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Abstract. We discuss two ways of extending the recent ideas of localization
from discrete Schrodinger operators (Jacobi matrices) to the continuum case.
One case allows us to prove localization in the Goldshade, Molchanov, Pastur
model for a larger class of functions than previously. The other method studies
the model — A + V, where V is a random constant in each (hyper-) cube. We
extend Wegner's result on the Lipschitz nature of the ids to this model.

1. Introduction

Localization for continuum and discrete random Schrodinger operators has been
heavily studied. This note contributes to this literature. Our main goal is to extend
to the study of operators on L2(RV) [especially L2(RJ] a set of ideas recently
developed to discuss localization for operators on ί2(Ev). These ideas, which have
their roots in work of Carmona [2, 3], were developed by Kotani [14, 15] and
brought to fruition in Delyon-Levy-Souillard [5-7] and Simon-Wolff [22,23,21].
As a by-product, we will extend Wegner's result on the Lipschitz nature of the
integrated density of states to certain continuum models.

The models that we will study can be described as follows: Let (Ω,μ) be a
probability measure space and let {Tx(ω)} be a one-parameter group of μ-
preserving transformations on Ω which is ergodic. Let F be a measurable function
from Ω to R. We want to study the family of Schrodinger operators on L2(RV):

-A+qω(x),

where qω(x) = F(Tx(ω)). We always suppose that, for a.e. ω: qω{x) is continuous in x
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so there is no problem with selfadjointness (see e.g. [19]). For virtually all our
arguments in one dimension, one can easily deal with qω(x) which are in Lfoc with

ί kωO0l2dyY/2^C(l+|x|2) and suitable U requirements in higher
l^i

dimensions.
In Sects. 2-4 we will deal with subsets Ωo C Ω of positive measure and want to

take a conditional expectation onto a Z-algebra Σo of the form

E{FχΩo\Σo).

We will call this the Ω0-restricted conditional expectations.
A basic object in the study of one-dimensional Schrόdinger operators is the

transfer matrix, U(a,b; E) defined by looking at

-φ" + (q(x)-E)φ = 0

with initial conditions φ(a), φ\a) and solving for φ(b), φ(b'). U is defined by

Constancy of the Wronskian implies that U has a determinant 1.
We will also often want to "projectivize" such a U; i.e. given a 2 x 2 invertible

matrix and θ e [0, π) define φ e [0, π) by

vcosφ

We will write
φ=U(θ).

The key idea in the papers quoted above is that averaging the spectral measure
over a finite region of space (more properly, conditioning on q outside a finite
region) should produce a measure absolutely continuous with respect to Lebesgue
measure. In Sect. 2, we show this is implied by an absolutely continuous density for
U(φ) when conditioned properly. In many ways, this result is behind the work of
Carmona [2, 3], so Sect. 2 should be viewed as Carmona's theory with certain
irrelevancies eliminated and the useful extension to Ώ0-restricted expectations. We
then apply this theory in Sects. 3 and 4. In particular, we are able to extend the
celebrated result of Goldshade, Molchanov, Pastur [10] to arbitrary smooth non-
constant functions on their underlying manifold rather than being restricted to
isolated critical points.

In Sects. 5 and 6, we shift models and discuss the random constant model
introduced by Holden-Martinelli [11]. Section 5 discusses localization while
Sect. 6 discusses a Wegner-type result. These sections show that the approach of
Wolff-Simon can be extended to handle cases which are not rank 1 or even finite
rank (indeed, one could replace — A by a bounded function on — A and make a
partial proof without even local compactness, although there would be a problem
with the continuum eigenfunction expansion). What is critical is the positivity of
the perturbation (although see [8] for a discussion of some non-positive
perturbations by the Delyon-Levy-Souillard method).

For background in probability theory, see [25].
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2. An Abstraction of Carmona's Theory

Here we will develop an extension of some ideas of Carmona [2, 3]. Fix a>0 and
let qω(x) be a stochastic potential of the type described in Sect. 1. Fix θc [0, π) and
let φ(θ,a,qω; E) denote the value of

φ=UqJ0,a;E)θ.

