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Abstract. We use the Brydges-Spencer lace expansion to prove that the mean
square displacement of a T step strictly self-avoiding random walk in the d
dimensional square lattice is asymptotically of the form DT as T approaches
infinity, if d is sufficiently large. The diffusion constant D is greater than one.

1. Introduction

A T step self-avoiding walk on the d dimensional square lattice Zd is a set of T+1
points ω(0) = 0, ω(l), ω(2),..., ω(T) in TLd with |ω(f +1) - ω(i)| = 1 and ω(ί) φ ω(j) for
i φj. A probability measure is defined on the set of all T step self-avoiding walks by
assigning an equal probability to each such walk. Numerical and other evidence
suggests that the mean square displacement with respect to this measure, i.e., the
expected value <ω(Γ)2> of ω(T) ω(T), is asymptotically of the form DTa as T^oo,
where α = 1.5 for d = 2, α=1.18 for d = 3, α = l with logarithmic corrections for
d = 4, and α = l for d^5 [4]. For d = l there are only two self-avoiding walks,
<ω(T)2> = T2, and α = 2. Removing the self-avoidance constraint ω(ί)ή=ω(j), jφy
gives the simple random walk, for which <ω(T)2> = T in all dimensions.

In spite of the apparent simplicity of the self-avoiding walk model, apart from
the result obtained below there is no rigorous proof that a is as stated above. In this
paper we prove that α = 1 and D > 1 for d ̂  d0, for some d0 ^ 5. No effort has been
made to obtain the best possible value of d0. It is not surprising that D > 1 here,
since it is to be expected that a self-avoiding walk will on the average end up farther
away from the origin than a simple walk.

Other results for the critical exponents of self-avoiding random walk can be
found in [7, 8]. In [8] the connection between self-avoiding walk and quantum
field theory is also explained. Lawler [6] considered a related model, the loop-
erased self-avoiding random walk, and proved that for d ̂  4 scaled loop-erased

* Present address: Department of Mathematics and Statistics, McMaster University, Hamilton,
Ontario, Canada L8S4K1



662 G. Slade

walk converges in distribution to Brownian motion. In particular, α = 1 for d ̂  4
(with logarithmic corrections for d = 4) in this model. Brydges and Spencer [3,1]
used their lace expansion to show that α = 1 for d ̂  5 for weakly self-avoiding
random walk, for which self-intersections are not forbidden but rather discouraged
by a small probability penalty.

The weakly self-avoiding walk was studied in [3] by exploiting the fact that it is
a small perturbation of simple random walk. But in high dimensions the strictly
self-avoiding random walk is also a small perturbation of simple random walk. A
result in this spirit was obtained by Kesten [5], who showed that in high
dimensions the main effect of the constraint that a walk be self-avoiding is the
exclusion of immediate reversals. In this paper we apply the Brydges-Spencer lace
expansion to the strictly self-avoiding walk in high dimensions, obtaining
convergence of the expansion by taking d to be large rather than by taking the
probability penalty associated with self-intersections to be small as in [3]. We use a
simplified proof of convergence of the expansion, avoiding the intricate induction
argument used in [3], To help make this paper self-contained a derivation of the
lace expansion is given in the next section.

We now introduce the notation. We begin by considering walks which have no
self-intersections on any time interval of length less than a memory τ. That is, we
consider T step nearest-neighbour walks ω whose probability is proportional to

Π (ί + UJω)),
stemτ([O,T])

where for an interval I of positive integers

-t\^τ,s,tel}, (1.1)

and Ust(ω) = — 1 if ω(s) = ω(t) and equals zero otherwise. For τ = 0 this is simple
random walk while for τ ^ T it is strictly self-avoiding walk. For xeTLd, let

Nτ(x,T) = (2dyτ Σ Π (1 + UJfo)). (1.2)
ω,|ω| = Γ stemτ([O,T])
ω(T) = x

We set JVτ(x, 0) = δXt 0. The following transforms of iVτ(x, T) are distinguished from
one another by their arguments:

xr (h ΎΛ_ V N (x T)pίk'x kf=Γ — πττld (\ λ\
Λ:

T=0

The expectation value for a Γ step walk is defined by

X

The mean square displacement <ω(T)2>τ of a T step walk is given by

Nτ{k, T)

where V£ is the Laplacian with respect to the variable k.
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Let A d

D(k)=-Σ coskj, (1.6)
d

Σ
dj=

where the /c/s are the components of k. For simple random walk it is well known
that

N0(k,T) τ

and hence

ΛΓ0(fe,z) = (l

We define Πτ(k,z) and Fτ{k,z) by

Nτ(k,z) = (l-zD(k)-Πτ(k,z)Γi=Fτ(k,z)-ί. (1.7)
The quantity 17t(fc, z) will be used as a measure of the deviation of the self-avoiding
walk from the simple walk. The lace expansion is an expansion for Πτ(k, z) that can
be used to estimate Πτ and its derivatives.

Denote by rτ(k) the radius of convergence of the power series (1.4) and let
rτ = φ). Since ί + U^ί and \Nτ(k, T)\SNτ(k = 0, T),

Let

We now outline the main ideas involved in the proof of the main result:

Theorem 1.1. There is a constant do^5 such that for d^d0,

(ω{T)2yτ = DT+O(T112 In T) as T-^oo,

with D>ί.

