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Abstract. We prove, for the Maxwell-Dirac equations in 1 + 3 dimensions, that
modified wave operators exist on a domain of small entire test functions of
exponential type and that the Cauchy problem, in R+ xR3, has a unique
solution for each initial condition (at t = 0) which is in the image of the wave
operator. The modification of the wave operator, which eliminates infrared
divergences, is given by approximate solutions of the Hamilton-Jacobi
equation, for a relativistic electron in an electromagnetic potential. The
modified wave operator linearizes the Maxwell-Dirac equations to their linear
part.

1. Introduction

Our basic understanding of electromagnetic interactions started with the funda-
mental discovery made by P. A. M. Dirac of the relativistic electron equation. After
years of development it was only in the late forties that Sch winger, Feynman, and
Tomonaga formulated Quantum Electro-Dynamics, the theory of fundamental
interaction between electrons and photons. This theory, which starts with
quantum operator-valued Maxwell-Dirac (M-D) coupled equations, ends up with
a set of rules deduced non-mathematically from the previous, permitting to
calculate with very high precision different electromagnetic processes. These are
the famous Feynman rules. One can take the point of view that all the physics we
need is contained in this set of rules, and therefore this is the only thing that
matters. However it is quite tempting to believe that, though we did not deduce
these rules mathematically, still the quantum M-D equations must have some
sense.

* This work is dedicated to Walter Thirring upon the occasion of his sixtieth birthday with
appreciation and friendship
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Knowing in addition the fundamental role the Maxwell equations play in
classical electromagnetism it is difficult not to believe that also in some sense the
classical M-D equation must have a fundamental importance.

The M-D equations being a system of coupled non-linear partial differential
equations, different mathematical questions appear, of which the most funda-
mental are the following:

a) Existence and uniqueness of solutions for small times.
b) Existence and uniqueness of solutions for arbitrary times.
c) Dependence of the first two questions on the choice of type and size of initial

data.
These questions have been debated in the literature at least in the last two

decades, by many authors.
As early as 1966 Gross [8] obtained, to our knowledge for the first time, the

existence and uniqueness of solutions, in suitable function spaces, for small times
(local solutions). This interesting result has not permitted any extension to the
problem of existence for arbitrary times. Kato [10] has later formalized this
approach.

Several authors have considered the problem of existence for arbitrary times
(global existence) of solutions for equations resembling the M-D equations.
Chadam found in 1972 [2] global solutions of the M-D equations in 1 + 1
dimensions using the existence of constants of motion. He also proved [3] that for
any fixed bounded region of space-time in 1 + 3 dimensions there exists a solution
of the M-D equations in this region.

Using conformal invariance techniques Choquet-Bruhat [4] obtained global
solutions for the zero mass Maxwell-Dirac-Klein-Gordon equations in the sector
of global charge zero. This a priori general statement does not contain much
relevance for the M-D system because of the following reasons:

a) The electron has a strictly positive mass as is reflected in the M-D system
and not zero mass.

b) The condition of zero total charge avoids definitely the M-D system as a
subsystem of the "general" M-D-K-G system.

This list of references to works on the M-D equations is certainly not
exhaustive. It will be remarked nevertheless that all works on the subject until now
did not refer to the problem of existence of global solutions of the 1+3 dimensional
(over Minkowski space) realistic classical M-D systems. The aim of the present
paper is to fill this gap.

More than 10 years ago we started the development of new techniques in the
theory of covariant non-linear evolution equations [5-7]. In particular we
developed cohomological techniques for existence and construction of lineari-
zation maps (transforming the non-linear equation into its linear part), which by
definition are time independent. The existence of such maps insures in general (e.g.
in the case in which the linear part is unitary) the existence of global solutions in
time at least for small initial conditions, existence of non-linear superposition
principles (like in the soliton case), and the existence of infinitely many constants of
motion like in the case of integrable systems in 2 dimensions [1, 12, 13]. It can
easily be understood that the usual Moller (or wave) operator in non-linear
classical field theory is a linearization map, but certainly not every linearization
map is a wave operator.
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From the Coulomb scattering problem in Schrόdinger Quantum Mechanics
we know that the modified Mόller operators can be constructed and that they
intertwine the interactive dynamics and the usual free dynamics. Taking this
experience into account we have been able (essentially subtracting the classical
infrared divergences) to construct a linearization map between the classical
interactive M-D equations and the usual linear part of these equations.

Our major new achievement in the present article is to establish the existence of
global solutions (for ί^O) of the M-D system. Our result can and will be
ameliorated in several ways:

a) Extension of globality to negative times.
b) Linearization of the whole Poincare action on the space of initial

conditions.
c) Explicit study of interplay between gauge invariance and linearization

techniques.
d) Introduction of more natural spaces of initial data such as spaces of

C°°-vectors for the linear part, in view of studying large initial data.
It is our claim nevertheless that this article solves for the first time the problem

of existence of global time solutions for the M-D systems.
The M-D equations in 1 + 3 dimensions reads in conventional notation (unit-

charge e=ί, yμyv + yvyμ = 2gμ\ goo = l, gli=-l for i= 1,2,3 and gμv = 0 for μ + v):

μ = 0,l,2,3, (1.1a)

μ Aμy
μψ, m > 0 , (1.1b)

dμA
μ = 0, (1.1c)

where ψ = ψ + y°,ψ + being the Hermitian conjugate of φ. We write Eqs. (1.1a) and
(1.1b) as an evolution equation:

d(Aμ(t)\ JO l)(Aμ(t)

) )dt\λμ(t)) \Δ o)\A(ή) + {W)yMty'

where 3) = —

The gauge
the form:

d
— ψ(t) = 9\p(t) - iAμ(ήy°yμψ{ΐ),

3

Σ y°yjdj + iy°rn, d — d/dxy

condition (1.1c) takes on initial conditions A(t0), A(t0),

3

ί = 1

3

ΔA0(t0) + \ψ(t0)\2+ Y BiA
i(to) = 0.

ψ(t0) at ί

(1

(1

.2b)

= ίo

.3a)

.3b)Σ
i= 1

It follows from Eqs. (1.2) and (1.3) that iΐψ(t0) φ 0, then the electrical field - djA0(t0)
+ Aj{t0) does not decrease faster that l/|x|2 in space. The potential Aμ(t0) will then
in general not decrease faster than l/|x|. The slow decrease in space of the potential
and the conservation of the total charge make it necessary to introduce long range
corrections in the definition of the wave operators. These corrections are
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introduced as follows. For a given Dirac field ψ, the electromagnetic potential Λμ(t)
in Eq. (1.1a) is split into a long range part Gμ(t) defined by formula (3.14) and a
short range part Aμ(t) — Gμ(t) which is in L2(R3). Phase functions S + ,S-, close to
solutions Sε of the classical Hamiltonian-Jacobi equation for a relativistic electron
in an external field Gμ, which is

~Sε(kt) + G0(-VkSE(Ktlt)J - ^ |fe£ + GE< - FfcSβ(fe, ί), Ol2 = m 2 , ί^O

(1.4)

are then determined by formula (3.40). The phase functions Sε serve to modify the
dynamics Wo (the evolution operator) of the outgoing electron states. W0{t, s) is the
unitary evolution operator in L2(1R3, C4) defined by

(W0(t9s)jγ(k)= Σ exp(iSβ(fc,ί)-iSβ(fc,s))Pe(fe)/(fc), t,s£O, (1.5)
ε = ±

where Pε(d), ε=± are the orthogonal projectors in L2(R3, C4) given by

Pε(k) = i (i + e ( - Σ v V ^ + m ? 0 ) ^ ) " 1 ) (1-6)

The Fourier transform is here defined by

/(/c) = (2πΓ 3 / 2 f e~ikxf{x)dx.

