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Abstract. For a product family of invertible Weyl operators on a compact
manifold X, we express parallel transport in the determinant line bundle in terms
of the spectral asymmetry of a Dirac operator on R x X.

0. Introduction

Let X be a compact spin manifold of even dimension with spin bundle S — S+®
S_ ->X, and let E-+X be the hermitian vector bundle over X. Let Sand E be the
pullbacks of S and E to R x X with the induced inner products, and let VE be a
connection on E. Thus Ψ = dR + θ + Vf)? where ΘEΩ1(R)®CCO(X9 End E) and for
each yeR, V̂  is a connection of £->X. Let dy9 yeR, be the Weyl operators dy\
L2{XiS+®E)^L2{X,S_®E) coupled to the connection VE and the (y-
independent) metric on X, and let Vd = dRd + [#, δ]. Let H be the formally self
adjoint Dirac operator on L2(R x X, S® E) coupled to VE and the product metric
o n R x I Thus

H =

Assume that for all yeR, dy is invertible (so that ind dy = 0), and that for \y\ large,
θ = 0 and dVE/dy — 0. The main result of this paper is the formula

H e t ^ c) \ 1 / 2

exp J Tr δ ~x V3 = . ' <° _°° exp πi(η(H) + dim Ker H). (0.1)
R \ d e t d ^ /

Here det df

ydy is the determinant of df

ydy, given formally as the product of the
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eigenvalues of d^dy, and η(H) is a measure of the spectral asymmetry of H as
introduced in [4] and given formally by the sum of the signs of the nonzero eigen-
values of H. Of course each term in (0.1) requires regularization, and moreover, since
the noncompactness of R x X means that H does not necessarily have a discrete
spectrum, the definition of η requires some care. We will deal with these issues by
expressing the quantities in (0.1) in terms of operator traces, regulated by the
complex powers (d\dy)~z and (H2)~z, Re z » 0. For the determinant this corresponds
to (-function regularization.

The left-hand side of (0.1) can be interpreted in terms of parallel transport in the
determinant line bundle of the family of operators {<9y}, as we explain in Sect. 1
below. From this point of view, formula (0.1) can be considered as a version for non-
closed paths of the holonomy formula of Witten [18] and Bismut and Freed ([6],
Theorem 3.17).

Alternately, the left-hand side of (0.1) is related to the phase of the chiral
determinant det d l ^ δ ^ . In this context, a formula similar to (0.1) appears in [1]. We
investigate this viewpoint in our paper [2].

The organization of this paper is as follows. In Sect. 1 we state our results and
describe how they are related to the geometry of the determinant line bundle. In
Sect. 2 we define precisely the determinant det d^d and the one-form Tr d~ 1V3 which
appear in (0.1), and in Sect. 3 we define η{H). Then in Sect. 4 we obtain a formula for
the variation oΐη(H) with respect to H. In Sect. 5 we integrate this formula to prove
(0.1) and then in Sect. 6 we use this formula to give a proof of the curvature formula
of Bismut and Freed.

In Appendix A we investigate the spectral properties of the operators D 2, d^δ and
H2, and we prove an important decay property for the resolvent of//2. In Appendix
B we state a generalization of Gilkey's Theorem [3]. In Appendix C we extend some
results of Seeley [15,16] and state formulae for local invariants obtained from (the
analytic continuation of) Tr^(z), where A(z) = \(dλ/2πί)λ~2R(λ) for a suitable

c
family of pseudo-differential operators R(λ). (Seeley considered the case where R(λ)
is the resolvent of a elliptic operator.) The results of Appendix B and Appendix C are
used in the body of the paper to establish the finiteness of our regularization
procedure. In Appendix D we present our notational conventions.

In our subsequent paper [9] we generalize the results of this paper to include
families of Weyl operators of possibly non-zero index.

1. Statement of Results

In this section we state the main results of this paper and describe how they fit into
the framework developed by Bismut and Freed [6,7] for studying the determinant
line bundle of a family of Weyl operators.

We work in the special case of the Bismut-Freed setting in which the geometric
data have a product structure. The parameter space for our family of operators is a
smooth manifold Y. For formula (0.1) we will take Y to be the real line Y = R. Let X
be a compact spin manifold of even dimension, and let Z = Y x X, which we view as
fibered over Y with fiber X and tangent space along the fibers TvertZ =Yx TX. Put
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a metric on X and the corresponding y-independent inner product on TyenZ. Let
S± -+ Z be the spin bundles associated to TvertZ, so that S± = YxS±9 where S± -• X
are the spin bundles on X. Let ί - ^ Z be a complex vector bundle over 7 which
is of the form E=YxEϊoΐE-+Xa vector bundle over X. Put a hermitian inner
product on E and the corresponding y-independent inner product on E. Let V^
be a compatible connection on E. Finally, choose the projection P: TZ\-> TwertZ =
Y x TX of the Bismut-Freed data to be given by the product structure.1

The constructions of Bismut and Freed applied to these data now yield a Hubert
bundle Jtf = JP + @ tf _-> Y with an inner product and connection V"*", a bundle
map δ: J f +1-> Jf _ given by a Weyl operator δy on each fiber, and a determinant line
bundle i f -> 7 with an inner product and compatible connection V^. If the ordinary
index of the operators δy is zero, the bundle if has a canonical section s which is
nonzero exactly at those y for which δy is invertible.

In our case we can describe these structures explicitly. Using the product
structure E = Y x £, write

VE = dγ + θ + V*)9 (1.1)

where θeί2 1 (y)®C 0 0 (X,End£), and for each yeY^ is a connection on £ - > X
The Hubert bundle Jf is trivial with Jf ± = 7 x L2(X,S± ® £). The inner product
on ^ is y-independent and given by the inner product on L2(X,S(x)£). The
connection V^ on Jf is given by V^ = d r + θ. The operator 3y is identified with
the Weyl operator dy\L2{X,S+ ®E)-+L2(X,S- ®E) coupled to the metric on X
and the connection V .̂ The covariant derivative of δ as a section of Horn (Jf + , ffl _)
is given by V3 = dγ δ + [0, <3].

Finally, in the case that the operators δy have index zero, the inner product and
connection on 5£ are determined at those points where the canonical section s does
not vanish by the equations

(1.2)

ω = {f.p.a z = 0} Tr (tfδ)~z- '^VKom{je+^-}δ, (1.3)

det δfδ = exp - lim ^- Tr {δ^δ)~z. (1.4)
Z-+0UZ

Here the complex powers (δ^δ)"2'1 are defined for zeC, R e z » 0 by contour
integration, and the notation lim (respectively {f.p.a.z = 0}) is understood as the

z-»0

value at z = 0 (respectively the finite part at z = 0) of the meromorphic continuation
of a function which is analytic for Re z » 0. We give the precise interpretation of (1.3)
and (1.4) in Sect. 2.

We henceforth assume
1. For all ye 7, Ker δ = 0 and Ker δ f = 0.

Thus, in particular, index δy = 0. Condition 1 is equivalent to the condition that δy is

1 Note that for arbitrary geometric data as in [6,7], the space Z and the bundles T v e r t Z, S, E are always

products locally over Y. However, our form for the inner product on TvenZ and the projection P do not

hold in general, even locally
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invertible for all yeY, and also to the condition that the canonical section 5 of JS? is
everywhere non-vanishing.

For our first result, we will verify in our special case the curvature formula of
Bismut and Freed ([6], Theorem 3.5).

