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Abstract. The compact matrix pseudogroup is a non-commutative compact
space endowed with a group structure. The precise definition is given and a
number of examples is presented. Among them we have compact group of
matrices, duals of discrete groups and twisted (deformed) SU(N) groups. The
representation theory is developed. It turns out that the tensor product of
representations depends essentially on their order. The existence and the
uniqueness of the Haar measure is proved and the orthonormality relations for
matrix elements of irreducible representations are derived. The form of these
relations differs from that in the group case. This is due to the fact that the Haar
measure on pseudogroups is not central in general. The corresponding
modular properties are discussed. The Haar measures on the twisted SU(2)
group and on the finite matrix pseudogroup are found.

0. Introduction

Let G be a Lie group. A family (G,), (o, o of Lie groups is said to be a deformation of
G if G, = G and G, depends continuously on 7. The latter should be understood in a
natural sense. For example one may require that all G, are of the same dimensions
and that it is possible to choose bases in g, (g, is the Lie algebra of G,) such that the
corresponding structure constants depend continuously on .

Assume that the group G is involved in a theory (e.g. it is a symmetry group)
describing a physical reality. As we well know any physical theory describes well
only a limited class of phenomena, for the phenomena beyond this class the
theoretical predictions disagree with the experimental results. In order to obtain
the adequate description of a larger class of phenomena one must modify the
theory. In certain cases such a modification although revolutionary from the
conceptual point of view consists in replacing G by one of the group G,. Then the
value of 7 is one of the fundamental constants (small parameter) of the new, more
general theory. Within this new theory the group G retains its validity only in the
approximate sense (e.g. it describes a broken symmetry). The old theory can be
recovered in the limit t—0.
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The history of physics provides many examples of developments that fit into
the scheme described above. Births of the special theory of relativity and the
theory of quanta are the most famous. Another example we get by considering the
symmetry group of the flat Minkowski space-time of special theory of relativity, i.e.
the Poincaré group. It admits a non-trivial deformation that leads to the theory of
the de Sitter space-time.

The above consideration indicate that studying all possible deformations of a
group involved in a physical theory, one may discover ways leading to more
general theories that might better describe the reality.

This procedure seems to be especially useful if already in the existing theory it is
known that the symmetry described by the considered group is broken. Such
situations are constantly met in elementary particle physics where we mainly deal
with compact semisimple Lie groups. Unfortunately these groups are rigid: they
admit only trivial deformations (a deformation (G,), (o, . is said to be trivial if all G,
are isomorphic to G). If however we extend the notion of compact group including
non-commutative compact spaces (compact pseudospaces in the sense of [17])
endowed with a group structure, then the class of deformations becomes richer and
one can find non-trivial deformations for symmetry groups in elementary particle
physics. For SU(2) such a deformation is described in [18].

Let A be a C*-algebra with unity. If 4 is commutative, then according to the
Gelfand-Naimark theory A4 is isomorphic to the algebra of all continuous
complex-valued functions defined on a compact topological space. No corre-
sponding result exists in the non-commutative case (see however [ 7]). Nevertheless
in the general case it is of great inspirational value to treat elements of 4 as
“continuous complex-valued functions” defined on a topological space-like object.
The latter is called a non-commutative space or pseudospace. From the formal
point of view one may introduce non-commutative spaces (pseudospaces) as
objects of the category dual to the category of C*-algebras. See [ 17] for the details.
In the present paper we do not use explicitly the pseudospace language (using
instead C*-algebra language), one should stress however that this concept stays
behind many definitions and considerations presented in the following sections.

The theory of group structures on non-commutative spaces is now more than
20 years old. It was originated in [6] by Kac in an attempt to unify in one category
locally compact groups and group duals and to consider generalized Pontryagin
duality as a contravariant functor acting within this category.

The theory was then developed by Takesaki [11] and Schwartz and Enock [5].
In [17] it was pointed out that the right approach to the theory is the one based on
the C*-algebra language (in earlier works von Neumann algebras were used
instead). In [13] Vallin developed the C*-algebra version of the theory. Entirely
different approaches are contained in recent papers of Ocneanu [10], Drinfeld [4],
and Vaksman and Soibelman [14].

Despite the long history the theory seems to be still in the introductory stage. In
particular the basic notions are not fixed yet. In our opinion this state was caused
by the lack of interesting examples. For a long time the only examples of
pseudogroups were: locally compact groups, group duals, their cartesian products
and crossed products of a group dual by an automorphism group. The first
example of a (not finite) compact pseudogroup of different nature was found in

[18].
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The aim of this paper is to develop the theory of compact pseudogroups in a
way completely analogous to the classical theory of compact groups of matrices. In
particular our main definition says that compact matrix pseudogroup is a compact
pseudospace of N x N matrices closed under matrix multiplication and under
taking inverses. The examples presented in Sect. 1 show that this definition gives
the direct and natural generalization of the concept of the compact group of
matrices. It also contains the Pontryagin duals of discrete finitely generated
groups. In the world of pseudogroups SU(2) and SU(3) admit non-trivial
deformations. At the end of Sect. 1 we show the existence of the neutral element (it
is represented by *-character e introduced in Proposition 1.8) and prove
elementary properties linking e with other basic notions.

In Sect.2 we present the representation theory. The standard notions of
intertwining operators, equivalent representations, irreducible representations,
complex conjugate representations, the direct sum and the tensor product of
representations are introduced and investigated. The non-commutativity of the
tensor product turns out to be the property distinguishing pseudogroups from
groups.

Section 3 is devoted to the concept of contragradient representation which is
the main tool of the generalized Peter-Weyl theory presented in Sects. 4 and 5.

The Haar measure is the main subject of Sect. 4. We prove its existence and
uniqueness and derive elementary properties. Using the Haar measure and the
machinery built in Sect. 3 we prove that any smooth representation can be
decomposed into a direct sum of irreducible representations. The limitation to the
smooth representations is forced by the fact that our axiomatic admits cases where
the Haar measure is not faithful. It becomes faithful when restricted to the
subalgebra of smooth functions.

In Sect. 5 we present the Peter-Weyl theory for compact matrix pseudogroups.
We prove that the matrix elements of inequivalent irreducible representations are
orthogonal with respect to the two scalar product induced by the Haar measure. It
turns out that the analogous formulae for matrix elements of the same irreducible
representation are more complicated than in the group case. This is due to the fact
that the Haar measure need not be central. It turns out that the modular properties
of the Haar measure are described by a family (f}),.¢ of linear multiplicative
functionals defined on the sublagebra of smooth functions and that the formulae
expressing the orthonormality of matrix elements of each irreducible represen-
tation involve f; and f_,.

The end of Sect. 5 is devoted to the theory of characters. We prove the basic
properties and show that the character determines the representation up to
equivalence.

In order to limit the volume of the paper we shift two sections devoted to the
Tannaka-Krein duality and to differential calculus on compact matrix pseudo-
groups to separate publications [19,20].

The paper contains two Appendices. In the first one we present the short proof
of the Haar measure formula for §,U(2) given in [18], the second is devoted to
finite matrix pseudogroups.
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1. Definitions and Examples

In this section we introduce the concept of compact matrix pseudogroup and
present several examples. In particular we show that compact subgroups of
GL(N,C) and duals of discrete finitely generated groups are compact matrix
pseudogroups. Another example can be obtained by a deformation of compact
subgroups of GL(N, €). At the end of this section we introduce the convolution
product and derive simple formulae used constantly in the next sections. We start
with the following basic:

Definition 1.1. Let A be a C*-algebra with unity, u be a N x N matrix with entries
belonging to A: u=(u)y=1,2. .5 Uu€A, and o/ be the *-subalgebra of A
generated by the entries of u. We say that (4, u) is a compact matrix pseudogroup if
1) «f is dense in A.
2) There exists a C*-homomorphism

DP:A->ARA, (1.1
such that
N
D)= ;1 Uy @ Uy (1.2)

for any k, [=1,2,...,N.
3) There exists a linear antimultiplicative mapping

Kol >l (1.3)
such that
k(k(a*)*)=a (1.4)
for any ae o/ and
ri k()i =0l , (1.5)
N
r; Uk (Uy) =01, (1.6)

foranyk,[=1,2,...,N. o, denotes the Kronecker symbol equal to 1 for k=1 and 0
otherwise, I is the unity of the algebra A.

Due to Condition 1 the C*-homomorphism (1.1) is uniquely determined. It will
be called the comultiplication associated with (4, u). Let us notice that the diagram

A -2, A4

ml ld)@id (1.7)
de®®
ARA— AR AR A

is commutative (cf. [6, 11, 5, 13]). Indeed using (1.2), one easily verifies that

(d®P)D(uy) =Y w, @t Quy=(PRid)D(uy,) .
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Therefore (Id® @)P(a)=(PRid)P(a) for any ae.o/, and taking into account
Condition 1 we obtain the same formula for any ae 4.
It follows immediately from (1.2) that

D(A)CA R g . (1.8)

Equations (1.5) and (1.6) show that u is an invertible element of M y(A4) and that
K =1y, (1.9)

where u~';; denote the matrix elements of the inverse of u. For any ac .o/ we set
a®* =k(a*). (1.10)

By virtue of Condition 3, 4 is an antilinear involution acting on .o7 and x(a)* = a*
for any ae.o/. Applying # to the both sides of (1.5) and (1.6) we obtain

¥t * 1oty *) =0yl (1.11)
3 k(g™ * =041, (1.12)

forany k,l=1,2,...,N. Let i denote the N x N matrix with matrix elements being
the hermitian conjugate of elements of u: w=(i)y= ,, .y and #;=u,*
Equations (1.11) and (1.12) show that @ is an invertible element of M (A) and that

K(ukl*)zl’_t_lkb (1.13)

where @™, (k,[=1,2,...,N) denote the matrix elements of the inverse of i.
Remembering that the algebra o7 is generated by u,, and u,* (k,[=1,2,...,N)
and taking into account (1.9) and (1.13) we see that the mapping (1.3) is uniquely
determined. It will be called the coinverse associated with (A4, u).
Let 6, denote the flip automorphism of AQ A:

o (a®b)=b®a (1.14)

forany a,be A and A®,,A={xe A®A:0,(x)=x}. We say that a pseudogroup
(A,u) is abelian if ®(4)CA®,,A.

Let (A, (whi=1,2.,...n) and (4, (uiy=1,>,...n) be compact matrix pseudo-
groups. We say that they are identical if N'=N, and if there exists a
C*-isomorphism s of 4 onto A’ such that

S(ugg) =1y

fork,1=1,2,...,N. In that case s is uniquely determined, it maps the *-subalgebra
o of A generated by matrix elements of u onto the corresponding *-subalgebra .o/’
related to (A',u). Moreover denoting by @, k and @', k' the comultiplications and
the coinverses associated with (4, u) and (A4, ') respectively we have the following
commutative diagrams

K

A-25 A®A g

N

A— ARQA A ——
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The latter follows immediately from the uniqueness of the comultiplication and the
coinverse maps. From the abstract point of view the identical pseudogroups are
undistinguishable.

Let (A, (U )i=1.2,...5) be @ compact matrix pseudogroup, t =(t,9),s-; 2, ... be
an invertible matrix with complex entries and

_ -1
U= Z t krurs[sl .
r,s

One can easily check that (4, (v)= 1,2, y) 1S a compact matrix pseudogroup. The
dense *-subalgebra .o, the comultiplication @ and the coinverse x are the same for
(A,u) and (4,v). We say that (4,v) is obtained from (A4,u) by the similarity
transformation. Two compact matrix pseudogroups (4, u) and (A4, u’) are said to be
similar if the pseudogroup obtained from (A4, u) by a similarity transformation and
(A’,u) are identical.

Examples
I. Pseudogroups with Commutative C*-Algebras. Let G be a compact group of
N x N matrices with complex entries: GCMy(C). We denote by C(G) the
commutative C*-algebra of all continuous functions on G. For any g€ G and any
k, 1=1,2,...,N, we denote by w,,(g) the matrix element of g standing in the k" row
and the ' column:

g=Wu(@ki=1,2...n- (1.15)
Clearly wy(g) depends continuously on g, i.e. w, are continuous functions defined
on G: w, € C(G). Let wg=(Wy)=1.2... . Then we have
Theorem 1.1. (C(G), wg) is a compact matrix pseudogroup.

Proof. Condition 1 follows immediately from the Stone-Weierstrass theorem [9].
To prove Condition 2 we identify C(G)® C(G) with C(G x G). Then

(@®b)(g,g)=alg)b(g) (1.16)

for any a,be C(G) and g,g'eG.

According to the wellknown rules of matrix calculus the matrix element of the
product of two matrices g, g’ € G standing in k™ row and I'" column equals the
product of the k™ row of, g by ™ column of g'. It means that

wi(gg) =; Wi gw,(g) - (1.17)

For any ae C(G) and g,g’' € G, we set
(P(a) (g, 8')=algg). (1.18)

Clearly @(a)e C(G x G) and @:C(G)-C(G)®C(G) is a homomorphism in the
category of C*-algebras. Moreover taking into account (1.17) and (1.16), we see
that

D(Wi) =2 Wi, @ Wy

and Condition 2 of Definition 1.1 is fulfilled.
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For any ae C(G) and ge G, we set

(<(@) (g)=alg ™ "). (1.19)

Clearly x(a) e C(G) and k: C(G)— C(G) is a linear multiplicative (notice that in the
considered commutative case multiplicativity and antimultiplicativity are equiva-
lent) and involutive (i.e. k*=id) mapping. Moreover

k(a*)=rK(s)*. (1.20)

Therefore k(x(a*)*)=x(x(a)**)=k(x(a))=a for any a € C(G).

Inserting in (1.17) g~ ! instead of g’ and using (1.15) we obtain (1.6). Similarly
replacingin (1.17) g and g’ by ¢~ ' and g respectively and taking into account (1.15)
we get (1.5).

To end the proof we have to show that k(<) C.«/, where .« is the *-subalgebra
of C(G) generated by functions wy; (k,/=1,2,...,N). It is known [1] that any
representation of a compact group is equivalent to a unitary one. Therefore there
exists a strictly positive matrix me My(C) such that g*mg=m for any geG.