The first step in the proof of Theorem 1.1 is to use the lace expansion as in [3] to
obtain

\Πτ(k,z)\ S \\N?Xx9 \z\)\\^ \\z\ + Σ \\N?Xx9 \z\)\\N

2 \\N[°\x, \z\)\\ψ~Λ, (1.8)

where

N?>(x,z)= Σ Nτ(x,T)zT,

and the norms are x-space II norms. Similar bounds are obtained for du

kd
v

zllτ(k, z\
involving \\xu'dv

z'N
(?\x, \z\)\\ with M'^M, v'^v, although if u + 0 the first term \z\ in

the square brackets in (1.8) is absent. We then note that the right side of (1.8) should
be small, in fact 0{d'γ\ because the factor (2d)~T in Nτ(x,T) should make
H^^lzDIL^Oίd" 1 ) , ||N<°>(x,Jz|)||2^O(l), and \\N[ι\xM)\\2S0(d-^2) uni-
formly in τ and z e Dτ(l/2). This will be explained in more detail below. The d 1 / 2 in
the L2 norm can be understood from the fact that

HN<1)(x,|z|)|||=Σ Σ iVτ(x,Γ)iVτ(x?S)|zrr>i;iVτ(xJl)
2 |z|2 = (2d)-1 |z|2.

x S,T=1 x

Similarly \dlΠτ(k,z)\ and \dzllτ(k,z)\ will be bounded by inverse powers of d,
uniformly in τ and zeDτ(\β).
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Given these bounds on Πτ and its derivatives we argue as in [3] that Nτ(k9 z) has
a simple pole at rτ(k) for small k2, with rτ(fc)eDτ(l/4), and is otherwise analytic in
Dτ(l/2). Then Nτ(k, T) is evaluated using the Cauchy Integral Formula to be the
sum of the residue of —Nτ(k, z)z~{T+1) at rτ(k) and a small correction involving an
integral around dDτ(\/2\ yielding

N (k T)& —[d F (k r (fc)ϊl1 r (k)~(-τ + 1^ (1 9)

Estimates on Πτ and its derivatives can then be used to show that the dominant
contribution to Ffc

2JVt(0, T) is given by

V2Nτ(0, T) 0, rτ)] (1.10)

Taking the memory to be T and using (1.9) and (1.10) in (1.5) gives
(ω(T)2}T~DTT, where Dτ = VτlVkrτ{ϋ). It can then be shown that
DT = D + O(T~1) with D>1.

We now describe the method for obtaining bounds on norms of xudv

zN[i\k, z),
uniformly in τ and zeDτ(l/2). First we obtain bounds for v^2, \u\ S2, 2v-f \u\ ^4,
uniformly in τ and z e Dτ(0). It is then straightforward to extend the estimates to
zeDτ(ί/2) at the expense of one z-derivative, i.e., for v^l, |w|^2, 2ι; + |w|^2; see
Theorem 4.3. The bounds for z e Dτ(0) are the main technical problem faced in this
paper. This is also the place where our method differs from that of [3].

To obtain the estimates for z e Dτ(0) we proceed as follows. We first show that
for fixed u,v,τ the relevant norms of xuδv

zN[a)(x,ρ) are continuous in ρ. We then
show that there are constants Ko and d0 such that for d^d0, ρe [0,rτ], and all τ,
P 4 => P 2, where Pα is the statement that the various norms are bounded above by
aKod~p. Here p is the power appropriate to a particular norm and is determined by
looking at the leading behaviour of the corresponding simple random walk norm.
It then follows from the value of the norms at ρ = 0 that they are in fact-bounded
above by 2Kod~p. This type of argument has been used in a different context in [2].
The basic idea in proving the implication P 4 => P 2 will now be illustrated for
HJVy^ρ)!^.

Using the assumed bounds 4Kod~p on the norms, it follows from (1.8) that
" \ and from the analogue of (1.8) for dlιkΠτ{k,z) that \dlίk.Πτ(k,z)\
i~ 3), where K1 is a constant depending on Ko. It is only ρ e (1, rτ]

that poses any difficulty, and an elementary argument shows that for d ̂  do(Ko)
andρe(l,r τ],

Fτ(k, ρ) = Fτ(0, ρ) + ρ(l - D(k)) + 17τ(0, ρ) - ΠJk, ρ) ̂  c(l - D{k)) = cF0(k, 1),

where c is a universal constant which does not depend on Ko. Then using
Parseval's equality to convert an x-space L2 norm to a /c-space L2 norm gives

\N\ι\x,β)\\2S

I
— 1

00

Σ
7=1

Nτ(x,T)ρT

iV Γ ( fc,ρ)-l

D

1-D

I
\2

I

1
2

= \\NJx,ρ)-δXt
2

ρD(k) + Πτ(k, ρ)

Fτ(k,ρ)

1 C

1

1-Z)

0II2

2

2
(1.11)
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The norms on the right side of (1.11) are norms of simple random walk

quantities and in x-space are respectively Σ and

These are bounded above by cγά
 1 / 2 and cί respectively, so

Σ N0(x9T)
Γ = 0

The assumption P 4 can be used to show that ρ ^ l + K ^ d " 1 . Thus taking
Xo^CiC"1 and d sufficiently large (depending on Ko) gives WN^Xx, ρ)\\2

S2K0d~1/2. The other norms are handled similarly.
This paper is organized as follows. In the next section the lace expansion is

derived and it is shown how to obtain bounds like (1.8). In Sect. 3 estimates are
obtained for the various simple random walk norms which are needed as explained
above. Section 4 is concerned with convergence of the lace expansion and contains
the proof of the implication P 4 => P2 and estimates for Πτ and its derivatives.
Finally in Sect. 5 the bounds on Πτ and its derivatives are used to fill in the details
of the argument involving the Cauchy Integral Formula sketched above and to
complete the proof of Theorem 1.1. The proof that D is greater than one can be
found at the end of Sect. 5.

2. The Lace Expansion

This section contains a derivation of the lace expansion, following [3, 1].
Elements of the set &τ{I) defined in (1.1) are referred to as bonds. Define

Then

= Σ Π
Bc08τ(I) steB

(2.1)

(2.2)

A connected graph G on / is defined to be a subset oϊ£#τ(I) such that each endpoint
of / is part of a bond in G, and for each m in the interior of / there is a bond steG
with m G (5, t). Subsets of έ$τ(I) are in a one-one correspondence with partitions of /
into ordered subintervals Iί9 ...,/„ with disjoint interiors but possibly overlapping
endpoints, with a connected graph on each Ij9 as in Fig. 2.1. A subinterval may
consist of a single point. It follows that

ψ(i)=Σ Σ ψc(ii).. ψJί

where the sum is over partitions of / as above and

ψc(i)=Σ Π ust,
G steG

(2.3)

(2.4)

the sum being over connected graphs G on /. We use the convention that if /
consists of a single point then ψc(I) = 1.