Theorem 2.1. Suppose there exists a measurable ΩOCΩ with μo(Ωo)>0 and a,c>0
so that for a measurable set Ωx C {q \R\[0, a]} with μo{q eΩ0\q tR\[0, a] e Ωx] > 0,
we have that for each fixed θ, the Ω0-restricted conditional distribution, conditioned
on fixing qeΩ1, of φ has the form

G(φ)dφ

with \G(φ)\ <cif\E\<B (c is independent of θ but may depend on B and q fR\[0, a]).
Suppose, moreover, that sup{|g(x)| | q e Ωo, x e [0, a]} < oo. Then, with probability 1,

— -j—2 + qω(x) has only pure point spectrum with exponentially decaying
(XX

eigenfunctions.

In fact, the decay will be at the Lyaponov exponent rate.
We will prove this result by reducing it to a lemma concerning the averaged

spectral measure. Let W(x) be a continuous potential obeying W(x)^ — C(x2 +1),

and let H = — —^ + W(x). The spectral measure dρ(E) is defined by

iH iH itE, (2.1)

where δ0, δr

0 are the delta function and its derivative at the origin. Using ODE
techniques [4,18] one can uniquely define dρ and show that it is formally given by
(2.1). If w = qω, we denote the spectral measure as ρq. The key lemma is:

Lemma 2.2. Under the hypotheses of Theorem 2.1, fix g, a function on R\[0,α],
lying in Ωγ. Then the integral of dρq(E) over the Ωo~conditional distribution of q's
with q \ΊR\[0, a] = g is absolutely continuous with respect to Lebesgue measure, dE.

Proof of Theorem 2.1, Assuming Lemma 2.2. We follow the strategy of [14, 5, 22].
The hypotheses of Theorem 2.1 imply that the process qω{x) is nondeterministic, so
by the method of [13] (extended as in [12] to handle unbounded g's) shows that the
Lyaponov exponent, y(E), is strictly positive for a.e. E, say, for all E φ S1 ? where Sx

has zero Lebesgue measure. Fix g e Ωt. By the definition of 7 and Fubini's theorem,
for a typical g (i.e. for a.e. g) there is a set S2(g) CR of zero Lebesgue measure, so that

d2

if E φ S1 u(S
r

2(g) and if q fR\[0, α] = g, then the transfer matrix for — — ^ + q(x) at
(IX

energy E has Lyaponov behavior at both — 00 and + 00. Thus, by the Osceledec-
Ruelle theorem, for such E, every solution of

— u" + qu = Eu (2.2)

decays exponentially or grows exponentially at both + 00 and — 00. By Lemma
2.2, for a.e. q with respect to the conditional measure, dρq(S1uS2) = 0, so for such
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g's, dρq is supported on {E | every solution of (2.2) decays or grows exponentially}.
By the BGK eigenfunction theory [1, 20], dρq is supported on {£|(2.2) has
polynomially bounded solutions}. Thus, since an exponentially growing solution
is not polynomially bounded, dρq is supported on the set of E where (2.2) has a
solution exponentially decaying at both +oo and — oo, i.e. on the set of point
eigenvalues. This set is countable, so dρq is supported on a countable set and so it is
pure point.

We have therefore shown that for a.e. q e Ωo with q f!R\[O, a] eΩί9 ——~ + q
ax

has only pure point spectrum. Thus, for the original process, we have only point
spectrum on a set of potentials of positive measure. Since the spectral type is non-
random [16], we have only point spectrum for a.e. q. In the appendix we will show
that having only Lyaponov-exponentially decaying eigenfunctions is a non-
random event, so showing it with positive probability proves it for a.e. ω. •

In addition to the spectral measure, dρ, for the whole line problem, we will need
the spectral measure σθ_ for the half-line problem on (— oo,0] with boundary

condition θ at x = 0. Explicitly, let H~'θ =——~ +qω on L2(—oo,0] with the
ax

boundary condition u(0)/u'(0) = tan θ [with the understanding that θ = π/2 corre-
sponds to Neumann boundary conditions w'(0) = 0]. Then σθ_ is given by (2.1) with
ρ replaced by (2.1) and H by H~'θ. As a preliminary, we recall the following
standard result (see Carmona [2, 3]):

Proposition 2.3. (a) σθ_(dE)= w-\imδ{UQ (y,0; E)β-θ)dE for any fixed β.
y-* — oo

(b) ρ(dE) = w-lim δ( Uq (x, 0 E)a - ϋq (y, 0 E)β)dE for any fixed a and β.