Therefore g~ ' =m ™~ 'g*m for any g e G. Using this relation one easily verifies that
K(wkl) = Z m- lkrmslwsr* >
r,s
where m~!,, and m are matrix elements of m ™! and m respectively. This equation

shows that x(w,,) € o forall k,I=1,2, ..., N, and using the multiplicativity of k and
(1.20), we get k(a)e o/ for any ae.o/. Q.E.D.

Let us notice that ce C(G)®,,,C(G) if and only if c(g,g’)=c(g’,g) for any
2,2 €G. Taking into account (1.18) we get

Proposition 1.2. The pseudogroup (C(G), wg) is abelian if and only if gg'=g'g for any
2,8 €G.

For any ge G and ae C(G) we set y,(a)=a(g). It is well known that y, is a
character of C(G) and that {y,:g€G} coincides with the set of all characters of
C(G). Let us notice that (x (wiu=1,2,...n=Wal(@u=1.2....n=8 for any geG.
Therefore

G={(t(Wu)ki=1,2....n: x is a character of C(G)}.

Clearly the right-hand side of the above equation remains unchanged if we
replace (C(G), wg) by a pseudogroup identical with (C(G), wg). Therefore we have

Proposition 1.3. Let G and G’ be compact group of matrices. The pseudogroups
(C(G),wg) and (C(G'), wg) are identical if and only if G=G'.

One can also prove the following

Proposition 1.4. Let G and G' be a compact group of N x N matrices. The
pseudogroups (C(G), wg) and (C(G'),wg) are similar if and only if there exists an
invertible matrix t € M y(C) such that G'={t"'gt:ge G}.

It turns out that the construction described above produces all compact matrix
pseudogroups (A4, u) with commutative A. More precisely we have
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Theorem 1.5. Let (A, ()= 1. 2. ...n) be a compact matrix pseudogroup. Assume that
A is commutative. Then
1) The set

G={(x(u)i=1.2....n° X IS a character of A} (1.21)

is a compact group of matrices.
2) The pseudogroups (A,u) and (C(G),wg) (where G is given by (1.21)) are
identical.

Proof. Let A be the set of all characters of 4 and j be the mapping defined on A with
values in M (C) such that

J0O)=0waDa=1.2,...~ (1.22)

for any ye A. Clearly [cf. (1.21)] G is the j-image of 4.

It is obvious that j is continuous with respect to the pointwise convergence
topology on A. On the other hand (cf. the Gelfand-Naimark theory of commuta-
tive C*-algebras [3]) 4 endowed with this topology is a compact space. It shows
that G is a compact subset of M ().

Let y € A. Applying i to the both sides of (1.5) and (1.6) we see that the matrix
(x o K(U)ha=1.2, ... coincides with the inverse of j(x). It shows that all matrices
belonging to G are invertible.

Let y and y’ be characters of 4 and y” =(y®y')®. Then y” is a character of 4 and
using (1.2) we see that j(x")=j(x)j(x). It shows that the product of two matrices
belonging to G belongs to G.

Let ge G. Then g"e G for any natural n. Since G is compact, one can find a
sequence of natural numbers (n(k)), . such that n(k+1)>n(k)+1 (k=1,2,...) and
g"® g when k—oo. Then m(k)=n(k+1)—(1 +n(k))>1, g"® belongs to G and

1

lim g"® =g (gg,) '=g .
k— o0

It shows that ¢~ ' e G. This way Statement 1 is proved.
Let ae C(G). Then a-j is a continuous function on A and according to the
Gelfand-Naimark theory there exists a unique element sa€ A such that

x(sa)=a(j(x)) (1.23)
for any y e A. Clearly the mapping
C(G)aa—-sac A (1.24)

isa C*-homomorphism. If sa=0 then a(j(yx)) = 0 for any y € A. Therefore a(g)=0 for
any ge G and a=0. It shows that (1.24) is an embedding.

Comparing (1.15) and (1.22) we see that w,(j(y)) = x(u,,) for any y € A. Therefore
[cf. (1.23)]

kal:ukl (1.25)

for k, [=1,2,...,N. Remembering (Condition 1 of Definition 1.1) that algebraic
combinations of elements u,, form a dense subset of A, we see that (1.24) is onto.
Therefore s is a C*-isomorphism and (1.25) shows that the pseudogroups
(C(G),wg) and (A4,u) are identical. Q.E.D.
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I1. Abelian Pseudogroups. Let I be a (discrete) group generated by a finite subset
{71572>--»yy} CI and U be a unitary faithful representation of I' acting on a
Hilbert space H. We shall assume that:

<U® U is contained)

2
in a multiple of U (1.26)

This assumption is obviously fulfilled if U = U,,;,, where U ,,;, is the direct sum
of all cyclic representations. It is also satisfied for U =U,.,, where U ., is the right
regular representation of I' (cf. [12]).

Let C*(U) be the C*-algebra of operators acting on H generated by
{U(y):yel'} and u be the N x N matrix having U(y,), U(y,), ..., U(yy) on the
diagonal and zeroes in all other places. Then we have

Theorem 1.6. (C*(U), u) is an abelian compact matrix pseudogroup.

Proof. Let .o/ be the *-subalgebra of C*(U) generated by matrix elements of u, i.e. by
U(y,), U(y,), ..., U(yy). Remembering that U is unitary representation and that
{15725 --» 7y} generate I', one immediately sees that {U(y):yeI'} C.o/. Therefore
o/ is dense in C*(U).

Assumption (1.26) means that there exists a Hilbert space K and an isometry
W:H®H—-K®H such that

Um@UG) =W (Ipx@UG)W (1.27)
for any yeI'. For any ae C*(U), we set
D(a)=WH(I g, @a)W. (1.28)
By virtue of (1.27),
2UE)=URU(). (1.29)

Clearly U(y)®@U(y)e C*U)®ymC*(U). Therefore @ is a C*-homomorphism
acting from C*(U) into C*(U)®,,, C*(U). Insertingin (1.29) y=7,,7,, ..., 7y, We see
that (1.2) is satisfied.

Any element ae./ is of the form

a= Yy a,U(y), (1.30)
yelo

where a, are complex coefficients and I is a finite subset of I".

Assume that a=0. Then applying (k — 1)-times the mapping & to the both sides
of (1.30) we obtain

Y ¢, UmRUM®...U>Y) =0

velg

k-factors

and
Y a[AUG)]=0 (1.31)

yelo

for any linear functional 4 defined on C*(U) and any number k. In what follows we
take k=1,2,...,K, where K=number of elements of I, Since all elements U(y).
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(y € Iy) are different (representation U is faithful) and nonvanishing, one can find 2
such that all A(U(y)) (y € I;) are nonvanishing and different. We know that in this
case the Vandermonde determinant nonvanishes and (1.31) implies that all a, =0.
It shows that coefficients a, in (1.30) are uniquely determined by a.

Using this result one can easily show that there exists a linear map x: .o > .o/
such that

KUE)=UG") (1.32)

forany y. Clearly « is antimultiplicative and x(x(a*)*)=afor any a € «7. Inserting in
(1.32) y=%1,72, .-, 75> We see that (1.5) and (1.6) are satisfied. Q.E.D.

If U=U,,;, (=U,, respectively) then the pseudogroup (C*(U),u) is called
universal (regular respectively) dual of I'. If I is amenable then the two duals are
identical. If I' is abelian then C*(U ) is commutative. In this case (cf. Theorem 1.6
and Proposition 1.2) the dual of I' is identical with (C(G), wg;), where G is an abelian
compact group of matrices. Then G is Pontryagin dual of I

It turns out that the construction described above produces all (up to a
similarity) abelian compact matrix pseudogroups. In Sect.4 we prove the
following

Theorem 1.7. Let (A, (ty)xi=1.2,...n) be an abelian compact matrix pseudogroup.
Then there exists a (discrete) group I generated by N elements y,,v,,...,7y and a
faithful representation U of I satisfying condition (1.26) such that the pseudogroups
(A, (hi=1,2.....n) and (C*U),(U(y)di=1.2.....n) are similar.

Proof. Sce the text following the proof of Theorem 4.5.

The group I' is called the dual of (4,u). If 4 is commutative then (4,u) is
identical with (C(G), wg), where G is an abelian compact group of matrices. In this
case I is the Pontryagin dual of G.

II1. Twisted SU(N) Groups. A. Let u be a nonzero real number in the interval
[—1,1] and A be the C*-algebra generated by two elements « and y satisfying the
following relations:
ofatyry=1, oo +plyy*=I,
(1.33)
WE=Y*y,  wa=ay,  pyFe=ay*.

u= <°" _’”*>. (1.34)

v, o*

We consider 2 x 2 matrix

Then (A, u) is a compact matrix pseudogroup (see [ 18] for details and proofs). If
u=1then A is commutative and (4, u) is identical with (C(G), w), where G=SU(2).
In the general case (4, u) is called the twisted SU(2) group and denoted by S,U(2).

B. Let ue]0,1]. We introduce a 27 element array (Ey,;,,), where k,,m=1,2,3:
E231=E312=M2, Eyi3=Eiz3=—u,
Ejps=1, Ej=-p’.
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All other elements E,,, vanish.
Let A be the C*-algebra generated by 9 elements u,,; (k,[=1, 2, 3) satisfying the
following relations

%o, —
Z Uy U= O-kII H
r
* __
O Uiy, =01,
r

Y tpbhigtmeE pgr = Egimd
par
for any k,,m=1,2,3.
Then (A4, (Uy)i=1.2,3) is a compact matrix pseudogroup. It will be denoted by
S,UQ3). If u=1, then the algebra A is commutative and S,U(3) is identical with
(C(SU(3)), wsys)- See [2] for details and proofs.

C. The general definition of twisted SU(N) group will be given in [19].

We end this section with elementary consequences of Conditions 1-3 of
Definition 1.1. In the following propositions (4, u) is a compact matrix pseudo-
group, <7 is the dense *-subalgebra of 4 generated by matrix elements of u, @, and k
denote comultiplication and coinverse associated with (A4, u).

We shall also use the linear map

m: A QA=A (1.35)
such that m(a®b)=ab for any a,be /.

Proposition 1.8. There exists one and only one *-character,

e: oA »C, (1.36)
such that for all k,1=1,2, ..., N we have
() =0y, - (1.37)
Moreover for any ae .o/ we have
m(k®id)P(a) = e(a)l , (1.38)
m(id®x)P(a)=e(a)l . (1.39)

Remark. Due to (1.8) the left-hand sides of (1.38) and (1.39) are well defined.

Remark. Often e is norm continuous and then it can be extended to the whole A.
This is the case for (C(G), wg) [then e(a) is the value of a at the neutrale element of
G, (C*(U yniv)s ), S,U(2), and S, U(3). If I' is not amenable then for the (C*(U ), u)
case e is not continuous.

Proof. Since 7 is a *-algebra generated by uy, (k,/=1,2, ..., N), any *-character on
=/ is determined by the values it assumes on u,;. This remark proves the uniqueness
of e.

Let

a€ .o/ such that m(k®id)®P(a)=e(a)l

There exists a complex number e(a)
ﬂo =
and m(id®x)P(a)=e(a)l
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Clearly 7, is a linear subset of o7 and e is a linear functional defined on .«7,,.
Taking into account (1.2), (1.5), and (1.6), we have

mM(k @1d)D(uyy) =) ettty =y,

mid @ 1) D(uy,) =Y. gk (u,)) = 01 .

Therefore

e(uy) =9y, for |. (1.40)

u, € .94, and
ki1=1,2,...,N

We shall show that

and e(a®)=e(q) |. (1.41)

(;z/o is *-invariant
for any ae </,

b

Let aef and
P(a)=} a,®a,,

where a,,a; € o/, r=1,2,...,R. Assume that ae.«/,. Then

2 k(a)a; =m(k@id)P(a) =e(a)l ,
Y ax(a))=m(id®k)P(a)=e(a)] .

Applying to both sides of these relations the antilinear multiplicative involution 3#
introduced by (1.10), we obtain

Y ai(a)) = all

Yr(ar)a*=e(a)l.

Therefore
m(k®id)®(a*) =m(k®id) ), a,*®a,*

=Y wla¥)a* =a)l,

m(id®@x)P(a*)=m(ild® k)Y a,* ®a,*

=Y a*k(a,*)=e(a)l .

These relations show that a* € o7, and e(a*)=e(a). Statement (1.41) is proved.
We shall show that

o, is a subalgebra of .o/
and the functional e |. (1.42)
is multiplicative
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Let a,be .o/ and
Pa)=Y a,®q,, P(b)=) b®b;,

where a,, a,, b, b;eoZ, r=1,2,..,R, s=1,2,...,S. Assume that a,be <Z,. Then

S k(a))a! = m(x®id)P(a)=e(a)] , (1.43)
éx(b;)b;’=m(1c®id)<1>(b)=e(b)1, (1.44)
; ak(a)) =mid@x)P(a)=e(a)l (1.45)
‘:;b;x(b;’)=m(id®x)f15(b)=e(b)I. (1.46)

We compute
D(ab)=Y a,b,®a,b; .

Using the antimultiplicativity of x, (1.43) and (1.44) we get
m(k@id)P(ab) =} k(a,ba/bs =} k(br(a,)a,by
=e(a) Y x(by)by = e(a)e(b)I .

Similarly using the antimultiplicativity of «, (1.45) and (1.46) we obtain
m(id®x)P(ab)=e(a)e(b)I .

The last two relations show that ab € &/, and that e(ab) = e(a)e(b). Statement (1.42)
is proved.

According to (1.41), (1.42), and (1.40), </, is a *-subalgebra of .« containing all
matrix elements of u. Therefore «&/,=./. Moreover e is a *-character on ./,
e(uy) =0, (k,1=1,2,...,N), and relations (1.38) and (1.39) are satisfied for all
aesd. Q.E.D.

Proposition 1.9. For any ac </,
D(k(a)) =0 4(k®K)P(a), (1.47)

Proof. Let us notice that @ox and 6, (k®k)o ® are linear antimultiplicative
mappings defined on /. Therefore it is sufficient to prove (1.47) for a=u,; and
a=u,* (k,1=1,2,...,N).