Theorem (1.5). Assuming condition i, the curvature ofV^ is given by the two-form
on Y

dω = 2πi [ J A(Mg)ch ( ^ ) ] { t w o f o r m s }.
x

Here g is the (7-independent) metric on X9Stg is the curvature of the Levi-Civita
connection of g, and #"V£ is the curvature of the connection V£ on E. A and ch
are the polynomials

(1.6)

Next suppose Y = R. Give R the standard translation invariant metric dy ® dy
and give Z = R x X the product metric. The bundle S -• Z is then identified with a
spin bundle of Z. Let H be the formally self-adjoint Dirac operator on L2(Z, S® E)
coupled to the metric on Z and the connection V^ on E. In terms of the product
structure S®E = Y x (S®£),

V \oy \vy//j

where Γ is the endomorphism of S with Γ= ± 1 on S+.
In addition to condition 1 assume
2. For\y\ large, θ = 0 and dψ/dy = 0.

Thus for Iy \ large the geometric data is independent of y. In particular for \y\ large,
dγd = 0, Vd — 0, ω = 0, and H is invariant under translation in the R direction.

Define

(1.8)

(1.9)

Here φ is a nonnegative smooth function on R of compact support acting as a
multiplication operator on L 2 ( R x I , S ® £), and the limit φ -> 1 is taken through a
sequence of such φ increasing pointwise to the constant function 1. We introduce
these cut-off functions in order to obtain trace class operators. The complex powers
of H2 are defined by contour integration, and lim is understood in terms of analytic

z->0

continuation. We will give the precise interpretation of (1.8) and (1.9) in Sect. 3.
Our main result is
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Theorem (1.10). Assuming conditions 1 and 2, parallel transport τ + 0O^O0 for V^ from
— oo to + oo is given by

Jω, (1.11)
R

3 \1/2

t ) exp2πiξm (L12)

Of course (1.11) follows immediately from (1.2) which identifies ω as the connection
one-form relative to the canonical section s, so that the non-trivial statement is
(1.12).

Theorem (1.10) is an extension, under our additional assumptions of the formula
of Bismut and Freed ([6], Theorem 3.17) for the holonomy of Vs*. In fact, Bismut
and Freed showed that quite generally the holonomy of V^ around a closed loop y in
Y is given by multiplication by exp — 2πiξ(H)9 where H acts on spinors over the
compact manifold y x l , and η(H) = lim £ sign (λ) | λ \ ~z with the sum taken over the

z-+0

nonzero eigenvalues of H. Thus, in our situation we might expect that

exp i J Im ω = exp 2πiξ(H). (1.13)
R

On the other hand, since V^ is compatible with the inner product || \\#, it follows
from (1.2) that Re ω = \d In det 5*3, and so

/ det 3 ] ^ Y / 2

ί °° " . (1.14)

Theorem (1.10) is obtained by combing (1.13) and (1.14). Of course, on the
noncompact manifold Z = R x I , there is no reason for the spectrum of H to be
discrete, so we have defined η(H) by the alternate expression (1.8).

2. The Determinant and ω

In this section we explain the formulas (1.3) and (1.4) for the determinant and the
one-form ω. We allow the parameter space Y to be an arbitrary smooth manifold,
and assume that condition 1 of Sect. 1 is satisfied.

Let D: J^ h» jtf* be the family of formally self-adjoint Dirac operators correspond-
ing to d, so that Dy is the operator on L2(X,S®E) which in the decomposition

S = S+®S_ is given by Dy = l y I. For convenience we will work with D

rather than d. By condition 1, Dy is invertible for all y.
For ye Y and A a first order differential operator acting on sections of 5(χ)£

define2

2 We introduce here a notational convention, to be used in the remainder of this paper, of marking

operator valued expressions with hat ~ and denoting their L2 traces by the same symbol without a hat
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= ^λ-(D2~λy\ Rez>0 (2.1)

(2.2)

det D2 = exp - lim ^-ζ(D2)(z), (2.3)

1(D2

y-λΓ1DyA, R e z > 0 , (2.4)

= Tτst(Dy9A)(z)9

(2.5)

Here %? is the oriented curve in C with runs from — oo to — δ, δ > 0, directly
above the negative real axis, then clockwise around the circle \λ\ = δ, and then from
— δ to — co directly below the negative real axis, δ is chosen sufficiently small so that
the disk \λ\ < 2δ is disjoint from the spectrum of D2. This is possible since D2 is
elliptic, self-adjoint, and by assumption invertible so that its spectrum consists of
isolated points in (0, oo). (See Proposition A.I of Appendix A.)

The complex powers λ~z for λeC\( — oo,0], zeC, are defined in terms of the
branch of the logarithm with cut along the negative real axis and log(l) = 0. Tr
denotes the L2 operator trace and Tr s denotes the super-trace, defined by Tr s =
Tr 0/ 1. Finally, the notation lim is understood as the value at z = 0 of the analytic

z-*0

continuation of a function which is analytic for Re z » 0.
Note that the definition (1.3) of ω is equivalent to

), (2.7)

and this gives the decomposition of ω into its real and imaginary part.
The main result of this section is

Proposition (2.8).
1. The definitions (2Λ)-(2.5) make sense, and ζ{D2

y){z\ τ{Dy, A)(z), σ(Dy, A)(z) extend
to meromorphic functions of z for Rez > — 1 whose only singularities are possible
simple poles at half-integer values of z.

2. {f.p.a.z = 0}4τ(D, VD){z) = d In det D2.
3. σ(D,dD)(z) and σ(D, [θ,D])(z) are analytic for R e z > —\. Moreover

lim σ(D9 [0, D])(z) = - j λ(βQ) tr θ exp i#>/2π. (2.8)

Here g is the metric on X, 0ίg is the curvature of the Levi-Civita connection for g,
and #"v£ is the curvature of the connection V£ on E. A is the polynomial given in (1.6).
Formula (2.8.2) appears in the physics literature in the context of the "covariant
anomaly."

We remark that if det <9!δ are defined in analogy with det D 2, then

det D2 = (det dfd)(det dd% det d^d = det dd\ (2.9)
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and so (2.7) and (2.8.2) imply

ω = ^dln det dfδ + σ(D, VD). (2.10)

Statement (2.8.1) follows from the general pseudo-differential operator methods
of [15] (see Appendix C). Statement (2.8.2) is an immediate consequence of the
following lemma, whose proof is an easy calculation (see [8]).

Lemma (2.11). d(ζ(D2)(z)) = -4zτ(D9VD){z).
It remains to prove (2.8.3). Now the general methods used to prove (2.8.1) express

the residues of the poles as well as the value at z = 0 of the kernel of σ(D, A)(z) in
terms of certain universal polynomials in the components of g, det g9 the covariants
derivatives of 0tq9 J%E and the complete symbol of A. (See Appendix C, as well as
Lemma (3.7) of the next section.) To prove (2.8.3) we must in principle calculate these
polynomials. This is possible using invariance theory and Gilkey's Theorem [3] (see
Appendix B) because of the special properties of Dirac operators.

Specifically, for veΩ1(X9 End E\ let if) denote the bundle endomorphism oϊS®E
determined by v and Clifford multiplication T*Xn>EndS. Statement (2.8.3) is an
immediate consequence of the following lemma.

Lemma (2.12).
1. Resz = otrsτ(D,ψ)(z;x,x)\dx\ is an exact differential form on X.
2. Resz=fc/2tr sτ(D,^)(z;x,x)|dx| = 0 for integer k, k> 0.
3. limtr5τ(D, [0,D])(z;x,x)\dx\ = - λ(βg)trΘexpiJv/2π.

