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Abstract. From a large class of diffefomorphisms in the plane, which are known
to produce chaotic dynamics, we explicitly construct their continuous sus-
pension on a three dimensional cylinder. This suspension is smooth (C') and
can be characterized by the choice of two smooth functions on the unit inter-
val, which have to fulfill certain boundary conditions. For the case of entire
Cremona transformations, we are able to construct the corresponding
autonomous differential equations of the flow explicitly. Thus it is possible to
relate properties of discrete maps to those of ordinary differential equations in
a quantitative manner. Furthermore, our construction makes it possible to
study the exact solutions of chaotic differential-equations directly.

1. Introduction

For the description of dynamical long time behavior of complex systems, two
kinds of models have been studied in the literature. The classical models are based
on ordinary differential equations, which means that a continuous flow of time is
considered. More recently models with discrete time-steps t have become
popular, especially for the description of erratic or chaotic behavior [1]. In this
way, the frequencies of the dynamical system above a maximal frequency

2n . . .
W = — are neglected. These models are based on ordinary difference equations
T

and have been successful in modelling different routes to turbulence [2]. In a
general sense it is clear that both of these approaches are equivalent in the
description of the different transitions that occur before chaotic behavior sets in.
However, little is known about how a given property of a discrete model can be
translated into a continuous model and vice versa. For instance it is known for a
unimodal map on the interval that the order of its maximum determines its
universality class in the period-doubling route to chaos [3]. But the corresponding
criterion for differential equations is not clear [4]. The main geometrical argument
used in this work is based on the concept of Poincaré-maps [5]. This is a
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geometrical method by which one can construct a discrete dynamical model from a
recurrent continuous flow. Although it is now a standard method for the numerical
analysis of chaotic flows to construct the corresponding Poincaré-map, there are
only very few examples [6] in which this Poincaré-map can be given explicitly. On
the other hand, similar difficulties are met if a differential equation should be
associated with a given discrete map. Since discrete dynamical systems possess a
natural high-frequency cut-off at w,,,, the construction of a continuous time
suspension is by no means unique [13]. Therefore we will construct a continuous
flow, which should come as close as possible to a damped and driven anharmonic
oscillator. This is the natural analogue of an entire Cremona transformation
because of the position independent damping factor.

In the second section we shall introduce the basic notions, then we shall show
in the third section how a suspension is constructed [see Eq. (3.2)] from a given
family of interpolating diffeomorphisms in the plane. In Sect. 4 we shall construct a
general interpolating family of diffeomorphisms [see Eq. (4.2)]. We shall restrict
ourselves to entire Cremona transformations in Sect. 5 [Eq. (5.5)], where we also
shall select a specific realization [Eq. (5.12)]. Finally we shall write down the
explicit autonomous differential equations for this system in Sect. 6 [Eq. (6.3)].

2. Basic Notions

In this section we relate discrete time dynamics in the plane with continuous
dynamics in the three dimensional space. Thus let T: R?—IR? be a diffeomorphism
in the plane, i.e,, T is a smooth, invertible map, with a smooth inverse T~ 1. A
discrete trajectory (x,, y,) is created by T via:

(xn+1,yn+1)=T(xn9yn)7 (21)

where neZ represents the discrete time-variable. Continuous time dynamical
systems, which are defined by differential equations, generate trajectories of a flow
which is defined by:

Definition 2.1. Let M,CIR® be some smooth manifold, and let Diff(M,) be the
space of all difftomorphisms on M. Then a mapping ¢ : R—Diff(M,), t+— ¢, is
called a (continuous) flow on M, iff:

(i) ¢o=id,

(i) ¢ysi=¢so ¢, fors,relR.
Here “id” is the identity mapping and “o” denotes composition of maps. In a
physical language ¢, shifts some initial value x, € M, along its trajectory up to the
point ¢,(X,)=:x(t), which corresponds to a time-interval of length t. In his
fundamental paper [ 7], Smale described how a continuous flow can be constructed
as a suspension of some diffcomorphism. To this end we have (cf. [8]):

Definition 2.2. Let M,CIR? be a smooth manifold with closed subset SCM,. Let
T: S-S be a difftomorphism on S and ¢ a flow on M. If there exist o, fe IR such
that:

