shall use a comparison kernel. Recall that a subcollar
is a subdomain of the quotient ///<z-»/z> and that the heat kernel of a domain is an
upper bound for the Dirichlet heat kernel of any subdomain. We shall use the heat
kernel of the quotient as an upper bound for the subcollar.

Let Γf be the group generated by z->e' ' z and

e~b2/4tbdb

ί ψchb-chδ

[24, p. 233] the elementary solution of the heat equation, where δ(z,w) is the
00

distance from z to w. By the standard argument Kf(z,w\t)= Σ k(z,en^w;t)
n= — co

converges and is a T{ invariant elementary solution, [14]. Denote by KSC(z, w; ί)
both the heat kernel of DSC (Dirichlet problem for the subcollar) as well as its lift to
the universal cover SC c H. For w fixed (Kf — KSC) (z, w 0) vanishes and for t φ 0,
z e dSC, (Kj — KSC) (z, w /) is positive, since K£ is a positive sum and KSC vanishes.
Thus by the maximum principle K^KSC.

In Sect. 5.2 we shall recall the formula for θ(t, R) in terms of the lengths of closed
geodesies (Selberg trace formula). Let T(t, /) be the total contribution to θ(t) by a
primitive nonoriented geodesic of length /.

1 oo /> p-t/4-

Defmίtίon4.L T(t^)=- V t csch — —= ̂ 2"2/4ί .
2 « = ι 2 }/πt

We shall see that the divergence of θ(t) is due to the contribution of the short
geodesies. The behavior of T(t, /) for / small is given by comparing the sum to
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the integral

e-t/4 co

2]/πt

Y \
J csch^-*2/4ίΛc + 0(1)1 .

2 /

1 1 x 1
For ί^l the integral - Jcsch — e~χ2/4tdx is log - + (9(1), and in particular

2, £ 2* v

e~t/4 ( 1 \
T(t, t) = —— log - + 0(1) uniformly for t^ί and ί^c+. This will be our upper

t J

bound for the divergence.

Lemma 4.2. θ(t, DSC)^k(Q'9t) Area.(SC) + T(t,S).

Proof. As already noted, an upper bound is given by j Jζ,(z,z; t)dA. Substituting
sc

the sum for K f , the n = 0 terms is k(0 t) Area (SC) and for the remaining terms (all
positive) we may replace SC with H/Γj. The resulting sum of integrals is exactly the
contribution of a length / geodesic for the Selberg trace formula, [18].

Remark. So that the reader may compare T(t, /), estimated above, with fc(0; t) we
a — I O(e~t/4)

recall that k ( 0 ; t ) is + O(1) for small / and 3/2 for / large.

e~tl4 1
4.3. By the above discussion the /-divergence is at most —== log -. Now we shall

]/πt t
see that the spectral divergence for the rotationally invariant functions is bounded
below by the same quantity.
We return to the discussion of Sect. 3.5 and the formula (3.3) for fc = 0,

sin2t;//'(t;)=-κ;/(t?) (3.3)

on the interval [2/, π— 2/] with Dirichlet boundary boundary conditions. The

spectrum of this problem is bounded above by the union of that for 2<f, — and

each with Dirichlet boundary conditions. By the symmetry we have

2*f, —
-| L. J

-,π-2/ , each with Dirichlet boundary conditions. By the

/ Γ ~1\
with the obvious notation 20 i f , 2/, - )^θ(f, [2/,π-2/]).

The variational quotient for (3.3) is

To estimate the eigenvalues above we may replace esc2/; by the smaller weight v~2.
Actually this comparison is geometrically natural; for our problem the eigen-
functions are invariant by a family of 1 -dimensional hyperbolic subgroups of
SL(2; IR) which are conjugated to converge to a 1 -dimensional parabolic subgroup.

To summarize the above a lower bound for Θ\ t, 2/, — 1 is given by twice the
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trace of the Dirichlet problem on 2^, — of

v2f"(v)=-κf(v) . (4.1)

This is a standard eigenvalue problem for SL(2 R) to recall the solution first note
that the equation is preserved by the substitution v = mv. The interval may be
replaced by [l,π/4*f]. Now writing K as κ=^ + r2 the general solution is
φ (v) = av^ + ir + bv^ ~ίr for r Φ 0 and φ (v} = av^ + bv* log v for r = 0. The solutions for
the boundary conditions are:

φ(v) = v^ sin(αnlog v) for αn = me/log(π/4/), n^l .