Proof. In the language of Appendix B, the assignment

fi otr sf(/),fi)(z;x,x)|dx| (2.13)

defines a weight zero, regular, form-valued invariant of the metric g on X, the
connection V£, and the endomorphism valued one-form v. (Note that (2.13) defines a
differential form valued invariant, as opposed to just a measure, since D and υ are
even under change of orientation of X while Tr s is odd.) Hence, by the Gilkey
Theorem B.I, (2.13) is in the ring of invariants generated by t r ( ^ ) , and
trm(^ v £,ϋ, rfvf). Here d v is the covariant exterior derivative determined by the
connections on TX and E. We view J ^ , v9 and dwv as elements of the ring
ί2*(X,End£), and 3tg as an element of the ring ί2*(X,End TX). m( ) is a
monomial in 4 variables andj is a positive integer, Since Res2 = 0 trsσ(D, φ)(z; x, x)\dx\
is linear in v and a differential form of even degree, it is expressible as a linear
combination of products of terms of the form tr {β§, tr (^{E\ and tr dyV^^E, and
one term of the latter type must occur in each product. Since terms of the first two types
are closed and terms of the last type are exact by the Bianchi identities for ^WE and
gtg, it follows that Res2 = o t r s f ( A ^ ) f e ^ ^ ) l ^ l is exact. This proves (2.12.1)

(2.12.2) follows similarly, since for /c>0 the residues at z = k/2 are also
differential form valued invariants, but now of positive weight. They thus vanish by
the easy part of the Gilkey Theorem.

Finally, to prove (2.12.3) observe that limtr5f(D,[V,D])(z;x,x)|dx| defines a
z->0

weight zero form valued invariant of g9 V£, and the (weight zero) endomorphism Θ,
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and so by Gilkey's Theorem it is in the ring generated by tr (@j

g) and tr m(0, # " V 4 The
actual formula given in (2.12.3) can then be calculated in a straightforward but
tedious fashion using the explicit formulae of Corollary (C.8). •

3. The Eta Invariant

In this section we explain the formulas (1.8)—(1.9) for the ̂ -invariant of H. We now let
Y = R and assume that the geometric data satisfy conditions 1 and 2 of Sect. 1.

Because of the non-compactness of R x X, the spectrum oϊH is not discrete, and
so we cannot use the usual definition oϊη(H) in terms of eigenvalues. Fortunately,
however, conditions 1 and 2 imply that the essential spectrum and resolvent of H2

are well enough behaved for us to define the complex powers (H2)~z, and we will use
these to define η(H).

Define

=-^λ-z-1/2H(H2-λy\ Rez>0, (3.1)

φ Rez>dimZ+l, (3.2)

ηδ(H)(z)=limηδ

φn(H)(z), (3.3)
n—* oo

η(H) = limηδ(H)(z)+ £ sign (A) Tr P,, (3.4)
z-*o o<μι<<s

ξ(H) = \(η(H) + dim Ker H). (3.5)

Here # is a contour in C as in the previous section, δ is chosen sufficiently small so
that the disk \λ\ < 2δ is disjoint from the spectra of D2

+O3 and intersects the spectrum
of H2 at most in a finite set of isolated eigenvalues of finite multiplicity. This is
possible since the essential spectrum of H2 is contained in [/l0, oo), where λ0 is the
lower bound of the spectra of D2

±oo. (See Proposition (A.2) of Appendix A.) By
condition 1, D2

±O0 are invertible, and so λ0 > 0.
φ is a smooth nonnegative real-valued function on R of compact support, and

{φn} are an increasing sequence of such functions which converge pointwise to the
constant function 1. In (3.2) and (3.3) we interpret φ and φn as a multiplication
operators on L2(R x X, S ® E). The reason for introducing these cut-off functions is
that in general the operator ήδ(H)(z) is not trace class.3

As in the previous section, lim is interpreted in terms of analytic continuation.
2->0

Finally Pλ is the orthogonal projection onto the finite dimensional eigenspace
corresponding to λ, and sign (λ) equals — 1 if λ < 0 and + 1 otherwise.

Our goal in this section is to prove

Proposition (3.6).
1. The definitions (3.1) and (3.2) make sense, and ηδ

φ(H)(z) extends to an analytic
function of z for Rez > —\.

3 Similar cut-off functions were introduced by J. Lott [12] in defining the ̂ /-invariant for Dirac
operators on R2m+1
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2. In definition (3.3), the ηδ

φ (H)(z) converge uniformly in z on compact sets for Re z >

3. ηδ(H)(z) is analytic in z for R e z > — \ and depends smoothly on H and z for
sufficiently small variations ofH. η(H) mod 1 and ζ(H) mod 1 are independent ofδ
and depend smoothly on H.
We begin with

Lemma (3.7).
1. For Rez >O, ήδ(H)(z) is a bounded operator on L2(R x X,S®E).
2. For Re z > ̂ dim Z, ήδ(H)(z) has a continuous kernel ήδ(H)(z; y, x, y, x)dy | dx \ which

is analytic in z.
3. tr ήδ(H)(z;y,x\y,x) extends to a meromorphicfunction of z for Rez > — 1 which is

continuous in y9 x, smooth in Hfor small variations ofH, and has possible poles only
at half-integer values of z. These poles are simple and their residues are given by
universal polynomials in the components of g, (detg)" 1, and the covariant
derivatives of ^yE and 0t§.

4. For Rez > dimZ + \ and φ with compact support, φήδ(H)(z) is trace class with
trace given by jtrφ(y)ήδ(H)(z;y,x;y,x)dy\dx\.

z

Here tFVE is the curvature of the connection VE on E, g is the metric on Z, and ^L is
the curvature of the Levi-Cevita connection for g. Note that (3.7.3) allows a pole at
z = 0; we will eliminate this possiblity in the next Proposition. We remark that (3.7.4)
relies on conditions 1 and 2 which imply that the resolvent of H2 has suitable decay
(see Proposition (A.6) of Appendix A).

Proof. This lemma is essentially standard, although some care is required to deal
with the non-compactness. The usual methods for proving (3.7.1) remain valid
because we are using a translation invariant L2 norm, and we are assuming that H
becomes translation invariant for \y\ > 1. Similarly, a kernel of ήδ(H)(z) can be
constructed by the standard pseudo-differential operator techniques, and then the
analyticity and locality properties (3.7.2) and (3.7.3) follow as usual (see also
Appendix C).

The only new difficulty is in showing that for Re z sufficiently large, φήδ(H)(z) is
trace class. For this we use the decay estimates of Proposition A.6 as follows. Set
k = (dimZ + l)/2 and suppose Re z > dimZ + \. Integration by parts in λ shows that

φήδ{H)(z) = comt\(^λ-z-ιl2Jr2kφH(H2-λ)-1-2k. (3.8)

We will show that the integrand φH(H2 — λ)~* ~2k in (3.8) is trace class with trace
norm bounded uniformly in λ for λe%?. Then clearly φήδ(H)(z) is trace class.

For p > 0 define continuous kernels

,x?/,x') = φ(y)ίH(H2 - λ)~k-^(y,x,/, x>)e^'\ (3.9a)

;y9*) = e~p^\H2 - λ)-*(y,*;/,*'). (3.9b)

By Proposition (A.6) we can choose p sufficiently small such that for | y — y' \ > 1 and
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y, x;y\ xf)\ < const φ(y)e~p]y-y ιeply u\ (3.10a)

\K2(λ)(y9x;/,x')\ < const e~
plyy2e"p]y~y\ (3.10b)

Thus, for such a p, the kernels \K1(λ)(y,x;y\x')\ and |K2(A)(j;,x;/,x/)l a r e square
integrable over ZxZ and they define Hilbert-Schmidt operators K^λ) and K2{λ)
on L2(Z,S<S)E) with Hilbert-Schmidt norms bounded uniformly in λ for Ae#. It
follows that φH(H2 - λ)~2k~ι = K^λjK^λ) is trace class with trace norm bounded
uniformly in λ for λeΉ. Π

As in the previous section, the general pseudo-differential operator techniques
used to prove (3.7.3) leave open the possibility that ηφ(H)(z) has poles at half-inter
values of z. However, again the special properties of Dirac operators imply

Lemma (3.11).
Resz = f c / 2 tτή\Ή)(z'9y9x9y9x)dy\dx\ = 0 for integer k9 k^ 0.
The lemma can be proved using Gilkey's Theorem, as in the proof of (2.12) above.
Statement (3.6.1) of Proposition (3.6) now follows immediately from Lem-

mas (3.7) and (3.11). We next turn to the proof of statement (3.6.2). Let H±(X) be the
translation invariant operators on L2(Z,S®E) defined by

H + O0 = ll — + L> + 0 0 . (.112]

dy

Thus Hoo agrees with Hfor y > 1, while if _ ̂  agrees with H for y < — 1. The idea is to
estimate the behavior of ηφ(H)(z) as φ-+1 by comparing ηφ(H)(z) with ηδ

φ(H±O0)(z).
The next lemma shows that these latter quantities vanish.