Fig. 2.1

1 2 3 4 5 6 7 8 9 10

l} = CO,23 , I 2 = [3,3] j I 3 = LA,71 , I 4 = C7.10]

= £ [ 0 , 1 0 ]
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0 1 2 3 4 5 6 7

Fig. 2.2 0 1 2 3 4 5 6 7 8 9

Let JS?τ(/) denote the set of connected graphs on / such that the removal of any
one bond from the graph results in a graph which is not connected. Elements of
J£τ(I) are called laces. The following prescription defines a way of obtaining from
any connected graph Gc^τ[a,b~\ a lace i>f(G)cG. t£(G) has bonds s1tί,s2t2, •••>
where M r ^

sΐ = a, t1=max{t:ateG},
ί/ +1 = max {ί: si e G, s < t f},

An example is shown in Fig. 2.2. Given a lace L, the set of all bonds si e <Mτ(I)\L
such that ^(Lκj{st]) = L is denoted by #τ(L). Bonds in ί?t(L) are said to be
compatible with L.

With these definitions we have

GonI steG
Y\ust

steL

Π
= L steG\L

= Σ π ust π α+t/j
Le^τ(/) sίeL sίe^τ(L)

The following theorem gives the lace expansion for Πτ(k, z).

Theorem 2.1 (Brydges-Spencer).

(2.5)

Σ Σ
Γ = l ω,\ω\ = Ί

Jkω(T) Σ Π uΛ π (
^τ[O,T] steL ste<βx{L)

(2-6)

Proof. By Eqs. (1.2-4), (2.1), and (2.3),

ω,\ω\ = T

oo /

= 1+ Σ
Γ + 1

Σ φc(/1) (2.7)

The contribution to the sum on the right side coming from partitions with
*i = [0,0] is

Γ+l
> ( r ) Σ Σ Ψc(i2)-ψc(h)

n = 2 I2 /„
Σ b Σ
= l \ 2 α / ω,|ω| =

rlλld
Γ - l

Σ
ω,|ω| =

'TD^jt τ(fc,z). (2.8)
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The contribution to the sum on the right side of (2.7) due to partitions with
Iι + [0,O] is given by the following expression, where s ^ l is the upper limit of

Σ fe
Tl\2a

• Σ
s=ί

Σ
ω,|ω| =

Σ
l

oik(ω(T)-ω(s)). s, r\)

Σ
a, \ω\ = s

(2.9)

Replacing the sum on the right side of Eq. (2.7) by (2.8) and (2.9), using (2.5), and
comparing with the definition of Πτ(k,z) in Eq. (1.7) completes the proof.

The quantity f] Ust in the right side of (2.6) gives a nonzero contribution to
steL

Πτ(k,z) only for walks which intersect themselves as indicated in Fig. 2.3. The
product over ^τ(L) in (2.6) disallows many but in general not all other self-
intersections. The generic walk whose topology is that corresponding to a lace
with JV bonds will be denoted GN. Consider the walk GN to consist of 2N — 1
subwalks over time intervals [0,s 2], [s2, ί j , [ ί l 5 s 3 ] , [s3, ί 2 ] , . . . , [ί#-i> T1]. Each
subwalk consists of not more than τ steps because every bond si in a lace
Le ^ τ [ 0 , T] satisfies \s —1\ ̂  τ. Also, it is consistent with the definition of a lace to
have tι = sί + 2 f° r i ̂  1 but inconsistent to have ti = si+1ϊorί'^l, and so for N ^ 2 at
least N + 1 of the subwalks consist of at least one step. Except for G l 5 no subwalk
consisting of at least one step on an interval [α, β~\ begins and ends at the same
place since ocβ e #τ(L). The set of lines in GN which must consist of at least one step is
denoted by G^K The remaining lines, which may have zero length, comprise the set
Gff. In Fig. 2.3 lines in G^} are slashed.

The lace expansion (2.6) can be used to obtain an upper bound on \Πτ(k,z)\ as

follows: take absolute values inside the sums of (2.6), factor ί —- I among the

0 s2 t-| s3 t 2 T

Fig. 2.3 0 s2 t ! s3 t 2 s4 t 3 T

o
0,T

S 3 , t 3
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subwalks, and omit factors (1 + Ust) whenever st is a bond linking two distinct
subwalks. We let xί =0 and denote the position of a generic walk at time st by
x2i-2> *'s=2 and at time tt by x2i+1? / ^ 1. (Many xt's are equal, for example for G3

x 3 = x1 = 0, x 5 = x2j
 a n ( i Xβ = x4-') We denote the line in GN corresponding to the

subwalk from xt to xi+1 by ί{. With this notation the upper bound is

\πτ(k,z)\^ Σ Σ Ui l̂ orl Π
T = 2 ω:|ω| = T \^dj ste%τ(L-

oo 1

< LJ LJ 1 1 l l ( α )

i V τ V A i + l Λ/v\Δ\)> \Δ'y)

where

N[*Xx,z)= Σ Nτ(x,T)zT. (2.10)

The first term on the right side of (2.9) is special in that it cannot be bounded above
by Λ^1}(0, |z|) = 0. However using <x,0) to indicate the nearest neighbours of the
origin we have

Σ ίSYWl Π (i + fJ=tt Σ Σ

where the norm is the x-space L00 norm. It is shown in [3] how to use the Young
and Holder inequalities to obtain the bound

Σ Π UMmχi+1-XiM)

x, \z\)\\«, H i V ί 1 ^ , \z\)\\N

2

The norms here are x-space U norms. Thus from (2.9) we have

1*1+ Σ ll^ίxjzDii^iΛr^ίxjzDiiΓ2

N = 2

(2.11)

Similarly upper bounds on k and z derivatives of Πτ can be obtained by

factoring both I — ) and eik'ω{T) among the subwalks and using the product rule

to have the derivatives act on single subwalks, giving

|^^πτ(fc)Z)|^^,0||^(zN<1>(x,|z|))|L+ Σ ΣΠ Π ll*"'Mβ)(χ,M)IU.