The eigenvalues are Kn = ̂  + &l for n^.1.

Lemma 4.3. With the above notation,

πt
Proof. We set ^ = π/(log π/4/)2 and summarize the above discussion with

θ(t, [2/,π-2/])^2e" ί/4 £ e~πn2At. By the Jacobi inversion formula the last
n = l

/ 1 °° \
quantity is e ~ t/4 I — - — V e ~ ™2/At - 1 .We estimate below by the n = 0 term, the

\]/At n=-ao J

proof is complete.

4.4. As the first step towards estimating Z(s) we now consider the Laplace
transform of θe(t}. We introduce appropriate notation,

= θe(t,R)-k(0;t)Area(R) ,

= ] e-*I(t)dt ,
o

and recall the eigenvalue bound ρ of Corollary 3.2. Our estimate is for a surface R
with short geodesies (length ̂  c^) of lengths

Theorem 4.4. With the above notation, given ε > 0 there exists a constant β, depending
only on ε and the genus, such that

•Σ S e-«T(ί,ίj)dt
j = l 0

for Re^ -ρ + fi.

Proof. It suffices to bound the integral §e~ξt\I(t) -£ T(t, t$\dt, ξ real. Equivalently

we may give upper and lower bounds for the integrand I(t) — £ T(t, //), provided of
j

course that the maximum (for each t) of the bounds itself has a bounded Laplace
transform.
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We start with a lower bound for the integrand. I(t) is bounded below by
θ(t) — A;(0; t) Area — e%, where e^ is the exclusion number of Sect. 3.4 and thus is
integrable for t small. This is also our first estimate, I(i) ^θ(t) —fc(0 t} Area — e* for
0 ̂  t ̂  1. We wish to compare I(t) with the length sum for θ(t) given by the Selberg
trace formula. Since each length term is positive, a lower bound is obtained by
omitting the terms for non-short geodesies. To summarize for 0 ̂  / rg 1

7(0 ̂ 0(0 -*(0;0 Area -̂  £ Tfr^-e* , (4.2)
7 = 1

our final estimate for this situation.
Now we must also give a suitable lower bound for /(/), 1 ̂  ί < oo. The first step is

to apply Theorem 3.6. We can omit the positive term θ(t,OR). The trace is
estimated by Lemma 4.3. To summarize thus far

for &
J πt

The next step is to replace the log \\t term by T(t,£). By integral comparison,

-- ] csch J e~χ2/4tdx^ t csch *- e^2/4t .
2 ^ 2 2 2

After simplifications we see that

x
-e~χ2/4tdx is
2

and also that

Λ:
~ 2β ~ χ - o g l s

2 ^ 2

To summarize these remarks there exists a constant ^ such that

m

/(O^Σ Π^</)-Cιe~ ί/4-(2w + ?)έΓρί . (4.3)
j = ι

We recall that m and q are bounded in terms of the genus. Combining (4.2) and (4.3)
we have that there exists a constant c2 such that

m

7(0 ̂ Σ T(t,tj)-c2e-« . (4.4)
7 = 1

Our discussion of lower bounds for I(f) is complete.
Now we consider the upper bounds for I(f). The estimate is obtained by

combining Theorem 3.6 and Lemma 4.2. We have the inequality

Area (SQ- Area (Λ)
/

(4 5)
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By the standard small time expansion the right-hand side is integrable for small t,
[41]. By Corollary 3.2. θe(t, ER) is O(e~ρt) for t large and each remaining term is
O(e~t/4). Inequality (4.5) is our upper bound.

To summarize the discussion to this point we have for I(t) = θe(t,R)
—k(Q;t) Area(Λ) that there exists a constant c3 with

m

7(0-Σ T(t,tj)

^\θe(t,ER)-τk(Q',ΐ)Aτea(R)\ + 4mθl(t) + c3e~ρt . (4.6)

This is simply the statement that the right-hand side dominates the bounds of (4.4)

and (4.5). The θ^(t) contribution is certainly bounded: θ^(t) ~ c / y t for small t and is
O(e~8π2t) for large /. The final step is to bound the ER contribution.