χ-+ oo, y—> — oo

Sketch. The key fact that one uses is that if η solves

— η" + (q — E)η = O (2.3)

with η(a)/η'(a) = ta,noc and if Φ(E)=U(a,0; E)oc, then
Aφ aί

o

Accepting (2.4) for the moment, we see that the spectral measure for the operator
on [0, ά\ with α-boundary conditions at a and θ boundary conditions at 0 is just

Σ f S ) δ{E-En)dE = δ(Φ-θ),
eigenvalues \ULL J

since eigenvalues correspond precisely to solutions of Φ = θ. Similarly, we see that
the right side of (b) is just the spectral measure for the operator on [y,x\ α
boundary conditions at y and β at x. Thus, the proposition follows from the weak
convergence of the spectral measures for finite volume to the infinite volume
spectral measure which is not hard.

Equation (2.4) follows by writing out Prϋfer variables for η, i.e. η(x)
= r(x) sin θ(x\ η'(x) = r(x) cos 0(x), deducing the differential equations in x for θ and
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r and then differentiating the equation for θ with respect to E. The net result is that
iϊdθ/dE = y, then

dx

and the method of integrating factors yields (2.4). •

For the next element, we need the following lemma which is well known (see e.g.
[2, 3]):

Lemma 2.4. Let UeSL(2,R). Then

}f(Oθ)dθ=]f(θ)\\Uθ\r2dθ, (2.5)
o o

1 fi ί\
where θ=\ _ 1.

\cos#/

Sketch. Any U can be written R1DR2 with RUR2 rotations and D diagonal.
Moreover, it is easy to see that (2.5) for matrices A, B implies it for AB. Since it is
trivial for rotations, the result follows from the calculation for diagonal matrices:

— arctan [α2 tan θ~] = (α2 sin2 θ + α " 2 cos2 θ)"x. •
du

The last two results imply the formula of Carmona:

Proposition 2.5 (Carmona [2, 3]). With the notation of Proposition 2.3:

ρ(dE) = - w-lim ] dθ\\ 17,(0, χ)$\\ ~2σθ_{dE).
71 x->oo 0

Proof Since Proposition 2.3 (b) holds for all α, β and the measures can be shown to
be uniformly bounded, the result also holds for the average, i.e.

ρ(dE) - \ w-lim J doc f dβlδ(U(x, 0; E)oc - ϋ(y9 0; E)β)dE]
n x ^ + oo o o

= \ w-lim ]da]dβ\dθδ(U(x,O; E)a-θ)δ(U(y,0; E)β-θ)dE)
y—> — oo

= ^ w " l i m ί dθl\\U(0,x; E0)\\ ~2\\U(0,y; E)θ\\~2dE~\ .
n jc-^ + oo o

> — oo

Similarly, averaging Proposition 2.3 (a) over β:

σθ_(dE)= - w-lim ]dβ[δ(U(y,O; E)β-θ)dE~]
Ti y-+ - oo 0

= - w-lim || 1/(0, j / ; £)0|| " 2dE. Π
71 y-> — oo
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We are now ready for

Proof of Lemma 2.2. With φ = [7(0, a)θ, we have for x > a that

|| 17(0, x)6\\ = || I7(α, x) [ 17(0, a)$] \\ = \\ U(a, x)φ \\ \\ £7(0, a)θ\\.