Lemma (3.13). Suppose that H is invariant under translations ofY. Then Ker H = {0}
and

Since we are assuming that θ vanishes for large | y |, the hypothesis is equivalent to the
conditions θ = 0 and Dy = D±Q0 for all y. The lemma can be proved using the explicit
expressions

d
H=ιΓW

-Ar(y,χ;/,χ') =
oo dE

P d

~ sy2

e^\D2-

+ D2>

+ E2-λy1(x

(3.14)

;,x'), (3.15)

where D = D^ is independent of y and (3.15) is valid for (y, x) φ (y\ x'\ λeΉ. Note
that by assumption D2 is invertible, and thus strictly positive.

Now define A Jf(z) = ήδ(H)(z) - ήδ{H±J(z). For F c C , let p±(F) be the square
root of the distance from F to the spectrum of D2

±. As a consequence of the decay
estimates of Proposition (A.6), we have
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Lemma (3.16).
1. For y> 1, t r 4 + rf(z\ y, x9 y9 x) extends to an entire analytic function of z.
2. For any compact set K c C there exists a constant c such that for zeK and y>ί9

These statements hold under the simultaneous replacement of y> 1 by y < — 1,
A + by Δ-, and p+ by p _.

We omit the proof since we will be proving more delicate decay estimates in
Lemma (4.11) below.

Given the previous lemmas, we can now complete the proof of Proposition (3.6).
Proof of (3.6.2): We can assume that φn(y)= 1 for \y\ < 1. Then by Proposi-

tion (3.7.4) and (3.13), for Rez large,

ηδ

φ(H)(z)= j dy^\dx\txήΛ{H)(z;y9x;y9x)
|yl<i x

+ ί dyφn(y)$\dx\trΔ+ήδ(z;y,x,y,x)
y>ί X

+ ί dyφn{y)l\dx\trΔ-ήa{z;y9x,y9x). (3.17)
y<-l X

By Propositions (3.7.3) and (3.11), the first term on the right-hand side of (3.17) is
analytic in z for Rez > — \9 while by Lemma (3.16) the last two terms are entire
analytic functions of z which converge uniformly on compact sets of C as the φn

increase to the constant function 1. •
Proof of (3.6.3): It is easy to see that for any <5,

ξ(H) = W(H)(0) + i T r Plλι<δmod 1, (3.18)

where P{λι<δ is the orthogonal projection onto the eigenspaces of H with \λ\ < δ.
Now for a smooth family {Hr}, ίeR with H° = H, δ can be chosen so that for
sufficiently small |ί|, the spectrum of H* is disjoint from the circle \λ\ = δ. Then
η^H^iz) depends smoothly on t by Proposition (3.7.3), while TrP μ | < 5 ( . ί f) is
constant. Π

4. The Variation of η{H)

In this section we investigate the dependence oϊη(H) on the connection V£. As in the
previous section we assume Y = R.

If Z were an odd dimension compact manifold without boundary, then the first
order variation of η(H) would be given by a local expression in terms of the
curvatures and variations of the connection VE and the Levi-Civita connection (see
[4]). In our case, because of the non-compactness of Z = R x I , there is an
additional contribution arising from the "boundary" at infinity.

Let T = R and let {Vr}, teT, be a smooth family of connections on £ - > Z
parametrized by T, such that for all t e T conditions 1 and 2 of Sect. 1 hold. From the
constructions of Sect. 1 we obtain a two parameter family {V }̂, (t,y)eT x 7, of
connections on E -+X for which Vf = dy(d/dy) + Θ* + V[.)9 a two parameter family
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{Dy}9 (t,y)eT x 7, of Dirac operators on CCO(X9S®E) coupled to Vy and a one
parameter family {H1}, teT, of Dirac operators on C"°(Z, S®E).

Recall (Proposition (3.6.3)) that ξ(H)mod 1 depends smoothly on H, and so the
assignment t -> £(#') defines a smooth map TH> R/Z. With a little abuse of notation,
let (dξ/dήdt denote the puUback by this map of the unit normalized volume one-
form on R/Z.

We will prove

Proposition (4.1). As one-forms on T,

ξ(H)dt = [ J A{ββ)ch(^dt{dβt)+v-)]one.fo

Here ^dtid/dt)+^ is the curvature of dt(d/dt) + V viewed as a connection on the pull-

back of E to the bundle TxE over T x Z. Explicitly,

J „ _ v T x Z , E n d ( T x £ ) ) > (4.2)
dt

where for each t, 3Fψ is the curvature of Ψ as a connection on E.
The first term on the right-hand side of (4.2) would give the complete expression

for the derivative of ξ(H) if Z were compact without boundary. The last two terms
give corrections due to the non-compactness.

Let ^ be a contour in C as in the definition of ήδ(H). Define

\ dt J dt %2πx dt
(4.3)

,^Xλ)V\ Rez>0, (4.4a)

^ - λ r \ (4.4b)

\λ) =-(H2-λΓ^iH2 + λ)(H2 - λy2, (4.4c)

\ 4d^\ ReZ>dimZ. (4.5a)

\ &(d?p), Rez>dimZ. (4.5b)
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As we will see below, Yb

φ and £fδ

φ give respectively the "volume" and "surface"
contributions to dξ/dt.

By using psedudo-differential operator techniques and then Gilkey's Theorem as
in the previous section, we see that for R e z > ^ d i m Z , ήδ(H,dH/dt)(z) and
i^δ(H, dH/dt)(z) are bounded operators with continuous kernels, and these kernels
extend to analytic functions of z for Re z > — \. In addition, because of the extra
factor of z in the definition of Ψ"δ, the pseudo-differential operator analysis, together
with the results of Appendix C shows that lim tr f>δ(H, dH/dή(z; y, x, y9 x) is given by

z->0

a universal polynomial in the components of g, (detg)~\ and the covariant
derivatives of J%, 9t^ and dH/dt. We will give the well-known explicit formula for
this quantity in Lemma (4.8) below.

Proposition (4.1) will follow by taking the limit φ-+l and analytic continuation
to z = 0 of the following formula.

Lemma (4.6). For Re z sufficiently large,

Proof. Formally

A. - „ dλ d
i T r I 7~z~ί2sh (T-T(T-f2 1\~1\ (AΊa\

(4.7b)

~

- H ( H 2 - λ r ' l H , φ ] { H λ ) ^
at

(4.7c)



586 S. Delia Pietra and V. Delia Pietra

= -ττ { — λ-'-^φ^ttH2 -λy1 -2(H2 - λΓ2H2)
eg 2πι at

at

2V\ (4.7d)

^4H,f V). (4.1c)
dy \ dt J

To obtain (4.7d) we have cyclically permuted the order of operators under the trace
and to obtain (4.7e) we have combined terms by integration by parts in λ.

The only subtlety in this formal calculation is the cyclic permutation of
operators. This can be justified for each summand by integration by parts in λ using
the fact that for N sufficiently large {H2-λ)~Nφ is trace class. (See [8,12] for
details). Π

We next compute Vφ and £fδ

φ in two important cases.