0] U od8)=M,,

te(0,a)
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(i1) te({gm ¢{S)=:S;C M, open such that: S;NS=¢,

(iif) Ppls=T,
then ¢ is called a constant time suspension of T.
The diffeomorphism T is then called the Poincaré-map of the flow ¢.
Statement (iii) means that for the return time f, which determines the maximal
frequency resolved by T, the restriction of the diffeomorphism ¢, € Diff(M ) to the

subsurface S coincides with the diffcomorphism T on S. The construction of Smale
[7] is based on the manifold M, which is defined by:

Myp:={(x,y,u)eR?; (x,y,u+1)~(T(x,y),u)}, (2.1)

where “~” means that the corresponding points are identified. The variable u
corresponds to a “phase angle” and M can be thought of as some “generalized
Mébius-strip.” The suspension ¢ on M, can now be defined as:

Gx, y,u)=(x, y,u+t). 2.2)
We can see that for a cross-section SCM, which is given by
S:={(x,y,u)e My:u=0}, (2.4)

the suspension ¢ reproduces T in the sense that: ¢,|s=T, ie. @,(x,y,0)
=(T(x, y),0). From the construction of the suspension described above it becomes
clear that all of the dynamics of the system are built into the structure of the
manifold M, such that the explicit structure of ¢ appears to become trivial.

In the following we will use an approach which is physically more intuitive.
Instead of the manifold M we consider the cylinder M defined by:

M:={(x,y,u)eR>; (x, y,u+1)~(x, y,u)} . (2.5)

That means u is a cyclic variable which can be interpreted as a phase-angle, e.g. of
some periodic driving force. This interpretation conforms to our motivation for
this work, which is to model a periodically driven damped anharmonic oscillator
starting from a discrete two-dimensional map.

3. Construction of the Suspension from a Given Family
of Interpolating Diffeomorphisms

3.1. Continuous Suspension

In this section we suspend the diffeomorphism T of the plane (see Sect. 2). To this
end we introduce a family of interpolating diffeomorphisms F,e Diff(R?). In
Sects. 4 and 5 we shall construct explicit examples for F,.

Definition 3.1. Let F,:IR?>R? be a diffcomorphism for all teR such that:
0] Fo=id,
(i) F,=T,
(iii) F,=F,T" if t=n+e¢>1,nek,
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where we have used the abbreviation T":=To-T"" !, T°:=id. If F, depends
smoothly on the time-parameter t, we call it an interpolating diffeomorphism for T.

The requirement of smooth dependence of t implies that the Jacobian-
determinant of F, also has to be a smooth function of ¢. This fact is important
because diffeomorphisms T with negative Jacobian cannot be suspended and
therefore cannot be considered as the Poincaré-map of some continuous flow.
Otherwise there had to exist a t* €(0, 1) for which the Jacobian of F. would vanish.
This is because of the fact that F, = id, which implies: det Fy = 1>0>det F; =det T
and because of the continuity of det F, as a function of t. This means that F,.isnot a
diffeomorphism, which is in contradiction to the Definition 3.1.

We now can construct a class of suspensions for a given diffecomorphism T in
the plane by the following:

Proposition 3.1. Let M be the cylinder defined in (2.5) and let X be the cross-section
defined b
¢fined by X:i={(x,y,u)e M, u=0}. (3.1)

Let F, be an interpolating diffeomorphism for a given diffeomorphism T defined on X,
wheret=n+¢e¢eR, neZ, ¢€[0,1). Then the mapping ¢ :IR ->Diff M, t+> ¢, defined

by

G, y,u): =(F i o T"o F, N (x,p) u+8) (32
is a constant time suspension of T.
Remark. We identify the family of cross sections ¢,(2)C M with the plane IR%

Proof of Proposition 3.1. First we have to show that ¢ describes a flow. Property (i)
of Definition 2.7 can be easily checked by insertion. For part (ii) we have to
distinguish between different cases.