Applying @ to both sides of (1.5) and using (1.2), we obtain

Z ¢(K(ukr)) (ur5®usl) = 5kll®l .

Multiplying both sides from the right by ¥ x(u,,)®k(u,,), summing over | and
using twice (1.6), we get '
D)) =2 1e(th) @ 6(141)
=0 ,(k®K) ; U @y = 0 4(KR KD () -
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Similarly applying @ to both sides of (1.12) and using (1.2), we obtain
Z ¢(K(ukr*)) (urs* ®usl*) = 5kll®l .

Multlplymg both sides from the right by Zk(unm*)®x(u,n ), summing over [ and
using twice (1.11), we get

(Kt ™)) = 2 Kt ™) @ Kty ™)
=0A(K®K)Z ukn*®unm* :aA(K®K)¢(ukm*) . Q'ED

Now we have to introduce convolution products. Let £ and & be continuous
linear functionals on 4 and ae 4. Then we set:

Exa=(1d®&)D(a), (1.48)
ax* & =(¢®id)®(a), (1.49)
Exl=('®%- 2. (1.50)

Clearly E*a and a* & belong to 4; & x £ is a continuous linear functional on 4.
The commutativity of the diagram (1.7) implies the associativity of the convolution
product. Moreover we have

€ *d(@=Lax)=C(E*a). (1.51)

Due to (1.8) the right-hand sides of (1.48)—«1.50) are meaningful for any linear
functionals ¢, ¢ defined on o7 and any ae /. In thiscase é *a,a* &' €.o/,and & * &
is a linear functional defined on ..

The convolution product is commutative if and only if the pseudogroup is
abelian.

Let e be the functional on .o/ introduced in Proposition 1.8. Then

exa=axe=a (1.52)
for any ae «/. Indeed mappings,
a—e*a=(1d®e)P(a),
a—axe=(e®id)®P(a),

are linear, multiplicative and commute with the hermitian conjugation. Therefore
it is sufficient to check (1.52) for a=u,,; (k,[=1,2, ..., N). Using (1.2) and (1.37), we
get

e* Uy =(id®e);uk,®u,, =;uk,5,, =y,
U, * e=(e®1id) ; U, @u, =; Operbhyy = Uy -
Let ¢ be a linear functional on /. Then using (1.52) and (1.51) we get
el@)=glexa)=(¢*e)(a),
ola)=¢laxe)=(e*0)(a),
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for any ae /. Therefore
gre=exg=g. (1.53)
In particular
exe=e. (1.54)

2. Elements of the Theory of Representations

Let G be a compact group, K be a finite-dimensional complex vector space and v be
a representation of G acting on K. The latter means that v is a continuous map

v:G—>B(K),
and
v(g)u(g)=v(gg), 2.1
for any g, g’ € G. Identifying the space of all continuous functions defined on G
taking values in B(K) with B(K)® C(G), we have
ve B(K)®C(G).

In the general case a representation of a compact matrix pseudogroup
G=(A4,u) acting on K is an element ve B(K)® A satisfying a certain condition
replacing (2.1). In order to formulate this condition we shall use a bilinear
multiplication @ defined on B(K)® A. It is introduced in the following way.

Let 4 be a C*-algebra and K be a f-d.c. vector space. For any v,we B(K)® A4,
we set

vQw=3 mn;Q®v;,Qw;, (2.2)
i,j

where m;, n;€ B(K); v, w; € A are such that v=3 m;®v; and w=} n;®w;. Clearly

i J
v@wis well defined [right-hand side of (2.2) is independent of the choice of m;, v;, 1,
and w;] element of B(K)® A®A and

O :(BK)®A) x (B(K)®4)—»>B(K)®A® A

is a bilinear map.
Let

i: BK)® A—>B(K)®A® A

be an algebraic homomorphism such that i(m®a)=m® [ ®a for any me B(K) and
ae A. One can easily check that

v@Ow=(®I)i(w) (2.3)

for any v,we B(K)®A. If K is a Hilbert space, then B(K), B(K)®A and
B(K)® A® A are C*-algebras, i is a C*-homomorphism and (2.3) shows that vQw
is unitary if v and w are unitary elements of B(K)® 4.
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If A=C(G), then identifying B(K)® A and B(K)® A® A with C(G, B(K)) and
C(G x G, B(K)) respectively, we have (for any g, g’ € G)

(vOw)(g,g)= IE; minjvi(g)wj(g,)
= (Lmad®)) (S )) = (gv(e).

Therefore (2.1) can be rewritten in the following “algebraic” form:
vOr=>1d®P)v,

where @ is the C*-homomorphism C(G)—C(G)® C(G) introduced by (1.18).
We turn back to the general case.

Definition 2.1. Let G=(A,u) be a compact matrix pseudogroup, ¢ be the
comultiplication associated with G, K be a finite-dimensional complex vector
space and ve B(K)® A. We say that v is a representation of G acting on K if

vQv=>1d®P)v. (2.4)

Let G=(4,u), where u=(uy); -1, 2. .. nEMy(A) be a compact matrix pseudo-
group. Identifying M y(A) with My® A we have
N

u= 3 mQuy, (2.5)
kl=1
where (my)y = 1.2, ..., v 18 the system of matrix units: m, is the N x N matrix having 1
on the corssing of k" row and I'* column and zeroes in all other places. Using the
well known rules of matrix calculus (mymg, = d,mg, for any k, I,r,s=1,2, ..., N),and
taking into account (1.2), we have
U@Ll: Z mlkmsr®ukl®urs

klrs

=kz Mg @y, Du,, = (1dQ D)u.

It shows that u is a representation of G acting on €V [remember that
My =B(C")]. 1t is called the fundamental representation of G.

In many cases it is more convenient to work with the linear mapping
?: K—->K®A corresponding to ve BI(K)® A than with v itself. B(K, K®A) and
B(K)® A are canonically isomorphic: If an element ve B(K)® 4 is given by

R
v=3Y mQ®u,, (2.6)
r=1

where my, m,, ...,mg € B(K) and vy, v,, ..., vz € 4, then the action of 4 on an element
xe K is defined by

ix=
.

Assume that (2.4) is satisfied. Then [cf. (2.2) and (2.6)]
Z mrmr'®vr®vr’ = Z mr® gD(vr) s

I =

mxu,. 2.7)
1
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and for any xe K we have
(E®id)ox =3 bm, x®v,
= 'Z m,m,.XQv,Qv,
=% mx@P(v,)=(1d® P)ox .

It shows that the diagram

K —— K®A

D P®id (28)

id®o
KQA——KRXARA
is commutative.
Conversely let $: K—-K®A be a linear map such that the diagram (2.8) is

commutative and v be the element of B(K)®A corresponding to 9. Then v is a
representation of G acting on K. The simple proof of this fact is left to the reader.

Let ve B(K)® A and A’ be the space of all continuous linear functionals defined
on A. For any g€ A', we set

v,=(id®o) (2.9)

Then v, is an operator acting on K. It depends linearly on . Taking into account
the definition (2.2) we get immediately

(([d®e®¢") (vDV)=v,v, .
On the other hand using the convolution product introduced by (1.50) we have:
([d®e®0)(([d@P=v,,, .
Therefore (2.4) is equivalent to the relation
(For any 0,0 eA’>' (2.10)
Vg, o' = Ugly’

In the representation theory an important role is played by intertwining
operators.

Definition 2.2. Let v and w be representations of a compact matrix pseudogroup
G=(A,u) acting on a f-d.c. vector spaces K, and K,, respectively. We say that an
operator se B(K,, K,,) intertwines v and w if

®Nv=w(s®I). (2.11)

The set of all operators intertwining v and w will be denoted by Mor (v, w). Clearly
Mor (v, w) is a linear subspace in B(K, K,,). If w=1, then Mor(v, w) is a subalgebra
of B(K,).

One can easily prove

Proposition 2.1. Let v,w be representations of G. Then the following three
statements are equivalent:
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1) se Mor(v, w).
2) The diagram

is commutative.

3) sv,=w,s for any ge 4".

Let G=(A4,u) be a compact matrix pseudogroup. We say that two represen-
tations v and w of G are equivalent if there exists an invertible operator
intertwining v and w.

Let v be a representation of G acting on a f-d.c. vector space K and L be a
subspace of K. We say that L is v-invariant if 8(L)C L&®A. Then the element
v|;, € B(L)® A corresponding to the restriction 9| : L—L® A4 is a representation of
G acting on L and the embedding L—K intertwins v|, and v. v, is called a
subrepresentation of v.

Let v be a representation of G acting on a f-d.c. vector space K. One can easily
check that the subspaces

Ko={xeK:0x=0},
Kiw={xeK:tx=x®I},

are v-invariant and v|g, =0, v|g,  =Ipk,.. o4 1he representation v is called non-
degenerate (completely degenerate respectively) if K, ={0} (K, =K respectively).
Anelement x € K is said to be a v-invariant element if x € K,,,,. One can easily check
that x is a v-invariant element if and only if v,x=o(I)x for any g€ A". v is called
trivial if v=Ipy)e, Then K;,, =K.

Let f be a linear functional defined on K. We say that f is a v-invariant
functionalif f'e Mor(v, 1), where 1 denotes the trivial representation of G acting on
C. Using Proposition 2.1 one can check that f is a v-invariant functional if and
only if fov,=o(I)f for any g€ A".

Let v be a representation of G acting on a f-d.c. vector space K. Clearly the
whole K and the zero-dimensional subspace {0} CK are v-invariant. These
subspaces are called trivial. The representation v is called irreducible if there exists
no non-trivial v-invariant subspace.

If v and w are representations of G and se Mor(v, w), then the kernel of s is
v-invariant and the image of s is w-invariant. Using this remark we get immediately

Proposition 2.2. Let v be an irreducible representation of G. Then Mor(v,v)
={M:1eC}.

Proposition 2.3. Let v, w be irreducible representations of G. Then either Mor (v, w)
={0} and v is not equivalent to w, or Mor(v, w)={AF: . € C} where F is invertible
and v is equivalent to w.

For any finite-dimensional complex vector space K, the complex conjugate
vector space will be denoted by K. It means that K is the set of symbols X, where x
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runs over K with the complex vector space structure introduced by the formulae
X+j=x+y and 1x=Ax (x,yeK, 2e €). We shall identify the second complex
conjugate K with K. Ther the map

Ksx—-xeK

is an antilinear involution. For any ae B(K, L) (where K and L are f-d.c. vector
spaces) we consider the operator de B(K, L) introduced by the formula ax=ax
(x e K). Evidently

B(K,L)sa—aeB(K,L)

is an antilinear involution. In the particular case L =K this map is multiplicative:
ab=ab for any a,be B(K).

We know that the tensor product of antilinear maps is a well defined antilinear
map. For any ve B(K)® A we denote by v the element of B(K)® A obtained by
applying ~®* to v: 1 =0v" ®*.

Assume that v is a representation of a compact matrix pseudogroup G =(4, u)
acting on K. Then 7 is a representation of G acting on K. It is called complex
conjugate to v. For instance [cf. (2.5)]

12=kzln'1,k®uk,* (2.12)
is the representation complex conjugate to the fundamental one.
Let v and w be representations of G and se Mor(v, w). Then e Mor(z, w). In

particular ¥ and w are equivalent if and only if v and w are equivalent.
Let K, and K, be f-d.c. vector spaces and

K~ K, 0K, 5K,
K, —5 K, 0K, K,

be canonical embeddings and projections. For any v,eB(K,)®A4 and
v, € B(K,)®A4, we set

0@V, =(; @DV, (m @) + (i, @ vy(n, ).

Clearly v, ®v,€ BK;®K,)®A.

Assume that v, and v, are representations of a compact matrix pseudogroup
G =(A,u) acting on K, and K, respectively. Then v, @v, is a representation of G
acting on K, ®K, and

iyeMor(vy,0,®v,), 7, eMor(v;@v,,vy),
ieMor(v,,v,®v,), w,eMor(v,Dv,,v,).

The representation v, v, is called the direct sum of v, and v,. In the similar way
one can introduce the direct sum of any finite number of representations.
Let v,,v,, w,, w, be representations of G. Assume that

s;€Mor(vy,w,) and s,€Mor(vy,w,).

Then s, ®@s, intertwines v, v, with w; ®w,. In particular if v, is equivalent to w,
and v, is equivalent to w,, then v, @v, is equivalent to w, Pw,.
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Let K, L be f-d.c. vector spaces, ve B(K)® 4 and w € B(L)® A. Then there exist
my, My, ...,mg€ B(K), ny,n,,...,nge B(L) and vy, v,,...,Ug, Wi, Ws,...,WwgE A such
that

v=y mQu,, (2.13)
w=) n&@ws. (2.14)

We set
vOW=) m@nQv,w,. (2.15)

Clearly v@w is a well defined [right-hand side of (2.15) depends only on v and w, it
is independent of the particular choice of m,, v,, n,, w, entering (2.13) and (2.14)]
element of B(K)® B(L)® A and identifying B(K)® B(L) with B(K® L), we intro-
duce bilinear map

@ : (B(K)®4) x (B(L)®4)>BKQL)®A.

Let me B(K) and ne B(L). Using definition (2.15), one can immediately check
that

@W)(mn®I)=[vmSN]D[Wn®I)], (2.16)
(MmO (vOw)=[(MN]D[(rSI)w]. (2.17)

Let us notice that for any v,v' e B(K)® A and w,w’' € B(L)® 4, we have
@OV)DWOW)=0DOW) DV DOW). (2.18)

Indeed in the simplest case v=m,®@v,, vV'=m, RV}, w=n,Q@w,, w=n|Qw]
[where m,, m} € B(K), n,n € B(L), vy,0}, w,,w; € A] we have
QU =mm|®v, @y, wOwW=nn,Qw,Qw,
and
(OV)OWDW)=mm\,@n,n; @v,w; Qv W .
On the other hand
vOW=m @n, @vw,;, VOW=m;Q@n;Quvw},
POW) OV OW)=mm@nn| @u;w; @viw)
and (2.18) follows. Moreover taking into account (2.15) and multiplicativity of @,
one can easily check that
(d®P) (vOW)=(1dRP)D(IdR P)w. (2.19)

Assume now that v and w are representations of a compact matrix pseudo-
group G =(4,u) acting on K and L respectively. It follows immediately from (2.18)
and (2.19) that vw is a representation of G acting on K® L. This representation is
called the tensor product of v and w.