By hypothesis, qeΩ0 is uniformly bounded on [0,α], so by an elementary

argument, for each such q, || (7(0, a)θ\\ ̂ C 1 with C independent of q and of E on

compact sets. Thus, by Proposit ion 2.5:

ρ{dE)S — w-lim f dθ\\ U(x, a)φ\\ ~2σθ_(dE). (2.6)
π o

Fix now qo = q\R\[0,a]eΩ1 and take the Ω0-restricted conditional distribution
over q with q\R\[0,a] = qo, call it EqoΩo( ). Then, by hypothesis and (2.6),

Eqo,Ωo(ρ(dE))£ ^ w-lim J σθ_{dE)dθf || U(x, a)φ \\ ~2G(φ)dφ,

where G is dependent on £, θ, and q0. By hypothesis, G is bounded, so

But by (2.5) with / = 1 , $dφ\\U(x,a)φ\\-2 = π, so

β o . o [ . m ϊ
o

But by Proposition 2.3,

f σθ4dE)dθ = w-lim f dθδ(U(y, 0;

SO

as was to be proven. •

3. Wiggling One Parameter

The most direct way of trying to prove that the conditional distribution of φ is
absolutely continuous is to have q depend on one real parameter t which has an a.c.
distribution, in which case the map from t to φ needs only have a non-vanishing
Jacobian for φ to be absolutely continuous:

Theorem 3.1. Let q(x, t) be a jointly continuous function on [0, a] x [ — δ, <5], so that

and for each ί e [ — δ, δ~\,— (xt, t)>0 for some xte[0, a]. Let φ(θo,t,E) be the angle
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Uqt(0,a; E)θo. Then, there exists a constant C depending only on B with

C ι < <c
dφ

~dt
for all θ09 t,E with \E\<B.

Proof. Let
θ(x,t9E,θo)=Uqt(0,x;E)θo.

Let r be the Prϋfer variable discussed in the proof of Proposition 2.3. Then the
differential equation for r can easily be integrated to yield

r(x) = r(a)exp I Jf ( - 1 + E-q(y, ή) sin2θ(y)dyI. (3.1)

The analog of (2.3) gives dφ/dt explicitly as

The upper bound is trivial from (3.1), (3.2). To prove the lower bound, we note by
r(x)

(3.1) that -γJ

]^expl-a(\\q\\Q0 + \E\ + l)~] so that, since the integrand of (3.2) is

positive, there is only a problem with the zeros of sinθ(x). But since θ obeys

— = 1 if sinθ(x) = 0. Thus the zeros of sin θ are isolated, so -r— <0. By continuity
ox όt
and compactness, dφ/dt is bounded away from zero. •

Example ί. Let {ζn; n eZ} be i.i.d. random variables with a density dκ(λ) which has
an absolutely continuous component dκac(λ) = g(λ)dλ. Let / be a non-negative
continuous function on R of compact support. Let

Hω=-^+ Σ Cn(ω)f(x-n).
uX neΈ

(This model is discussed in [12] and references quoted there.) Then, for a.e. ω, Hω

has only pure point spectrum with exponential decaying eigenfunctions.

Proof By translating /, renumbering n, and scaling, we can suppose supp/

C[0,fl].Fix{ζπ(ωo)}π +

«Φ0
ζn(ω0)f(x-n)9

where α e supp(dκac). By the arguments above, if we restrict ζ0 to a set S on which g
is bounded and \t\<d, the required distribution on φ is a.e. with bounded density.
Thus, the arguments of Sect. 2 imply the claim. •

Example 2. Let {Xx(aή \ xeΊR] be a stationary Gaussian process with mean zero
and covariance spectral measure C(dή) obeying

C(dη) = ζ(η)dη;
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for some c, ρ > 0. Let F be a bounded C1 function on R which is not constant. Then,
for a.e. ω, the random Schrόdinger operator

H(ω)=-~+F(Xx(ω))

has a pure point spectrum with exponentially decaying eigenfunctions.

Proof. Choose an open interval (α,/?)CR with Ff(x)>0 on (oc,β) (if F' is only
negative, a similar argument will work). Let δ = ̂ (β — α) and let

Ω0 = {ωeΩ\Xx(ω)e(ot + δ,β-δ) for all xe[0,α]}.