McKean and Singer treat the small time expansion of the heat trace for
manifolds with boundary (as well as their doubles), [41, esp. Sects. 3 and 5]. They
note that the elementary solution of the heat equation can be expressed as an infinite
sum (their formula 3.4) by the method of Levi. The convergence estimates for the
sum only require simple estimates for the Riemannian metric the constants can be
chosen to be uniform for a compact family of Riemannian manifolds with
boundary. Thus from their treatment and the concluding comments of Sect. 2.6,

θ(t,ER)—— is uniformly bounded for / bounded. This is enough to
T1 TCI

bound le-#\Oe(t,ER)-bk(Q;t)Are2i(R)\dt for Re£>-ρ, since θe(t,ER)

^e~ρtθe(l,ER) for t^ 1, k(0;t) is (9(1) for small t and k(0;t) is O(e~t/4) for
4πt

large /. This is the desired final estimate: given ε > 0 the ER contribution is bounded
for ξ real, ξ^. —ρ + ε. The proof is complete.

4.5. We would like to close this chapter with a heuristic discussion of the
convergence of the spectral measure ofR. Specifically iίN(x, R)= φ (eigenvalues of

^x}, then we shall see (no proof) that

N(x,R)

Recall that 21ogl/*f is essentially the width of a collar. In fact for the case of
one separating short geodesic on a compact surface then 0^ diameter (R)

^^c. By comparison the eigenvalue estimate of S. Y. Cheng is

r ι =4
Our main result (estimate (4.6)) is of the form

/ ^-ί/4

0(0/Σ

or by a Laplace transform dN(x, R) / Σ 1°S V^ "̂ —τ== (actually we can
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establish this convergence weak* relative to Cc(0, oo)). We may formally integrate
/ i _

to obtain N(x, R) I £ 21ogl/^->— yx — k> Now Cheng's estimate gives the
I j π

(surprisingly close) lower bound N(x, R)^.— — 1/x—χ We shall comment further
4π v

on this below. Cheng's argument is by constructing test functions for the Rayleigh-
Ritz quotient.

Inspired by the paper of Gava-Iengo-Jayaraman-Ramachandran, [17] and also
the description of tachyon divergence we would like to compare the hyperbolic case
to the Euclidean case. Consider the flat torus obtained by identifying the sides of a
rectangle of length 1/ε and width ε. The eigenvalues are κn m = (2mπε)2 + (2nπ/ε)2

and the counting function Nε(x)&*- — for x fixed and ε->0. There is an obvious

analogy with the above.
Actually, this represents a simpler phenomenon than tachyon divergence. This

result is for the trace of the heat kernel and not the bosonic Polyakov integrand. The
analogy between the spectral divergences of the two geometries can even be refined.
By the considerations of Sects. 4.2 and 4.3 the divergence is for the rotationally
invariant eigenfunctions. The corresponding result for a torus or cylinder is
obvious. The divergence is for those waves (eigenfunctions) which propagate across
the cylinder but are constant on the meridians. Cheng's test functions are essentially
for these modes of oscillation.

5. Estimates for the Selberg Zeta Function

5.1. McKean's observation is that the Selberg zeta function is obtained easily from
the trace θ(t) of the heat kernel,

|̂ L(2.-1) f *-
o

for ξ = s(s — \), Re£>0. Our plan is quite simple. Naively the integral converges
in the largest £-half plane where the (analytic continuation of the) transform is
pole free. By subtracting those terms from the integrand (the contributions of the
small eigenvalues) which give rise to the poles, we can obtain an integral convergent
in a larger half plane. Of course the whole problem is to estimate the new integrand
(θe(t)—k(0;t)AτQa)'9 our estimates are Theorem 3.6 and the inequality (4.6).

We start by reviewing the formulas for θ(t) and Z(s). In the third section we
review the divergence of 2£(s,t) as ^->0. We show in Sect. 5.4 that the length
product (for Z(s)), Res> 1, for the non-short geodesies is uniformly bounded. In
Sect. 5.5 our estimates are combined to show that

Π expC-πVSOXΓ1 Π
j = ί 0<K n <i

where B depends only on the genus and {/,-} are the short geodesic lengths. The next
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item is a remark on extending our results to the left of Res = j. Then in the final
section we consider the convergence of the length spectrum and of the Selberg zeta
function to that of the limiting surface.