Lemma (4.8).
1. tvrd(H,{dH/dt)dt){O;y,x,y,x)dy\dx\ is the differential form on T x Y x X given

by the term of degree (1, l,dimX) of A{^g)ch{^dt{d/dt)+v).
2. Suppose that for all t, H* is invariant under translations of Y. Then for φ of compact

support with j φ = 1,

As in Lemma (3.13), the hypothesis of statement (4.8.2) means that for each t,θt = O
and Dy = Dι

+O0 for all y. Note that for arbitrary H\ this hypothesis is satisfied by the
operators ίf±00 defined in (3.12).

Since tri^δ(O;y,x,y,x)dy\dx\ is given by a local expression (see Appendix C),
(4.8.1) follows directly from the corresponding well known result for compact odd
dimensional manifolds (see, e.g. [4]). (4.8.2) follows from an easy calculation using
the expression (3.15) for ({H')2 - λ)~\

We now want to take the limits of i^δ

φ{HJH/dή(z) and 5fδ

dφ/dy{H,dH/dt) as φ
approaches the constant function 1. As in the definition of η we can obtain the
necessary estimates by comparing these quantities for arbitrary H with the
corresponding quantities computed for the operators H±O0 defined in (3.12). Define

dH— - (4.9)

(4
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For F cz C, let p±(F) be the square root of the distance from F to the spectrum

Lemma (4.11).
1. There exists a constant c such that for y>ί and λeΉ, Δ+&ι(λ\y,x,y,x) is

continuous in y9 x, λ, and \Δ+&1(λ\y,x,y,x)\ <cexp — p + (λ)\y\. An analogus
statement holds for Δ + &2.

2. For y>ί9 Δ+&δ(z;y,x,y,x) extends to an entire function of z.
3. For any compact setK^Q there exists a constant c such that for zeK and y>ί,

These statements hold under the simultaneous replacement of y > 1 by y <
— 1, Δ + by Δ _, and p+ by p_. Analogous statements hold with &δ replaced by i^δ.

Proof. We will prove (4.11.1). (4.11.2) and (4.11.3) then follow easily by integrating
over λ and using the uniformity of the bound in (4.11.1).

As bounded operators between the appropriate Sobolev spaces,

-λΓ1 (4.12a)

at

^ - i ) - > ) , ( 4 1 2 b )

and also

{H2-λr'-{El-λ)-'={Hl-λr\Hl-H2){H2-λ)-\ (4.13)

l ^ (4.14)

Combining these expressions, we can write Δ + &1(H,dH/dt)(λ) as the sum of

&(dH/dt-dHJdt)&>9 and ^(dH/dt-dH^/dή^iHl- λ)"1, where if is
either H, H^, dH/dt, or dH^/dt, and 0> is a pseudo-differential operator of negative
order formed from the composition of (H2 — λ)"1, (H^ — λ)'1, H, H^, dH/dt, and
dH^/dt. We will discuss the terms of the first form; the terms of the other forms can
be treated similarly. Observe that for y > 1,

t(Hl- λy

= \dx' J dy'(Hi-λΓι(y,x;y\x')(nH-HJ0>)(y\x';y,x). (4.16)
X '<l
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The y' integration can be restricted to / < 1 since H — H^ is supported on y' < 1
and i f is a local operator. The kernels for 0* and (H2^ — λ)"1 are smooth off the
diagonal, so that for y > 1 there are no singularities in the integrands of (4.16). The
kernel ^(y,x;y\xf) is bounded uniformly for λeΉ and \y — y'\ > ε > 0. Moreover,
by Proposition (A.6), the kernel (H2^ — λ)~1(y,x;y\xf) decays exponentially as

e-p+(λ)\y-y\ for χecβ^ inserting these estimates into (4.16) and performing the / and
x' integrals we obtain

\{Hl -λγ^(E~ HJ&iy,x;y,x)\< const e~p+im (4.17)

for y > 1. This completes the proof of (4.11.1) and of the Proposition. •
Finally, we give the

Proof of Proposition (4.1). The idea is take the limit φ->l and the analytic
continuation to z = 0 of the formula of Lemma (4.6). These limits exist because of the
analyticity properties and decay estimates of Lemmas (2.8), (3.6), (3.7), (3.16) and
(4.11). In the limit the terms on the right-hand side of (4.6) can be evaluated using
Lemma (4.8). We now make this procedure precise.

Fix δ > 0 suitable for the definition of ηδ(H)(z) as in Sect. 3. By Propositions (2.8),
(3.6), (3.7), and (4.11), the functions σ{D\^dD\Jdt\ ^(fΓ)(z), ηδ

φ{lP){z\
rδ

φ{H\ dH/dt)(z\ yδ

φ(H\ dH/dt)(z), defined originally for te T and Re z large, extend
to functions on T x {Re z > — \) which for each t are analytic in z. For notational
simplicity, we denote these extended functions by σ±(t,z),η(t,z\ ηφ(t,z)9 i^φ(t,z\
SfJt, z) respectively. Also denote by c(t) the coefficient of dt in the one form piece of

It suffices to show that

^ 1 ί ί , 0 ) . (4.18)τ σ + ( ί , 0 ) τ σ _
2πi 2nι

Let φeC$(R) with φ(y) = 1 for \y\ < 1. Then for Re > -\,

ηφ(t,z)- f dy$\dx\trή%z;y9x9y9x)
\y\<ί X

= J dy$\dx\φ{y)tτΔ- ή% z; y, χ9 y9 x)
y < - l X

(4.19)

= f dyl\dx\^(y)tiΔ-&δ(t9z;y9x9y9x)
y<-i x ay

rφ(t,z)-c(t)= J dy\\dx\tr(r\t,z;y,x,y,x)-r%u;y,x,y,x))
\y\<\ X
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+ / dy$\dx\φ(y)trΔ^%z;y,x,y>x)
y< -ί X

In fact, for Re z large, these equations follow from the definitions and Lemma (4.8).
They continue to hold by analytic continuation for Rez > — \ by Lemmas (3.16)
and (4.11).

From (4.19), (4.20), (4.21), and the decay estimates of Lemmas (3.16) and (4.11), for
the operator kernels, we deduce that for any compact set Jf in T x {Re z > — ̂ }, the
limits of ηφ, £fdφ/dy, yφ, as φ increases pointwise to the constant function 1, exist
uniformly for (ί,z)eJf\ Moreover, by (3.7) and its analog for Sfdφ/dy and Ψ'φ9 the
functions ηφ, ̂ dφ/dy, i^φ9 are uniformly continuous on Jf.

In particular, for (t,z)eT x {Rez > — | } ,

lim (ηφ(t, z)) = (lim ηφ)(t9 z) = η(t9 z), (4.22)
0 l φl

Γ(z + l)(σ+(ί, z) - σ_(ί, z)), (4.23)

(4.24)

In (4.24) we have used Δ±i^δ{t,O;y,x,y,x) = O for | J ; | > 1 as follows from
Lemma (4.8).

Now, for (ί, z)e T x {Re z > - £},

9 z) = ηφ(09 z) + 2 } d s ( ^ ( s , z) + iΓ (s, z)). (4.25)
o

In fact, (4.25) holds for Re z large by Lemma (4.6). On the other hand, by the uniform
continuity on compact sets in (5, z) of the integrands, the Riemann sums defining the
integrals on the right-hand side of (4.25) converge uniformly in z on compacts sets for
Re z > —\. Thus both sides of (4.25) define analytic functions of z for Re z > — \, and
so (4.25) holds for Rez > -\.