(2.12)

In the first term on the right side the derivative is performed before evaluating iV^1)

at \z\. For u φ 0 the first term on the right side is absent because for G l 5 ω(T) = 0, and
so the contribution to Πτ from G± is independent of k. The unlabelled sum is over
ways of choosing nonnegative multi-indices ut such that Σut = u and nonnegative Vj
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such that ΣVJ = v. Any one norm in the product can be taken to be the L00 norm. The
others are L2 norms. The unlabelled sum consists of (2N— l)^ + v terms.

Since the contribution from G1 to Πτ(k,z) is independent of k,

(x,|z|)||oo £ ||iV^(x,|z|)||^ ||N<°>(x,|z|)||Γ2.
N=2

(2.13)

To control the rate of convergence of the diffusion constant Dτ to its limiting
value D it will be necessary to have estimates for δΠ(k, z) = Πτ(k, z) — Πσ(k, z) and its
derivatives. For τ > σ, JS?σ[O, T] C J^τ[0, T] and for Le jS?σ[O, T], <βσ(L) C #τ(L). This

last inclusion is often strict, but if L contains no bond of length greater than —, then

#τ(L) can contain no bond of length greater than σ, and hence #σ(L) = #τ(L).
Therefore in (5/7 there is a cancellation of all terms involving laces with all bonds of

length less than or equal to — and

where W is defined by the right side of (2.6) with just laces having at least one bond

of length greater than — participating.

At least one of the subwalks corresponding to a lace with a bond of length

greater than — must consist of — or more steps. By the same argument used to
2 6

derive (2.12) we have

\du

kdl δΠ(k, z)\ S 2 U , o II dv

z(zδN(x, \z\)) || „

+ Σ Σ Π Π \\xUidVδ*N^\x,\z\)\\ X (2.14)
N = 2 α = 0 G<̂ > J

Here

<W(x,|z|) = max{ Σ Nσ(x, T)\z\T, £ Nτ(x,T)\z\τ

one δ*N{a) is chosen to be δN, and the remainder are taken to be max{N%\N[Λ)}.
The unlabelled sum also extends over ways of assigning one δ*N{tx) to be δN. One
norm in the product is an L00 norm and the remainder are L2 norms.

3. Estimates for Simple Random Walk

The proof of convergence of (2.12-14) will be obtained in Sect. 4 using estimates for
simple random walk which we obtain in this section.
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By virtue of its definition in Eq. (1.2), N0(x, T) is the probability that a T step
simple random walk starting at the origin ends at x. Since D(k) [defined in (1.6)] is
the characteristic function of a single step,

Here we have used the fact that \D(k)\ S l The integrals extend over [ — π, π]d, and
S, T = 0,1,2,.... Also, since a 2Ύ step walk which ends at the origin must lie in a T
dimensional subspace of TLd, for T^d we have

T\2T T2T

) =iw- (3 2)

The following lemma is a simple extension of a result of [5]. In the proof c
stands for a universal constant which may be different in different occurrences.

Lemma 3.1.
00

l) (3-3)

Proof. The sum of the first four terms on the left side of (3.3) is 0(d *) by (3.2). By
(3.1) and (3.2),

d-l d-ί S 1 0

To bound the sum over T>d we observe that

T3iV0(0,2T)< Σ {2T){2T-l)(2T-2){2πyd\D(k)2Tdk
T=d

D(kfdk. (3.4)

The factor in square brackets is the third derivative of x2d(l — x ) " 1 evaluated at
x = D(k). Explicit evaluation of this derivative together with \D(k)\ ^ 1 can be used
to bound (3.4) above by

cd3(2πyd$dkD(k)2d Σ (1

Arguing as in [5] we observe that if Orgfcy^f ^ f c ^ π for j = ί,...,m and
l = m+l, ...,d, then

Sd'1 Σ \coski\^l~4π~2d-1 Σ k2-4π~2d'1 Σ (^-^) 2

i = l j=l l = m+ί

<Γ f^VTΛ I (XTT Π I > K —I- > I T Γ K i l l I Λ i I
^ C A U I *τ;l Ci I 7 rx: ^Γ 7^ \'^ i^l) I I V /

L \J=1 2 = »+l / J
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By symmetry and (3.5),

d\2%) ~ d f D(k)2d (1 - D(k)) ~ " dk

= d3π'd Σ (dY\2dk1...dkm J dkm+1...dkdD(k)2d(l-D(kT»

671

J
o

ψ
Sd3π-d(7^] J

V 4 / (-oo.oo)"

2 PJ/n\«2

(3.7)

This provides the required bound for the left side of (3.4) and the proof is complete.
We now use Lemma 3.1 to obtain bounds on L2 and L00 norms of

00

xudv

z Σ N0(x,T)zτ for \z\ less than or equal to the critical value of 1, where

N0(k = 0, z) diverges.

Lemma 3.2.

(a)

(b)

Σ
T=ί

T=l

NO(X,T)Z'>

Proof, (a) For ι; = 0,1,2 and |z |^l,

N0(x, T)zτ

Γ = l Γ = l
τ2iv0(x,τ).

By (3.1) and Lemma 3.2,

Σ (2T)2N0(x,2T)

Στ=ι



672 G. Slade

(b) F o r υ = 0,1 and | z | ^ l ,

T=ί
NO(X,T)Z Σ TN0(x,T) = Σ ΣN0(x,T)N0(x,S)ST

2 S.T=1 x

S,T=1 n=2

using Lemma 3.1 in the last step.