5.2. Of course we start with the trace formula for the heat kernel. Consider R a

compact surface with eigenvalue spectrum {κn} (κ^0). We write Σ for a sum over

the closed primitive nonoriented geodescis of R and write £(y) for the length of γ.
The Trace Formula is

ι oo

csch -- = - ,
ynt

where of course the second term is Σ T(t, ^(y)) in the notation of Sect. 4.2, [1 8, 38].
y

The Selberg zeta function is defined by the infinite product

= ΓΊ Π (1-£>-(s+fcKω)2 for

(each geodesic corresponds to two conjugacy classes, one for each orientation). The
basic properties of Z(s) are discussed in [18]. We shall only need that Z(s) is an
entire function, has the symmetry,

[
J^ —I

Area J v tan(πv)dv ,
o J

and has zeros corresponding to eigenvalues {κn} such that the formal quotient

Z(s)/Yl (s2 — s + κn) is pole free. As an example Z(s) I Π (*2 ~s + Ό ^s analytic

and non-zero in the half plane
Finally, we would like to recall the formula of McKean

^^ = (2,5-1) JZ(s) o

for Re s (s — 1 ) > 1 , [24] . We shall sketch the derivation of this formula (the formulas
from this reference should be double checked). By Weyl's law the integrand is
integrable for small / and trivially θ(t) is 0(1) for large /. Substituting the length
expansion of θ(t) leaves

the sum is positive and we may integrate term by term. The Laplace transform of
T(t, /) is in the standard tables.

5.3. The contribution to Z(s) of a geodesic of length ( is the elementary product

&(s)= Π (1 -έΓ(s+k)02 .
k = 0

We would like to review the divergence behavior of 3£(s) as ^->0.
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Lemma 5.1. Given a compact subset K of {Rε s>ύ] there exists a positive constant cκ

such that

for s e K and t < 1 .

Proof. By elementary expansion

Now

-log Π (l-e-(s + kκ) = Σ Σ = Σ e-«eln(\-e-«e) .
k=0 n = l fc = 0 n n=ί

1 1

\~e~x x 2

1
^ax for x^O, and thus the error on replacing —^ by

e
-- 1 — is at most Y - ant = — - =-7-, which is uniformly bounded for ̂  small
nt 2 ntΊ n (\-e S0

and s bounded away from 0. Now the — contribution is
m

cc -nst -j e-*< Λ

Σ V Γ — 7 { 7

where the integration path of the final integral is defined such that log e~sf = —s£
and log 1=0, and thus the last term is bounded uniformly for sέ small. And finally,

1 \ °° e~nst i
the - contribution is - Σ - = ~^°g 0 — £~S0> tne conclusion now follows.

2 2 n = 1 « 2

5.4. Now we consider the partial product for the non-short geodesies

Z*(s)= Π Π (l-£?-(s+k)'ω)2 for Re,s>l .

The simple structure of Z(s) will allow us to estimate Z#(s) without integrating
Z'/Z.

Theorem 5.2. Given a compact subset Kof{Re s>l}, there exists a positive constant A
depending only on the genus such that

for seK.

Proof. The argument is illustrated for the case of s real. We shall bound |log Z*(s)\.
00

By a simple comparison it is enough to bound £ Σ e~(s+k)<f{γ). In fact since
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^£* it will certainly be enough if we bound

L

But by McKean's formula this is equivalent to bounding

(25-1) ]e~* £ T(

Now since Re s > 1 and Re ξ > 0, such a bound follows from Theorem 4.4 after an
estimate for the contribution of the small eigenvalues.

5.5 By analogy with the heat trace we expect Z(s) to be uniformly bounded after
removing the contribution of the small eigenvalues and the short geodesies.

Theorem 5.3. There exists a positive constant depending only on the genus such that

7 = 1 0<κ n<i

where {/y}™=ι are the short geodesic lengths.