Taking the limit as φ -> 1 of (4.25), and using uniform convergence to interchange
the order of limit and integration, we deduce that for Re z > — \,

lim (ηφ(t9 z)) = lim (^(0, z)) + 2 J <fe[lim (ί%(s, z)) + lim (rφ(s9 z))]. (4.26)
0->l φ-*\ 0 φ-»l φ->l

In particular, for z = 0, (4.26) together with (4.22)-(4.24) implies

η(t9 0) = lim (ηφ(t9 0)) = lim (^(0,0)) + 2 J dsϊ c(s) + - L σ +(5,0) + - ^ σ_ (5,0)1.
0-1 0-1 0 |_ 2.πι 2πι J

(4.27)

Equation (4.18) follows by differentiating (4.27) with respect to ί, and the proof is
complete. •



590 S. Delia Pietra and V. Delia Pietra

5. Parallel Transport for V^

In this section we will prove our parallel transport formula, Theorem (1.10), by
integrating the formula of Proposition (4.1) over T. We continue with the notation
and assumptions of the previous section. Thus {V*} denotes a smooth family
parametrized by T of connections o n £ - > Z = R x I with Vf = dy(d/dy) + 0J.} -f V\.y
We assume that for all ί, V* satisfies conditions 1 and 2, and that for | ί | large, ψ is
independent of t.

We first integrate the volume piece of (4.1). Let

f = dt^ + V = dt^- + dy^- + θ + V, (5.1)
dt ot oy

which we view as a connection on the pullback T x E of E to T x Z. Define

/(V)= j A(<xg)ch(&t). (5.2)
TxZ

Lemma (5.3).
1. Suppose θι = 0 and Vy = Ψt for all (t, y). Then /(V) = 0.
2. Suppose Vy = V is independent of t. Then

/(V) = - - ί ; J A(MQ) tr (θit=co) -θ(t=~ °°>) exp i^ v /2π.

Proof. To prove (5.3.1), let μ:T x 7 x I h > T x 7 x X be the map which inter-
changes the first two factors, μ(t, y, x) = (y, ί, x). Then the assumption of (5.3.1)
implies that # ^ is invariant under μ*, and so the integrand in (5.2) is also invariant
under μ*. However since μ is orientation reversing, jα = — Jμ*α for any compactly
supported differential form oc on T x Y x X. Thus, /(V) = 0.

Under the hypothesis of (5.3.2), ^ = # y + dt(dθ/dt) and (5.3.2) follows
easily. •

We can now give the

Proof of Theorem (1.10). It suffices to prove the equality of the phases

ξ{H) = - ί τ f σ(D,VD) mod 1. (5.4)
2πι Y

Write V = dy(d/dy) + θ + V(>). We will prove (5.4) by integrating the equation of
Proposition (4.1) along interpolating families of connections parametrized by T
from dy(d/dy) + V-^ to dy(d/dy) + Vω and from dy(d/dy) + Vω to V.

First, choose an interpolating family of connections {V*} on E as in Lem-
ma (5.3.1) with V ( ί< ~ 3 ) = dyid/dy) + ¥-«, and V ( ί > 3 ) = dy(d/dy) + V(0. (This can be
done as follows. Let α be a nondecreasing smooth function on Y with <x(y) = — 2 for
y < — 3, a(y) = 2 for y > 3, and α(y) = y for — 1 < y < 1. Note that Vy = Vα(y) for all y
since Vy is independent of y for | y| > 1. Let /? be a smooth function on T x Y with
j8(t, y) = - 2 for ί < - 3, j8(ί,};) = oc(y) for ί > 3, and j8(ί, j;) = β(y91) for all ί, y. Then set
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Now integrate Eq. (4.1) over T:

( 5 5 )

For this family of connections {V'}, ξ(H(t== -°0)) = 0 by Lemma (3.13), J(V) = 0 by
Lemma (5.3.1), and the last term on the right-hand side of (5.5) also vanishes since
D^oo is independent of t. Finally, because of the symmetry Vy = Vf we can
interchange the roles of t and y in the second term on the right-hand side. We obtain

= —\σ\D, — dy) mod 1. (5.6)
2πί Y \ dy )

Next, choose an interpolating family of connections {Vf} on E as in Lem-
ma (5.3.2) with V ( ί < " υ = dy{d/dy) + V(.} and V ( ί> υ = V. For this family both D^ and
DL oo are independent of t and so the surface terms σ in (4.1) vanish. In addition, by
combining Lemma (5.3.2) with Proposition (2.8.3), we see that

/(V) = - J - f f A{mq) tr 0 exp i.Fv/2π = - 1 - f σ(D, [0, D]). (5.7)
2πι YX 2πι y

Thus, integrating (4.1) for this family we obtain

ξ(Hv) - ξ(Πdy{d/δyH^) = ~ J σ(D9 [0,D])mod 1. (5.8)

Since VD = (dD/dy)dy + [0, D], (5.4) follows by adding (5.6) and (5.8). Π

6. The Curvature of V^

In this section we prove the curvature formula, Theorem (1.5), as an additional
application of Proposition (4.1).

First observe that if we take the parameter space T to be a more general smooth
manifold than T = R, then Proposition (4.1) generalizes to the statement that as one
forms on T,

r f A 1 1
ξ*du=ί\ A(mg)ch{^dτ+vUone_ίθΐm + — σ(DO0,dτDo0)----σ{D_^djD- J.

z 2nι 2nι
(6.1)

Here we view t κ> £(/f) as a smooth function ξ: TH» R/Z, du is the standard one-form
on R/Z, ξ*du is its pull-back to a one form on T, and dτ is the exterior derivative of
forms on Γ. From this we obtain the following

Corollary (6.2). As two-forms on T,

dτ{σ(DootdτDJ) = 2πi[_j
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Note that except for the subscript o n D ^ , the space Y = R does not enter into the
above formula.

Proof. Choose a family of connections {V*}, teT, on E as above, satisfying the
hypothesis of Theorem (1.10) such that VL^ is independent of t. For this family, the
exterior derivative of (6.1) is

0 = 2πi[dτ I λ(0tg) ch (&dτ+,)]two.form + dτ(σ(Dΰ0JτDo0)). (6.3)

It thus remains to simplify the first term on the right-hand side of (6.3).
Let Φ = i ( i ^ ) c h ( J % r + ? ) e ί 2 * ( T x Y x X). Then by the usual Chern-Weil

algebra, (dτ + dγ + dx)Φ = 0, and so as differential forms on T,

dTίjφ-]= ί dTΦ=- J (dy + dX)Φ=- j Φ = - J Φ P » 0 0 .
YxX YxX YxX d(YxX) X

(6.4)

The piece of Φ of degree 0 in 7 is A(0ίg) ch (#"d + v ) 5 and ^dτ+v vanishes at y = — oo
since VL^ is independent of ί. The corollary thus follows by combining (6.3) and
(6.4). •

Now in (6.1) and the proof of (6.2) we are assuming that Y is the real line Y = R.
For the curvature formula (1.5) we consider instead an arbitrary parameter manifold
Y as in Sect. 2.

Proof of Theorem (1.5). From Proposition (2.8.2) of Sect. 2, dγω = dγ{σ(D, VD)), so
we must prove that as two forms on 7,

dγ(σ(D, VD)) = 2π/[ J ^(Λβ) ch (^{two-fo^ (6.5)

Here as usual VZ) = <ZyZ) + [0, D] and V = dγ + Θ + Vi.) with

From (6.2) with T replaced by Y, we deduce

dγ{σ{D, dγD)) = 2πz[j λ(βg) ch ( ^ , y + v ) ] { t w o . f o r m } . (6.6)

From Proposition (2.8.3) of Sect. 2,

dγ{σ{D, [0, D])) = - dy j >4(^) tr 0 exp zJ^v^π. (6.7)
x

Finally, a standard calculation using ch (#") = tr exp HFβπ shows that as two-forms
on 7,

(6.8)

Equation (6.5) follows by combining (6.6), (6.7), and (6.8). •

A. The Spectra and Resolvents of d fd, Z>2, and H2

In this Appendix we discuss the spectra and resolvents of the extensions to
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unbounded operators on L\ of the operators d^d, D2 and H2. For our notational
conventions, see Appendix D.