The evolution operator Wo satisfies

W0(t, s)W0(s, t) = I, jt W0(t, s) = ntW0(t, s),

d ( 1 7 )

-W0(t,s) = W0(t,s)<?(s),

where

l f (1.8)

Introduce

(1.9)

In order to solve the system (1.2) for given final states we integrate (1.2) into the
form:

j μ(t - s)φ)yδψ(s)ds, (1.10a)

ψ(t)=Wo(t,O)a+]wo(t,s)(S)-iyYAμ(s)-^(S))ψ(s)ds, ί^O. (1.10b)
00

The correspondence (a, ά, cή^>(A, xp) is not unique, because of the non-uniqueness
of &. This is not in contradiction with the fact that for given initial conditions
(i4, A, ψ) at t = 0, the solution of the M-D equations is unique.
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In this paper we will take aμ, άμ real and

άμJμe®(R3-{0},C), αe^R 3,C 4), (1.11)

and we denote by E+ the space of such final states (a,ά,oc).
The core of this paper is devoted to prove that Eqs. (1.10) have a solution

Λ^ήeC^iR3) and ψ(t)e W™>\R\C%1 ί^O, for every final state (α,ά,α)e£ +

being sufficiently small (Theorem 2.4). The method of proof, which is close to the
one used in [11], consists of first constructing (Theorem 2.3) explicitly an
approximate solution of Eqs. (1.10) absorbing the most slowly decaying (in space-
time) parts of Λμ(t) and ψ(t). When the approximate solution has been established it
is a simple matter, using a priori time decay of the remaining part of the solution, to
prove the existence for Eq. (1.10) (Theorem 2.4). It is proved that the map
Ω:(a9ά9oc)^(A(0),A(0)9ψ(0)) intertwines the nonlinear and the linear evolutions
(Theorem 2.7).

2. Statement and Proof of the Main Results

The proof of the results of this paper is based on the existence of an approximate
solution of Eqs. (1.10). We postpone the proof of this fact to Sect. 3.

Let the phase functions SεeCι(R+,CςΌ(R3,R)\ ε= ± satisfy

I Vk

n(Sε(K t) - εω(k)t)\ ^ Cn log(2 + 1 ) , (2.1a)

1 , (2.1b)

for all ί^O, keR3, n^.0 and some constants Cn<oo.
Let the map t^(β(ήye@(R3,C4) be C 1 and let β(t) = β + (t) +β_{t) satisfy2

(2.2a)

(2.2b)

supp(j8(0rc/C (2.2c)

for all t ̂  0, k e R3, n ̂  0, ε = + , and for some άε = Pεάε e @(R3, C4), some constants
Cn< + oo and some compact set KcR3.

Throughout this paper φ will be defined by:

(2.3)

The following theorem, stating that φ has decrease properties similar to those of
solutions of the free Dirac equation, will be proved in Appendix A:

Theorem 2.1. Let conditions (2.1) and (2.2) be satisfied. Then \\φ(t)\\Wn>oo

SCn(\+t)~3/2 for all ί^0, n^0 and some Cn<oo.

1 wn'p(Rm, Ck) is the subspace of lf(Rm, Ck) for which

2 In general βε will not be equal to Pε{d)βε
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By a long range electromegnetic potential, we mean a function

satisfying

\k\2\kt\n\(Gμ(t)T(k)\SCn, (2.4a)

supp(Gμ(ί))AC/C, (2.4c)

for all t ^ 0, fc e # 3 , μ = 0,1,2,3, « = 0,1,... and some compact K independent of t
and some finite constants Cn.

It follows from (2.4) that (with new Cn):

(2.5a)

(2.5b)

for all n^O, μ = 0,1,2,3 and some C n <oo.

We can now state what is meant by an approximate solution of Eq. (1.10).

Definition 2.2. Let (a,ά,oί)eE+ and let S,β,G satisfy respectively (2.1), (2.2), and
(2.4). (B,φ) is said to be an approximate solution of (1.10) if Bδ(t) = μ(t)aδ + μ(t)άδ

+ Gδ(t) and

ii)

iii)

for all ί^0, n ^ 0 , and 0^(5^3. Here

Mδ(t) = μ(t)aδ + μ(t)άδ + J dsμ(t - s)φ(s)ryδφ{s) - Bδ(t) (2.6)
00

and

Φ(t) = W0{t, 0)α + ί ds W0(t, s) {β - iy°yμBμ(s) - &(s))φ(s) - φ(t). (2.7)
OO

A constructive proof of the existence of approximate solutions will be given in
Sect. 3.

Theorem 2.3. For every (a,ά,ot)eE+ there exists an approximate solution (B,φ) of
Eq. (1.10). Further (B, φ) can be chosen such that the constants (in Definition 2.2)
C,,—>Ό as (α, ά, α)—>0 in E + .

Let E+(<51? δ2), where 0 < δί < δ2, denote the subspace of functions (a, ά,oc)eE +

such that suppαc{^ 1 ^|/c |^^ 2 }, suppάc{δίS\k\Sδ2} and suppάc{|fc|^(52}.
With Gross [8] we introduce the Hubert spaces Mn, n^O, of distributions
(/, g) e S'(R\ R4)®S'(R\ R4) satisfying
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E is the space of elements (/, g, χ) such that (/, g) e Mn and χ e Wn> 2{R3, C4) for all

The main result of this paper can now be stated:

Theorem 2.4. Given 0<δ1<δ2 there is an open set Θ{δu δ2) inE+(δu δ2) such that, if
(a,ά,0L)eΘ(δuδ2), then for 5£ given by Theorem 2.3, the equations

Av(t) = μ(ήav + μ(t)άv + J μ(t - s)φ)δvψ(s)ds, (2.8a)
00

ψ(t) = W0(t, 0)α + ί W0(t, s) {2 - iyYAβ(s) - tf(s))φ)ds, (2.8b)
00

where v = 0,1,2,3 and t Ξ> 0, have a unique solution (A, ψ) with (A,A,ψ)eC°°(R + , E).
The solution satisfies the following decay property:

for every n^.0. The solution (A,A,ψ) depends continuously on the data (α,α,α).