Proof. The first step is to change to an equivalent expression. By Lemma 5.1 a
factor expC-π 2^/)/" 1 can be replaced by JT(iχ). Similarly by Sect. 3.2,

Π κn can be replaced by Π κn In particular if KJ is small, then the sur-
0<κ n <i l<n<2m + q

face has a shorty-disconnect and by definition q ̂ 7, thus a small factor in the first
eigenvalue product appears in the second. Furthermore, the number of factors is
bounded in terms of the genus (recall TC^-I ^$) and there are uniform bounds for

2m + q

the KJ, 7^20—1. If we introduce the product Q(s)= Π (s2 — s + κn), where

2m + q

β(l) = 0 and Q'(l) = 2 Π κn, then for Z^(s) = Z^(s)/Q(s), we have
Λ = l

m

Z'(l) = ZJ | tJ | t(l)β/(l) Π ̂  (!,</)- And so now the object is to estimate Z^l).
j=ι

Our plan is to first estimate Z^sVZ^O) for s real, s ̂  1 and then integrate. By
definition

Z'(s) = Z^(s) " ^^X7 ) ;

Z(ί) Z^(j) ,
and

00

(2j-l) β-«+
v y
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Thus for the present context McKean's formula is (and this is the key)

**^=(2^-l) J e-#(oe(t)-k(Q;t)Area- £ T(t^})]dt . (5.1)
Z**(s) o \ j=ι /

At first sight the formula is valid for Re ξ > 0, ξ = s(s — 1). But by Theorem 4.4 the
right-hand side is holomorphic in a small neighborhood of ξ = Q (hence s = 1) and
also there exists a positive constant β such that

^ β fors real, s ̂  1 .

Now we must in effect estimate the constant of integration, which we choose to
be Zί|C5lc(2). g(2) is uniformly bounded and thus by Theorem 5.2 so is Z5|C5je(2). Finally,

i
we write log Z* „,(!) = ̂  Z^(s)/Z^.^(s)ds-\-\ogZ^^(2), and the desired estimate

2

follows. The proof is complete.

Corollary 5.4. Let ρ be the bound of Corollary 3.2. \Z^s)\ is uniformly bounded above
and below on compact subsets of {Re (s2 —s)> —Q}.

Proof. Combine (5.1) with Theorem 4.4.

5.6. The quotient Z+(s) = Z(s) / Π ^0, </) (see Sects. 5.3, 5.4 for notation) cannot
/ j = ι

converge for Re s < \ as /,—>(). To see this we exploit the symmetry of the Selberg zeta
function

where by Lemma 5.1 &(l -s)/&(s)& Π ^s"2 Simply observe that for
j=ι

and /j-^0 each factor έfs 2 is divergent.

5.7. We would like to return to the context of Sect. 2.5, where we considered a
parametrized family of smooth Riemann surfaces Rτ, τe(C" converging to a
noded surface R0 . Let ^ , . . . , £m be the lengths of geodesies which are tend-
ing to zero as τ->0 and SΊ,...,5β the components of R0~ {nodes}. Define

q

Z(s,R0)= Π Z(s,Sn), i.e. the product of the zeta functions of the components.
« = ι

Theorem 5.5. With the above notation as τ->0,

uniformly on compact subsets of {Re (s2 — s) > — ρ} u {Re s > 1}.

Proof. First we consider the case Re s > 1. The geodesies of ̂ τ may be grouped into
three types, 1) the pinching geodesies, lengths-»0; 2) the convergent geodesies,
disjoint from the pinching geodesies and 3) the divergent geodesies, intersecting the
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pinching geodesies. By the Bers result of Sect. 2.5 the lengths of the type 2 geodesies
converge to their limiting value. Now since the width of a collar diverges as /->(), the
type 3 geodesies have lengths tending to infinity. For Re s > 1 Theorem 5.2 provides

a bound on Z/Π^Γ (/,-), and thus we can take the τ-limit under the product to
/ j

obtain the desired conclusion.
Finally for 1 ̂  Re (s2 —s) > — ρ the argument is based on the analytic continua-

tion of formula (5.1). Since a bounded sequence of analytic functions contains a

convergent subsequence and Z/Π^OO) nas Z(R0) as limit for Res>l, it is
/ j

enough to bound the quotient. Now from (5.1) and the proof of Theorem 5.3 we
see that Z^Cs ) and Q(s) are uniformly bounded on compact subsets of

{Re(s2 — s)> — ρ}. Since Z^β^Z/Π^OO) trιe conclusion follows.
/ j

Remark. An immediate consequence of the considerations of Theorem 5.2 and 5.5 is
that the type 3 geodesies are negligible in the limit of Z(s, Rτ), Re s > 1.

