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Abstract. A conjecture about the nodal line of a second eigenfunction states that
the nodal line of a second eigenfunction divides the domain Ω by intersecting
with the boundary of Ω transversely, where Ω is a bounded convex domain of R2.
We prove this conjecture provided Ω has a symmetry. Also, we prove the
multiplicity of the second eigenvalue is two at most provided Ω is a bounded
convex domain of R2.

1. Introduction

An eigenfunction φ is meant to be a solution of Dirichlet's problem:

Uφ + λφ = 0 mΩ

\φ = 0 indΩ, ( ' ]

n

where A = ]Γ (d2/dxf) is the Laplacian, Ω is a bounded smooth domain in Mn, and λ
n=l

is a constant (i.e. the corresponding eigenvalue). It is well known that the first
eigenfunction is positive in Ω, and all higher eigenfunctions must change sign. The
nodal set of an eigenfunction φ is defined to be the closure of {xeΩ\ φ(x) = 0}. The
Courant nodal domain theorem [2] tells us that the nodal set of a fcth eigenfunction
divides the domain Ω into at most k subregions. We do not know the topology of the
nodal set in general, even for the simplest case n = 2. A conjecture about the nodal
line (i.e. n = 2) of a second eigenfunction states that:
(*) the nodal line of a second eigenfunction divides the domain Ω by intersecting its

boundary at exactly two points if Ω is convex. (See [5,6]).
Throughout the paper, Ω is always assumed a bounded smooth convex domain in

R2. L. Payne [5] proved the conjecture provided the domain Ω is symmetric with
respect to one line. In this paper, we will prove (*) holds true if Ω is symmetric under
a rotation with angle 2πp/q, where p, q are positive integers. As a corollary of (*), we
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can prove that if Ω is symmetric with respect to one point, then all the second
eigenfunctions are an odd function with respect to this point. Another problem we
consider is about the multiplicity of the second eigenvalue. In [1], Cheng actually
proved that there are at most three eigenfunctions for the sphere S2. His arguments
can be carried over to show that the multiplicity of the second eigenvalue of (1.1) is at
most 3, provided n = 2. We will sharpen his result by proving that the multiplicity is
at most two provided Ω is convex, and n = 2.

Notation. φ2 is always denoted as an second eigenfunction and N

= {xeΩ\φ2{x) = 0} is the nodal line of φ 2 . A bounded smooth convex domain in Ω in

R2 is said to have the property S if Ω is symmetric with respect to one line or Ω is

invariant under a rotation by an angle Θ with respect to one point.
We state some preliminaries about second eigenfunctions. φ is an eigenfunction,

and Ω is any bounded domain in R2.

Lemma 1.2. Suppose PedΩ. Then (dφ/dv)(P) = 0 iffPeiV, where dφ/dv is the
outnormal derivative of φ on the boundary.

Proof. Assume that P = (0,0) and the tangent at P is x-direction. First, suppose
(dφ/dy)(P) = cφθ,thenφ(x9y) = cy + 0( |x | 2 + |y|2),provided \x\2 + \y\2 ^ ε , where
ε is sufficiently small. Then, given x such that | x | ^ ε, there exists a unique y(x) such
that | j;(x)|^ε and satisfies φ(x,y) = cy + 0(\x\2 + | j | 2 ) = 0. Because φ\dΩ=0,
(x,y(x))edΩ. Hence φ(x,y)^0, for (x,y)eΩrλBε.

Secondly, suppose PφN, then, by a generalized Hopf boundary point lemma [3],
we have (dφ/dv)(P) ΦO. #

Considering the simple topology of the two dimensional plane, and using the
Courant nodal line theorem and Lemma 1.2, we have the following.

Lemma 1.3. dφ2/dv may have at most two zeros at the boundary of Ω.

Remark. By Lemma 1.3, (*) is equivalent to the statement that dφ2/δv has two zeros
at the boundary of Ω.

Section 2

In this section, a second eigenfunction φ2 is meant to be a solution of Dirichlet's
problem:

φ2 + λ2φ2 = 0 in Ω

2

where A = £ (d2/dxi), Ω is a bounded convex domain in R 2 and λ2 is the second
i = l

eigenvalue. Throughout this section, Ω is always convex. The Courant nodal line
theorem tells us that the nodal line N of φ2 must divide the domain Ω into exactly
two components. A conjecture about the second eigenfunction is the following:
(*) the nodal line N of a second eigenfunction φ2 must intersect the boundary δΩ at

exactly two points
Our main results are the following:
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Theorem 2.2. Suppose Ω has the property S. then (*) holds true.