Proof Let Dn, n ̂  0 be the space of continuous functions from R+ to

W1- 2(R\ R4)® W"> 2(R\ C 4), t^(bμ(t), φ(ή),

where μ = 0,1,2,3 satisfying

Given an open neighbourhood Θ(δuδ2) of zero in E + (δuδ2) there exists
according to Theorem 2.3 an approximate solution (B, φ) for every
{a,ά,(ήeΘ(δuδ2).

Introduce the function 3f:(b,φ)-+(b',φ'), (b,φ)eDn for some fixed n^2, by

b'δ(t) - Mδ(t) + Jμ(ί — s) (φ(s)yδφ(s) + φ(s)yδφ(s) + φ®y δφ{s))ds, (2.9)

φ'(t) = Φ(t) + j W0(t, s) {(2 - iγ°rBμ(s)
00

- iγYbμ(s)φ(s) - iγYbμ(s)φ(s))ds, (2.10)

where M is given by (2.6) and Φ by (2.7). X is a function from £)„ to Dn iΐn^.2. In
fact, fr'(f) and φ(ί) are continuous in ί and

+116^)11^^11^)11^2+1! V*) II «-> II </>(*) I U c a -

using the fact that (b,φ)eDn, introducing ρι = \\(M,Φ)\\Dn,
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and

which, according to Theorem 2.3, Definition 2.2 and formula (2.1b) are finite, we
get

II ^ ( 0 I I f^» ^ ̂  II Λ ^ M W II w- * + c Λ ( i + ί ) " 1 ( II (fe, <p) IIS,. + II (&• «>) II ^ β 2 ) ,

+ \\(b,φ)\\2

Dn+\\(b,φ)\\Dnρ2).

The last inequalities give

^ (2.11)

which shows that Jf:Dn-^Dn for every n^2. (Here Cn depends only on the
definition of the norms).

Similarly one gets:

+ Q3)\\(bί,φί)-(b29φ2)\\Dn),

which shows that Jf is a contraction in a sufficiently small neighbourhood of 0 in
Dn if ρ2 + ρ 3 is sufficiently small, n being fixed we choose, according to Theorem 2.3,
Θ{δuδ2) so that Q2 + Q3 is sufficiently small. The equation

(b,φ) = Jf(b,φ) (2.13)

has then a unique solution (b, φ) e Dn.
It follows now, taking Θ(δί, δ2) sufficiently small, that (b, φ)eDί for all i^0. In

fact, omitting the details, if (V% Vkφ)eDn for fc = 0,1, ...,m, then ( F m + 1 b , Vm+ιφ)
has to satisfy the equation

where L is a real linear operator on Dn, independent of m, with ||L|| < 1 if &(δl9 δ2) is
sufficiently small.Fm + ί eDn and Fm + 1 depends only on (Vkb, Vkφ) for k = 0, ...,m.
Hence by induction

(V% Vkφ) E Dn for all m ̂  0.

It follows from Eq. (2.9) that the solution (b, φ) e (J Dm satisfies
m>0

— bv(t) = j t Mv(ί) + J /i(ί - s) (φ{s)γvφ(s

This equation, Theorem 2.3 and {b,φ)e (J Dm give that

1 Λ_t\-3/2

for all m ̂  0. In particular we conclude that (b{t), b(t)) e [j Mm for all t ^ 0 and that
{b{t\ b(ή, φ(ή) is uniformly bounded in E for ί^O. m = °



Global Solutions of the Maxwell-Dirac Equations 29

We define A = B + b and ψ = φ + φ. It follows from Definition 2.2 and
inequalities (2.4) and (2.5a) that

sup(\\(B(t)9B(ή\\MnHί+t)\\B(t)\\Wn^)< + oo for all tt^

It follows from Theorem 2.1 that

Together with the above properties of (b, φ) this shows that the decay announced in
the theorem is true.

By the construction of Jf, A, and ψ, Eq. (2.8) is satisfied by {A,ψ) with
(A, A, ψ) e C°(R +, E). For a S£ given by Theorem 2.3 the solution {A, ψ) is unique as
Jf has been proved to be a contraction. The fact that (A, A, ψ) e CCO(R+, E) follows
from differentiation in t of Eq. (2.8). Q.E.D.

The solution (A, ψ) of Eq. (2.8) satisfies the M-D equations. The proof of this
fact being obvious we only state the result:

Corollary 2.5. In the situation of Theorem 2.4, .4 e C°°(JR + xR3, R%
ψeC™(R+ xR\C% and (A,\p) satisfies Eq. (1.1a) and (1.1b).

If the data (a, ά, ψ) satisfy the Lorentz gauge condition then this is also the case
for the solution:

3 3

Corollary 2.6. If ά°+Σ <V = 0 and Aa°'+ £ 3 ^ = 0, then A in Corollary 2.5
satisfies dμA

μ = 0. ί=ί I = 1

Proof Equations (1.1b) and (2.8a) give that

Let Θ be a union of sets Θ(δuδ2) given by Theorem 2.4. Denoting d/dtA(t)
= A(t\ we define a modified wave operator Ω.Θ^E for Eq. (1.2) by Ω(a,ά,oc)
= (A(0),A(0),ψ(0)). Let

be the evolution operator defined by the linear part of Eq. (1.2). That Ω intertwine
the linear and nonlinear evolution is the content of the following theorem:

Theorem 2.7. The continuous map Ω.Θ^E satisfies

(A(t), A(t\ ψ(ή) = Ω(U}(a, ά,a)), tZ 0,

where (a,ά,a)eΘ and (A,ψ) is the solution of Eq. (2.8) given by Theorem 2.4.

Proof Let r^O, let (A,ψ), be the solution of Eq. (2.8) with initial data (a,a,a)e&
and let {A\\p') be the solution of Eq. (2.8) with initial data Uj;(a,ά9oι), i.e.

J μ(t~s)W)yv(s)ψf(s)ds (2.14a)
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and

ψ'(t)=Wi(t,0)e£>ra + J Wi(t,s)(®-iγoyvAM-&'(s))ψ'(s)ds, (2.14b)
00

where WQ and 5£' are given by Theorem 2.3 for the initial data Uj:(a,ά,oc). It is
enough to prove that A\t) = A{t + r) and that \p\t) = ψ(t + r) for all t ^ 0.

Equation (2.8b) gives, for i , r^0,

ψ(t + r) = W0(t + r, 0)α + j W0(r + r, 5 + r) {β - iy°yvAv(s + r) -
00

It follows from this equation that lim WQ(0, t)ψ(t + r) = e®roc, where the limit is
t-+ 00

taken in Wn'2 for any n^O. Equation (1.2b) gives:

(d/dt)(Wi(0, t)ψ(t + r))=- W&0, t)&'(ήψ{t + r)

^ - iAμ(t

This equation can be integrated from + 00 to t, and we can conclude that
Eq. (2.14) is satisfied with A'(t) = A(t + r) and ψ'(t) = ψ(t + r). This proves the
theorem, as the solution of (2.14) is unique according to Theorem 2.4. Q.E.D.