Lemma 3.3.

Proof. Since N0(x, T=0) = δXt 0,

00

§ + Y N (x,Ί = 1+2 Σ iVo(0,Γ) + Σ N0(x,T)
T=ί

By Lemma 3.2 the sums on the right side are O(d x).
Before dealing with norms where a factor xu is present we derive a consequence

of Lemma 3.3 for certain fc-space integrals. It follows from the definition of D(k)
that

(3.8)

Let B = {keRd:\k\<d112}. Then for 2 ^ m ^ [ ( d - l ) / 2 ] ,

+ (2πΓd J

Now by (3.8) and Stirling's formula,

2πd/2 rfi/2

/ c{m) c(m)

^y Γ(d/2) d-2m\2π

The term /, is bounded as follows:

2d\m~2

)

(3.9)

(3.10)

\ /
(3.11)

By ParsevaΓs equality and Lemma 3.3 the right-hand side of (3.11) is 0(1) and
hence

(3.12)
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The estimate (3.12) will be used repeatedly. Note that in the next lemma the L2

norm is not squared, unlike in Lemma 3.2 (b).

Lemma 3.4. For v = 0,1, \z\ ^ 1 and p = 2 or oo,

(a)

(b)

Xid
v

z

T=l

Γ = l
N0(x,T)z'

Proof. Part (a) is an immediate consequence of (b) since |x ; | ^ xf. The left side of (b)

is bounded above by putting v = ί and z = l. Let q= -. Then

pίp-ί

iXA Σ N0(x,T)zΊ

T=ί

Throughout this paper fc-space norms are with respect to normalized Lebesgue

measure on [ — π , π ] d . Using subscripts to denote partial derivatives,

+ 6(l-D)-*DDiDj. (3.13)

By (1.6), |D f | ̂  d"x and |D f j | ^ bVjd~γ. With these inequalities and (3.12) the lemma is

proved.

4. Analyticity of Π

In this section we show convergence of (2.12) to prove that Πτ(k, z) and dlik.Πτ(k, z)

are analytic in z e D τ ( 1/2) and suitably bounded. First bounds are obtained on L2

a n d L 0 0 norms of xuδl N^ix,ρ) ϊov |w |^2, v^2, \U\ + 2V^4, uniformly in ρ e [ 0 , r τ ] .

Then these bounds are used to bound L2 and L00 norms of xudv

zN
{

τ

l)(x, ρ) for \u\ rg 2,

i ^ l , |M| + 2 I ; ^ 2 (i.e., one less z-derivative than above) uniformly in

ρ e [ 0 , r τ ( l + (l/2)τ~ 1 lnτ)]. The method is conceptually simpler than that used in

[3] and could be used to give an alternate proof of the results of [3]. However,

the extra z-derivative used here would lead to divergent integrals in d = 5 and

would have to be replaced by a fractional derivative.

They key idea is contained in the following theorem. It is similar in form to an

idea used in [2]. The universal constant Ko in part (b) will be fixed in the course of

the proof.

Theorem 4.1. (a) For fixed τ and d and for any u and v, the norms

\\xudv

zN
{

τ

1\x,ρ)\\2iaΰ a r e continuous in ρ e R .

(b) There is a universal constant d0 such that for d^d0, ρe[0,rτ] and all τ,

P 4 => P2, where Pa is the following:

( II u

Here s=l unless xu = x ^ with iΦj in which case s = 2.
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Corollary 4.2. (a) With parameters fixed as in Theorem 4.1 (b),

\\x"dvM1V,Q)\\2+δ-°^2Kod-s and

ρ)llΓ V o ^2 and ||

(b) For |w|^2 andv^l with \u\ + 2v^4, 3£i7τ(/c,z) is analytic in Dτ(0) with

\dld"zΠτ{k, z)\ ̂  δUι00(d-x) + O(d~5'2)

uniformly in τ and z e Dτ(0).

Proof of Corollary 4.2. (a) For ρ = 0 P2 is satisfied, and hence by Theorem 4.1 P2

holds for ρe[0,r τ ] . This proves the inequalities involving JV*1*. The inequalities
involving JV<0) then follow from the fact that N^\x9ρ) = δXtQ + N[1\x9ρ).

(b) The desired bound on the derivatives of Πτ follows from part (a) and (2.12),
where in the sum over N the L00 norm is always associated with factors having no
fc-derivatives. The factor z in the right side of (2.12) is bounded because 1—ρ
— 77τ(0, ρ) ̂  0 for ρ ̂  rτ by definition of rτ, and therefore by (2.12) ρ - 1 ^ ρ const d " 1 .
It follows that ρ^ 1+ O(d~x).

The proof of Theorem 4.1 (b) begins by using (2.12) to convert the assumed
bounds P 4 into bounds on dldv

zllτ(k, ρ). These bounds are then used to show that
there is a constant c such that 1 — ρD(k) — Πτ(k, ρ) ̂  c(l — D(k)). The .x-space norms
of xudυ

zN
(£Xx, ρ) are bounded by fc-space norms of dldv

zNτ(k, ρ), which are in turn
bounded by corresponding simple random walk norms using the above inequality.
The simple random walk norms were controlled in Sect. 3. Any contributions
coming from δldv

zllτ(k,ρ) are multiplied by an inverse power of d which
compensates for any coefficients 4K0 which arose in applying (2.12).

The constant Ko comes from estimates on simple random walk and is defined to
be the sum of the various universal constants cu c2, • occurring in the proof. We
use Kt to denote constants which are larger than Ko. In different occurrences Kί

may be different constants.

Proof of Theorem 4.i. (a) For fixed τ there are only finitely many xeΈd for which
τ

xudv

z £ Nτ(x,T)ρT is nonzero. Hence the L2 norm is the square root of the
τ=ι

absolute value of a polynomial in ρ, while the L00 norm is the maximum of a finite
family of functions, each of which is continuous in ρ. Thus both norms are
continuous in ρ.