Then P(Ω0)>;. Pick a C00 function go(x) on R so that ^ 0 Ξ 0 O I I R\[0,α] and
0<qo(x)<l on(0,α). Let

Since q(x, t) may not be non-deterministic (though X is), one needs additional
arguments to show that the Lyaponov exponent is positive; see [26]. By Theorem
3.1,

H(ω, t) = - -^ + F(Xx(ω) + tqo(x))

has pure point spectrum with exponentially decaying eigenfunctions for a.e. t and
a.e. ωeΩ0. The hypotheses on the covariance show that {Xx{ω)} and
{Xx(ω) + tqo(ω)} are mutually absolutely continuous, so that the desired result is
proven. •

Example 3. Let {Bx \ x G R } be two-sided Brownian motion on the n-torus Tn and
let / be a C^nonconstant function on Tn. Then

dx2

has pure point spectrum with exponentially decaying eigenfunctions for a.e. B.

Proof. By the Cameron-Martin formula, if (p(x)eCo

w, {Bx} and {Bx + φ(x)} are
mutually absolutely continuous. Given this, the argument in Example 2
extends. •

By using rotations, one can prove a similar result for Brownian motion on a
sphere. Unfortunately, unless the manifold supports many isometries, one cannot
use this argument for Brownian motion on a general Riemannian manifold.

4. The GMP Argument Revisited

The first rigorous result on localization was the following theorem proven by
Goldshade et al. [10]:

Theorem 4.1. Let {Bx\xeR} be two-sided Brownian motion on a compact
Riemannian manifold, M. Let F: M-+R be a C00 function with only isolated critical
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points. Then, for a.e. B,

-—2+F(Bx) = HB (4.1)

has only pure point spectrum with exponentially decaying eigenfunctίons.

A key element of their proof was an appeal to Hόrmander's hypoellipticity
theorem to conclude that a certain heat kernel is smooth (we will describe this
kernel soon). We had hoped to find a direct argument that would eliminate the
appeal to hypoellipticity but, in fact, with one important proviso, the applicability
of Theorem 2.1 is essentially equivalent to the boundedness of this integral kernel.
Let us begin by sketching a proof of the GMP result:

Sketch of a Proof of Theorem 4.1. Instead of conditioning on the potential
{F(BX) I x φ [0, a}}, we can condition on the actual path {Bx \xφ[0,ά]} and carry all
the arguments through. By the properties of Brownian motion, conditioning on
{Bx \xφ[0,ά]} is the same as conditioning on {Bo} and {Ba}. Thus, fix Bo = moe M,
Ba = mιeM and θ e [0, π). For each Brownian path and energy, E, [Bt | 0 ̂  t ̂  a]
with B0 = m0,Ba = m1, we can solve the Schrodinger equation for (4.1) at energy E
with initial condition θ at x = 0 and obtain an angle φ at x = a. Averaging over all
Brownian paths with the relevant end points gives one precisely

Pa(m0,θ;ml9φ)dφ9

where Pa is the heat kernel studied by GMP. The hypoellipticity implies the
boundedness needed to apply Theorem 2.1. In fact, the boundedness of the integral
kernel is equivalent to the boundedness of this conditional distribution. •

In addition to one major possible extension which we will discuss below, we
want to note several ways in which this argument uses less than the full
hypoellipticity:

(a) Only boundedness of Pa and not smoothness is required.
(b) One only needs boundedness for some a which is sufficiently large.
We believe that by combining these ideas with the one we will discuss next, one

can handle function F with much less regularity than being C00.
The major weakening in the hypothesis involves the fact that one need not

control all paths but only a subset of paths. This allows one to extend the GMP
theorem to treat the case where F is constant on a part of the manifold:

Theorem 4.2. Theorem 4.1 extends to the case of any nonconstant C00 function

Proof. Let M o c M be an open set on which FFφO and let G.M-+WL be a C00

function with isolated nondegenerate critical points, so that G\M0 = F\M0. Let

Ω0 = {Bx\BxeM0 for Ogx^α}.