Proposition (A.I).
1. Do,o is self-adjoint with domain L\{X,S <g) E) c Ll(X,S® E).
2. The spectrum of DQ0 consists of isolated points in [0, oo) corresponding to finite

dimensional spaces of smooth eigenfunctions.
We omit the proof. Similar statements hold for dd\

The properties of H are a little more subtle since R x X is not compact.

Proposition (A.2). Suppose that H satisfies conditions 1 and 2 of Sect. 1. Then
1. #o,o is self-adjoint with domain L|(R x X,S®E).
2. Let λQ be a lower bound for the spectra of(Dao)liQ and (/)_ oJo.o Then the essential

spectrum ofΉQ.O is contained in \_λ0, oo).
By the essential spectrum we mean those points of the spectrum which are not
isolated eigenvalues of finite multiplicity. (See [11].) As we will see in the proof, this
Proposition continues to hold if in place of condition 1 of Sect. 1 we only assume
that the operators D+oo on the ends of the cylinder R x X are invertible.

Proof (A.2.1) is standard. For (A.2.2), write H2 = h2+K as an operator on
Co°(RxX,S(S)£), where

{[^£jyήf. <A.3,
with φ = φ(y) any smooth nonnegative real-valued function on Y of compact
support which is identically λ0 if \y\ < 1. Since the coefficients of K are compactly
supported on R x X, K is h2 compact by the Rellich lemma. Hence the closures hlt0

and #o,o ^ a v e ^ e s a m e domain, Ho,o = Ίo.o + &> a n d K is /zo,o-compact ([11],
p. 194). Since h^0 is self-adjoint, it follows from a theorem of Weyl on the stability of
the essential spectrum ([14],p. 113) that HQ,O a n d ô,o have the same essential
spectrum.

It thus suffices to prove that the spectrum of ft^0 is bounded from below by λ0.
Since /io,o is self-adjoint, this is equivalent to proving that hlt0 ^ λQ as operators on
Ll{R x X,S®E) ([11],p. 278). This follows from the computation

<Ψ,hl,oΨ>* ί dy(φ(y,'\Dlΰΰφ(y, )yx+ J

,/>, (A.4)

where ψeC£(Z,S®£). Π

The remainder of this appendix is devoted to proving the following decay
estimates for the resolvent of #o,o These estimates are needed in Sect. 5. For peC
and λ in C, define

~ + p 2 : q r t - > Q \ (A.5)
dyl
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Proposition (A.6). Let λ0 be a lower bound for the spectra <?/(£> oo)o,o and {D _ 00)0,0- Let
£P' bea closed set in C disjoint from the spectrum ofHl0 and contained in the half plane
{λ:Reλ < λ0}. Then there exist constants p 0 > 0 and c such that
1. For \p\<pOi£F is disjoint from the spectrum ofHlf0(p)9 and for λe^F, the resolvent

(Hl^ip)-!)'1 is the closure on Lg(R x X,S®E) of

e-pyR(H2, λ)epy:C£ H> C00. (A.7)

2. For \p\ <po,λe^, \y — γ\ > U and x, x'eX,

||έΓ'Ή(ffU)eHlo,o < * l ^

3. If H is invariant under translations of Y, then for p, λ, y, y\ x, x' as in (2),

We remark that (A.6.1) is not immediate since it is not clear a priori that (A.7) extends
to a bounded operator on L2.

Proof To prove (A.6.1), choose po>0 sufficiently small so that for λeϊF and

|p|<Po>

(A.8)

1. (A.9)

From (A.8) and the usual appeal to the geometric series, it follows that for \ρ\ < p0

and λe^9 Hlt0(p) — λ has a bounded inverse on L2(R x X, S® E). Now let ΨOECQ
and set

Ψ = (H2O,O(P) ~ λY Vo - e-eyR{H\λ)e^ψ0. (A.10)

To complete the proof of (A.6.1) we must show that ψ = 0. It is easy to see that φ is
smooth and that (H2(p) — λ)ψ = 0. Since {H%%0(p) — X) has an inverse as an
unbounded operator on LQ(R X X,S®E\ it thus suffices to show that φ is in the
domain of Jϊo,o(p) ^or this it is enough to show that φ is exponentially decreasing in
\y\9 since then φ is in L|(R x l j g ί ) , and, as in Proposition (A.2), L|(R x
X , S ® £ ) is contained in the domain of HQ>0(P).

We will demonstrate the exponential decay for y->oo; the case y-^~ 00 is
analogous. Let {φn} be an orthonormal basis for LQ(X9S®E) consisting of
eigenfunctions of CD00)0,0 with eigenvalues {λn} and set

(A.Π)

For y sufficiently large, H2(p) = - d2/dy2 + D^ - p 2 , and so the equation
(H2(p)-λ)φ = 0 implies

On the other hand, since (Hg>0 - A)"x and (Hli0{p) — X)~x are bounded operators on
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Lg(R xX,5®E), it is clear from the definition (A.10) that e~Mylφ is in L2(R x
X,S®E). Thus, cn{y) is in L2(R). Since condition (A.8) insures that the exponentially
increasing solution of (A. 12) can not be in L2(R), it follows that e]pucn(y)
must be the exponentially decreasing solution, and then using (A.9) again it
follows that cn(y) must also be exponentially decreasing. Thus |ψ(y,x)\ is exponenti-
ally decreasing in y and the proof of (A.6.1) is complete.

Now the resolvent of HQ,O(P) ^ a s ^o(R x X,S®E) norm which is uniformly
bounded for λe^ and kernel which is continuous off the diagonal and uniformly
bounded for λe^ and \y — y'\>\. (A.6.2) follows from this and (A.6.1).

Finally, (A.6.3) follows from the explicit expression, valid if H is translation
invariant, λe^ and \y — y'\ > 0,

(Hlo-λΓHy,χ;y\χΊ = ΣΦn(χ)<Φn(χ%'>^e-{y-y'ι\ (A. 13)

Here {φn} is an orthonormal basis of eigenfunctions of Do,o with eigenvalues {λn}
and α2 = λn - λ with Re αw > 0. The estimate

J ] ^ - ^ i < c o n s t Σ μ Γ ί = C(D2)(z)< oo, Rez»0 (A. 14)

implies that the sequence (A. 13) is absolutely convergent, uniformly for \y — γ\>
ε > 0, and then standard arguments show that it actually gives the resolvent. •

B. A Generalization of Gilkey's Theorem

In this Appendix we will give a generalization of the Gilkey Theorem ([3]). This was
used in Sect. 2 and 3 to prove Lemmas 2.14 and 3.11.

For a manifold X, and a complex vector bundle E over W we consider regular
form-valued invariants of a Riemannian metric g on X, a connection V on £, and
endomorphism valued differential forms TjeΩ(X, End (£)), j = 1,2,..., n. To define
what we mean by invariant we consider as in [3] the category Ή whose objects are
manifolds X' and vector bundles E over X\ and whose morphisms are bundle maps

f:E'\-+E" for which the map of base spaces f\X'\-*X" is a diffeomorphism onto an
open submanifold. Then a differential form valued invariant of g, V, and T} is a
natural transformation τ from the functor

^W {metrics on Y, connections on E, (endomorphism—valued forms on Y)n}

to the functor ^h> {forms on 7}. Thus f*τ(g, V, Tu..., Tn) = τ{f*g9f*VJ*Tu...,
/ * T J . An invariant has weight k if for any λ > 0, τ(/l2#, V, T) = Λfcτ(#, V, T).

An invariant τ is called regular if for any local coordinate system χ:E\uH>R"f x C\
U a 7, the components of τ(g, V, 7}) are given by universal polynomials in
det~ 1{gμv), gμv, Viμ9{Tj)d

eμ and their derivatives. Here the components and derivatives
of the various objects are taken relative to the coordinate system on Y and
trivialization of E defined by χ. The polynomials are universal in the sense that the
same polynomial works for any choice of χ.