1) Case. ¢,.,= ¢, ¢,. From (3.2) we get
Gur o, V,U)=(Fyipo T"o F M (x, ), u+e).
Now we insert the identity id=F, ', o F,,,, and obtain
G, ) )= (Fyipo T Fil, Fup o FU (X, ), u )
=OuFurso Fy (6, y) ute)=,0dx, y,u).
Because of the asymmetrical role of n and ¢ we show the
2) Case. ¢, 4, =@, ¢, With the same argument as above we get:
G, Y U)=(F g0 T"o FU N, y) ut 6)=(Fyipo Fy Lo Fyo T"o Fl(x, y),u+¢)
=¢F, o T"o F, (X, ), )=, o p(x, y,10).
Furthermore we have to show the
3) Case. ¢y p=,° ¢, This is done by:
G (X, ysu)=(F, 0 T"" ™o F7H(x, ), u)
=(F,oT" oF;'oF,oT" o F, \(x,y),u)
=¢u(F, 0T o F (%, ) u) =, 0 P, y,1).
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Finally we have to look at the

4) Case. ¢,, ;=0 o ¢s. Here we have:

¢s+6(x=y’u)=(Fe+6+uoFu_l(x7y)7u+8+5)
=(F5+5+uoFu_+1£OFu+e°Ft:1(xay)’u+8+5)
=¢6(Fu+soFu_l(x:y)>u+8):¢6°¢e(x:y>u)-

For the case that one of the above sums, which appear as indices of F,, becomes
larger than one, we apply property (iii) of Definition 3.7. The conditions (i) and (ii)
of Definition 2.2 are obviously satisfied by ¢, and property (iii) can be seen by
noting that

FO:F(;l:id. E]

Thus we have arrived at a prescription which allows us to obtain a system of
trajectories from T which depend continuously on the time-parameter t. In the
next subsection we shall formulate conditions which will guarantee that these
trajectories are also smooth. This smoothness is necessary for the trajectories to
arise from differential equations.

3.2. Differentiable Suspension

The next step in our procedure will be to examine under which conditions the time-
derivative of the flow ¢, is a continuous function of ¢t. From the definition in (3.2)
and the linearity of the differentiation-operation we can see that besides the trivial
time-dependence of the u-component of ¢, only the function F, ., will be affected.
This means that we only have to require the differentiability of F, with respect to .
For t=n+e¢ we obtain:

d¢t - dFu+s
d_t x:)@”)‘( db‘ (X’ Y)71>: (3’3)

where (X, Y):=T"o F, }(x, ).

Thus we have to make sure that dF,, ., ./de is continuous for all (X, Y). To make
this condition explicit, we may choose as initial condition a point which lies in 2.
Then Egq. (3.3) will be replaced by:

d d
N ) 34

Note that this differential equation is not autonomous, since it depends explicitly
on the time variable t=¢ and on the initial conditions (x, y)e 2. Equation (3.4)
represents a system of trajectories which are smooth in the open interval (0, 1) and,
according to Definition (3.2), also are smooth in every open interval (n,n+1). We
now have to formulate the condition that the system passes smoothly through the
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Poincaré-sections at t=n. Thus we have to consider the two one-sided limits:

. _dg,
0 A

. . do,
(11) tl—l'lP+ E;

__ (dF,
(X, Vs 0)=sl}>rln_ (d_&‘(x’ Y), 1) 3
(3.5)

. (dF
(x,,0) =£1i131+ < d; (T(x, ), 1) .

The requirement that the limits coincide is a continuity condition for the derivative
of the interpolating diffcomorphism F,.

4. Construction of an Interpolating Family
for Arbitrary Diffeomorphisms in the Plane

In this section we shall state the requirements which a class of maps on the interval
have to fulfill in order to belong to our family of interpolating diffeomorphisms.
We state our result in the following:

Proposition 4.1. Let &, €€ (I) be smooth functions on the unit interval for i,ke{1,2}.
Let the following set of conditions hold:

(@) fn(O):fiz(U:i,
(11) 5;1(1)= §i2(0)=0, @)
(ii1) §i1(0)=¢(1),
(iv) Ea(1)=En(0)=0.
where
: A&y
Soni= dt -
Let T= <)frl) be a diffeomorphism in the plane with components f;, such that for all
2

points (;) and all tel, we have

611(Z)<§21(t)+522(t)5yf2 (i)) +§12(t)<§21(t)6xf1 <;) +&5,(0) detJ <;>> >0.