Let v, v, w, w' be representations of G, se Mor(v,v') and r € Mor(w, w'). Using
(2.16) and (2.17) one can easily check that s@re Mor(v@w, v’ @w’). In particular
the equivalence class of v@w depends only on equivalence classes of v and w.
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Let vy, v,, v5 be representations of G acting on f-d.c. vector spaces K, K,, K4
respectively. Identifying (K, ® K,)® K5 with K; ®(K,® K ;) and using (2.15), one
easily verifies the associativity law:

(v, Dv,)Dvs=0, DV, Dv3). (2.20)

In the group theory the tensor product of representations is commutative.
Identifying K® L with LQ K we had v@w=w@v for any representations v and w
acting on K and L respectively. For pseudogroups this is no longer the case.

Let v and w be representations of a compact matrix pseudogroup G acting on
f-d.c. vector spaces K and L respectively. We say that v commutes with w if the
operator o; interchanging K and L (0, : K®L—L®K and o (x® y)=y®x for
any xe K and ye L) intertwines v@w with w@v. We have the following

Proposition 2.4. Let G=(A, ()= 1.2,... n) be a compact matrix pseudogroup. The
following three conditions are equivalent:

1. A is commutative. [In this case G is a usual compact group of matrices (cf.
Theorem 1.5).]

2. The fundamental representation u commutes with u and .

3. Any two representations of G commute.

Proof. We shall use the following obvious formula:
ox (n@m)=(m@n)oy, (2.21)

for any ne B(K) and me B(L).
Assume that ve B(K)®A and we B(L)®A given by (2.13) and (2.14) are
representations of G. Then

(t@W) (0. @) =rZS (m,@n)oy, @v,w;,
(0L ®) (WD) =rz‘§ 0k (n@m,)@W,
=2(m,®ns)aKL®wsv, .
The representation v commutes with w if and only if the two expressions coincide,

i.e. if and only if
2 (m.@n)oy ®[v, w,]=0. (2.22)

If A is commutative, then (2.22) is fulfilled and v commutes with w. This way we
proved that 1 = 3. Implication 3 = 2 is obvious.
Assume now that u commutes with u and #. Using condition (2.22) we obtain
[cf. (2.5) and (2.12)].
Z (mrr’®mss')O-KK® [M,»,, us's] = 0 b

rr
ss’

Z (mrr'®mss/)o-KI_(® [ur'n us’s*] =0,

rr’
ss’

where now K =N is the carrier vector space of the fundamental representation.
Since the matrices m,, (r,#'=1,2,...,N) are linearly independent, the above
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equations mean that
[ur’rﬂ us’s] = [ur’rs us’s*] =0

for all ¥, r, s’, s=1,2,...,N. Therefore the *-algebra &/ (generated by matrix
elements of u) is commutative and (cf. Condition 1 of Definition 1.1) Statement 1
follows. Q.E.D.

Let %, be the smallest class of representations of G containing the fundamental
representation and closed under direct sums, tensor products, complex conjug-
ation and passing to a subrepresentation and to an equivalent representation. It
turns out that the class % is rich in the following sense

Proposition 2.5. Let G=(A,u) be a compact matrix pseudogroup and </ be the
*-subalgebra of A generated by matrix elements of u. Then any element a€ o/ can be

written in the form
a=(t®id)v, (2.23)

where ve R, v acts on a f-d.c. vector space K and 1 is a linear functional defined on
B(K).

Proof. Let o/, be the set of all elements a e .o/ which can be written in the form
(2.23). We have to show that &7, = .o7. Setting v =u we see that all matrix elements
of u belong to .«7,. Therefore it is sufficient to show that o7, is a *-subalgebra of 4.
The latter follows immediately from the following obvious formulae:

Art®id)y=(Ar®id)v,
(r®idpy+ (' @idp' = (D7) ®id) (v@v'),
[(t®id)v] [(7 ®id)v] = (t @7’ ®id) (v D),
[(t®id)]* =(T®id)7,

where 4 € C; vand v’ are representations of G acting on K and L respectively; t and
7’ are linear functionals defined on B(K) and B(L) respectively; t@7’ is the linear
functional defined on B(K@L) such that (t®7')(m@m’)=1(m)+1'(m’) for any
me B(K) and m' € B(L) and finally 7 is a linear functional defined on B(K) such that
#(m)=1(m) (me B(K)). Q.E.D.

Let (a,),.n be a sequence of elements of a topological vector space. We say that
the sequence converges in the Cesaro sense and that g is the Cesaro limit of

. . . . 1
(a,):g=C-lima, if the sequence (b,),.n Of arithmetic means (b,,=n Y ak>
n— o k=1

converges to g in the usual sense.
We shall use the following

Lemma 2.6. Let K be a f-d.c. vector space and t € B(K). Assume that the sequence of
iterations (t"),.n is bounded. Then there exists the Cesaro limit

t,=C-lim¢"

n—oo

and t, is a projection onto {xe K :tx=x}.
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Proof. Using if necessary Jordan decomposition one may assume that
t=Algx + N, where Ae C and N is nilpotent. The sequence (t"),. is bounded in
the following two cases:
L |A|<1. Then C-lim¢"=limt"=0
IL. |A]=1 and N=0. Then

o Mgy i A=1
Cilgnt B {0 otherwise. Q.E.D.

For any state g [i.e. positive linear functional such that o(I)= 1] defined on A
we denote p*" =g * g ... * o (n-factors) the n'™ convolution power of ¢. Clearly o*"
is a state of A. We shall prove

Proposition 2.7. For any a€ A and any state ¢ of A there exists the Cesaro limit,
h(a)= C-lim ¢*"(a). (2.24)

h, is a state of 4. Moreover we have
o*h,=h,*o=h,. (2.25)

Proof. The sequence of states (¢*") is norm bounded and .7 is dense in 4. Therefore
it is sufficient to prove the existence of limit (2.24) for all ae.«/. By virtue of
Proposition 2.5 one may assume that a is of the form (2.23). Then using the
notation introduced by (2.9) we have [cf. (2.10)]

0*"(@) = (1®e*")v = 1(Vgm) = T(t])

and the existence of the Cesaro limit (2.24) follows immediately from Lemma 2.6
[sequence (0*"),.n is norm bounded and v,=(id®e*")v]. Clearly the linear
functional h, introduced by (2.24) is positive and normalized. In order to prove
(2.25) it is sufficient to set n— oo in the following relation

Q¥ ¥ =g*"x@=¢*""". QED.

3. Contragradient Representations

This section is devoted to the concept of the representation contragradient to a
given one. As we shall see later this concept plays the fundamental role in our
approach to pseudogroups.

Throughout this section G =(A4, u) is a compact matrix pseudogroup, @ is the
comultiplication and k is the coinverse associated with G, .7 is the *-subalgebra of
A generated by matrix elements of u and e: .o/ > C is the *-character introduced in
Proposition 1.8.

In the theory of groups the definition of the representation contragradient to a
given one involves the involution g—g ~ . Unfortunately the algebraic counterpart
of this involution, i.e. the coinverse map « is not defined on the whole A. Therefore
we have to limit our considerations to the representations with “matrix elements”
belonging to .&/. Such representations are called smooth.
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It turns out that the class of smooth representations is sufficiently large. In fact
the representations which are not smooth (if they exist) have pathological
properties. See the last sections for the details.

Let K be a finite dimensional complex vector space and ve B(K)®A be a
representation of G acting on K. We say that v is a smooth representation if
ve BK)® .

According to (2.5) the fundamental representation is smooth. One can easily
check that complex conjugation, direct sum and tensor product applied to smooth
representations produce smooth representations. Moreover any subrepresen-
tation of a smooth representation is smooth. Therefore all representations in %,
are smooth.

If v is a smooth representation then (2.9) is meaningful for any linear functional
o defined on .o7. Moreover in this case the product formula (2.10) holds for all linear
functionals g, ¢’ defined on o7 [cf. the remark after formula (1.51)]. No continuity
assumption is required

Proposition 3.1. Let v be a smooth representation of G acting on a finite dimensional
complex vector space K. Then

K=K,®K,, (3.1)

where K, and K, are v-invariant subspaces, vl|g, is completely degenerate
representation and v|y, is nondegenerate.

Proof. We use the functional e introduced in Proposition 1.8. Let v, =(1d®e)v [cf.
(2.9)]. By virtue of (1.54) and (2.10) vZ=v,, ie. v, is a projection acting on K.
Therefore

K=K, ®K,,

where K, =kerv, and K, =rangev,. It follows immediately from (1.53) and (2.10)
that v,v,=v,v, for any g e A'. Therefore (cf. Proposition 2.1) v, Mor(v,v) and K,
and K, are v-invariant.

Assume that a vector xe K is killed by the representation v. It means that
0x=0. Then v,x =0 for any ¢ € &/". In particular v,x =0 and x € K,. Conversely if
x e K, then using (1.53) and (2.10) we have v,x=1,, ,x =v,0,x=0 for any ge A". It
means that x=0. This way we proved that K, is the space of all vectors killed by v.
Therefore v restricted to K, is completely degenerate and v restricted to K, is non-
degenerate (no non-zero vector belonging to K, is killed by v). Q.E.D.

The following proposition gives nice criteria distinguishing non-degenerate
representations.

Proposition 3.2. Let v be a smooth representation of G acting on K. Then the
following four conditions are equivalent:

1. v is non-degenerate,

2. vo=Ip,

3. v is an invertible element of B(K)® A and

v ' =(id®xK), (3.2)
4. v has a left inverse in B(K)® A.



Compact Matrix Pseudogroups 637

Proof.1 = 2.1f vis non-degenerate then K in the decomposition (3.1) vanishes. It
means that kerv,={0} and v,x=x for any xe K.
2 = 3. Let

b= m,®v,, (3.3)

where m, € B(K),v,e &/ andr=1,2,...,R. Then v,=) m,e(v,). Formula (2.4) means
that

> m@®(v,) =Y mm,@v,®v,. (3.4)

Applying to the both sides of the above equation the mapping id @ m(x ®id) [where
m is the multiplication map (1.35)] and using (1.38) we obtain

Y m,®e(v,)] =Y mm«(v,)v;.

By virtue of (3.3) this formula can be rewritten in the following compact way
0,R=[(1d®x)v]v.

Similarly applying to the both sides of (3.4) the mapping id ®m(id®x) and using
(1.39) we get

v, @I =v[(1d®xK)v].

Now the implication 2 = 3 is trivial

3 = 4. Obvious.

4 = 1. Let v’ be a left inverse of v: v'v =1, 4. Then using the obvious action
of elements of B(K)®A on K® A, we have v'dx=x®]I for any x € K. Therefore
?x=0 implies x=0 and v is non-degenerate. Q.E.D.

We know that e is a *-character. Using this fact one can easily prove that
(v®w),=0,Bw,, (vOW),=v,®w, and v,=(v,)”. Therefore direct sum, tensor
product and complex conjugation applied to smooth non-degenerate represen-
tations produce nondegenerate representations. Formula (1.37) shows that the
fundamental representation is non-degenerate. It proves that all representations in
R are non-degenerate.

For any finite-dimensional complex vector space K the space dual to K (i.e. the
space of all linear functionals defined on K) will be denoted by K'. For any xe K
and x’ e K’ the value of the functional x" at the point x will be denoted by {x’, x).
Setting {x, x'> =<x’, x) we identify the second dual K" with K.

For any ae B(K, L) (where K, L are finite-dimensional complex vector spaces)
we consider the transposed linear mapping a” € B(L,K’') such that {(a”y,x)
=<{y',ax) for all y’e L and x€ K. The transposition

T:B(K,L)-B(L,K’)

is a linear involution. Moreover

(ab)T=bTa” (3.5)

for any ae B(K, L) and be B(H,K) (H, K, L are f-d.c. vector spaces).
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For any ye L and x' e K', y®x’ will denote the linear functional defined on
K®L such that

Y'RX,x®yy=<{x, x>y, ) (3.6)

for any xe K and ye L. In other words we identify L® K’ with (K®L)'. Let us
notice that

(a®b)T=bT®a" (3.7
for any ae B(K) and b e B(L). Indeed for any y' e L, x' e K', xe K, and y € L we have

{(@a®b) (y®x'), x®y) =<y ®x',(a®b) (x®))
=Y @x,ax®byy=<x',axy y,byy =<{a"x',x) (b"y, y)
=Ty @aTx, x@yy={(b"®a") (y ®x'), x®) .

Let K and L be f-d.c. vector spaces. For any y;e L, x;e K’ (where i=1,2,...,5)
and any xe K we set

(Z_ yi®x§> x=3 (X XD (3.8)
This way we identify LQ® K’ with B(K, L). Let us notice that
(n®@mTa=nam (3.9)

for any ne B(L), me B(K), and ae B(K, L). Indeed if a=} y;®x;, then

(n@mTa=Y ny,@m’x;
and for any xe K, we have
(n@mT)a)x =Y {m"xj, xyny; =Y. {xi,mxpny;
=n (Z yi®x§> mX =namx.

Let K and L be f-d.c. vector spaces. We have the chain of natural
identifications:

B(LKY=(K®L)=L'®K =L®K'=B(K,L).

Using (3.6) and (3.8) on can easily check that the duality between B(L, K) and
B(K, L) is given by the formula

(b,ad=Trba (3.10)

for any be B(L, K) and ae€ B(K, L).

Now let o/ be a *-subalgebra of 4 generated by matrix elements of u and
K./ — </ be the coinverse associated with G. For any ve B(K, L)® </ (K, L are
f-d.c. vector spaces) we consider an element v°e B(L, K')® .o/ introduced by the

formula
v'=(T®xK). (3.11)
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Taking into account (3.5) one can easily check that
WD) =(s"@Iw*, (3.12)
(@) =v("®1I) (3.13)

for any ve BI(K)® o/, we B(L)®.«/ and s B(K, L). Moreover using (3.7) and the
antimultiplicativity of k we see that

vOW)F =w'Pr (3.14)
for any ve B(K)®.«/ and we B(L)® <.