Then the restricted conditional expectation of φ, conditioned over Ωo and
multiplied by P{Ω0) is given by a path integral which is the same for both G and F.
It is therefore dominated by the unrestricted conditional expectation for G, i.e. by

o,θ; muφ)dφ which is bounded by hypoellipticity. •
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5. An TV-Dimensional Result

In this section, we will discuss a different approach to continuum models which
works in higher dimensions, but which applies only to the somewhat artificial
model which most closely resembles the discrete case. It will illustrate the fact that
the method of Simon and Wolff [23] depends primarily on positivity of the
perturbation and not very much on its finite rank or even compactness. We are
heading towards a proof of the following:

Theorem 5.1. Fix v, and for neΈy, let χn be the characteristic function of those
X G R V with nj — ̂ ^Xj<nj + ^. For {λn\neZv}, a set of uniformly bounded reals,

d φ n e " H(λ)=-A+Σλnχn. (5.1)
neΈ

Fix φ<ΞL2(suppχ0) and let {λn}nΦ0 be fixed. Let dμλo be the spectral measure for
H(λ) and the vector φ. Then

f (5.2)

Lemma 5.2. Let C = A + iB with A, B bounded and self adjoint. Suppose that B^
Then C is invertible and

Proof. Write C = B*(B~ *AB~ ± + i)B*. B is invertible, and by the spectral theorem
applied to B~^AB~*,B~ *AB~* + i is invertible with

Thus

Iic-I^HB-*!!2^-1. D

Proof of Theorem 5.1. Let A(λ) = H({λn}n + θ9 λo = λ), and let R(λ,z)
= χo{A(λ) — z)~ 1χ0 as an operator on L2(suppχ0) = Jf7, where Imz > 0. Then, by the
second resolvent equation

R(λ, z) = R(0, z) - λR(λ, z)R(0, z)

or, formally,

R(λ, z) = R(0, z)(l + λR(0, z))-1. (5.3)

Suppose ImΛ<0. Then Im^" 1 +i^(0,z))^Im(/l~ 1 ), so by the lemma, (ί+λR(0,z))
is invertible, and for Xreal and Imz > 0, it is not hard to show (by the lemma again)
that (H(λ) - z)~x = lim (H(λ- iε) - z)" 1 . Thus (5.3) holds for Imλ < 0 and boundary

values can be taken so

can be evaluated by closing a contour in the lower half-plane. The result is

f (l+λ2y1R(λ,z)dλ=-π(-R{0,zΓ1 + i)-1
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(where R(0,z)~l is interpreted as limi^( — Ϊ ^ Z ) " 1 ^ . By the lemma, we see that

and that

which implies (5.2). Π

With this result and previous work, one can obtain localization of states in
certain multidimensional models, a result already proven by Frόhlich, Martinelli,
Scoppola, and Spencer [9] using different methods. We will require the following
result which combines ideas of Holden and Martinelli [11] and Martinelli and
Scoppola [17]:

Theorem5.3. Consider the Hamiltonίan(5.1), where {λn} are ί.i.d's with distribution
g(λ)dλ with geL™ and suppg bounded. Then, for each sufficiently small energy, E:

For a.e. λ, every polynomially bounded solution of H(λ)u = Eu is exponentially
decaying.

Given this result, we can prove:

Theorem 5.4. Consider the Hamiltonian (5.1), where {λn} are i.i.d.'s with distribution
g(λ)dλ with geU° and suppg bounded. Then for all sufficiently small energies, H has
only pure point spectrum with exponentially decaying eigenfunctions.

Proof. Follow the proof of Theorem 2.1 replacing the Furstenburg and Osceledec
theorem by Theorem 5.3 and replacing Lemma 2.2 by Theorem 5.1. •

6. A Continuum Wegner-Type Theorem

In this section, we want to show how to obtain an estimate on the integrated
density of states, k(E), from Theorem 5.1 of the following form:

Theorem 6.1. Let Hω=-A+qωon L2(RV), where

and the WJri) are i.i.d's with distribution g{))dλ. Suppose that \\g\\^ < oo and that g
has compact support. Then, for each R, there exists CR with

\k(E)-k{E')\^CR\E-E'\ if \E\,\E'\^R.