4.2
Then a family F, of interpolating diffeomorphisms is given by

. (x) [0t (’;) 0
\y

. . 4.3)
¥&u(O)+ 13 (y) 22(0)

The induced suspension ¢, is differentiable.

Proof. Inserting conditions (i) and (ii) into (4.3) yields the interpolating properties
of F, (see Definition 3.1). The condition (4.2) guarantees that for all t e I the map F,
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is a diffefomorphism, since the Jacobian of F, is given by:

. <x>= En)+ 8000, (j) £1200,; (;‘)
\y

X X
$22(1)0: 13 (y) ¢21(0)+&22(00, f; (y)
and therefore, by omitting the arguments we have:

detJp (;) =&11821 18118220, /2+ 128510, 13

+ 8118220110, 12— 0,120, /1),

which can be simplified to yield the expression (4.2). In order to show that the
suspension we have obtained is also differentiable, we consider the time derivative

of F,. It is given by
' (x) x&; 1)+ &0, (i)
F, v =

YO+ Ern(0fs (;)

>

since the functions f; are time-independent. The continuity-condition of F ,( > at
the Poincaré-section t=1 is expressed by the equations: Y

xél 1)+ 51 201 <x> 51 1(&)fy <x) + 512(5)f1 (T <X)>
lim Y/ = lim y y
PR B , X e=04+ | . X , X

Va0 +Exsl0)fs (y) Enl@)f (y) FE (T (y))

Performing the limits and inserting the conditions (iii) and (iv) shows that this
equation holds. Thus we have shown that the induced diffeomorphism is indeed
differentiable. []

When we choose the Hénon-map as the diffeomorphism to be suspended
according to Eq. (4.2) we observe that the divergence of the induced flow is not
position independent and therefore cannot be interpreted as belonging to a driven
damped oscillator. Therefore we are going to introduce a different class of
suspensions, which conserve the properties of entire Cremona transformations,
namely to possess position-independent dissipation rates.

5. Suspensions of Entire Cremona Transformations

In this section we will consider diffecomorphisms in the plane with a constant
Jacobian. They can be written in the form:

()=
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where j>0 and f,(x) is a nonlinear function on the real line with aelR as the
relevant parameter. Note that for the case f,(x)=1—ax? the diffeomorphism T
corresponds to the Hénon-system [9], which is well studied for its chaotic aspects.
It is also among the simplest models which create a “horse-shoe” in the plane (cf.
[8]). The Jacobian of T is simply given by

detJ, (;) i (52)

)-(% o) 59

The interpolating family of diffeomorphisms F, for a suspension of T'is given in the
following proposition:

Proposition 5.1. Let &,ne%Y([0,1]) such that E(t)*+n()*>0 for all te[0,1].
Assume that the following boundary conditions are satisfied by & and n:

where

@) &0)=n(1)=&0)=E&1)=1(1)=0,
(i) 1=n0)=1, (5:4)
(ii) i0)=Inj for j>0.
jt

Furthermore let ((t)= then we have an interpolating family of

O +n()”
diffeomorphisms for the entire Cremona-transformation T of (5.1) given by

v (x> _ ( MOU%0+ E01(xo) + 0o ) 59
"\ o —&OLO)xo + EBMO) f(x0) +1()yo) '
Proof. The Jacobian matrix of F, is given by:
; <x> _ ( MOL0+ L0 () é(t)> 56
"o — &0 + &M@ f(x0) 1)) ’

We obtain for its determinant the expression:

detJp, (;CZ) =n()*¢(2) + &) n(0) f'(xo) + EO*L(e) — &) () f(xo0)
=t + &P () =j>0 forall te[0,1]. (5.7)

Thus F, is indeed a diffeomorphism for each t€[0, 1]. The fact that F, coincides
with the identity map and that F, is identical to T can be easily checked by
inserting the values of 7 and ¢ at the endpoints into the expression (5.5).

Finally we have to show that F, %o is a continuous function of t € [0, 1] for all
0
points in the plane. To this end we differentiate Eq. (5.5) with respect to t.