Proposition 3.3. Let v be a smooth representation of G acting on a f-d.c. vector space
K. Then v is a representation of G acting on K'.

Proof. Using (1.47) we compute
(AP =(TRP kv =(TR 0 (kR K)P)v
=(T®o0 (k®K))vDv
=(T®o0,) (@K O(Id®@x)v
=(TRrWDO(TRK=v"Dr°,

where g, denotes the flip automorphism of A® A and the last but one equality
follows easily from (3.5) and (2.2). Q.E.D.

The representation v¢ is said to be contragradient to the representation wv.
Clearly v¢ is smooth.

Let v and w be representations of G and se Mor(v, w). Then using (3.12) and
(3.13) one can easily show that s”eMor(w",v°). In particular v and w° are
equivalent if and only if v and w are equivalent. Moreover +* is irreducible if and
only if v is irreducible.

Let v be a smooth representation of G acting on a f-d.c. vector space K and
x"e K'. One can easily verify that x’ is a v-invariant functional if and only if x" is a
v-invariant element.

The Haar measure (cf. Proposition 4.3) will provide us with a powerful tool for
the investigation of v-invariant elements and functionals. The following propo-
sition shows that the same techniques can be used for the investigation of
intertwining operators. It uses many of the identifications described above: In
Statement 1 B(K,L)=L®K’, in Statement 2 B(L, K)=(L&®K’), in Statement 3
B(L,K')=K'®L and finally in Statement 4 B(K’, L)=(K'®L).

Proposition 3.4. Let v and w be representation of G acting on f-d.c. vector spaces K
and L respectively, ae B(K, L) and be B(L, K). Assume that v is smooth and non-
degenerate. Then

1. aeMor(v,w) if and only if a is a (WDv)-invariant element of LQK’,

2. beMor(w,v) if and only if b is a (wDv)-invariant functional on LQK’,

3. aeMor(v*,w) if and only if a” is a (+*Dw)-invariant element of K'®QL,

4. be Mor(w,v) if and only if b is a (v*@w)-invariant functional on K'® L.
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Proof. Let
v=) m®u;, w=y n;@w;,
i J

where m; € B(K), v;€ .o/, n;e B(L), and w;€ A. Then
(w@v”)=;jnj®mf®wjk(v,~),

and for any ge A" we have
wov),= Z nj®miTQ(WjK(vi)) .
1,]

Let ae B(K, L). Then using (3.9) and (3.2) we get
(wr°),a= > nam;o(wk(v,) = (1d®@e)wa® v~ t (3.15)
LJ
This formula shows that a is (w@v°)-invariant element if and only if wa® v~}

=a®]I. The latter is equivalent to w(a®1I)=(a®I)v and Statement 1 follows.
Let be B(L, K). Then

(n,@m])"b=m;bn;. (3.16)

Indeed for any ae B(L, K) = B(K, L) we have [cf. (3.9) and (3.10)]
{n;@m])h, ay =<b,(n;@m])ay =<b,njam;y =Tr(bnam,)
=Tr(m;bn;a)={m;bn;, ay
and (3.16) follows. Therefore
(wev), b= lz, mbn o(wk(v) = (id®0) (12} mbn,@w jk(vi)) ,

and b is a (w@uv)-invariant functional if and only if

Y, mbn;@wk(v)=bR®1I. (3.17)
i,J

Applying to both sides the mapping T®id and remembering that T is antimulti-
plicative, we see that the latter is equivalent to

[(T®idw] (bT®) =bT®I. (3.18)

Inserting in (3.2) +* instead of v we get (v°) " ! =(T®id)v*. Therefore (3.18) can be
rewritten in the following form

(TRidw] ('@ =>0"®N) (T®id)],

and using again the mapping T®id we finally see that (3.17) is equivalent to the
relation (b@ I)w=v“(b®I). Statement 2 follows.

With the same techniques one can prove Statements 3 and 4. The details can be
checked by the reader. Q.E.D.

Let v'=(T®x ~')v. Repeating the proof of Proposition 3.3 one can check that
v’ is a smooth non-degenerate representation. Note that v"“=v. Replacing in
Proposition 3.4.3 v by v' and using Proposition 2.3 we get
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Theorem 3.5. Let v and w be irreducible representations of G. Assume that v is smooth
and non-degenerate. Then

There exists a non-zero \ .

(v@w)-invariant element

w is equi-
valent to 1°

In the next sections we shall prove that for any smooth representation v the
representations complex conjugate to v and contragradient to v are equivalent and
that the second contragradient v* is equivalent to v (note that the second complex
conjugate v=v).

4. The Haar Measure

It is difficult to overestimate the role of the Haar measure in the theory of compact
groups. The averaging over compact groups is the main tool of the representation
theory and is constantly used in the applications. For this reason the theorem
stating the existence and the uniqueness of the Haar measure should be considered
as the central theorem in the theory of compact groups.

In our theory the algebra of continuous functions on a compact group is
replaced by a (in general) non-commutative C*-algebra A. Therefore instead with
measures we deal with states on A.

In this section the existence and the uniqueness of the state invariant under left
(and simultaneously right) shifts will be established for an arbitrary compact
matrix pseudogroup. For obvious reason this state is called the Haar measure.

We shall prove that also in the theory of compact matrix pseudogroups the
Haar measure has all the properties that are relevant for the representation theory
and other applications. In particular we shall use the Haar measure to show that
any smooth representation of a compact matrix pseudogroup can be decomposed
into the direct sum of irreducible representations.

Let G=(A4,u) be a compact matrix pseudogroup. We know that A is finitely
generated (by matrix elements of u). Therefore A is separable and the set of faithful
states is not empty. All the results obtained in this section are based on the
following.

Proposition 4.1. Let ¢ be a faithful state defined on A and h,, be the Cesaro limit of the
sequence (0*"),— ... (cf. Proposition 2.7). Then for any ne A’ (A’ is the set of all
continuous linear functionals defined on A) we have

h,*n=n=h,=n(I)h,. 4.1

Proof. All the linear functionals entering (4.1) are continuous. We shall use
notation (2.9). By virtue of Proposition 2.5 it is sufficient to show that

Uhosn = Unshy = ’7(1)”;.9 4.2)

for any representation v of G belonging to the class %,
Let K be the f-d.c. vector space on which v acts and (- | -)x be a non-degenerate
positive sesquilinear form on K. Then K becomes a Hilbert space and B(K),
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B(K)® A, and B(K)®B(K)® A become C*-algebras. According to Proposi-
tion 3.2, v is an invertible element of B(K)® A. Therefore there exists a strictly
positive number ceIR such that

CIB(K)®A§U*U» (4.3)

clpxyoa Svv*. (4.4
Let

x=0—Ipxe4- 4.5)

At first we shall prove some estimates. Let
i:BK)®A—B(K)®A® A

be the C*-algebra homomorphism considered in Sect. 2. We remind that i(m®a)
=m®I®a for any me B(K) and ae A. Therefore

(1[d®n®id)i(q)=¢q (4.6)

for any g € B(K)® A and any linear functional # defined on A such that #(I)=1. By
virtue of (2.3)
w®Di(x)=vDx, (x®Di(v)=xDv.

Taking into account (4.3) and (4.4) we have
ci(x*x) < (0D x)*(vDx), 4.7)
cx@N) (x@D* = (xDv) (xDv)*. (4.8)

Applying the positivity preserving map id®h,®¢ to both sides of (4.7) and
using (4.6) we get

c(id®o) (x*x) = ([d®h,®0) [(1 Ox)*(vDx)] . (4.9)
Similarly, applying id®go®h, to both sides of (4.8) we obtain
c(id®0) (xx*) = (1[d®@e®h,) [(xDv) (xDv)*]. (4.10)

We compute the right-hand side of (4.9). Remembering that v is a represen-
tation, we have [cf. (4.5)]

1Ox=1Qv— 1Oy 4= (AP —vRI.
Therefore
VOx)*(rOx)=>1d® P) (v*v)— 2 Re[(v*RI) (v Dv)] + v*v &1, 4.11)

where Re[a] denotes the hermitian part of a: Re[a]=%(a+ a*). By virtue of (1.50)
and (2.25) we have

(d®h,®0) ([d@ D) (v*0)=([d@h, * 0) (0*0)
—(id@h,) (v*v).

The same result we get computing the contribution coming from the last term of
(4.11):
(1[d®h,®0) (v*v®I)=(Id®h,) (v*v).
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Moreover using the notation (2.9) we have (1Id®id® o) (v Dv) = v(v,®I). Therefore
(4@ h,®0) [(0* @ 1) (4@ V)] =(d®h,) (v*0)v,
The above computations show that the right-hand side of (4.9) equals to
2(id®h,) (v*v)—2 Re[(id®h,) (v*v)v,] =2 Re[ T(I ) —v,)],
where T=(id®#h,) (v*v). This way we proved that
c(id®o) (x*x) <2 Re[T(Ip k) —v,)]- (4.12)

Using the same techniques one can compute the right-hand side of (4.10).
Inserting the result into (4.10), we get

(id®0) (xx*) <2 Re[(Igp— 1) T'], (4.13)

where T'=(id®h,) (vv*).

By virtue of (2.10) and (2.25) we have (I g, —v,)v,, =4, — vy, =0, and similarly
Vs, (I — v,) =0. Therefore multiplying both sides of (4.12) by v,, from the right
and by vjf from the left (clearly this operation preserves the inequality relation) we
obtain zero on the right-hand side:

v c(id®0) (x*x)v,, 0.

Remembering that g is faithful we see that
(vik, ®@)x*x(v,,®1)=0
and
x(v;,,®1)=0. 4.14)

Similarly multiplying both sides of (4.13) by v, from the left and by v} from the
right and repeating the arguments used above we obtain

(v4,®1)x=0. (4.15)
Replacing in (4.14) and (4.15) x by the right-hand side of (4.5) and comparing
the two relations, we see that
(Vn, @D =0(v,, &) =1, ®I. (4.16)
Applying (id®n) to all segments of this equation we get v, v, =v,v,, =n(I)v,, and
[cf. (2.10)] relation (4.2) follows. Q.E.D.

Let /' be a normalized (i.e. h'(I)=I) continuous linear functional on 4 such that
for any ne A’, we have

Wxn=nxh=n)h'. 4.17)

For example i’ = h,,where ¢ is another faithful state on A. Then inserting n =h’ in
(4.1) and n=h, in (4.17) and comparing the two relations we get h'=h, In
particular h, = h, for any faithful state ¢’ on A. This way we proved that for all
faithful states ¢ on A4 the Cesaro limit (2.24) is the same. This common limit will be
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denoted by h:h=Hh, for any faithful state ¢ on 4. Moreover we have
h*n=n%h=n(Dh

for any ne A’
Let ae A. Then

(1 h) (@)= (h * 1) (@) =n(D)h(a),
and using (1.51) we obtain
n(h* a)=n(a*h)=n(h(a)I)
for any ne A". Therefore
hxa=axh=h(a)l
for any ae A. If i’ is a state of 4 such that
Wxa=axh=Hh(a)l
for any a€ A4, then
W@l=h@I+«h=h*a*h=h *h(a)] =h(a)l

and W' =h.
This way we proved the first three properties listed in the following theorem

Theorem 4.2. Let G = (A, u) be a compact matrix pseudogroup, </ be the *-subalgebra
of A generated by matrix elements of u and k: .o/ -/ be the coinverse associated
with G. Then there exists a state h on A such that

1. h(a)= (;-}gn 0*"(a) (4.18)
for any faithful state ¢ on A and any ac A.
2. nxh=hxn=n(Dh (4.19)
for any continuous functional n defined on A.
3. a*h=hx*a=h(a)l (4.20)
for any ae€ A.
4. For any ae oA,
h(x(a))=h(a). 4.21)
5. For any ae o/,
< h?a)io 0) = (a=0). (4.22)

Each of the property 1-3 determines the state h uniquely.

Proof of Property 4. The compositions hox ™' and hok are linear functionals

defined on .o/ assuming value 1 at I. Let ae /. Then using (1.51) and (4.20) we have
(hx(how™ ) (k@)= (hor™ ") (k(a)* h)=(ho k") (h(r(a)]) = h(k(a)).
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On the other hand using (1.50), (1.47), (1.51), and (4.20), we compute

(h#(he k™) (x(@)=(h@(ho k™) P(K(a))
=(h®(hox™ "ok @K)P(a)
=((hox™")®h) (k@ K)P(a)
=(h®(h o x))P(a)=(h*(h°K))(a)
=(hox)(axh)=(hox)(h(@)I)=hla),

and formula (4.21) holds. Q.E.D.

The proof of the last property [implication (4.22)] will be given later.

In our theory the algebra A4 plays the role of the algebra of all continuous
functions on a compact group. Therefore the states of A correspond to normalized
positive measures on the group. Properties 2, 3, and 4 are characteristic for a left
and right invariant Haar measure. Therefore in our theory the state 4 plays the role
of the Haar measure and in the following it will be called the Haar measure.

The proof of the existence of the Haar measure should be considered as an
essential achievement of our approach. In the earlier theories [6, 11, 5, 13] the
existence of the Haar measure was stated by an axiom with the great methodolog-
ical disaccord with the theory of (locally) compact groups, where the proof of
existence of the Haar measure is highly non-trivial.

The following statement shows how the Haar measure can be used to the
investigation of invariant elements and functionals:

Proposition 4.3. Let v be a representation of G acting on a f-d.c. vector space K and
E=v,=0d®h)v. Then

1. EeMor(v, ).

2. E is a projection onto the space of all v-invariant elements.

3. ET is a projection onto the space of all v-invariant functionals.

4. For any non-zero v-invariant element xe€ K one can find a v-invariant
functional x' € K’ such that {x',x) is strictly positive.