6. Asymptotics of the Bosonic Polyakov (d=26) Integral

6.1. That the bosonic Polyakov integral diverges will be an easy consequence of
Theorems 5.2 and 5.3, and the formula for the Weil-Petersson measure in Fenchel-
Nielsen coordinates [33]. In Sect. 6.2 we recall the results of DΉoker-Phong and
take the opportunity to compare our estimate to that of Belavin-Knizhnik. A review
of the Fenchel-Nielsen description of the divisor 3) is given in the next section
[1, 33]. In the last section we combine our results and discuss the Polyakov integral.

6.2. DΉoker and Phong find the formula

for the genus g contribution to the Polyakov partition function ([9], formula (3.1 5)).
Recall that P1 is a first order operator mapping vector fields to symmetric traceless
2-tensors, P/ its adjoint, and det'zl the functional determinant, zero mode removed,
for the Laplacian on functions; d W-P the Weil-Petersson volume form. They
continue the calculation and write the integrand as

where c is an absolute constant, [9]. By Lemma 5.1, Theorems 5.2 and 5.3 we have
that Z '(1 ) ~ 13 Z(2) is bounded above and below by multiples (depending only on the
genus) of

E=Π exp(4π2AOK/°( Π κΛV * . (6.1)
7 = 1 \0<Kn<i /

Now we would like to compare this to the Belavin and Knizhnik result [5]. To do
this we must introduce a holomorphic coordinate t (a transverse to the com-
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pactiflcation divisor 2, see Sect. 2.5) for describing the degeneration. The change of
variables is considered in Sect. 2.2 and also Lemma 2.1. Briefly put

and thus
m

E(i)& Π I(/Γ2 x (l°wer order terms)
7 = 1

and of course Masur's result (Sect. 2.3) is

In summary the Polyakov integrand behaves as

m

ΓΊ I tj\~4 x (lower order terms) ,
7 = 1

where the lower order terms are at most of order (log |ί/|)fc, for some k. Lemma 2.1 is
not sufficient to obtain the lower order expansion. Our expansion agrees with the
Belavin-Knizhnik double-pole result, [5]. A lower order term, due to the norm of the
zero modes, does in fact appear for their expansion [39].

6.3. Now we shall review the basics of the description of Jig in Fenchel-Nielsen
(F-N) coordinates [1]. As a warning we recall that the change of variables from
complex coordinates to F-N coordinates is not smooth along 2. In brief the
relation between σ, the complex coordinate for opening a node (Sect. 2.5) and /, the
F-N coordinate for opening a node is \σ\ ~exp ( — 2π2//). Thus it is possible (and
actually happens) that the Weil-Petersson measure on Jtg is smooth in F-N
coordinates and singular in (C-coordinates. Of course it is a classical result that the
change of variables is smooth on Jίg.

Jϊg is a compact F-manifold in F-N coordinates [33]. Each point has a
neighborhood which has a finite cover that is isomorphic to an open set in IR". It is
enough for our purposes to describe how a surface is constructed from length-twist
parameters (f^ τj) ^/^O, τ7 e IR, j= 1, . . . , 30 — 3 and a pattern (a partition).

The first observation is that the lengths λί9λ2,λ3 of the boundaries of a pair of
pants (pants = three holed sphere with hyperbolic metric and geodesic boundaries)
can be arbitrarily prescribed in [0, oo). A length λ = 0 corresponds to a cusp. Given
pants, P! and P2 , not necessarily distinct, with boundaries b± on P1 and b2 on P2 of
the same length, we can form the geometric connected sum Px v P2 by identifying bί

and b2 via an isometry. The fundamental observation is that Pί v P2 has a
hyperbolic metric whose restrictions to PI and P2 is the original metric. By choosing
more pants and repeating this process we can close up the boundaries to obtain
either a compact surface (all lengths positive) or a surface with nodes. Boundaries of
length 0 are formally paired, even though no points are actually identified.