3. Construction of an Approximate Solution

In this paragraph, we construct approximate solutions of the M-D equations,
which satisfy Definition 2.2.

Introduce

Q\(S,B, ί ) = } μ(t-s)φ(s)yvΦ(s)ds, (3.1)
T

where T ̂  t §; 0 and φ is given by (2.3). If there is no risk of confusion we write Qv

τ(t)
instead of Qv

τ(S,β,t). Denote by 6^(0 = Qv(0 and by

To begin with we prove existence and decay properties of Q(ή. We define

Jΐ(t) = φJtWΦe(t), ε = ± . (3.2)

When needed the dependence on S and β will be indicated by Jμ

ε(t) = J%(S,β, t).

Lemma 3.1. There are finite constants Cn such that

for allkeR3,t^0,ε= ± and integers n^0. The support of (J^(ί))A is contained in a
compact set independent of t.

Proof Introduce, for given ε and μ,

u(k, k\ t) = ((βε(t)T) (kf ~ k)y\βlt))\k') (3.4)

and
?,t) = Se{k',t)-Sε(k'-k9t). (3.5)
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As supp(/?ε(ί)Γ is contained in a compact set independent of t, there is δ > 0 such

1 a t supp(Jμ

ε{t)XCB(0, δ) for all t^0.

Here B(0,δ) = {keR3\ \k\<δ}. Let 0<δ,<δ. If \k\>δ, then (3.3) is satisfied as
(J?(t)Πfc) = 0fort^0.
Let δ>\k\>δί. Then

has no solution. Hence there is v > 0 such that

I Vk{ω{k!) - ω(k' - k))\ ^ 2v for all k! e supp(j8ε(ί))AC X,

and <51<|fe|<5. If t is sufficiently large, it then follows from (2.1a) that
\Vk,v(k, kr, t)/t\ = v for k' e K and δt < \k\ < δ. Theorem 7.7.1 of [9] and (2.2a) now give

^O. Let \k\^δί and introduce h(k,k',t):R3-+R by

h(k, k\ t) = J Vk(Γ ιv(sk, k\ t))ds. (3.6)
o

One gets by the definition of h that

We observe that the matrix, with elements

where 1 ̂  f ̂  3,1 ^ j r ^ 3, is, according to (2.1 a), uniformly bounded together with its
inverse for all k! if t is sufficiently large. This shows that Vk>h(k, k\ t) is non-singular
for all \k\^δukeK, and t^T,iΐδιis sufficiently small and Tsufficiently large. As
Vk>h(k9 k\ t) is bounded for all t and k, k! e R3, it follows from the implicit functions
theorem and by partial integration that

{\k\t)n\\dk'u{K k\ ήeίhiKk'J) kt\ ^ Cn, n^O

for all \k\^δ1 and ί^O [we also used that Vk

n,u{k,k!',t) is bounded by (2.2a) and
β \ C 4 ) l Q.E.D.

Let τi5 f = l , 2 be monotonic continuous functions τ f : Λ + ^ l ? + with

and τ 2 ( ί ) ^ C ( l + Γ ) " 1 for some C ^

Lemmma 3.2. Lei S ( 1 ) and S ( 2 ) satisfy (2.1a) and teί β(1) and β(2) satisfy the conditions
(2.2a) and (2.2c). //, for some constants Cn _• 0,

I V?(S?Kk, t) - S{2\k, ί))| ̂  Q τ ^ t ) αnrf | Vk\β^\t) - β{2W(k)\ £ CBτ2(ί),

ί/ ere are constants C'n depending only on {C^fL0 such that

\kt\"\{J^\ β^, t)Πk)-(JΪ(S(2\ p2\ ί)Γ(/c)| g Q τ i ( 0 (1 +1)~ ι + τ2(t))

for all ε= ±, keR3, ί^O and integers n^.0.
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The proof of this lemma, being very similar to that of Lemma 3.1, we omit it.
Introduce

I^(t) = φ-ε(t)γμφε(t), (3.8)

where c = + 1 , μ = 0,1,2, 3 and t ̂  0. When needed the dependence on β and S will
be indicated by I^(S, β91).

Lemma 3.3. There is a finite constant C such that

and

dt
(e

-2iεω(k/2)t

for all ε = +, t ̂  0, and μ = 0,1,2,3. 77ιe support of (/g(ί)Γ *s contained in a compact
set independent of ί^O.

Proo/ The existence of a compact set Kx such that supp(/^(ί))AC Ku for all ί ̂  0 is a
direct consequence of the formula (3.8) and the property (2.2c) of β.

Denote, for given ε and μ,

u(K k\ t) = (

and

Then

(3.9)

(3.10)

Jv(k,k',t) (3.11)

By the implicit functions theorem, equation t ~1 Vk,v(k, k\ t) = 0 has for k e Kx and t
sufficiently big a unique solution k! = p(k, t), which is close to fc/2. In fact, the unique
solution of Vk{ω(k!) + ω(k! — k)) = 0 is k' =\k and the determinant of

——— (ω(k') + ω(k' — fc)) for k! = \k is 8m2/(ω(^/c))5. By continuity the determinant of

{d2l(dk'idk'^)v(k, kf, t) is different from zero in a sufficiently small neighbourhood of
k! =i[k, if ί is big enough, which proves the existence of the solution k! = p(k, t). pis a
continuous function and k^p(k, t) and k-+(d/dk)p(k, t) are C00. It follows from the
equation Vk,v(k,k',ή = 0 and (2.1) that

and

for all keKx and ί^O. Consequently

\t~ MKpik, t), t)-ε2ω(k/2)\ ^ C(l + ί)~ x log(2 + ί)

and

(3.12)

(3.13)
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Application of Theorem 7.7.1 of [9] to (/£(ί))A and ((δ/δί)/£(ί))A given by (3.11) with
t~ιυ(k,k',t) as a phase function gives the result. Q.E.D.

For J defined by (3.2) introduce

t

Gδτ{t) = \ μ(t — s) £ Jδ(s)ds, (3.14)
T ε=±

where O^t^T, Γ^O, and 5 = 0,1,2,3. Denote Gδ = Gδ

co. When needed, the
dependence of Gδ on S and β will be indicated by Gδ(S, β, t).

Theorem 3.4. There are constants Cn v such that

and

\k\2+v\kt\"\(Gδ

Tι(tmk)-

'd
ft(Gδ

Tl(t)-Gδ

T2(t)nk)

such that

and

ύCn,vT~v

integers n §; 0. There are also constants Cn

2\kt\n\{G\t))\k)\^Cn

\k\ \kt\"

for allt^0,n^. 0. The support of (G0(fff is contained in a compact set independent of

Proof. The support property for (G\t)y is a direct consequence of that given by
Lemma 3.1 for (Jf(t)Γ

Lemma 3.1 and the definition (3.14) of Gδ

τ give for v^O, rcί O, and

Σ

-^flfcfd+ifciTr-r1.

~ ?

