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Variation of Discrete Spectra
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Abstract. A formula [see (1) below] estimating collectively the variation of
eigenvalues of a symmetric matrix under a perturbation is extended to the case
of discrete eigenvalues of a selfadjoint operator in Hubert space, under the
assumption that the perturbation is compact. For this purpose, the notion of
an extended enumeration of discrete eigenvalues is introduced.

1. The following result is known (see [1, Theorem Π-6.11]).

Theorem I. // A, B are nxn hermίtian matrices, their eigenvalues OCJ and βj can be
enumerated, with multiple eigenvalues repeated according to the multiplicity, in such
a way that for any real-valued convex function Φ on R we have

jj (i)
j k

where the γk are the eigenvalues ofC = B — A, similarly repeated.

In what follows we shall generalize (1), with slight modifications, to the infinite-
dimensional case. To this end we introduce several definitions.

Let A be a selfadjoint operator in a separable Hubert space H. An isolated
point of the spectrum of A is automatically an eigenvalue; if it has finite
multiplicity, we shall call it a discrete eigenvalue oϊA. The complement of the set of
all discrete eigenvalues relative to the spectrum is the essential spectrum. The
essential spectrum is closed in R; its complement in R consists of at most
countably many intervals In. Each discrete eigenvalue belongs to one of these
intervals.

By an extended enumeration of discrete eigenvalues for A we mean a sequence
{tXj} with the following properties, (a) Every discrete eigenvalue of A with
multiplicity m appears exactly m-times in the values α,-. We refer to these values as
proper values of the sequence, (b) All other values of the α,-, referred to as improper
values, belong to the countable set consisting of all the boundary points of the
intervals In stated above. Improper values may or may not be eigenvalues, and
their number may be finite or infinite. If there are no improper values, we simply
speak of an enumeration.
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Theorem II. Let A,Bbea selfadjoίnt operators in H such that B = A + C, where C is
a compact selfadjoίnt operator. Let {yk} be an enumeration of nonzero eigenvalues of
C. Then there exist extended enumerations {α,}, {βj} of discrete eigenvalues for A, B,
respectively, such that the inequality (1) holds for any nonnegative convex function Φ
on R such that Φ(0) = 0. In particular,

Σ\βj-«/yip£\\C\\P=(Σ\yk\pyiP, l^P^oo. (la)

Corollary. If C^O in Theorem II, we have automatically ocj^βj for all j .

The corollary follows immediately by choosing a special Φ given by Φ(μ) — 0 for
μ^O and Φ(μ) = \μ\ for μ < 0 .

Remark. Introduction of the extended enumerations appears to be necessary since
A and B in general have different numbers of discrete eigenvalues. In (1) it may
happen, for example, that α,- is proper and βj is improper. Then the eigenvalue α,- of
A is matched with a boundary point βj of the essential spectrum (which is
common to A and B). If both OCJ and βj are improper, the term involving them may
be removed from (1) without affecting the inequality.

2. To prove the theorem, we introduce a family A(t) of operators by

A(t) = A + tC, ί e R , (2)

so that A(0) = A, A(1) = B. Although we are primarily interested in t e [0,1], it is
convenient to consider all ί e R . Since C is compact, all the A(t) have common
essential spectrum Σe. As mentioned above, the complement in R of Σe consists of
at most countably many open disjoint intervals In, n = l,2,.... Every discrete
eigenvalue of A(t) for any t e R belongs to one of the In.

Since all discrete eigenvalues are isolated with finite multiplicities, it follows
from the analytic perturbation theory (see [1, Chap. VII], for example) that they
are represented by a sequence of analytic functions. More precisely, there exist
sequences {λj(ή}, {Eft)} of real-analytic functions, the former real-valued and the
latter operator-valued, with the following properties.

(i) Each λj(t) is defined on a maximal interval A j C R, and takes values in one of
the In. The graph of λj runs from boundary to boundary in Δ j x In. In other words, if
Δj is not all of R, λft) has a limit at each boundary of Δj9 and the limit belongs to
the boundary of /„.

(ii) Each discrete eigenvalue of A(t) for any t e R is one of the λft).
(iii) Ej(t), also defined on Δj9 is the eigenprojection associated with the discrete

eigenvalue λj(t) of A(t) (except when "crossing" occurs at t, so that the associated
eigenprojection is accidentally enlarged).

(iv) dimEj(t)H = trEj(t) = mj is constant for teΔj9 l ^ m ^ o o .
(v) dλjt)/dt = (ί/mj) tr(CEj(ή), t e Δj (see [1, II-(2.32)]).

We may add the following comments for the proof of (i). λp) is uniformly
Lipschitz continuous: \dλj/dt\ ^ ||C\\, as is implied by (v). Therefore it has a limit μ
at the end, say b, of Δj. μ must be on the boundary of /„. Otherwise it is a discrete
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eigenvalue of Λ(b), due to the continuity of the spectrum inside /„. Then μ will split,
in a neighborhood of b, into several analytic functions μk(t) representing the
eigenvalues of A(t), and λft) must be one of them. Thus λ/ί) is analytically
continuable to t>b, contrary to the maximality of Δj.

3. The maximal interval Δj may or may not coincide with R. If not, it is
convenient to extend λft) to all £eR continuously as a constant function on each
component of RX^. According to (i), these constant values belong to the
boundary of/„. The function thus extended on R will be denoted by I/ί). Similarly
we extend E/f) to all t e R by setting Eft) = 0 for t e ΊR\Δ y Since for each fixed t the
set of the Ej(t) with teΔj form an orthogonal system of projections, we have

(vi) 0SΣEj(t)SU ίeR.

4. We are now ready to prove Theorem II. I/ί) and Eft) are no longer analytic,
but they are piecewise analytic and satisfy the differential equation (v). Since X/f) is
continuous, we thus obtain

I/I) - I/O) = (1/nij) J tr (CEj(t)) at. (3)
o

Let {φk} be an orthonormal system of eigenvectors of C that spans the closure of
the range of C (so that Cφk = ykφk). Then

j j , ) . (4)

It follows that

II (5)

j) j (£/ί) φk, φk) dt^O, (6)
0

(7)
j

Indeed, the first inequality in (7) follows from Yu(Ejφk,φk) = iτEj^mj, while the
second follows from (vi). k

Now let Φ be a nonnegative convex function with Φ(0) = 0. It follows from (5)
and (7) that

SΣσJkΦ(yk) (8)
k

because Φ(σγ) = Φ((l — σ)0 + σγ) ̂  (1 — σ) Φ(0) + σΦ(γ) = σΦ(y), Thus we have

ΣmjΦiX^-X/O^ΣΦiy,) (9)
j k

by (7) again.
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Formula (9) is what we wanted to prove. If we rewrite it by repeating
(Xj() — Xj(0)) ragtimes and omitting the factor rrip the result is exactly of the form

(1). Indeed, {I/O)} thus repeated is an extended enumeration of discrete
eigenvalues for A, and similarly for { X ) }
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