(b) It suffices to consider ρ e (1, rτ] because JVτ(x, T) 1Ξ N0(x, T) and for τ = 0 and
ρ ^ 1 P2 holds by Lemmas 3.2 and 3.4, for some universal constant Ko. We first
obtain the lower bound on Fτ(k, ρ) mentioned above. Suppose that P4 holds. By
definition [Eq. (1.7)],

)-i7τ(/c,ρ). (4.1)

By definition of rt,
(4.2)

for ρ 6 [0, rτ] with equality only for ρ = rτ.
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Now by (2.13) and assumption,

675

(4.3)

The bound (4.3) is however not adequate for our present needs and we proceed to
obtain a k dependent bound. By (2.12) and assumption, the dominant behaviour of
\dlίk.Πτ(k,ρ)\ is bounded by

h \\xjN^\\

By (2.6), Πτ(k,p) = Πτ(-k9p), and hence dkiΠτ(O,ρ) = O. Therefore by Taylor's
Theorem

|/Jτ(/c,ρ)-17τ(0,ρ)H

ύ\ sup

fi-
at2

d

d

£ , 7 = 1

using the Schwarz inequality in the last step. Using (3.8) and the above inequalities,
and allowing c to represent different constants in different occurrences, we have
from (4.1) and (4.2)

(4.4)

Here d may have to be taken larger; this remark will be left implicit in the sequel.
There are three conclusions to be checked:

Case l : \\dlN[ι\x,ρ)\\

Case 2: | | δ^ 1 ) (x ,ρ) | | i ^2K o r f - 1 , t; = 0,l,

Case 3: | | x w 5 ^ 1 > ( x , ρ ) | | 2 ^ 2 ^ 0 ^ - s , M = l,2, Ό = 0,1.

We consider these cases in turn.

Case 1. By differentiating N<c

1)(x9ρ)= X Nτ{x9 T)ρT, it is seen that
r i

?\x, ρ) S ρ dM1}(x, Q) ύ

Since Nτ(x, T= l ) g --, it suffices to show that d2

zN[l\x, ρ ) ^ (universal const) d~ι.
Id
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[As in the proof of Corollary 4.2 (b), ρ = 1 + 0{d~ι)] Now

0Sδ2N[1\x,ρ)^δ2Nτ(x,ρ) = (2π)-dμke-ikxδ2Nτ(k,ρ)

32

zΠτ{k,ρ) 2(D(k) +

Fτ(k,p)2 + FjKpJ3

32Πτ 2U2 4DδzΠτ 2{δzΠτf (4.5)

We examine each term on the right side, working from right to left. By
assumption and (2.12), I^TTJ^K^" 1, and hence the fourth term is bounded by
Kλά~2, using (4.4) and (3.12). The third term is bounded using (4.4) and (3.12), the
Schwarz inequality and Lemma 3.2 (b) as follows

DδzΠτ

F? 1

D

F2
2

1

Fτ

where the middle factor is readied for application of Lemma 3.2(b) as follows:

D
<C D

(ί-Df
= C\\dzN0(k,i)\\2 = \i Σ N0(x,T)zT

Γ = l

The second term on the right-hand side of (4.5) is bounded by

2D2

by Lemma 3.2 (b).
The first term on the right side of (4.5) is more subtle. Write Πτ(k, g) = Π(

τ

1}(k, ρ)
+ Π^ υ(/c, ρ), where Π\ι\k, ρ) is the contribution to the right side of (2.6) from walks
of the form Gu i.e., from the lace consisting of a single bond. Evidently

because f\ Usΐ= — 1 when L=0T. Therefore
steL

r τ\κ, ρ)

since the integral on the right side is the convolution in x-space of Nτ(x, ρ) with
itself and hence is positive. But the lace expansion can be used to bound
\d2

zΠ
(> υ(/c, ρ)\ by Kxd'2, since the first term on the right side of (2.12) will be absent.

Putting it all together gives

0 ̂  d2

zNτ(x, ρ) S Cyd~' + O(d~ 3 / 2 ) .

Case2. As noted in Case 1, Ni

τ

1)(x,ρ)^ρdzN
(

I

1\x,ρ), and it suffices to consider
v = \. N o w

x , ρ ) | | I S | |d z N τ (x ,ρ)\\ 2 = | |d z N τ (k,ρ)\\ 2

δzΠτ(k,ρ))2

Ft
= (2%Yd\dk-
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By (4.4) and Lemma 3.2 (b) the first term is bounded by

D

(1-D)2

By assumption and (2.12) \dzΠτ(k,ρ^i^d"1, so the third term is O(d~2). The
second term is less than

D
(1-D) 4

, = d

D
(1-D) 2

2

1
(1-D) 2

by Lemma 3.2 (b) and (3.12). Therefore

Case 3. Since \x(\ ̂  xf, it suffices to take \u\ = 2, and as in the previous case it
suffices to take υ — \. Now

dM'Kx, (?) II2 ̂  II xiXjdMx, e ) \ \ 2 = \\ d2

kikjdzNτ(k, 6 ) \ \ 2 .

Using the obvious abbreviations,

(4.6)

with
F—^sinL-Π. ,

a
Fz=-D-Π,,

iFtj= -δijCOski — Πίj, Fzi= -ύnki — Πzi,

1
Fijz=dδij

We number the terms on the right side of (4.6) as 1-5 and look at their L2 norms,
working from left to right. We show that these terms behave like the corresponding
terms on the right side of (3.13). To begin,

D.,
+ c\\πijz

1

(1-D)2

where \ΠiJz\ is bounded as |JJy | was bounded under (4.3). The terms 2 and 3 are
bounded the same way:

<c

(1-D) 3

D,D,

(1-D)3 + Q\ΠJ
D:

(1-D)2 + c\\π.J l l o o

(1-D)2

1

(1-D)3
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since \D^d~\ | | ( 1 - £ > Γ 3 | | 2 ^ C by (3.12), and |Π z ί | and \Πj\ are O(d~5/2) by the
same argument used to bound |J7 i ; J above. Similarly,

Finally,

(D + 0(d ~*)) (ρDi + O(d j + O(d ~5'2))

( 1 - D ) 4

This completes the proof of Theorem 4.1.
We now increase the domain of analyticity of 17t(/c,z) to zeDτ(i>) = {z:\z\

1 lnτ)} at the expense of one z-derivative in the estimates.