This gives

l + MGl

Ti(t)-GUt))\k)\\kT\n

- l τ - V ^ 2^« + v (3.15)

which proves the first inequality of the theorem. Hence Gδ(t) = Gδ

o0(t) exists in the
sense of (3.15). The second is proved in a similar way. As Gf(ί) = O, the third
inequality of the theorem follows from (3.15) by putting v = 0, T2 = oo, and
Tγ = T= t. The last inequality is proved in a similar way. Q.E.D.
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G given by (3.14) has, as a function of S and β, the following property:

Theorem 3.5. There are finite constants Cn, n^.0 such that:

for all ί^O, keR3, n^O, and <5=0,1,2,3.

ii) |(F"(G%S(1), β ( 1 ), t) - Ga(S<2), β(2\ ί)) (x

/or all ί^O, xeK 3 , n^O, and 5 = 0,1,2,3.

iii) \(VGδ(S, β, t)) (Xl) -(V»G\S, β, t)) (x2

forallxux2eR3, f = 0, and δ = 0,1,2,3.

Proo/ Lemma 3.2 and the definition of G give that the left-hand side of the
inequality in i) is smaller than

\k\2(ί+\kt\γ

which proves the statement i) of the theorem, ii) is a direct consequence of i) and iii)
is a direct consequence of Theorem 3.4. Q.E.D.

For J£(ί) defined by formula (3.8) introduce

Hδ

τ{t) = ]μ{t-s) Σ Iδe(s)ds,
T ε= ±

where 0 ^ t S T and δ = 0,1,2,3. Denote ^ = # ^ .

Theorem 3.6. H5

T(ί) converges ίo H\t) and (d/dt)Hδ

τ(t) to (d/dt)Hδ(t) in Wn2(R\ C4)
as T-^oo, for every ί^O, π = 0,1 ... and δ = 0,1,2,3. Moreover

and

/or α// ί^0, π ^ 0 , δ = 0,1,2,3 and some constants Cn< + oo.

Proo/ It follows from Lemma 3.3 that the support of Hδ

τ(t) is contained in Kί for all
0 ^ ί ^ 7 ; T ^ 0 , and 5 = 0,1,2,3. By Lemma 3.3 and as suppi/^(ί)CK1 ? there are
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Cn < oo such that

35

for all 0^T1^T2, n^O, and 5 = 0,1,2,3, which proves the existence of the limit
Hδ(t). Similarly one proves that

(d/dt)H*(t)-+{d/dt)Hδ(t).

By the definition of H\t)\

\{H\t))\k)\ =

<

jsm(\k\(t-s))Σ(Iδ

ε(s)T(k)ds

ε' |fc| + 2εω(fe/2)s/ - ΐ2

2|/c| ε , ε ^

We get after partial integration in s, using Lemma 3.3:

piε'\k\

,εω{kβ)
i{ε'\k\ + 2εω(k/2))s (3.17)

As (2ω(fe/2)-|ίc|)~1 is uniformly bounded for all fcesupp(if£(ί))ACK', where K' is
independent of ί^O, ε = ± , and 5 = 0,1,2,3 it follows from (3.17) that

sup (1 + ί ) 3 / 2 II H\t) || ̂ n, 2) < 00 for all n =• 0.

Similarly one proves the last inequality. Q.E.D.

According to (3.1), (3.14), and (3.16) we have

δ for 0 ^ 7 ; 5 = 0,1,2,3. (3.18)

Corollary3.7. \Qτ(t\-~Qτ(t))eMn for all n^O, T^O, O^t^T and has a limit
\ dt J

(Q(t),Q(t)) in Mn as Γ^oo. Q satisfies (d/dt)Q(ή = Q(t).

Proof This is a direct consequence of Theorems 3.4 and 3.6. One has only to
choose v > 0 sufficiently small. Q.E.D.

We now turn to the problem of determining the modified asymptotic evolution
of the Dirac field.

Introduce

,β 9 a 9 ά 9 t )=- iS W0(t9s)(μ(s)aδ + μ(s)άδ)y°yδφ(s)ds, (3.19)

where O ^ ί ^ T^O, S satisfies (2.1), β satisfies (2.2) and άδe@(R3

9Q,
aδe@(R3,C) for 5 = 0,1,2,3. Denote by ^ = ̂ 0 0 .
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Proposition 3.9. (0>j(S9β9a9ά9t)Y converges in the topology of @(R3,C% to an
element (0>(S,β,a,ά,tyeS)(R?>,CA'\ 0> has the following decay property:

(l+t)n(0>{S,β,a,ά,t)y-+O in @(R\ C4) as ί-+oo

for every n^O.

Proof It follows from the definition of μ, Wo, a, ά, and β that the support oϊ((μ(s)aδ

+ μ(s)άδ)φ(s)y is contained in a compact set K' independent of s ^ 0 and δ = 0,1,2,3
and that it is a sum of expressions

where

and

Let supp/eK", where X" is a compact subset of # 3 — {0}.
For k! E K" and for k — k'eK, v(k, k', s) is C00 in fc, k! and there is v > 0 such that

u(k, k\ s) =/(fc') (βε2(s)y(k - k'), fe @(R3 ~ {0}, C), ε2 = +

v(k, k', s) = ε1|fc
/|s + Sε2(k-k',s), εί = ±,

ειk
f\kT1+ε2(k'-k)ω(k'-ky >2v.

By (2.1a) there is then s o ^ 0 such that

5~1|P7

k,t;(/c,/c/,s)|^v for all s^s0, keKr, k-k'eK.

Defining

un(k, k\ s) = e~ Mk> k'>s) Vk

neίv{k> k'>s)u{K k\ s ) ,

we have

Vk

nF(k, s) = J eiv{k>k'>s)un(k, k\ s)dk'.

By (2.1 a) and (2.2a) there is for every n ̂  0 an integer w'(n) and finite constants Cm n,
m ̂  0 such that

for all m ̂  0, V e K'\ k e K\ and s ^ 0. It follows now from Theorem 7.7.1 of [9] that
for all H,m^0,

|FMF(fc)|

The last inequality shows that

(1 + s)n((μ(s)aδ + μ(s)άδ(s)φ(s)y-+0

in £^(.R3, C4) as 5->oo. The proposition follows directly from this fact. Q.E.D.

Lemma 3.10. Let S satisfy (2.1 a) and let β satisfy (2.2a) and (2.2c). // β(k91) = (β(t)y(k),
then

sup
p,keR3
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forallN^.0 and some constants CN. Here S" +1 (k, t p) (respectively β%(k, t p)) is the
Taylor development of Se(k—p,t) (respectively βε(k—p,ή) to order JV + 1 (respec-
tively N) in p.