Proof. By virtue of (4.19) and (2.10) we have
v,E=Ev,=n(l)E

for any ne A'. The first equality shows that EeMor(v,v) (cf. Proposition 2.1).
Moreover inserting § = h we get E2=E, i.e. E is a projection. Consequently E” is a
projection.

Assume that xerange E. Then Ex=x and the above formula shows that v,x

=#(I)x for any ye€ A'. Therefore x is a v-invariant element. Conversely if xe K is
v-invariant then v,x=n(l)x for any neA’ and setting n=h we get Ex=x.
Statement 2 is proved.
Assume that x’erange ET. Then x'o E=x/, and the above formula shows that
x"ov,=n(I)x" for any ne A". Therefore x’ is a v-invariant functional. Conversely if
x'e K’ is v-invariant then x'ov,=n(I)x" for any ne A" and setting n=h we get
x'o E=x'. Therefore ETx'=x'. Statement 3 is proved.
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Let x be a non-zero v-invariant element of K. Then there exists ' € K’ such that
{y,x>>0.Let x'=ETy. Then x'is a v-invariant functional and {x’, x> =<ETy’, x)>
={y,Ex)=<y,x>>0. Q.E.D.

In many interesting cases the space of all v-invariant elements is one-
dimensional. Then the space of all v-invariant functionals is also one-dimensional
(always dim EK =dim ETK’) and choosing a non-zero v-invariant element x e K
and a non-zero v-invariant functional x’ € K’, we have

Ey= X2 (4.23)

X, x)

for any ye K. Indeed the operator E introduced by (4.23) is the only projection
such that range E=Cx and range ET=Cx".

We shall use the last statement of Proposition 4.3 with v replaced by w®v".
According to Proposition 3.4 the set of all (w@uv)-invariant elements coincides
with Mor(v,w) and the set of all (w@v)-invariant functionals coincides with
Mor (w, v°). Taking into account (3.10) we get

Proposition 4.4. Let v and w be finite-dimensional representations of G. Assume that
v is smooth and non-degenerate. Then for any non-zero ae€ Mor (v, w), there exists
be Mor(w, v°) such that Trba>0.

Now we can prove the following fundamental

Theorem 4.5. Any finite-dimensional smooth representation of a compact matrix
pseudogroup is equivalent to a direct sum of irreducible representations.

Proof. By virtue of Proposition 3.1 we may restrict our considerations to non-
degenerate representations. Then the theorem follows immediately from the
following.

Proposition 4.6. Let w be a representation of G acting on a f-d.c. vector space L,
K C L be a w-invariant subspace and v be the restriction of w to K. We assume that v is
smooth, non-degenerate and irreducible. Then K has a w-invariant complement.

Proof. The embedding a: K— L belongs to Mor(v,w). According to Proposit-
ion 4.4 one can find b: L—K intertwining w with v such that Trba>0. Let
L,=kerb. Then L, is w-invariant.

Clearly dim L, + dim K =dim L. Assume that L+ L, ® K. Then L, K is a non-
zero v-invariant subspace of K. Remembering that v is irreducible we get
L,nK=K. Consequently K CL, and ba=b|x=0, which is in contradiction with
Trba>0. Therefore L=L,®K and L, is a w-invariant complement of K. Q.E.D.

This ends the proof of Theorem 4.5. Q.E.D.

Assume for the moment that G is abelian. Then the convolution product is
commutative and taking into account formula (2.10) and Proposition 2.2 one can
easily show that all irreducible representations of G are one-dimensional. Using
Theorem 4.5 we can decompose the fundamental representation of G into a direct
sum of one-dimensional representations. In other words there exists an invertible
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matrix te My(C) such that the matrix u'=(t"'®Nu(t®I) is diagonal. Then
G'=(A,u') is a compact matrix pseudogroup obtained from G by a similarity
transformation. Let y,,7,, ..., 7y be diagonal elements of u'. By virtue of (1.2), (1.5),

and (1.6),
D7) =7 ® V> (4.24)
K7 =7n '

forn=1,2,...,N. Computing the norm of both sides of (4.24) we get ||y, /> = || D(7,)
<|ly.ll and ||y,| £ 1. Taking the inverses of both sides of (4.24) and using the same
trick we get ||y, !| <1. Therefore all y, are unitary. Let I' be the subgroup of
unitaries of 4 generated by 7,75, ...,7y. Clearly ®(y)=y®y for any yel.

Let = be the universal representation of 4 (i.e. the direct sum of all cyclic
representations). Then any representation of 4 is contained in a multiple of #. Let
U =rn|r. Then U is a unitary representation of I satisfying condition (1.26) [Indeed
URQU=(r®n) ?| and (r®mn)o P is contained in a multiple of n.] and G’ is
identical with the pseudogroup (C*(U),u) described in Sect. 1. This proves
Theorem 1.7.

We turn back to the general case. Let G be the set of all equivalency classes of
irreducible representations of G belonging to %,. For any ae G we choose a
representation u* € o. Let K, be the f-d.c. vector space on which u* acts, d,=dim K,
(ef:k=1,2,...,d,) be a basis in K, and (m;eB(K,):k,I[=1,2,...,d,) be the
corresponding system of matrix units: myel =d,¢ef (k,l,r=1,2,...,d,). Then

da
u*= kz;1 my;@ug, (4.25)

where uf, € .o/ (k,[=1,2,...,d,). Using the well known algebraic properties of the
system of matrix units one can easily check that formula (iId® @) (u*)=u*Qu*

means that
Plui) =L up®uy. (4.26)
Similarly using Proposition 3.2.3 we get
; K(ugJufy =041, (4.27)
;uirk(ui‘z) =0l . (4.28)

Proposition 4.7. The system (u%,:a€ G, k,1=1,2, ...,d,) is a basis in the vector space
o .

Proof. By virtue of Proposition 2.5 and Theorem 4.5 any element of o/ can be
written as a finite linear combination of elements uj;. We have to show that these
elements are linearly independent. This fact follows immediately from the
following

Lemma 4.8. Let F be a finite subset of G and 25,€C fork,1=1,2,...,d,0€F. Then
there exists a continuous linear functional ¢ on A such that

o(ug) =74 (4.29)
for all k,1=1,2,...,d, and o€ F.
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Proof of the lemma. Let A’ be the set of all continuous linear functionals defined on
A. We shall use notation (2.9). In the algebra
B=Y®B(K,),

aeF

we consider the subset

B,= {Z@’u;:QeA’}.

aeF

By virtue of (2.10) B, is a subalgebra of B. For any f€ F the map
B3 Y ®ul—>ub e B(Ky) (4.30)

aeF
is an irreducible representation of B, (a subspace invariant under all u} is
uf-invariant). Proposition 2.1 shows that the representations (4.30) are pairwise
inequivalent. Therefore using the Burnside theorem (e.g. [8]) and Theorem 2.5.A
of [15] we obtain B, = B. It means that for any sequence (t,€ B(K,): « € F) there
exists g€ A’ such that t,=uj for all «e F. Taking t,=) mj;Aj; (summation over
k,1=1,2,...,d,) and using (4.25) we obtain (4.29). Q.E.D.

This ends the proof of Proposition 4.7. Q.E.D.
Let ae «/. Then

de
a=73 ) G, (4.31)
aeF kl=1
where F is a finite subset of G, ayeC (k,1=1,2,...,d,; aeF). By virtue of
Lemma 4.8 one can find ¢f,e A' (r,s=1,2, ...,dy; f € F) such that of(uf) =0,,0,.0.
Using (1.49) and (4.26) we get

dg
ax Qrsz Z aflufl >
=1
and taking into account (4.27) we obtain
dp
Y. K(uf) (axol)=akl (4.32)
s=1

for all r,k=1,2,...,d; and BeF.
Now we can complete the proof of Theorem 4.2.

Proof of the Implication (4.22). Assume that a given by (4.31) is positive and
h(a)=0. Then for any state g of 4, a * ¢ is positive and [cf. (1.51) and (4.19)] h(a * 0)
=(o*h)(a)=ha)=0. It means that (ax9)'> belongs to the left ideal
J={ae A:h(a*a)=0}. Therefore a * g € J. Since any continuous linear functional
on A is a linear combination of states, the latter holds for any g € A". Formula (4.32)
shows now that a/leJ and af, =0 for all r,k=1,2,...,d; and feF. Therefore
a=0. Q.ED.

At the end of this section we consider certain mappings acting on .o/ ® </ that
play an important role in the differential calculus on pseudogroups (cf. [18,20]).
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Letr,r,s, s belinear transformations acting on .« ® .. such that for any a, b
ra®b)=(a®P(b),
r'(a®b)=2(a) (b®I),
s(a®b)=(I®a)®(b),
s(a®b)=®(a)(I®D).

Theorem 4.9. The linear transformationsr,r', s, and s’ are bijections of .o/ @ 5/ onto
itself. The inverse transformations are given by the formulae

ra®b)=(a®I) (kRid)®(b), (4.33)
r'Ha®b)=[o 4k~ '®id)P(b)] (I ®a), (4.34)
s (a®b)=(b®I)o (id®@x ~)P(a), (4.35)
s a®b)=[(([d®@K)P(a)](IQD), (4.36)

for any a,be /. Moreover for any a€ .o/
il I®a)=I®kK(a).

Proof. We have to check that the linear mappings introduced by the formulae
(4.33)—(4.36) are really the inverses of r, ¥, 5, and 5" respectively. To this end one may
use formulae derived in Sect. 1. However it is simpler to use formulae (4.26)(4.28).
By virtue of Proposition 4.7 it is sufficient to perform computations for a =u}, and
b=uf, (where « fe G; ki1=1,2, ..d, and r,5=1,2,...,ds). For example we
compute

dg

rr”(a@b)= Y r(ugic(up,)®ub)

m=1
dg

= 3 upk(uf,)un,®ul=a®b.

nm=1

1 1 1

Therefore ror™ ' =id. In the similar way one can check that r~ ' or=id, r' o'~
=r lor=id, ses '=slos=id, and sos '=s5"'os=id (where
id=id,g,, ) Finally we have [cf. (1.47)]:

do
r'(r (I®a)= XL () @ th)

do
= mZ—-:I D(rc(u)) (U @ T)

dy

= Y (K(up,) @x(ug,)) (7 ®1)

nm=1

=I®K(u)=1®x(a). Q.E.D.
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5. Unitary Representations, Characters, and Modular Properties

In the theory of representations of compact groups an important role is played by
unitary representations. There is a theorem saying that any finite-dimensional
representation is equivalent to a unitary one. Analogous results can be obtained in
our theory. As in the previous sections G = (4, u) is a compact matrix pseudogroup,
@ and k are comultiplication and coinverse associated with G and .o/ is the dense
*-subalgebra generated by matrix elements of u. We start with the following
definition:

Let K be a finite dimensional Hilbert space. Then B(K) and B(K)® A are
C*-algebras. We say that a representation v of G acting on K is unitary if v is a
unitary element of B(K)® A.

One can easily check that the direct sum, the tensor product and the complex
conjugation applied to the unitary representations produce a unitary represen-
tation. Moreover if v and w are unitary representations acting on a f--d. Hilbert
spaces K and L respectively and ae Mor(v, w), then a*eMor(w,v). Indeed if
(a® v =wa®I), then v¥(a*®I)=(a*®I)w* and multiplying both sides from the
left by v and from the right by w we get (a*®@)w=v(a*®]I).

It is not easy to show that any subrepresentation of a unitary representation w
is unitary and that the orthogonal complement of a w-invariant subspace is
w-invariant. In order to prove these facts one has to use in an essential way the
results contained in Sect. 4. At this moment we shall prove only the following
simple statement:

Proposition 5.1. Let w be a unitary representation of G acting on a f-d. Hilbert space
L, v be a subrepresentation of w acting on a w-invariant subspace K C L. and K* be the
orthogonal complement of K. Assume that v is an invertible element of B(K)® A.
Then v is unitary; K* is w-invariant and w|g. is unitary.

Proof. Let P be the orthogonal projection onto K. Then the restriction of w to K is
given by the formula
v=w(P®]I). (5.1)
Let us notice that P (P®] respectively) can be identified with I, (Ix e
respectively). Remembering that w is unitary we have

v*o=(PRIHwW*WPRI)=PRI. (5.2)

We assumed that v is invertible. (5.2) shows that the inverse of v coincides with v*,
ie. v is unitary. Therefore vv* = Iy, 4 = P®I. Taking into account Eq. (5.1), we
get wW(P®I)w*=P®I, and finally w(P®I)=(P®I)w. It means that P € Mor(w, w).
Therefore K* =ker P is w-invariant.

Let P*=1Ig,,—P be the orthogonal projection onto K. Then P'®I
commutes with w and w, =w(P*®]I) is the restriction of w to K. Repeating
computation (5.2) we get

wiw, =P*®I.
On the other hand
wwF =wP*@Iw* =(P* @ ww*=P*®I.

The last two formulae show that w, is a unitary element of BK*)®A. Q.E.D.
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Let K be a f-d. Hilbert space. According to the Fréchet-Riesz theorem one may
identify K with K’ in such a way that (x|y)=<x, y) for any x, y € K. Let v be a non-
degenerate smooth representation of G acting on K. One can easily check that v is
unitary if and only if v*=70.

Theorem 5.2. Let v be a representation of G acting on a f-d.c. vector space K. Assume
that v is an invertible element of B(K)® A. Then there exists a scalar product on K,
providing K a Hilbert space structure such that v becomes a unitary representation.

Proof. It is sufficient to show that v is equivalent to a unitary representation.

We endow K with a strictly positive sesquilinear form (- |-). Then (K,(-|-))is a
Hilbert space and B(K) and B(K)® A become C*-algebras. Since v is invertible,
there exists a positive constant ¢ such that clp)g 4 < v*v. Therefore

Q=(d®h)(v*v)
is a positive invertible operator acting on K. We claim that
O Nr=0®I. (5.3)
Indeed assuming that v=Yy m,®uv, [where m, e B(K), v,e A,r=1,2,...,R] we have
Q0= ; m,*m,.h(v,*v,),
(d@Pp=vDv=>) mm@uv,v,,

(d®@®) (v*v) =Y m*m,*m,.m, @v,*v, Qv *vy . (5.4)

Applying (id®#A®id) to the right-hand side of (5.4) we get
Z ms* <Z m?‘mr’h(v;kvr’)> er®U;k1)s:
= Z ms*Qms’®Us*Us’ = U*(Q®I)U .