F(x(,)_( OO +n(e)]xo + 280X(1)f (xo) + &t)yo ) 58)
“\yo — [0 + EOLDIx0 + LB + EOAO] f(x0) +7iByo)
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Since &,71,{ e %*([0,1]) we know that F <x0> is continuous in the interior of the

Yo
interval. According to Eqg. (3.5) we still have to show that

lim F, <x°> = lim F,<T<x°>>. (5.9)
t—1- yo t—0 4 yo

Performing the limit of the left-hand side of Eq. (5.9) for the expression (5.8) and
taking into account the conditions (5.4) we get:

.o [ Xo) 0
i 4= (L) 10

for the right-hand side of Eq. (5.9) we obtain with Eq. (5.1):

lim F,<T<x°>> =< 0 ) (5.11)
104 Yo —jlnj- x,

The equality of (5.10) and (5.11) follows from
8ty = Tnj(E() +n(6)2) — 2E@EE) + n(Oi®)] - (E0)> +n()?) >
for t goingto 1. []
For an explicit realization we have chosen:

E)=(B-202, nO)=1+Inj-t—Q2Inj+3)2+Q+nj).  (5.12)

x(t)

Fig. 1. Projection of the solution | y(t) | of Eq. (6.1) for the differential equation (6.3) in a chaotic
(1)

parameter regime of the Hénon-system (5.1) (a=2.1, j=0.3) onto the (x,, x,)-plane, where: x,(z)

=(x(t) +1) cos2mt, x,(t) = (x(t) + 1) sin27¢. Note the similarity to the simple Rdssler-attractor [12].

The lines 4, B, ..., F indicate Poincaré-sections at successive angles
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Fig. 2. Poincaré-cross-sections of the suspension of Fig. 1 at successive angles denoted by
A, B, ..., F. In order to illustrate the folding-, stretching-, and construction-process, we also have
computed the trajectories through an ellipse in a neighborhood of the attractor

The corresponding suspension of the Hénon-system can be visualized in Fig. 1. We
have also produced a 16 mm film showing the dynamics of the folding processes
generated by this suspension. In the same way as seen in Fig. 2, we have computed
a series of Poincaré-sections of the attractor for subsequent times. The dynamics
are visually equivalent to the dynamics generated by the differential equation of a
driven and damped pendulum like the Duffing-oscillator [10]. In the movie one
can clearly see how the fractal structure of the chaotic attractor arises. (The same
technique has been previously used by Crutchfield et al. [11] to illustrate the
folding process in different chaotic flows.)

6. Autonomous Differential Equations from the Suspension
of the Entire Cremona-Transformations

In the previous section we constructed a smooth suspension for the diffeomor-
phism (5.1). Thus we can consider Eq. (5.5) as a solution of the differential-equation
(5.8). However Eq. (5.8) represents a non-autonomous system since it depends on
the initial values x,, y, and not on the actual position at time ¢ which is given by:

x(1) F, <x0>
yo) |=| Vo

, 6.1)

where in our case w=1 and t,==0. In order to transform Eg.(5.8) into an
autonomous differential equation, we first have to express the initial values x,, y,
as a function of x(t), y(t). After straightforward but somewhat lengthy calculations
we obtain:

Xo(x(8), Y1) =j~"(n(®)x(t) — £(B)¥(2) ,

&()x(t) +n(0)y(2)
W —&(t)f(xo)-

(6.2)
Yox(2), (1)) =
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When we now insert the initial conditions of Eq. (6.2) into Eq. (5.8), we can express
x(t), y(t), and Z(t) as a function of x(¢), y(t), and z(t), and thus have made the
differential equations autonomous. They are given by:

(1) = (&), n(©)x(2) + g(E@), nOW©) + EOED) f(xo(x(0), ¥(1))),
()= gln(e), EO)x(X) + hn(z), E@)¥(e) + () f (xo(x(2), Y1), (6.3)
H)=w,

where xq(x(t), y(t)) is taken from Eq. (6.2) and the functions g and & are given by:

I S P &
g(é,n)—fzﬂz{én ¢ én(lnj 262+n2>}’

(6.4)
h(& )“—1—{(f£+ ' )ﬂ +n*Inj

’”_524'712 ’1’7€2+n2 noinje.
Here we have omitted the arguments where no confusion was possible. We see that
the only nonlinearity comes indeed from the function f of Eq. (5.1). The main
complexity, however, is contained in the ¢- (or z-) dependence of the coefficient
functions g and A. It would be interesting to see whether it is possible to express g
and h as functions of x(t) and y(t) alone. Finally we will show that this autonomous
O.D.E. (6.3) in fact represents a driven and damped oscillator with constant
dissipation. For this purpose we evaluate the divergence of the vector field in
Eq. (6.3). It is given by:

&{y=g+g+g
z
=h(& M) +EE (x0)j ™" n+hln, &) + nf"(x0) (— &)
=h(&n)+hn, Q).