Proof. Introduce

fN+ι(k,t,p) = Sε(k-p,t)-S»+ι(k,t;p),

FN(k,t,p) = βε(k-p,t)-βε

s(k,t;p),

and

a'N(k,t,P) = eiS^-^βε(k-p,t)-e^ ' ' ^ ^ ( / ς ί p). (3.20)

Direct calculation gives:

k, t, p)\ = \e^ * '<"• ' »βε{k -p,t)~ β»(k, t, p)\
* , t , P ) F j v ( f c ) Upy[ + yfN + 1(k.t.p)_ 1 ψ ^ u p ) |

k,t,p)\ + \fN+i(k,t,p)\\βε(k,t,p)\,

where inequality |e ί x— l|5Ξx, xei? has been used. By hypothesis (2.1a) and (2.2a),
\FN(k,t,p)\^CN\p\N + ι

\ϊN + 1(k,t,p)\ΓιίCN\p\N+2-

Hence (with new CN)

K(K t, p)\ ί CN(\p\N+ > + \p\N+2f(l + \p\f),

which gives:

f o r f ^ l . Q.E.D.

Lemma 3.11. Let Gμ be given by (3.14) and otN by (3.20). Then there are CN<oo such
that

c, ί, k')dk'\ £

for all k e R3, t ̂  0, μ = 0,1,2,3, and iV 2ΐ 0 anJ there is a compact set independent of
t, containing the support of the function

R33k^$ {Gμ(t))\k')*ε

N(k, U k')dk'.

Proof. For given N ίϊ 0 and μ = 0,1,2,3 denote by

We have

1^J(|/c' |2(l +\k't\2f +

ί+\k't\
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Majoration of the integrand, with the help of Theorem 3.4 and Lemma 3.10 gives:

where the last integral is finite. Hence for ί^ l , there is CN such that \Γt(k)\
^ Q ( l + ί ) " ( N + 2 )

As \Γt(k)\ is uniformly bounded, this proves the lemma. Q.E.D.

Introduce:

λ(S, β, t) = - iWo(0, t)γYGμ(t)φ(t), (3.21)
where ί^O, S satisfies (2.1), β satisfies (2.2), Wo is given by (1.5) and G is given by
(3.14). Introduce also λί9 λ2, λ3, and λ4 by:

μ x (s, β, t)T(k) = - i Σ pε(k)y°yμG
μ( - vksε(k, t\ t)pε(k) 08e(ί)W), (3.22)

(λ2(S, β, t)T(k) = - i Σ (PMy%(?( - KSε(K t), t)P _
ε

+ Pε(k)yoγJ(Gμ(t)T(k')ei{VkSdk t)Hk') (3.23)

(λ3(s, β, tmk) = - i Σ ei(SAk t)'s'Λk

(λ4(S,β,t)nk)=-i Σ
ε,ε'

xe-w^ΛWψtiwiw-w (3.25)

where (Vkf(k)) (kf) is the Frechet derivative of/ with respect to k in the direction k!
and Gμ(x,t) = (

Theorem 3.12. For every n^O there is Cn< + oo such that

for allt^O.

Proof By construction

W0(t, 0) ( λ(S, β, t) - X λtf, β, t)j\k) = - ίy°y

where oc\ is given by (3.20). Lemma (3.11), with N = 1, shows then the existence of
constants CM such that

λ(S,β,t)-ΣUS,β,ty
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for all t ̂  0 and n ̂  0. Hence the theorem follows from the inequality

\\λ4(S,β,t)\\wn.2^CH{t+t)-3, n^O, ί^O, (3.26)

which we now prove.
By (3.25) and by \eίx-\\^x, xeR there is a constant C such that

\(λ4(S, β, t)T(k)\ £ C Σ ί KG W t ' ) l WiSJtk, ή)(fc')| l( W)Γ(fc)) ( W

Formulas (2.1) and (2.2) give that

\Vk

2Sε(k,t)\^C(t+l) and \Vk{βε{t))\k)\^C

for all k e R3, t ̂  0 and some C" < + oo. This introduced into the last inequality for
A4, gives together with Theorem 3.4:

3 fc^Cw(l + ί ) " 3

for all keR3,t^0. This inequality and the fact that supp(βe(t)YcK, for all ί^O,
ε=±, prove (3.26). Q.E.D.

The following lemma will be useful to show that the function Sε,ε=±, should
be chosen close to solutions of the Hamilton-Jacobi equation for an electron in an
electromagnetic potential.

Lemma 3.13. Let fμ e C for μ = 0,1,2,3. Then

i) Pε(k)y°yμfμPε(k) = ( - β _Σ kJMk))~ * +/ 0 ) PJik),

ii) (A1(S,i8,ί)r = i Σ (LJtSJ9t)-εω)PJtβe(t)Y, (3.27)
+

Σ 'kfii- VkSε{Kt\t)
i=\

-G0(-VkSs(k,ή,ή, e = ± . (3.28)
Direct calculation, using that yμyv + yvyμ = 2gμv gives:

Σ yynws= Σ (P-Akyyyfj-taw

Applying Pfi(fc) from the left gives

Σ Pε(/c)y°ryΛ(/c)=-ε((U(/c))-1 Σ / /

which proves the first equality of the lemma. The second equality follows from the
first equality, formula (3.22) and from the fact that W0(t,s) commutes with
Pβ). Q.E.D.

Remark 3.14. We note that in expression (3.27)

(US, β, ή) (k) = Σ ε(ω(k)) ~' kfii - VkSε(k, t), ί) - Go( - VkSε(k, t), t) + εω(k)
ΐ = 1
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is the sum of the zeroth and the first order terms in the Taylor development of

εω(k + G(- VkSε(k, t), t)) - Go( - VkSε(k, t), t)

with respect to G. Here G^iG^G^G^).

Lemma 3.15. In the situation of Lemma 3.2 one has:
i) I Vk\(Lε(S^\ p», ή) (k) - (Lε(S<2>, jβ<2>, ί)) (/c))|

ii) I Vk"((Lε(S, β, t)) (k) - εω(k))\ ^ Q

iii)
dt

iv) \Vι

v) \VkV

Vk"l(Lε(S,β,t))(k) \~2

for all ί^O, keR3, n^.0, ε= ± and some constants Cn<co.

Proof. We prove the lemma for ft = 0. For n>0 the lemma can be proved by
induction.

Let 0 ^ μ ^ 3 . Theorem 3.5 gives

k, t), t)-G?{- vksε

2\k, t), t)|

Xk, t), t)-G^(-VkS?\K t), t)\

«X- VkS\2\k, t), t)-GfK-VkSi2\k, t), t)\

ί Γ 1 ^ * ) ) . (3.29)

Inequality i) with n = 0, follows directly from (3.29). Inequality v) with n = 0,
follows from (3.29) and

^ c Σ (KK- r&1}(K 0, t)l K/̂ '1 '(0 - β?W(k)\
ε,μ

ί), t)-G«\-VkS?\K t\ t)\

Inequality ii) (respectively iv)) is obtained from inequality i) (respectively v)) by
putting β = β(1\S = S{1\ and β{2) = 0 (which implies that τ 2 = 1). We omit the proof
of iii). Q.E.D.