On the other hand (h®id)®(a) = a * h = h(a)l. Therefore applying (id ® h®id) to the
left-hand side of (5.4), we get (Id®h) (v*v)®I=Q®I, and formula (5.3) follows.

Let w=(Q'"?*®I)v(Q~Y?®I). Then w is a representation of G equivalent to v
(QV? e Mor (v, w)), w is an invertible element of B(K)® A and formula (5.3) shows
that w*w=1. Hence w is unitary. Q.E.D.

In particular for any « € G, representation u* considered in Sect. 4 can be made
unitary by a suitable choice of scalar product in K,. In what follows we shall
assume that the basis (ef: k=1,2,...,d,) is orthonormal with respect to this scalar
product. Then matrix (uf);=1,2,... 4, 1S unitary and using (4.27) we get

wlug) = uj* (5.5)

for any e G and k,[=1,2, ...,d,. The contragradient representation can be now
written in the form

u* =k21 me T @ug* . (5.6)



652 S. L. Woronowicz
Combining Proposition 4.3.2 and 3 with Proposition 3.4.1 and 4 we immedi-
ately get

Theorem 5.3. Let v and w be f-d. representations of G. Assume that v is smooth and

non-degenerate.
1. If Mor(v, w)={0}, then

(d®h) (WD) =0. (5.7)
2. If Mor(w,v)=1{0}, then
(d@h) (FDw)=0. (5.8)

Let o, fe G and a= f. Then representations u* and u” are not equivalent and
using Proposition 2.3 we have Mor(u* u”)={0} and Mor(u*,u*)={0}. Inserting
v=u* and w=u* in (5.7) and (5.8) we obtain [cf. (2.15), (4.25), and (5.6)]

h(ufn,*) =0, (5.9)
h(u:‘nn*ugl)=0, (510)

for any k,1=1,2,...,dg and m,n=1,2, ....d,.

In order to derive the corresponding formulae for f=o we have to prove a
result corresponding to Theorem 5.3. In the formulation of the following theorem
we use the identifications described in Sect. 3.

Theorem 5.4. Let v be a smooth non-degenerate irreducible representation of G
acting on a f-d.c. vector space K. Then there exists one and only one invertible
operator F e B(K) such that TrF=TrF~'>0 and

1. Mor (v, v°)={AF: 1T} . (5.11)
2. For any ae B(K)=K®K/,

. . Tr(Fa)
(1d®h) (v@v)a= TrF BK- (5.12)
3. For any be BK')=K'®K,
. . _ Trb T
(id®Hh) (v ®v)b_—Tr(F‘1)(F ). (5.13)

If K is a Hilbert space and v is unitary, then F is a strictly positive element of the
C*-algebra B(K).

Proof. According to Proposition 4.4 (with w=v and a=1Ipy,) there exists
F € Mor(v, v*) such that Tr F > 0. Invertibility of F and (5.11) follows directly from
Proposition 2.3.

By virtue of Proposition 2.2 and Proposition 3.4.1, Iy, is the only up to a
numerical factor (v@v¢)-invariant element. Similarly (5.11) and Proposition 3.4.2
show that F is the only up to a numerical factor (v@v°)-invariant functional. Now
formula (5.12) follows from Proposition 4.3 applied to the representation v@uv.
Indeed inserting in (4.23) I k), F and a instead of x, x" and y respectively and taking
into account (3.10) we obtain (5.12).
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We know that FeMor(v,v). Consequently F~'eMor(v*,v), and using
Proposition 2.3 and Proposition 3.4.3 we see that (F~')T is the only up to a
numerical factor (v*@u)-invariant element. Similarly Proposition 2.2 and Pro-
position 3.4.4 show that Iy, is the only up to a numerical factor (v*@v)-invariant
functional. Formula (4.23) can be applied again. Replacing x, x’ and y by (F~1)7,
Iy, and b respectively and taking into account (3.10) we obtain (5.13).

By virtue of Proposition 5.2 we may assume that K is a Hilbert space and that v
is unitary. Then replacing in (3.15) v~ ! by v* we see that (5.12) is positive for any
positive ae B(K). Therefore F>0, F~'>0, and Tr(F~!)>0. Up to this moment F
was defined uniquely up to a positive factor. We use this freedom in order to have
Tr(F~')=TrF. Clearly this condition fixes F completely. Q.E.D.

For any o€ G the operator F related to representation u* will be denoted by F,.
Inserting in (5.12) and (5.13) u* given by (4.25), u* given by (5.6), a= my, and
b=(mz,)" and performmg the necessary computation, we obtain for any a € G and
k,l,m,n=1,2,...,d, the following relations

1

M) = O TE(F 15 (514
1

W)= = O TE(F, ™5, (515)

where M,=TrF,=Tr(F,” ).

The Haar measure need not to be central. We are going to describe the modular
properties of the Haar measure. In this description we use a certain class of
holomorphic functions. We say that an entire function f is of exponential growth
on the right half-plane if there exist constants M >0 and 7 real such that |f(z)|
<M exp(t Rez) for any z in the right half-plane. The following lemma is well
known (cf. [16, p. 228]).

Lemma 5.5. Let f, and f, be entire functions of exponential growth on the right half-
plane. Assume that fi(z)=f,(2z) for z=2,4,6,.... Then fi(z)=1(2z) for all ze C.

Now we can formulate the main result of this section:

Theorem 5.6. There exists one and only one family (f,),.c of linear multiplicative
functionals defined on of such that
1. For any a€ o/, the mapping

Caz fla)eC

is an entire function of exponential growth on the right half-plane
2. f(D)=1 forall ze C.

3. foxfo=f1n (5.16)

for any z,z' € C. Moreover f,=e.
4. For any ze € and any ae o,

JAk(a)=f-Aa), (5.17)
fla®)=1_Ja). (5.18)

In particular for purely imaginary z, f, is a *-character defined on /.



654 S. L. Woronowicz

5. For any ae o,
kK a)=f_ xaxf. (5.19)
6. For any ac .o/ and be A,
h(ab)=h(b(f * a* ). (5.20)
Proof. We know that the operators F, are positive. For any z we set
FZ=exp(zlogF,). By virtue of Proposition 4.7 there exists a linear functional
[ o >C, (5.21)
such that
) =Tr(Fimg) (5.22)
for any o€ G and k,1=1,2,...,d,. We shall prove that the family of functionals
(f,).cc introduced by (5.22) satisfies all the requirements listed in Theorem 5.6.
Statement 1 follows immediately from (5.22) and Proposition 4.7. To prove

Statement 2 it is sufficient to insert in (5.22) e =the class of trivial representation.
Comparing (5.22) with (4.25) we see that

(id®f,u*=F: (5.23)

for any aeG. Clearly (5.23) is equivalent to (5.22) and defines functionals f,
uniquely. Inserting in (5.23) z=0 and using Proposition 3.2.2 we get f,=e.
Moreover by virtue of (2.10),

[id®(f. * £ =(d@fu(d @ f. Ju* = FIF; = F; " =(id®, . . )u*

and (5.16) follows. This way Statement 3 is proved.

According to (5.22) (f(uf)k.1=1.2. ...a, is the matrix representing F7 in the basis
(ef:k=1,2,...,d,). We know that FiF_ *=1Ip . We shall use the corresponding
matrix equation

2 ) - (U5) = Oy - (5.24)
Taking into account (5.22) we may rewrite relations (5.14) and (5.15) in the
following way
1

h(ugun™) = M

Omnf1(u) 5 (5.25)

O )= O 0. (5.26)
We shall prove Statement 6. Let
a=u?, and b=ub*, (5.27)
where o, fe G; mk=1,2,....d, and n,I=1,2, ...,dg. Then [cf. (4.26)]
fixaxf, =rZsf1(ufm)ufsf1(ui’k)-



Compact Matrix Pseudogroups 655

By virtue of (5.9) and (5.10) both sides of (5.20) vanish for =+ «. Therefore it is
sufficient to consider the case f=o. Using (5.26) and (5.24) with z=1 we compute

hb(fy * ax 1))=Y fi(um)h(tt t) 1 (145)

1 a o od
M, rZs Sulun) f - ((ug,)0, f 1 (ug)

1
= E 5mnf1 (u;tk) = h(ab) .

In the last step we used (5.25). This way we proved (5.20) for a and b given by (5.27).
By linearity (5.20) is satisfied for any a, b € o/ and remembering that .o/ is dense in 4
we get (5.20) in full generality. Statement 6 is proved.

It follows casily from (5.20) and (4.22) that the mapping

Aoarfiraxfied

is multiplicative. By iteration the mappings

A da> firaxfeof
are multiplicative for z=1,2,.... Using (1.51), (1.53), and (5.16) we get
e(f;*xaxf)=f.(a). (5.28)
Remembering that e is multiplicative we see that
fAab)=f(a)f.(b) (5.29)

foranya,be o/ andz=2,4,6,.... By virtue of Lemma 5.5(5.29) holds forany ze C,
i.e. all functionals (5.21) are multiplicative.

Applying f, to both sides of (4.28) and comparing with (5.24) we get f,(r(u?,))
=f_,(u%) for any e G and r,n=1,2, ....d,. Formula (5.17) follows.

We know that F, is positive selfadjoint. Therefore F, *=(F, *)*. Writing the
corresponding matrix equation we get f_ (uf)=/f_.(uf). Now using (5.5) and (5.17)
we have

S )= () = f - i) = f - (uiy)

and (5.18) follows. Statement 4 is proved.
We know that F,e Mor (u* u*c). By virtue of (3.11) the second contragradient
u* = (id®x«?)u®. Therefore

([d@Kx*u® = (F,@Nu*(F; '®I).
Writing the corresponding matrix equation we get
K (up) =Y. filupul S (uf).

On the other hand using (4.26) one can easily check that
FosMu fi=Y [ilupunef - (ug).
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This proves (5.19) for a=u% (x€G, k, I=1,2,...,d,) and (cf. Proposition 4.7)
Statement 5 follows.

Let (f;)..c be another family of linear functionals on <7 such that Statements 1,
3, and 6 (with f, replaced by f,) are satisfied. Then using (5.20) and the
corresponding formula for f, and taking into account implication (4.22) one can
easily check that f{*a=*f, =f] *a=*f] for any ae.o/. Iterating we get f,*ax*f,
=f;*xaxf] and [¢f. (5.28)] fr.(a)=f,.(a) for any ae/ and z=1,2,.... Now
Lemma 5.5 shows that f,=f, for any ze C. Q.E.D.

The Haar measure need not to be faithful. The implication (4.22) means only
that the intersection of ./ with the left ideal

J=(be A: h(b*h)=0}

is trivial. However using the last statement of Theorem 5.6 one can easily show
that J is a two-sided ideal. Let n be the canonical projection of A onto A/J and
u,=(id®mn)u. Then G,=(A4/J,u,) is a compact matrix pseudogroup and the Haar
measure on G, is faithful.

For the reader’s convenience and for future reference we collect all important
properties of the basis (u%:aeG, k,1=1,2,...,d,)

Theorem 5.7. Let {u*},.c be the complete family of mutually non-equivalent
irreducible unitary representations of G belonging to the class g and uj, (where
k,1=1,2,...,d,d,=dim K, K, is the carrier Hilbert space of u*,a € G ) be the matrix
elements of u* with respect to an orthonormal basis in K,. Then

1. g 0eG, k,1=1,2,....d,) is a basis in the vector space /.

2. For any o€ G the matrix (U= .5, .4, iS unitary.

3. For any aeG and k,1=1,2,....d,,

dy
D(uje) = Zl U Quy,
=
K(ug) = ug* .

4. For any a,feG; mk=1,2,...,d, and nl=1,2,...,dg,

1

h(u:(nkugl*) = M 5aB5mnf1 (u;lk) s

1
h(uim*uﬁ:) = ‘M“ 5ali'5mnf— l(u?k) 5

where M,=f, (Z uzk) =f-1 (Z uh)-
kA k
For any ae G we set
dy
L =k;1 Uy, - (5.30)

Then M,=f,(x,)=/-1(x,)- X 1s said to be the character of u*. Let us notice that
¢(xa)=’;luzl®u?keA®symA. (5.31)
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This fact corresponds to the well known property of characters in the standard
group representation theory saying that they are invariant under inner automor-
phisms. (5.31) implies that

Q* Ya=Xa* (5.32)

for any ge A". Using Theorem 5.7 and Theorem 5.6 one can easily verify the
following relations:

hOts™) = h0t* xp) = 04 » (5.33)

1
h((f— 1 * Xa)u h(u (fl * Xa) M 5mﬂ5nl s (534)
(s 1) = WAy 1)) = 1 G (5.39

a

for any o, feG and n,1=1,2, sy,
Let g,= M h(f, * x,)* be the continuous linear functional on A4 such that

0.a)=M,h((f, * 7.)*a) (5.36)
for any ae A (cf. [3]). Then formula (5.35) shows that
(([d®e )’ = 5aBIB(Kﬁ) - (5.37)

In general the character g, of any finite-dimensional representation v of G is

introduced by the formula
1=(Tr®id)v.

One can easily check that the characters of equivalent representations are
equal. Moreover the character of the direct sum of two representations is the sum
of the corresponding characters. Similarly the character of the tensor product of
two representations is the product of the corresponding characters (taken in the
same order). The character of the complex conjugate representation is the
hermitian conjugation of the character of the original representation.