When we now insert the explicit form of h(¢,#) from Eq. (6.4) we get:

X .
. 1 &&+iim ‘ .

div i’) gz {52—_'_? (E2—n?+n?=E+Injn*+ 3 p=Inj.
This is exactly the “damping constant” which we would expect from Egs. (5.2) and
(5.7).

7. Conclusion

We have constructed an explicit solution for a class of chaotic autonomous
ordinary differential equations, which is expressed by analytical functions and
iterates of a difffomorphism. The method we have used is based on the notion of
smooth suspensions. We have also made a concrete connection between dif-
feomorphisms in the plane and continuous flows in three-dimensional space. Our
emphasis was laid on maps with constant Jacobian and, correspondingly flows
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with a position-independent divergence. These cases correspond to a constant
damping term in the equations for a driven and damped oscillator. Thus we have
constructed a way to study chaotic dynamics of continuous systems by calculating
analytical maps instead of numerically integrating the differential equations.

Acknowledgements. One of us (G.M-K.) would like to thank H. Bunz, K. Marx, and P. Lomdahl
for their help with the computer graphics. He is also grateful to Emily Stone and Jim Keeler for
their help with the language problems.

References

1. Collet, P., Eckmann, J.-P.: Iterated maps on the interval as dynamical systems. Boston:
Birkhéduser 1980

2. Eckmann, J.-P.: Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys. 53,
643 (1981);

Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167 (1971);
Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical
systems. Commun. Math. Phys. 77, 789 (1980)

3. Feigenbaum, M.: Quantitative universality for a class of nonlinear transformations. J. Stat.
Phys. 19, 25 (1978)

4. Grossmann, S.: Private communication

5. See, e.g., Haken, H.: Advanced synergetics. Berlin, Heidelberg, New York: Springer 1983

6. Gonzalez, O.L., Piro, O.: Chaos in a nonlinear driven oscillator with exact solution. Phys. Rev.
Lett. 50, 870 (1983)

7. Farmer, J.D., Crutchfield, J.P., Froehling, H., Packard, N., Shaw, R.: Power spectra and
mixing properties of strange attractors. Proc. of the 1979 Conf. on Nonlin. Dyn. Helleman,
R.H.G. (ed.). Ann. N.Y. Acad. Sci. 375, 353 (1980)

8. Smale, S.: Bull. Am. Math. Soc. 73, 747 (1967)

9. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50,
69 (1976)

10. Bunz, H.: private communication

11. Crutchfield, J.P., Farmer, J.D., Packard, N., Shaw, R.: Mixing properties of chaotic attractors.
16 mm film

12. Rossler, O.E.: An equation for continuous chaos. Phys. Lett. 57A, 397 (1976)

13. Mayer-Kress, G.: Zur Persistenz von Chaos und Ordnung in nichtlinearen dynamischen
Systemen. Ph. D. thesis, Universitdt Stuttgart 1984

Communicated by O. E. Lanford

Received September 19, 1984

Note added in proof. During the careful and extensive review of this paper by the editor one of us
(G. M-K.) was able to generalize our results to C*-suspensions of diffeomorphisms on the 2-torus
(Mayer-Kress, G.: Autonomous Differential Equations for the Hénon Map and other Two-
Dimensional Diffeomorphisms. In: Perspectives in Nonlinear Dynamics. Shlesinger, M.F.,
Cawley, R., Saenz, A.W., Zachary, W. (eds.). Singapore: World Scientific 1986). Furthermore we
have been informed about independent constructions of Lipshitz suspensions by P. Channell (J.
Math. Phys. 24, 823 (1983)) and D. Elliot (forthcoming report).