Lemma 3.16. Let S and β satisfy (2.1) and (2.2) and let S{1\ β{1\ S{2\ β{2) be as in
Lemma 3.2. Then

U) \

for allt^0,n^0,keR3 and some Cn.
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Proof. We prove the lemma for n = 0. The case n ̂  1 can be proved by induction.
The definition, of λ2 [formula (3.23)] gives:

p 2 ( s ( ! >, μ1 >, o - ; , 2 (s ( 2 ) , /?(2), t)Πfc)| ^ j |/< ̂ (fc, fc', ί) -/<2>(/c, kf, t)\dkf,

w h e r e

fc, it', ί ) = / ' P S ί Λ * k '

Let au...,am and bu...,bm be complex numbers. Then
m

|α 1α 2 . . .α 1 I 1-6 1&2 ί>ml̂  Σ \ai-bt\ Π (K-l + |i>jl)

Application of this inequality on |/ ( 1 )— / ( 2 ) | gives:

|/(1>(/c,fc',O-/(2)(/c,/c',ί)l

i ^ ί ) - Gj,2>(t)m')i(ifcΊ2ί+ifc'i)

, t)-S[2\K t))\ \kf

βi2W(k)\ \k>\)),

where we have used that (1 + t)~ίS^\k91) and (β]p(t)T(k) are bounded together with
their derivatives in k. The norms of expressions involving derivatives are the norms
of multilinear maps. Using Theorems 3.5 i), 3.4 and the hypothesis of Lemma 3.2
we get:

Integration of the last inequality in k' gives:

SC $(ί +\p\Γ\((i +ty1τ1(

τ2(t)t\p\-ι)Γ3dp
ι

τι{t)^τ2(t)) Q E D.

Introduce

(lε(S, β, t)T(k) = - ε(2iω(k)) ~ x β ' ̂  «?_,(*;) (W0(ί, 0)λ3(S, β, t)T(k).
(3.30)

Lemma 3.17. Let S and β satisfy (2.1) and (2.2) and let S(1\ βw, S(2>, β(2) be as in
Lemma 3.2. Then

i)

Vk»~{lt(S,β,t)T(k)
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iii)

iv)

for all f Ξΐ0, nΐ;0, ε = + , keR3 and some Cn< + oo.

The proof of this lemma is so similar to that of Lemma 3.16, that we omit it.
Let T=y1y2γ3. Then T=T1 and P+(k)=TP_(k)T. We get from (3.30):

ε= +
•'\lt(S, β, t)T(k) = (7W0(ί, 0)Tl(S, β, t)Y(k).

Proposition 3.18. There are Cn< + oo such that

J W0(s, 0μ3(S, β, s)ds - TW0(t, 0)Tl(S, β, t)

(3.31)

-2

for all t^O and n^O.
The proof, which we omit, is a direct consequence of Lemma 3.17 and the

definition of λ3.
We can now determine S and β. Let

S?Xk, 0) = εω(k)t, (S^(ή) (k) = S°(k91),

We define recursively:

S(1\t) = J L(S(0), j?(0), s)ds,
o

> = α .

S ( Λ ) , j 8 ( n ) , s ) - I - S ( π )

OS

and

(3.32)

(3.33a)

(3.33b)

(3.34)

S' (respectively 8̂) will later be defined to be equal to S(n) (respectively β{n)) for some
n, sufficiently large.

Lemma 3.19. Let

and let

There are then constants Cmn such that

•ι<

(3.35a)

(3.35b)

(3.36a)
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and

It
2 ( J

for all keR3, ί^O, m^O, and n^l. Moreover

and

Proof By definition

By Lemma 3.15 ii) we then have

By definition

43

(3.36b)

(3.37a)

(3.37b)

which together with Lemma 3.16i) gives that

3 Λ , ι \

Hence (3.36) and (3.27) are true for n = 1. Suppose (3.36) and (3.27) true for n. By
definition

and

δ
d~t{ ) - Sf\ή) = Lε(Sin\ β(n), t) - L ε ( S ( " " x >, β(n ~1 >, ί)

= λ2(S(n\ βin\ ή - λ2(Sin ~1 \ β(n ~ υ , ί)

~

Lemmas 3.15i), 3.16ii), and 3.17iv) now give that

Vk

m~(Sΐ+1\k,t)-Sε

n\k,t)) (3.38)

and that

for some constants C'

S Cm, „((! +1) - 3τ<"»(t) + (1 + ί) - V2">(t)) (3.39)
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The last two inequalities and the inequalities

d

n>\

show that (3.36a) and (3.37a) are true for n +1. Integration of (3.38) and (3.39) gives
(3.37) for rc + 1, which by induction proves the lemma. Q.E.D.

We now define
= β{3). (3.40)

Remark 3.20. S and β, defined by (3.40) satisfy the hypotheses (2.1) and (2.2) made
on S and β. In fact (2.1a), (2.1b), (2.2a), and (2.2b) are direct consequences of
Lemma 3.19. The support property (2.1c) follows from the fact that (λ2(S(n\ β(n\ ή)
has, for each n, support in a compact independent of t ^ 0.

Remark 3.21. Instead of defining S by (3.40) as an approximate solution of the
equation (d/dt)S(t) = L(S, β, ί), we could have defined S to be a solution of the
Hamiltonian-Jacobi equation

(3.41)

The function λ2, as defined by formula (3.34), should then be slightly modified.
However for simplicity, we have chosen not to study the existence problem for
solutions of (3.41).

S and β given by (3.40) have been constructed such that the difference

Wo(t,0)a+ ί W0(t,s)(®-iγ°γ'>Gμ(s)-&(s))φ(s)ds) -φ(t)
00 /

is small. This is made precise by the following theorem:

Theorem 3.22. Let S and β be given by (3.40), φ by (2.3), Se by (1.8) and Wo by (1.5).
Then

i) The strong improper Riemann integral

} W0(t9 s) (β - iy°yμGμ(s) - &(s))φ(s)ds, t ^ 0
00

exists in Wn'2 for all n ̂  0.
ii) For every n^.0 there is Cn< + oo such that

W0(t,0)α + j W0(t,s){2-ii-yGμ(s)-J?(s)φ(s)ds-φ(t) g C , ί ^ r t " 2

00 \yn, 2

for alln^O.

Proof. Introduce F1(s)=Wo(0,s)(@-iγoγμGμ{s)-&(s))φ{s) and

F2(s) = Wo(0, s) iβ - &{s))φ{s) + λι{s) + λ2(s) + λ3(s).
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According to Theorem 3.12, \\Fι(s)-F2(s)\\wn,2^Cn(l
^:0 and some constants C π <oo. For s^O introduce F3 by

(F3(s)H/c)=(F2(s)r(/c)- ( Σ i ( εω(/c)-

Lemma 3.13 ii) gives that

(F2(s) - F3(5)Γ(/c)=Σ /1 (4(5, j8, s)) (k) -

for every

Pε(k)(βε(s)T(k) + (^(s))A(fc)

which in turn gives, denoting Lε(S, β, s) by Lε(s),

dsε(k,s)
4(s)(/c)-

ds

By the definitions (3.33a) and (3.40) one has

which by Lemma 3.19 gives:

(Lε(S,β,s))(k)-
dSε(k,s)

ds
SC(1 +sΓ4(l +5)).