Remark. CR is only a function of R, WgW^, and (suppg).
This result is an analog of a celebrated result of Wegner [24] to explain where

it comes from, it is perhaps worth explaining how to recover Wegner's precise
theorem from the calculation of Simon-Wolff.
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Theorem 6.2 (Wegner [24]). Let k(E) be the integrated density of states for a v-
dimensional Anderson model with potential density g(λ)dλ with \\g\\ ^ bounded. Then

\k{E)-k{E')\^\\g\\JE-E'\.

Proof. Suppose first that g has compact support. Let dμλΛΌi]ι^0 be the
spectral measure for H with potential ϋ(ή) = Όn (n + 0) and υ(0) = λ. By the cal-
culation of Simon-Wolff:

for any ε. It follows that

(pl + i)~a is trace class and uniformly in L:

ll*n(P
2 + lΓ"xJli=Trace class norm of ω p ' + l Γ '

To see this, one need only use the Payley-Weiner theorem to note that the integral
kernel K(x,y) of (p2 + ί)~"12 is a function of (x—y) with

$\edMf(x)\2dx<oo.

Thus, the Hilbert-Schmidt norm obeys

from which the above estimate follows. Thus

S Σ llz»(P2 + l)"βzJ
n,m

ScU.

Now, if E{ah) is the spectral projection,

ε |0 e

SO

Let ψ^ and e\ be the eigenfunctions and eigenvalues of HL. Suppose \e^\<R;
then, by Holder's inequality

1 =(rf, ri)ύiwL

n, (P2 + l)">n

L)(φ«L, (P2

Thus, if \a\,\b\<R:

Ίr(Elaib)(HI))=
a ύ ek ύ b
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But dk(E) = Έxp(dμυ(E% so taking expectations over {υf}f φ 0 in this last expression,
we obtain

By a limiting argument, one obtains the case of general g. •

Proof of Theorem 6.1. Place the system in a box of side L with periodic boundary
conditions. The proof of Theorem 5.1 shows that, for any values of {W(ή)}n + 0,

dλ
]{\+λ2)^

\\\g{λ)dλχ0

Thus, averaging over {W(n)}n + 0,

Since zero is not special

for each n. Since lm(HL — z)~1=A(z, ώ) is positive, we have

(φ, χnΛ(z, ω)χmφ) ^ (φ, χnA(z, ω)χnφ)*(φ, χmA(z, ω)χmf,

so by the Schwarz inequality (on the probability space):

for all n, m.
Now let pL be the momentum in the box. Then, for α > v/2, (p£+ l ) " α is trace

class and uniformly in L:

class norm of (χn(p2 + l)^χmUce-^-^ .

To see this, one need only use the Payley-Weiner theorem to note that the integral
kernel K(x,y) of (/?2 + l)~ α / 2 is a function of (x — y) with

Thus, the Hilbert-Schmidt norm obeys

from which the above estimate follows. Thus

n, m

g>cL\

Now, if E^b) is the spectral projection,

b

ε |0 e
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SO

Exp Tr((p2 + l)-*£(f l>i))(HL)) ^ cU(b - a).

Let ψ% and e\ be the eigenfunctions and eigenvalues of HL. Suppose \e%\ <R;
then, by Holder's inequality

Thus, if |α|, |

Tr(£ ( a, 6 )(HL))=

Thus, dividing by U and taking L-> oo:

\k(b)-k(a)\Scd\b-a\,

as was to be proven. •

Remarks. 1. The contortions involving putting in (p2 + l)~α and then taking it out
are needed because it is natural to average the resolvent, but the resolvent is not
trace class due to high energy contributions.

2. In some ways, it might seem more natural to cut off the high energies using
the interacting resolvents. But this makes the averaging harder, so we use the free
Hamiltonian p2.