Theorem 2.3. The multiplicity of the second eigenvalue is at most two.
To prove Theorem 2.2 and Theorem 2.3, we need a lemma.

Lemma 2.4. Let φ Φ 0 be a solution of (2.1). Ifdφ/dv ^ 0 on dΩ, then φ is the only
second eigenfunction of (2.1).

Proof. Suppose that there exists another second eigenfunction φ, then we can
always choose φ to be orthogonal to φ, i.e.

\φφdx = 0. (2.5)
Ω

Fix a point (xo,yo) (which will be chosen later). Set

T = (x-xo)A + (,-,o)|;.

A straightforward computation shows that

A (Tφ) + λ2(Tφ) = 2Δφ= - 2λ2φ.

Multiplying φ on both sides and integrating over Ω, we have

J iφΔ(Tφ)-(TφAφ-]dx= -2λ2$φφ = 0
Ω

by (2.5). By Green's theorem,

0 = J Tφd^-ds= j [ < χ - χ o , 3 ; - } ; o > . V ] ^ ^ d s . (2.6)
dΩ 0 V dΩ C V 0 V

Suppose that dφ/δv has only one sign on dΩ, say dφ/dv ̂  0 on dΩ. Then, choosing
(xo,yo)eΩ in (2.6), we have

CV OV

which is a contradiction to the Hopf boundary point lemma. Therefore dφ/dv must
change sign on dΩ. By Lemma 1.3, it then implies the nodal line N intersects the
boundary dΩ at exactly two points, say P and Q. If the tangents of dΩ at P, Q are not
parallel, then choosing (x0, y0) to be the intersection of the tangent lines of dΩ at P
and at β, we have Tφ has only one sign on dΩ, say, Tφ ̂  0. And (2.6) implies that
either dφ/dv = 0 on dΩ or dφ/dv = 0 on dΩ, which again is a contradiction to the
Hopf boundary point lemma. If the tangents at P and at Q are parallel, say, to the x-
axis, then we define T = d/dx. Repeating the above arguments for T'φ, we get the
same contradiction. Hence the proof of Lemma (2.4) is complete. #

Proof of Theorem 2.3. Suppose that there are three second eigenfunctions φl9 φ2

and φ3. We want to construct a second eigenfunction φ such that dφ/dv has only one
sign on dΩ. Then, by Lemma 2.4, we obtain a contradiction. Fix two points P and
P{, on dΩ; we can always choose three constants C\, Cf, Cf such that

2 = l, (2.7)
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and the linear combination

<Pt = Cl<p1 + Cf<p2 + Cf<p3

satisfies

By Lemma 1.3, P and Pt are exactly two zeros oϊdφjdv on dΩ. Taking P^P, and
by (2.7), there is a subsequence of φt which converges to φ, and obviously φ Φ 0 is
such a second eigenfunction that dφ/δv has only one sign on dΩ. Hence the proof of
Theorem 2.3 is complete. #

Proof of Theorem 2.2. First, we prove the case when Ω is symmetric with respect to
the y-axis. This was proved by L. Payne [5]. We include the proof here for
completion. If φ is odd in x (i.e. φ( — x, y) = φ(x, y)\ the nodal line N is just the y-axis.
And (*) is obviously true. Suppose φ is even in x (i.e. φ{ — x, y) = φ(x, y)\ Assume that
(*) is not true. Then for PedΩ, (dφ/dx)(P) Φ 0, except the tangent of dΩ at P is the x-
direction. Without loss of generality, we may assume that (dφ/dx)(P)^0 for
PedΩ n {(x,37)137 ̂  0}. Set Ω " = Ω n {(x,y)\y S 0}. dφ/δx must change sign in Ω~.
Otherwise φ(x,y)^0 in ί2~, by evenness, φ(x,y)^0 in f2, which leads to a
contradiction. Hence the nodal line {(x,y)eΩ~\(dφ/dx)(x,y) = 0} encloses a
subregion Ω~ of {(x,y)eΩ~\(dΩ/dx)(x,y)<0}. Let β* = {(x,>;)eί2|, either

or (— x,y)eΩ~}. Then dφ/dx satisfies

- = 0 on δΩ^
x

Since (dφ/dx)(—x9y) = (dφ/dx)(x,y)9 dφ/dx must change sign. Hence λ2 ^
β^), where A2(β*) is the second eigenvalue of the Laplacian for the domain