Theorem4.3. There is a positive integer d0 such that for d^.d0 Πτ(k,z) and
du

kΠτ(k,z), \u\<.2, are analytic in zeDτ{\) with |3^/7τ(fc?z)|^constrf~1, ϋ = 0,l, and
\dlΠτ(k, z)\ fgconstd~5/2, \u\ = 1,2, with the constants independent of τ and z e Dτ(^).

Proof For |z|^r τ(l+^τ~

Σ •
T=ί

^ Σ Nτ{x,T)irτ{\+{τ-ι\nτ)-]Ί

T=ί

= rτ

It is easy to check that T~ γ(l + \τ~1 lnτ)T is bounded uniformly in τ and T for
1 ^ T ^ τ . Since rτ = 1 — 17τ(0,rτ) is also uniformly bounded we have

Similarly

and

τ). (4.7)

>z)\ ύcd2

zN[ι\x,rτ) + Nτ(x, T= 1) (4.8)

\dlN?\x9z)\ ^δx,0δOto + cdv

z

+ 'N^Xx, rx) + δΌ, ^ x , T = 1), υ = 0,1. (4.9)

Now we use (2.12) and (4.7-9) to estimate the derivatives of Πτ occurring in the
statement of the theorem. For example,

Γ l + Σ
L N =

τ ) h f λ

by Corollary 4.2. The estimates for \Πτ(k,z)\ and \dlΠτ(k,z)\ are similar.
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5. Proof of Theorem 1.1

In this section we prove Theorem 1.1 using the results of the preceding sections.
The approach is similar to that used in [3]. The first observation is the following
lemma, in the statement of which c is a universal constant.

Lemma 5.1. For k2 ^ cdτ~* lnτ and d ̂  dθ9 Nτ(k, z) has a simple pole at rτ(k) e Dτ(l/4)
and is otherwise analytic in Dτ(l/2). The pole rτ(k) is twice differentiable in k.

Proof. Singularities of Nτ correspond to zeroes of Fτ. Zeroes of Fτ occur in
complex conjugate pairs since Fτ(k, z) = Fτ(fc, z) [the right side of (2.6) is unchanged
by the replacement of k by — fc]. Suppose zx and z2 are two zeroes of Fτ(fc, z). Then

ί
o

(5.1)

For small fe2, D(fc)~l while for large d, \dzΠτ\^Kd'x, so (5.1) is only possible if
z1=z2. Thus for small fe2, Fτ(fe,z) has at most one zero in Dτ(l/2), which must be
real.

For k = 0, rτ is a simple zero of Fτ(0, z). In fact

Fτ(0, z) = Fτ(0, z) - Fτ(0, rτ) = - [(z - rτ) + i7τ(0, z) - i7τ(0, rτ)]

+ ί WO, ^ + (1 - OO

and the second factor is nonzero in Dτ(l/2) by Theorem 4.3. By the implicit
function theorem, for small fe2, Fτ(k,z) has a simple zero rτ(k) with rτ(/c)eΰr(l/2).
Derivatives of rτ(k) are obtained by differentiating the equation Fτ(k, rτ(k)) = 0. The
first derivative is

φ)
ΊΓki {52)d m ~ D(k)+dzπτ(k,φ)) ~

for small fe2, using Theorem 4.3, Taylor's theorem, and the fact that Πτ(k, z) is even
in kt to see that diΠτ(k,rτ(k)) = O(d~5/2)ki. The formula (5.2) is valid as long as
rτ(k)eDτ(ί/2). Now rτ(tk) is increasing in ί > 0 since

d
1-11,2*

Therefore

and so

Trτ(tk)= Σ dirτ(tk)ki*rτ(tk)d~1k2>0.
at ί=χ

out

provided fe2 ^ cdτ"ι lnτ.
The second derivatives of rτ(fc) are obtained from

FtJ + Fizrj + Fjzrt + F z r 0 + F^iy,. - 0. (5.3)
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Theorem 1.1. There is a constant do = 5 such that for d^.d0, (α)(T)2) = DT
+ O(Tί/2InT)as T-*oo, with D>\.

Proof. Let C be the circle of radius 1/2 centred at the origin, oriented
counterclockwise. Then for k2^cdτ~1\nτ it follows from Lemma 5.1 and the
Residue Theorem that

1 dz

2πic τ zT+1

^ f Nτ(Kz)4^τ
2πιdDτ(i/2) z i + 1

~ι + -~ f JVt(fc,z)( — ) dz

L ^πίaDτ(i/2) \ z / J
(5.4)

Since dΛ.Fτ and <9fc.rτ both vanish at k = 0, applying Fk

2 to (5.4) and evaluating at
k = 0 gives

3[3zFτ(fe, r^/c)"1]

dz
- Γ V?N (0 z) f5 5)

Now

^ l o ^ ) - 7 - ^ - ( T + l ) r τ - Γ - 2 F t

2 r τ ( 0 ) , (5.6)

and

"=- [δ z F τ (0,r τ )]" 2 C^2δ z Fτ(0,rτ) + 52Fτ(0,r t) Ffc

2rτ(0)] .