The generalized Gilkey theorem which we need is
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Proposition (B.I). Any regular differential form valued invariant τ of weight zero is in

the ring generated by the invariants

Here 01 q is the curvature of the Levi-Civita connection for g, J ^ v is the curvature of V,

and dv is the covariant exterior defined by V. m is a monomial in 2 + In variables and

trm( ) is interpreted as the image of m( ) under

where the first arrow is induced by exterior product and composition in End E.

The proof is a straightforward generalization of the proof given in [3], in which

the theorem without the Tj is proved (see [8] for details).

C. Traces of Operators Defined by Contour Integration

In this Appendix we state a minor generalization of some results of Seeley [15] on

operators of the form

where R(λ) is a suitable family of pseudo-differential operators. In particular we give

formulae for local invariants obtained from the analytic continuation of TτA(z).

Seeley considered the case where R(λ) is the resolvent of a single elliptic operator

while we have in mind the case where R(λ) is basically a product of resolvents, but

this causes no essentially new difficulties.

Assumptions. We use the notation of Appendix D. Let W be a smooth manifold of

dimension m and let F -> W be a complex vector bundle with fiber of complex

dimension /. Let Sf be an open set in C containing the negative real axis and the disk

[λ\\λ\ < 1}. Let R(λ), λe^, be a family of pseudo-differential operators acting on

sections of F and satisfying the following assumptions.

I. There exists a c < 0 such that for λe^ and / e C ? , || JR(λ)/||0 < c(l + \λ\)'x \\f\\0.

II. R(λ) can be approximated by pseudo-differential operators in the following

sense. Suppose χ:F\wH>ΈLm x Cι is any coordinate trivialization for U any open

subset of W, and suppose φ,φeCo(U). Then there exists a b(λ;x,ξ)eCco(5^ x

Rm x R m )® End (Cf) satisfying the following conditions.

1. Let

ELφ,φ(λ) = MφoR(λ)oMφ - (χ, φ)*°Op{b{λ))o{χ, ψ)+. (C.2)

Then there are c, δ > 0 such that for λe6? and / e C ? ,

ml2. (C.3)

2. b has an expansion of the form ί? = b _ 1 + h _ 2 H — + f c _ m _ 1 where

bn(λ;x,ξ)eC»{Sr x R w x R m ) ® End(C ι) satisfies
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a. For all multi-indices α and β

b. For sufficiently large integers j there exists a c>0 such that

c. For \ξ\2 + \λ\ > l,bn is analytic in λ and homogeneous in (ξ,λ1/2) of degree

Here D^ = - X 82/8ξf. We have included in I an assumption about the decay of
ί

II 0,0 since, on a non-compact manifold, information about the global L2 norm
does not follow from the local assumptions in II. Note that (C.3) implies that Eχ φ φ(λ)
has a continuous kernal E χ^(λ;x,x') with

\XLφfφ(λ;x,x')\<c(l + \λ\Γ1 + δ. (C.4)

The somewhat unwieldy conditions I and II are satisfied quite naturally for the
families of operators R(λ) which arise in connection with resolvents of differential
operators. In particular they are satisfied in all the situations we consider in the body
of the paper.

Let ^ be the clockwise oriented curve in ίf which goes from — oo to — 1 along
the ray {arg/l = π}, then clockwise around the circle \λ\ = 1, and then from — 1 to
— oo on the ray {argλ— — π}. Let Θ be the counterclockwise oriented circle \λ\ = 1.
Define

A{z) = ί^λ-*R{λ), P = $^R(λ), (C.5)
J 2πι % 2πι

with the complex powers λ~z defined using the branch of the logarithm with cut
along the negative real axis and log(l) = 0. By assumption I, A(z) and P define
bounded operators on L2.

Results. Let χ, U, φ, ψ, and bn be as in II.2 above. Let Pχ>φ^(x, x') and Aχ φ)φ(z; x, x;) for
Re z > 0 denote the kernels of P and A relative to {χ9 φ9 ψ}. The main result of this
Appendix is

Proposition (C.6).
1. For Rez >(m + l)/2, ALφψ(z;x,xf) is analytic in z and continuous in x, xf.
2. Aχ ψ φ(z; x, x) extends to a meromorphic function of z for Re z > — 1 which is

continuous in x. The only singularities are possible simple poles at half integer
values of z, and there is no pole at z = 0.

3. For sufficiently large j ,
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4. If Pχφψ(x,xf) is continuous in x and x', then for sufficiently large j ,

lim A φtφ(z; x, x) + PXιφtψ(x, x)
>0

Here dm xξ denotes the standard volume form on the m— 1 sphere \ξ\ = 1.
It is statement (C.6.4) that is not immediately contained in the work of Seeley.

For a proof of (C.6), see [8].
Proposition (C.6) expresses the residues at the poles oϊAχίφιj/(z; x, x) and the value

lim Aχ>φψ(z; x, x) in terms of integrals of particular homogeneous terms in the symbol

expansion for R(λ). If we restrict the form of the symbol expansion we can perform
these integrals to obtain more detailed information.

Specifically, assume that in addition to Π.2.a and Π.2.b, the functions bn(λ; x, ξ)
satisfy
I L 2 . c F o r | £ | 2 + μ | > l ,

tr bn(λ; x9ξ) = Σ cB,βiΓ(x, ξ)λ*{a{x9 ξ) - λ)~'9 (C.7)

where cΠfίfΓ(x, £)eC°°(Rm, Rm) ® End (Cι) is a polynomial function of degree n-2q
+ 2rinξ and for all x, α(x, ξ)eCc0(Rm x Rm) is a strictly positive quadratic form in ξ.

Condition Π.2.c will be satisfied if R(λ) is the product of local operators and the
resolvents of second order differential operators with the same positive definite
scalar leading symbol. The families R(λ) considered in this paper are all of this type.

Following [3] we deduce

Corollary (C.8). Under the additional assumption Π.c, Res{s=±ί/2}AχAφ(z;x,x) and
lim AχφAl(z\x,x) depends polynomially on the coefficients of the cn>βfΓ(x,ξ)9 the

coefficients ofa(x,ξ\ and the function det"1α(x).
For a proof of Corollary (C.8,) see [8].

D. Notational Conventions

Let W = X and F = S ® £ , or W = R x X and F = S ® £ . Put a metric on W and a
fiberwise Hermetian inner product and compatible connection on F. For W =
R x X we impose the additional requirement that the connections and inner
products be invariant under translations in the R direction. This is a reasonable
condition since we are assuming (see condition 1 of Sect. 1) that our operators H are
translation invariant for large \y\, yeR.

For integer fc, let || ||k denote the Sobolev norms on C%{W, F\ and let L\(yV, F)
be the Sobolev spaces obtained by completing CQ(W, F) relative to these norms. For
a linear operator A:C$(W,F)^L](W,Fl let Ajik:L*{W,F)->L](W,F) denote its
(possibly unbounded) closure, if this closure exists. (Recall that the graph of the
closure of A in L\{W, F) x L](W, F) is the closure of the graph of A.) We will often
omit the subscripts j , k if j = k = 0.
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In Appendix C we also use the following notation. For χ:E\v\-*Rm x Cι

a local trΐvialization over some coordinate patch U in W, and
φ9 ψeCS(U), let ( ^ J ^ f o M ^ r f R ^ C ^ Q ^ F ) and (Lφ)* =
χ^oMφ'.C^iW.F^C^iW1)®^, where Mφ denotes multiplication by φ. For a
linear operator A:Cg(W,F)\->CΰO(W,F), let Λχφφ = (χ, φ)*°A°(χ9 ψ)*m Also, follow-
ing [15], for beC°°(Rm x R m )® End(C'), let Op(b):C$(Rm)<g> <:<(-• C°°(Rm)® Cι be
the pseudodifferential operator

Op(b)/(x) = (2π)"mf dmξβix«6(

when the integrals, in the order given, are defined.
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