At the end we would like to show that the class of representations #; that we
mainly dealt with is rich. In particular it contains all finite-dimensional unitary
representations. This fact follows immediately from

Theorem 5.8. Let w be a unitary representation of G acting on a f-d. Hilbert space L.
Then L is the orthogonal direct sum

L=Y®K, (5.38)

teT

of w-invariant subspaces such that for any t the restriction of w to K, is equivalent to
u* for some o€ G. Let T, be the set of all te T such that w| k, is equivalent to u* and n,
be the number of elements of T, (e G). Then

=2 Nolla> (5.39)
n,=h(*Aw) - (5.40)

Moreover for any oG, (id®g,)w is the orthogonal projection onto Y ® K,

teTy
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Proof. Assume that for some o€ G there exists a non-zero operator intertwining u*

with w. Then w has a subrepresentation equivalent to u* By virtue of Proposi-

tion 5.1 we have orthogonal decomposition L=K,@®L,, where K, and L, are

w-invariant, w|g isequivalent to u* and w],, is unitary. Repeating this procedure as

many times as possible we arrive at the orthogonal decomposition
L=Y°K®'L, (5.41)

teT

where K, (te T) and 'L are w-invariant subspaces, for any t € T the representation

wlk, is equivalent to u* for some € G and v=w|, is a unitary representation such

that Mor(u*, v)= {0} for any aeG.

Using Theorem 5.3.1 we get

(id®h) (vpu*)=0 (5.42)
for any e G. Let
1=y m®v,, (5.43)

where my,m,,...,mg are linearly independent elements of B('L) and v,e4
(r=1,2,...,R). Relation (5.42) means that h(v,uf,*)=0for any ae G; k,1=1,2, ...,d,
andr=1,2,..., R. Taking into account Proposition 4.7 and remembering that .<7 is
dense in A we see that h(v,a*)=0for any a € 4. In particular h(v,v,.*)=0for any r, ¥’
=1,2,...,R. Now we have

(d@hypv* =Y mm, *h(v,0,*)=0.
On the other hand vv* = I ;,®I and (id @ h)vv* = I ;). This contradiction shows
that dim’L =0 and (5.41) reduces to (5.38).
Remembering that the character of the direct sum of representations is the sum

of characters we get (5.39). Formula (5.40) follows immediately from (5.39) [cf.
(5.33)]. The last remark is implied by (5.37). Q.E.D.

Corollary 5.9. Two unitary representations having the same character are equivalent.
Using (5.39) and (5.33) one can easily check that
h 1= Y, n’.
teT
Corollary 5.10. A unitary representation w is irreducible if and only if its character
%, satisfies the relation h(y,*x..)=1.
Let
Acemral = QD_ 1(A@)SymA) 5
"dcenlral = Acentralm% .
Using Proposition 4.7 and formula (4.26) one can easily check that a € o/, ¢ rq if
and only if a is a finite linear combination of characters y, (« € G). Taking into

account Corollary 5.9 and remembering that the character of the tensor product of
representations is the product of the corresponding characters, we get
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Proposition 5.11. The algebra oA, is commutative if and only if for any two
unitary representations v and w of G, v@w is equivalent to wDuv.

Let us notice that this is the case for G=5,U(2) and G=S,U(3).

Clearly A,epa 18 @ C*-subalgebra of A. Elements of 4., are called central.
Let us end this paper with the following question:

Is o ppra dense in A pa?

centra

If G is a group then the answer is positive.

Appendices
A 1. Haar Measure on S,U(2)

In [18] we presented the formula describing the Haar measure on the twisted
SU(2) group. Here we shall prove this formula.

In this Appendix G=5,U(2), where |u|<1, u=+0. Consequently A is the
C*-algebra generated by two elements o and 7 satisfying the relations (1.33). The
comultiplication and the coinverse act on generators of 4 in the following way (cf.
[18]):

Do) =@ —puy*®y,

D)) =y@u+a*®y,

(A1)
P(a*)=a*@u* —uy®y*,
D(y*)=y*@u* +a@y*,
k@)=a*, k@p*)=—p " ly*,
() (*)=—u"" A12)

k(y)=—uy, K@*)=a.

The fundamental representation u and its second contragradient represent-
ation u“ are given by

¥ IR B
ue (% TR el 02t Y
y, o wy, o*

The first formula coincides with (1.34), the second can be immediately checked by
direct computation using (A 1.2) (remember that u*=(id®x?)u).

Let us notice that the operator F (cf. Theorem 5.4) associated with the
fundamental representation u is given by the formula

17/ 0)
F,= .
< 0, |u

Indeed TrF,=TrF, '=|u+u~'|>0and the elementary computation shows that
(F,®Du=u"“(F,®]I) [the latter means that F,e Mor(u, u*)].
Using (5.22) one can compute the functionals (5.21) for §,U(2). We have

S)=ul"%,  fL*)=0,
L0=0,  f*)=|uF.
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Now taking into account (A 1.1) we easily obtain the following convolution
product formulae

foroa=|u ",  foxy*=|ul>y*,
fexy=Iu"%, fora*=|plfa*,

) ) (A13)
axfo=lul"Fo, y*xfi=|ul"*,
yELo=Iuly,  o*x f=|puffo*.
In particular f; *a* f; =~ 2a. Therefore [cf. (5.20)]
h(ab) =~ h(ba) (A1.4)
for any be A.
For any k=...,—2,—1,0,1,2,...; n,m=0,1,2, ..., we set
akypEmyn for k=0
- = Al
Pimn {(a*)"‘y*"’y" for k<1. (A1.5)

It is known that the family of all elements (A 1.5) forms a basis in the vector
space .« (cf. [18, Theorem 1.2]). Taking into account (A 1.3) and remembering that
functionals f, (ze C) are multiplicative, we get

I * Q=14 (A1.6)
-y (A1.7)

for all k,m,n. On the other hand f,(I)=1. Therefore according to (4.19) f,*h
=h=*f,=h, and using (1.51) we see that h(a*f,)=h(f, * a)=h(a) for any ae.o/.
Combining this result with (A 1.6) and (A 1.7) we get

h(akmn) =0 (A 18)

for all k,m, n except the cases when k=0 and m=n. Let b,,= ay,,,, = (y*y)", where
m=0,1,2,....In order to compute the remaining value of (A 1.8) we set b=o*b,, in
(A1.4):

(—k—n+m)z
‘ Aemn >

(—k+n—m)z
| Aemn >

h(oo*b,) = p~ 2h(o*b,00) .

Using commutation relations (1.33) one can easily check that aa*b,, =b,, — 1*b,, 4 |
and o*b, o= pu"2"(b,,—b,,. ). Inserting these data into the above formula we get
after simple transformations

Mbper) _ (1—p2m )"
Wb, (1=

Therefore
const
hb,)=———5
( m) (1—ﬂ2m+2),
where the constant can be computed by setting m=0: by=1, h(I)=1. Hence const
=1—u? Finally we have
1—pu?
*,,)M) —
h((*)™) a _N2m+2)
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for m=0,1,2,.... Solving the corresponding problem of moments we get for any
function X continuous on the spectrum of y*y,

HXGH)=N" 5 uX ),

o
where N= Y u?*=(1—p* "' is the normalization factor.
k=0

Let H be a Hilbert space with an orthonormal basis (p,,:n=0,1,2,...;
k-integer) and 7 be the representation of the C*-algebra 4 acting on H such that (cf.

[18]):
(@), =]/1 _#Zn Yu-1,k»

(PP = WPy k41 -
We claim that

0

ha)=N~1% 1" (pyolm(ayp,o)

n=

for any ae A. One can prove this formula by checking that it gives the right values
for a=ay,,, The details are left to the reader.

Let d, be the (2n + 1)-dimensional representation of S,U(2). We shall compute
the character y, of d,. For n=0, d,, is the one-dimensional trivial representation and
Zo=I1. For n=% d,, is the fundamental representation and [cf. (1.34)]
Xi2=o+o* Let n=3. We know (cf. [18, Theorem 5.11]) that d,@d,,, is
equivalent to the direct sum d,_,,@®d,, 5. Therefore

Xn+1/2=XaX1/2 " Xn—1/2+

Solving this recursive equation we get

. 2n+1t
)

sin($t)

In= , (A1.9)

o+a*
wheret=2arcc0s< +2 )
Let us notice that the functions (A 1.9) form an orthonormal sequence on the
. . 1 .
interval [0,2n] with respect to the measure —(sinit)?dt. Therefore for any
n

Ye C(Spectrum ¢),

HY@)= L T o) (sindoyde.

T o

Taking into account the definition of ¢ and substituting x=cos3t we get

h <z (“ “;“*» - % jl Z09)/1—x2 dx

for any Ze C([—1,1]).
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A 2. Finite Matrix Pseudogroups

Let G=(A4,u) be a compact matrix pseudogroup. We say that G is finite if
dim 4 < co. In this Appendix we show that many formulae derived in this paper
may be essentially simplified if the considered pseudogroup is finite. In particular
we find the simple formula defining the Haar measure on finite matrix
pseudogroups.

Any finite-dimensional C*-algebra is a direct sum of full matrix algebras.
Having this fact in mind one can easily prove

Proposition A 2.1. Let A be a C*-algebra and Z(A) be the center of A:
Z(A)={ac A:ab=ba for any be A}.

Assume that A is finite-dimensional. Then

1. For any linear multiplicative functional f defined on A there exists a unique
minimal projection f,€ A such that f,a=af,=f(a)f,. In particular the number of
linear multiplicative functionals on A is finite.

2. There exists a unique positive linear functional Tr on A such that TrP=1 for
any minimal projection Pe A. This functional is central: Tr(ab)=Tr(ba) for any
a,be A.

3. Any central linear functional T on A is of the form

t(a)= Y cpTr(Pa), (A2.1)

where C is the set of all minimal projections in Z(A) and cp (P e C) are complex
constants.

4. dimA= Y (TrP)*. (A2.2)

PeC

Let G=(A, u) be a finite matrix pseudogroup. Then the dense *-subalgebra .o/
generated by matrix elements of u coincides with A and the functionals e and f,
introduced in Proposition 1.8 and Theorem 5.6 are defined on the whole A. It
follows immediately from Proposition A2.1.1 that f, does not depend on z.
Therefore f, = f, =e for any z € C. This fact simplifies many formulae of Sect. 5. In
particular using (1.52), Theorem 5.6.5 and 6 taking into account (1.4) we obtain

Proposition A 2.2. 1. The Haar measure h on G is central: h(ab)=h(ba) for any

a,beA.
2. The coinverse k associated with G is an involutive C*-antiisomorphism of A:

k(x(a))=a and x(a*)=x(a)* for any a€ A.
In particular Tr is k-invariant:
Tr(x(a) = Tr(a) (A2.3)

for any ae A.

Let @ be the comultiplication associated with G and e, € A be the minimal
projection corresponding to the linear multiplicative functional e (cf.
Proposition A 2.1.1)

eqja=ae,=e(a)e, (A24)
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for any ae A. We shall prove that
(I®a)P(e 1) = (k(a)D1)P(e ,) (A25)

for any aeA. Indeed by virtue of Theorem 4.9 one may find b,, c¢,€4
(m=1,2,..., M) such that
1©a=Y (b,®D(c,), (A26)

19K(@) =Y. 8(b,) (¢, ®1I). (A27)

Applying (e®id) to both sides of (A 2.7) and using (1.52) we get
K(a)=3 bye(cy).
Now (A 2.5) can be checked by direct computation. Using (A 2.6), (A 2.4) and the
last formula we have
(I®@a)P(ey) =) (b,@DP(c,e ) =) (b, ®1)e(c,)Ple,) = (K@) D) Ple,).
Let R be the minimal projection in Z(A) (center of A) and Ex=(RQI)P(e,).
Clearly Ej is a projection and using Theorem 4.9 we see that E5 0.

Let Q be a minimal projection in A®A such that Q <E,. Then Q < ®(e,),
Q0 =®(e,)Q, and using (A 2.5) we have

(I®a)Q=(k(@)®1)Q (A28)

for any ae A. Computing the hermitian conjugation of both sides of this relation,
replacing a* by a and taking into account Proposition A 2.2.2 we get

QI ®a)=Q(k(a)®1) (A29)
for any ae A. Let a,be A. Using the last two formulae we have
QU ®ba)Q=0(I®b)(I®a)Q=Q(I®D) (k(a)®1)Q
=0(k(@@N(I®b)Q=0(®a)(I®b)Q=0(I®ab)Q.
This relation shows that the linear functional
Asar— (Tr®Tr) (I®a)Q)
is central. Therefore (cf. Proposition A 2.1.3)
(Tr®Tr)(I®a)Q)= ch cpTr(aP), (A2.10)

where C is the set of all minimal projections in Z(A4) and the constants cp (P € C) are
independent of ae 4.

Weknow that Q < Ex < R®I. Therefore (RQI)Q = Q, and using (A 2.8) we have
(I®x(R)Q=Q (x~ ' =k). Replacing in (A 2.10) a by ax(R), we get

(Tr@Tr) (I®a)Q) = c,g) Tr(ax(R)). (A2.11)

We know that Q is a minimal projection in A® A. Therefore (Tr®Tr)(Q)=1 and
inserting in (A2.11) a=1 we see that ¢ g, Tr(k(R))=1 and [cf. (A2.3)] cyp
=(TrR)" .
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Now using (A 2.8) and (A 2.11) we obtain

(Tr@Tr) (b®a)Q) =(Tr@Tr) (I ®ax(b))Q)
_ Tr(ax(b)x(R))
- TrR

for any a, b € 4. Clearly this formula determines Q uniquely. Therefore there exists
only one minimal projection in A® A majorized by Eg. In other words Ey is
minimal, Q=Ez=(R®I)®P(e,) and

Tr(ax(b)x(R
(T O T (BRO@D(e )= 1 ),
Multiplying both sides by TrR and summing over Re C we get

(Tr@Tr) (bT®a)P(e,))=Tr(ax(b)),

where
T=Y (TrR)R (A2.12)

ReC

and a,be A. Using the freedom of a we obtain
(Tr®id) (bTRI)P(e 4))=k(b).

Let h be the Haar measure on G. Applying h to both sides of the above relation
and using (4.21) we get

h(b)=(Tr@h) (bT®I)P(e ).
On the other hand according to (4.20) (id®@h)®P(e,)=h*e,=h(e, )] and
h(b)=Tr(bT)h(e,).
By virtue of (A22) TrT= Y (TrR)*=dimA. Therefore the normalization

ReC
h(I)=1 implies that h(e,)= diril 1 and finally we have
= T
hb)= = Tr(bT),

where be A and T is given by (A 2.12).
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