The two last inequalities and (2.2) give

\\F2(s)-FM\wn.2^Cn(l+s)-*(l+log{ί+s))9 5^0,

for every n ̂  0.
The function F3 can be written

(3.42)

(3.43)

(3.44)

Each term of the right-hand side of this expression has, as a function of fc, its
support contained in a compact set independent of s ^ 0 and ε = ± . It follows now
from (2.1b), (2.2a), Pc(fc)dLβ(fc) = 0 and Lemma 3.16 that

for every n^O.
It follows from the above dsicussion and from Theorem 3.17 that the limit of

each term in the sum on the right-hand side of

j }
T T

n ' 2

= } ((F^s) - FM + (F2(s) - FM + (F3(s) - λ3(s)) + λ3(s))ds (3.45)
T

exists in Wn'2, n^O as T->oo. This proves the first statement of the theorem.
To prove the second statement we first introduce

gε(fe, s) = i (εω(k) - lk) (β_ ε ~εiKs)""SεiKs) + 2εωim (3-46)
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It follows as above from (2.1b), (2.2a), and Pε(fc)ά_ε(/c) = 0 that \gε(k9 s)\ ̂  C(l + s)~2

for s^O and keR3. Using also that {d/ds)Sε(k,s) = Lε{S(3\β(3\s) and
Lemma 3.15 iii) and then (2.2b), it follows that

ds2

which shows that

ds

forallfce/?3, s ^

forallfceK3, s>

= gε(k,ί)(-2iεω(k))'ι

s~g ε(k,s)ds.
OS

Partial integration gives:

Jgε(/c,s)e-2iε

oo

+ J(2ifiω(Jt))"1έ
00

By the above estimate for ge(k9s) and (d/ds)gε(k9s) we get:

Jg ε (Me- 2 / ε ω ( f e ) s ds
00

Equations (3.44), (3.46), and (3.47) give:

](F3(s)-λ2(s)-λ3(s))ds

for all ί^O, n^O.
By (3.43), (3.48) and Proposition 3.18 we get:

f W0(t,0)(Fι(s)-λ2(s))ds-TW0(t,0)Tl(ή \~2

(3.47)

(3.48)

(3.49)

for all rc^O, ί^O.
The definitions (3.40) and (3.34) oϊ β give:

βε(t)-aε-Pε(d) } λ2(S,β,s)ds-lε(S,β, t) = βi3\t)-βi4\t).
00

Application of Lemma 3.19 [the estimate (3.37b)] to the last expression gives

βε(t) ~aε- Pε(d) J λ2(S, β, s)ds - lε(S, β, t)
oo wn 2

for all n^O, ί^O. Finally the inequalities (3.49) and (3.50) give

Wo(t,0)a+ J W^F^ds-φit)

\ - 3 (3.50)

W0(t, 0)(F,(s)-λ2(s))ds- TW0(t, O)TZ(t)

+ Σ
ε

for all π^O and ί^O. Q.E.D.

We can now sum up the results of this paragraph.
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Theorem 3.23. For (a, ά,cήeE + JetS and β be given by formula (3.40). Then (B, φ) is
an approximative solution of Eq. (1.10), where φ is given by (2.3) and Bv(t) = μ(t)av

+ μ(t)άv + Gv(t) with Gv given by (3.14).

Proof We have to verify that the conditions of Definition 2.2 are satisfied.
By (2.6) we have

\dsμ{t-s)φ{s)fφ{s)-G\t) t>0.
wn>2

From formulas (3.1) and (3.18) one obtains that \\Mv(t)\\wn,2S\\Hv(t)\\wn,2.
Theorem 3.6 proves that condition i) of Definition 2.2 is satisfied. Similarly one
gets

wn>2

and once more Theorem 3.6 proves that condition ii) of Definition 2.2 is satisfied.
The condition iii) of the definition is satisfied as is seen from
Theorem 3.2 ii). Q.E.D.

Appendix A

The function t^>\\W0(t90)β(t)\\Loθ9 ί^O has the same decay as solutions of the free
Dirac equation.

Proposition A.I. Let S satisfy (2.1a) and let β satisfy (2.2a) and (2.2c). Then

Proof For ε = + or — introduce

where

and denote by

υe(y, Kή^
1 Sβ(fc, ί), βε(k, t) = (βε(t)T(k),

where α^O. For the compact set K satisfying (2.2c) choose α0 such that

sup(|fc|/ω(fe))<αo<l.
kK

p
keK

Equation Vpυε(y,p,t) = 0, | j | ^ α 0

 r e a d s explicitly

(A.I)

where Se(p, t) = εω{p)t + ρe(p, t).

When ρE = 0, there is a unique solution
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The equation for p can be rewritten as p = po+f(p\ where

/(p) = - ε(ω(p) - ω(p0)) ()/+ r * ^ ^

If t is sufficiently large, then / is a contraction. Indeed as

+ t 1\ω{p1)Vpιρε(put)-ω{p2)Vp2ρε{p2,t)\

+ (\-\y\2yil2rι\Vpιρε(Pl,t)-Vp2ρε(p2,t)\

and

it follows that \f(pt) —f(p2)\ ^ v\Pi —Pi\ w i t n v < 1, in a compact neighbourhood of
p0 if t is sufficiently large.

It follows now from Theorem 7.7 of [9] that

sup | ί 3 / 2 F ε ( x , ί ) | < + o o . (A.2)

(x,ί)e\

If \y\ ̂ α 0 there is then, by the construction of α0, δ>0 such that

inf(αo-|/7|(ω(/7))
peK

By choosing s0 large enough so that sup|F pρ ε(p,ή\t~ ί^δ for t^s0, we get
peK

inf IV p v L (y,p, t)\^ inf \y\-\p\(ω(p))~ι-\Vpβε(p,t)\Zδ (A3)
peK peK

for all y with \y\ ^ α 0 and ί^5 0 . Hence for these y and t, Eq. (A.I) has no solution.
Theorem 7.7.1 of [9] together with the fact

and (A.3) give

for

sup |i"Fe(x, ί)| < + oo for n ̂  0. (A.4)
(x,t)eR4-Dao

Inequalities (A.2), (A.4) and \Fε(x9ή\^Sdk\βc(k,t)\^C prove the
proposition. Q.E.D.

Important Remark. After the completion of the present article, the authors have
noted that the wave operator Ω: (α, ά, α)->(>4(0), Λ(0), ψ(0)), introduced at the end of
the introduction, is C00 from E+ [see (1.11)] to E (see Theorem 2.3). This fact
follows from the differentiability of M, Φ, and Jf in (a, ά, α), [see (2.6), (2.7), and
(2.9)], and from Eq. (2.13). Further regularity properties of Ω, including that of
analyticity, will be proved in a forthcoming publication.
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