To describe a coordinate neighborhood for Jtg start with a surface R of genus
g with m nodes (see Sect. 2.5). R0 = R — {nodes} has a hyperbolic metric and we
choose 30— 3— m disjoint simple geodesies {/,-} on R0. The topological data
{yy} u {nodes} is our combinatorial pattern (a node is thought of as a geodesic of
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length 0). jR —{fy}u {nodes} is a union of pants. Now we wish to identify the
continuous parameters determining R. Each yj has a length ^ and for each node
obviously /fc = 0. Now provided //ΦO, we also include the combinatorial data of
choosing one other boundary in each pants adjoining γjf Dropping perpendiculars
from these other boundaries to γj we obtain two distinguished points, one on each
side of γj. Let τ$ be the distance between these points and 07 = 2πτ/ /// , the θj are the
twist angles. Just as with polar coordinates, θk is undefined if /k = 0. Now the tuple
(/,-, θj) provide (polar) coordinates for the local manifold cover of a neighborhood
of RtJig. The W-P volume form is very simple in these coordinates

30-3

dW-P = (2π)3~39 Π SjdθjΛdέj . [33].
j = ι

The simple change of variables «f/ = 2π2/(logl/|ί|), θ/ = Imlogί / will carry this
formula into Masur's.

The strata of Q) are classified by the pattern of the nodes on R. For instance
the generic surface of Q) has one node for which there are [g/2] patterns topo-
logically the position of the node is determined by the genera of the components
of R — {nodes}. Similarly a surface with two nodes represents a self intersection
point of Q).

6.4. Our plan is to give a general method to estimate integrals over Jtg. For β, a
small constant, we define the β-thick part vΐJίg as the compact set of surfaces with
all geodesies of length Ξ>β. We shall describe how the complement, ^(β-thin), can
be expressed as a union (not disjoint) of sets, each fibered over an open strata of the
divisor Q).

The combinatorics of the Q) strata can be described in terms of partitions and
subpartitions of a fixed surface M. A subpartition ^^> = {[yk]}ϊk = \ is a set of free
homotopy classes of simple loops, where the loops are neither null nor mutually
homotopic. A subpartition of maximal size, a partition, has 3g —3 elements. Given
a surface R with nodes we can find a map h'.M^R which collapses a finite disjoint
union of simple loops to points and is otherwise a homeomorphism. In this way a
surface with nodes determines a subpartition of M: the curves collapsed by h. A
basic result is that the open strata of Q) are in one to one correspondence with the
equivalence classes of subpartitions of M and the equivalence is by the homeomor-
phisms of M, [1, 33]. Keep in mind that there are a finite number of strata.

An important observation is that there exists a constant η = η(g} such that each
hyperbolic surface has a partition by geodesies of length ̂  η, [6]. Now for α < β < η
we define U(^^) <= Jtg, £?& as above, to be the subset of surfaces R with a partition
^ = { [δk]}l =Ί3 by geodesies such that: there exists a homeomorphism/: M^R with
[/(?*)] = [<5fc], and ^(δk)^β for l^k^m and <x<S(δk)<η for m + 1 ^k^3g-3.
Roughly speaking U(^^) is the subset of surfaces near the ̂ -strata corresponding
to .9̂ .

Let &*&!,. . ., y0*p be representatives for the distinct equivalence classes of
subpartitions on M. We summarize the above discussion with the following.

Lemma 6.1. Jίg(β-thm)= (J
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Theorem 6.2. The bosonic Polyakov integral (d=26) is infinite.

Proof. It will suffice to estimate the integral for a particular £/(^^) = {(θ7 ,^/): 0
<έ(δj)<β, foτj=l,. ..,m, <*<S(δj)<η, fory = w + l , . . . ,30-3 and 0^0, ̂ 2π,
ally}. From Sects. 6.2 and 6.3 we have that the Polyakov integrand is bounded
below (and above) by

m

£tfW-P=Π exp(4π2//j)C Π κ,Γ13</W-P .
j = l 0 < κn < i

The magnitude of the eigenvalue product can be determined from the combinatorics
of 5̂ , using Theorem 3.1. This is not necessary for the present purpose: all we need
is that the product is bounded below, a trivial observation. Thus a lower bound for
EdVJ-P is the integrand

Π exp(4π2Af;K/0 fl SjdθjΛdtj .
7 = 1 .7 = 1

Its integral over £7(5 )̂ is a product; the first m length integrals are
β

/^ )//1ί/^ , each infinite. The bosonic Polyakov integral is divergent.
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