:. But β * c β implies

which is a contradiction.
In general a second eigenfunction φ can be written as φ = φx + φ 2, where φx is

odd in x, <p2 is even in x and both are second eigenfunctions. By the above proof, we
know that there exist two points P = (xθ9yo) and Q — (— xo,yo)edΩ, where x0 Φ 0
such that (δφ2/3v)(P) = (5φ2/δv)(β) = 0. Since dφι/dv is odd on dΩ, we assume
(S^i/avKP^O and (d<Pi/Sv)(β)<0. Hence (5φ/5v)(P)>0 and {dφ/dv)(Q) < 0. It
implies that there exist two points P and Q on 5β such that

and the theorem for this case follows.
Now suppose Ω is invariant under a rotation of angle θ, i.e. θ = πq,qisa rational

number. Let Ωt be continuously deformed from Ωo = Ω to a ball β χ -/I2(ί) is denoted
as the second eigenvalue for the domain Ωv We need the following lemma.
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Lemma 2.7. Suppose Ωt is a continuous family of bounded domains in Rn and λ(t) is the
kth eigenvalue, then λ{t) is continuous in t.

The proof of Lemma 2.7, e.g., see Courant and Hubert [2].
Going back to the proof of the theorem, we let t0 = inf {ί|(*) is not true for Ωt}.

By the above proofs, (*) holds true for Ω1. Hence 0 ̂  t0 < 1. There exists a sequence
ίf ^ ί0 and tt -* t0 as i -> + oo such that there exists a normalized second
eigenfunction φt:

λiψi = 0 in Ωtι

i = 0 on dΩti

and dψi/dv has two zeros on 3ί2ti.
By standard estimates for elliptic equations, a subsequence of {φj converges to a

function <p0 in C2. By Lemma 2.7, φ0 is a second eigenfunction in β f 0 and dφo/dv has
at least one zero on dΩ. Considering a sequence tt ^ ί0, and £ i-»t0 as i-» oo, and
repeating the same argument as the above, we obtain a second eigenfunction φ0 in
Ωt0 such that dφo/dv ^ 0 on d # . By Lemma 2.4, we way assume φo = φo. Hence
dφo/dv ^ 0 on 5/2 has at least one zero on dΩ. Since ί2 ί 0 is invariant under a rotation,
by Lemma 2.4 again, dφo/δv has two zeros on δί2. But dφo/dv could not have two
zeros on dΩ, otherwise, dφo/δv must change sign on dΩ (because the nodal line of φ0

intersects with dΩ at points wherever dφo/dv vanish). Therefore we have reached a
contradiction. And Theorem 2.2 follows. #

Corollary 2.8. Suppose Ω is symmetric with respect to the origin, then all the second
eigenfunctions are odd (i.e. φ(— x, — y) = — φ(x,y)).

Proof. Suppose not. Then there exists a second eigenfunction φ which is even. The
normal derivative dφ/dv is also even when restricted on dΩ. By Theorem 2.2, there
are exactly two points P, Q on dΩ such that

dv dv

and dφ/dv must change sign on dΩ. Since dφ/dv is even, dφ/dv must change sign on
either of the boundary arcs connecting P and Q. dφ/dv has at least four zeros on dΩ
which is a contradiction. Corollary 2.9 follows. #

Corollary 2.9. Suppose Ω is symmetric with respect to the y-axis, then there is at most
one second eigenfunction which is even (or odd) in x-variable.

Proof. Suppose that the intersection of dΩ with the y-axis are (0, y0) and (0, — y0).
From the proof of Theorem 2.2, the nodal line of a second eigenfunction φ which is
even in x does not intersect the boundary dΩ at (0, — y0) nor at (0, y0). Namely,
(dφ/dv)(0,yo)=£0 and (dφ/dv)(0, — y0) Φ 0. The uniqueness of the even second
eigenfunction follows. The uniqueness of the odd second eigenfunction is obvious.

#

Remark. When the Laplacian Δ is replaced by A + V, (*) does not hold true. In [4],
Lin and Ni have found a counterexample.
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