3. One can extend the above argument to show that if geU (with compact
support) (rather than L00) and p > l , then k(E) is Holder continuous of order
q~1 = l-p~1. The basic idea is to note that Im[Jdμ(E)/(E-z)]^c(lmzy1+θ

b άχ
implies \dμ ^c\b — a\θ. When we control J -jR(λ,z) we deduce a bound:]ί+λ2

Jg(λ)dλ(φ,ΊmR(λ,z)φ)^ \\g\\LP ί J - - — | ( φ , lmR(λ,z)φ)\Λ , (6.4)

where the U norm is with respect to a measure (l+λ2)p/qdλ. Since ||i?(A,z)||
we find that

RHS

Appendix

Lyaponov Decay is a Tail Event. In this appendix, we will prove the following result
which we need in Sect. 2, which we feel is of wider interest:
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Theorem A.I. Let qω(x) be an ergodic stochastic process with \qω(x)\^Cω(l + \x\2)

with probability 1 and let Hω = — —^ + qω(x) Then the probability that the spectral

measure for Hω is supported on the set of energies, E, where the transfer matrix has
Lyaponov decay is either 0 or 1.

Remarks. 1. The hypothesis \qω\ ^ Cω(l + \x\2) is not essential. A similar bound on
•+l \l/2

ί \q<Jty)\2dy would certainly suffice.
- i /

2. Actually, the theorem is only colloquially started. In order to talk of the
probability of the set in question, one needs to show it is measurable, but by
ergodicity, once one has the measurability, the probability 0 and 1 is immediate. A
more proper statement would say that the set in question is measurable (see
Lemma A.3 below).

Define Uω(E,x) to be the transfer matrix for Hω and γ(E)
= lim |x|~ Vn||t/ω(E,x)|| for a typical ω. Also define y+(ω,E)

|Λ:|-> oo

= lim |x| ~ Vn|| Uω(E, x)|| and y _(ω, E) with lim replaced by lim. Since the limits

can be taken through subsequences and Uω(E,x) is jointly measurable in E,ω,x:

Lemma A.2. y±(ω,E) and y(E) are measurable (jointly in ω,E and in E).

Let Qω(dE) be the spectral measure of Hω as defined in Sect. 2. Define

Aω is measurable in E by Lemma A.2.
The key fact we need is

Lemma A.3. ρω(Λc

ω) is a measurable function of ω.

Proof of Theorem A.I Given Lemma A3. Let Tx be the family of translations. It is
trivial that y±{Txω,E) = y±{ω,E\ so ATχ(ύ = Aω. Moreover, ρω and ρTχCO are
mutually equivalent as spectral measures for Hω, and thus

{ω I QTχω(Ae

Tχω) = 0} = {ω\ ρω(Ae

ω) = 0}EEΩ.

By ergodicity, Ω either has measure 0 or 1. •

To prove Lemma A.3, we need a little bit of measure theory. We call a family of
finite measures μω on IR indexed by ω e Ω measurable if and only if J eιtxdμω(x) is
jointly measurable in ω and t.

Proposition A.4. (a) If μω are measurable in ω and F is a bounded measurable
function, then J F(x)dμω(x) is measurable in ω.

(b) // μω are measurable in ω and F(x, ώ) is jointly measurable in (x, ω), then
f F(x,ω)dμω(x) is measurable in ω.

Proof (a) Let J^ be the set of bounded measurable functions for which
ω i—• j F(x)dμω(x) is measurable. By hypothesis, eixte^ for all t and clearly if

, sup|Fπ(x)|< oo, and Fn(x)->F(x), then Fe&.lt follows that all bounded

measurable functions are in J^ since OF is the smallest set closed under the
indicated limits containing all eιxt.
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(b) Let #o be the set of all 3F with ω h-> J F(x, ω)dμω(x) bounded. #"0 is closed

under the same limits as in part (a) and, by part (a), contains any finite sum of

product function g(x)h(ω) with g, h measurable. Thus, by the definition of the Borel

class of functions, #"0 is all Borel functions. •

Proof of Lemma A3. We must begin by coping with the fact that dρω is not a finite

measure. However,

is a finite measure and it is measurable in ω, since e~ιtH(0(εH^0-i-l)~1 has a

measurable integral kernel. Let F(ω,E) be the characteristic function of Ac

ω. F is

measurable by Lemma A.2 so, by Proposition A.4, J F(ω, E)dμ(^(E) is measurable,

and thus

e j O

is measurable. Π
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