(5.7)

By Corollary 4.2, δ zF τ(0,r τ)= - 1 + 0{d~% and 32Fτ(0,rτ) and V^dzFτ(0,rτ) are
bounded uniformly in τ. Setting k = 0 in (5.3) gives

P,2r (TV) = — Γ̂  F (0 r Yl ~ x Ft2F fO r ) ί5 8)

which is similarly bounded uniformly in τ.
Putting τ = T and using (1.5), (5.4-5) and the preceding paragraph leads to

dz

w
x I 1 + 0(1) J JVτ(O, z) ( — ) rfz , (5.9)

where Dτ = rτ

 ι V£rτ(0).
To estimate the integrals occurring on the right side of (5.9) we first observe that

ϊoτzedDT(l/2\

Γ + l



Self-Avoiding Walk in High Dimensions

Therefore

j ayvr(o,z)p) dz
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J \dltNj{09z)\\dz\. (5.10)
dDτ(ί/2)dDτ(l/2)

It follows from the equation above (5.2) that for some constant c

\Nτ(0,z)\^c\z-rτΓ\ (5.11)

and hence for u = 0 the right side of (5.10) is bounded by cT Mn T. For u = 2we
have

d2

kίNτ(0,z) =
_ -d2FT(0,z)

FT(0,z)2
(5.12)

By (5.11) and Theorem 4.3 the right side of (5.12) is bounded by cd ι\z — rτ\
 2, and

so the right side of (5.10) is bounded by CT~^d~ί(T~ίlnT)~1^cd~1T^9 when
u = 2.

Substituting these estimates into (5.9) gives

i In T)). (5.13)

To complete the proof we show that DT = D + O(T *), with D>\. Consider
two different memories σ < τ. From the fact that FJk, rσ(k)) = 0 and Fτ{k, rτ(k)) = 0, it
follows that

(5.14)(rτ(k) - rσ(k)) D(k) = - [JIτ(fc, φ)) - Πσ(K

Setting k = 0 gives

rτ-rσ=- [i7τ(0, rτ) - iTτ(0, r,)] - [iZτ(0, rσ) - 77,(0, rσ)] .

This implies that

(1 + dzΠτ(0, r*)) (rt - rσ) = - (577(0, r σ),

where r*e(rσ,r^ and δΠ = Πτ — Πσ. By Theorem4.3 the coefficient of rτ — rσ is
bounded below by a positive constant. The absolute value of the right side is
bounded using (2.14), where in (2.14) the L00 norm is coordinated with the δN.
Each term on the right side of (2.14) has a factor

<6σ - 1

= σ/6
Nσ{x,T)Tr\ T - l

since \\dzNa{x,ra)\\x is bounded by the argument used in Case 1 of the proof of
Theorem 4.1 (b). Therefore

uniformly in τ and so

(5.15)

(5.16)
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The Laplacian is treated similarly. Differentiation of Eq. (5.14) gives

VΪΦ) - VfrJfS) = rτ-rσ-l F277τ(0, rτ) - F217σ(0, rσ)]

-lδzΠτ(0,rτ) VΪφ)-dzΠσ{Vjσ) VirMl (5.17)

Using Taylor's Theorem as above,

V2Πτ(0,rτ)- VΪΠσ(0,rσ) = dzVέΠτ(0,r*)(rτ-rσ)+ Vk

2δΠ(0,rσ)9

where r* e (rσ9 rτ). The first factor of the first term on the right side is uniformly
bounded by Corollary 4.2(b), and hence the first term is bounded by cσ" 1 , by
(5.15). The second term on the right side is bounded in the same manner that
(577(0, rσ) was bounded, apart from the fact that an L2 norm is associated with any
subwalk involving an xUι with wf Φ 0, because in Corollary 4.2 (a) it was the L2 norm
of k derivatives that was bounded. The final term on the right side of (5.17) can be
analyzed in a similar fashion with the result that

uniformly in τ. Putting σ=T and letting τ->oo gives

I ^ O O W -

which together with (5.16) implies

where Z) = ^ 1P, 2r 0 O(0).
We now complete the proof of Theorem 1.1 by showing that D > 1. It suffices to

show that Dτ>β where β> 1, for all τ. By (5.8),

VJFτ(Q, r j 1 - rτ~
1 VΪΠJ0, rτ)

τ τ dzFτ(0,rτ) l+dzΠτ(0,rτ) ' ^ 6)

For large d the dominant contribution to dzΠτ(0,rτ) comes from the Gx

diagrams in the lace expansion. These diagrams evidently give a negative
contribution which is bounded away from zero uniformly in τ. In fact the
contribution from these diagrams is less than —rτd~ι, which is the T = 2 term in
the derivative with respect to z of (2.6), corresponding to walks which take one step
away from the origin and then immediately return to the origin. Using the lace
expansion to bound the difference between <9zi7τ(0,rτ) and the G t diagrams gives
the bound (2.12) without the first term. By Corollary 4.2 this difference is 0{d~2\
and hence for large d and some αe(0,1),

l + δ z i 7 τ ( 0 , r τ ) = l - | O ( J - 1 ) | ^ α < l . (5.19)

Similarly the dominant contribution to Pfe

277t(0, rτ) comes from the lace
^"P^ " ^ corresponding to the diagrams G2. This contribution is evidently
negative and less than d times the T= 3 term with the lace ^ ^ > < N ^ X (i.e., the

(r V ° 1 2 _ 3

three step walks of the form (^>), i.e., less than —2d2\~-\ < —(l/4)d ί. We now
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argue that the contribution due to all other laces is O(d~5/2). In fact apart from
S^/^v^T^s* which corresponds to walks with ω(T) = 0 and hence does not
contribute to /c-derivatives, all other laces correspond to walks which can be
broken up into subwalks with at least five of the sub walks consisting of at least one
step. Estimating the difference between Ffc

2i7τ(0, rτ) and its dominant contribution
as in (2.12) gives the bound O(d~512), since by Corollary 4.2 two subwalks can be
bounded by O(d~*) and the remainder are O(d~1/2), while there are d terms in the
Laplacian. Therefore for some b>0, Vk

2Πτ(O,rτ)S -\0{d~ι)\^ -b<0 uniformly
in τ.

From this and (5.18-19) it follows that

since a<\ and b>0. This completes the proof of Theorem 1.1.
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