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Abstract. We study the large-time behavior of solutions of viscous conser-
vation laws. It is shown that solutions tend to diffusion waves, which are
constructed based on the heat equation and Burgers equation. The conver-
gence is in the Lp, l^p^oo sense and is obtained as a consequence of the L 2

decay of the difference between the solution and its asymptotic state of
diffusion waves.

1. Introduction

Consider a system of viscous conservation laws

+ ΨΈ + Ψ
dt dx d

We are interested in the large-time behavior of solutions whose initial value tends
to a constant state at x = ± oo. Without loss of generality we take the constant state
to be zero:

φ , 0 ) - * 0 as x - > ± α o . (1.2)

Physical models of the form (1.1) include the compressible Navier-Stokes
equations and magnetohydrodynamics. The nxn viscosity matrix B(u) represents
a dissipative mechanism, and the solution u(x, t) is expected to decay to the zero
state as ί->αo. The decay in L^ and L 2 has been studied by viewing (1.1) as a
perturbation of the linearized equations

Λ , ' J VvΊ Λ ^ V ^ / rs 2 ' V *̂ /
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[2, 7], and references therein. The purpose of the present article is to study the
large-time behavior in the Lp sense 1 ̂ p ^ oo. System (1.1) is in conservation form

J u(x,t)dx= j u(x,O)dx, t^O. (1.4)
— oo — oo

Consequently u(x, t) does not decay in Lί. The study of Lί behavior of u(x, t)
involves nonlinear waves. The asymptotic state has been constructed in [5] based
on the self-similar solutions of the heat equation and Burgers equation:

dw dw d2w .. _.
Vc^—=d—=-, (1.5)

dt dx dx

dw dw , dw d2w ,Λ ^
(1.6)Of OX OX OX

where c, d, α > 0 are constant and weR 1 . Our main result shows that u(x, t) tends to
its asymptotic state in L1 as £->oo. The result yields the distribution of the basic
physical density φc, t\ and therefore is of physical significance. The phenomenon
of decay in L2 and L^ for solutions of the nonlinear system (1.1) is similar to that
for solutions of the linearized system (1.3). On the other hand, Lx behavior for (1.1)
involves nonlinear waves, while for (1.3) involves only linear waves.

To simplify the presentation we carry out our analysis for the simplified
situation where the viscosity B(ύ) is the identity matrix:

dt dx 2 dx2'

Our main assumption is that the associated inviscid conservation laws

— H—-—=0 (1.8)

are strictly hyperbolic. This means that f\u) has real and distinct eigenvalues λγ(u)
<λ2{u)<...<λn{u) with right eigenvectors r^u) and left eigenvectors
i= 1,2, ...,rc. By a linear transformation we may assume that

o λ
We abbreviate A, (0), r;(0) by λb r; and decompose the initial data into

u(x, 0) = Σ θ?(x) r, = (θftx), θ°2(x),..., θ°n(x)). (1.10)

For each mode i, we consider the parabolic equation

with initial data

θj?c,O) = θξ{x). (1.12)
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When ^ = 0, (1.11) is the linear heat equation, and the solution is

Λ . , 1 (x-λtf-y)2

j
2πί -

e 2< θ?(y)dy, bt = 0. (1.13)

When bj + O, (1.11) is the Burgers equation which can be linearized through the
Hopf-Cole transformation, [1],

δt ι δx 2 δx2

and the solution of (1.11) and (1.12) is

θi(x,t)^--{

]/2πί -o

The solutions (1.13) and (1.14) are called linear and nonlinear diffusion waves,
respectively, and will be shown to represent the asymptotic state of the solution of
(1.7) and (1.10). The construction of diffusion waves here differs somewhat from
that of [5].

Our basic assumption on the initial data u(x, 0) is that

f \θ?(x)\dx<oo, J \xθf(x)\dx<oo. (1.15)
— oo — oo

The main result of this paper is to show that the solution u(x, t) of (1.7) and (1.10)
converges to θ(x,i) = (#i(x,t)9...9θn{x,ή) as t->oo. Note that both (1.7) and (1.11)
are conservation laws. Thus from (1.10) we have

J ΰ(x9t)dx = 09 ί^O, (1.16)
— OO

ΰ(x, t) = u(x, t) - θ(x, t)9 (1.17)

and it is natural to introduce

v(x,t)= J iHy,t)dy. (1.18)
— 00

We have from (1.17), (1.10), and (1.11) that

XγΛ, (1.19)

4S, (1-20)
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ΰ(x,0) = v(x,0) = 0, (1.21)

-\ Σ (/'(0)r^X2-(/'(0)α,fe). (1.22)

We carry out our analysis based on (1.20). The first result concerns the L 2 decay of
v(x,t):

Theorem 1.1. Suppose that the initial data u(x, 0) has the property that

00 00

<5 = J (\u(x,0)\ + \xu( 2 2

is sufficiently small. Then the solution v(x, t) of (1.20), (1.21) exists in c((0, oo), Hι + 1)
nL2((0, oo),iί/ + 2) and satisfies for all σ>0 sufficiently small,

Here Hι is the Sobolev space, H° = L2 and Dι = dι/dxι.

As a consequence of the above decay result for v(x, t), we obtain the asymptotic
behavior of u(x, t). We show that u(x, t) tends to θ(x, i). It can be shown that θ(x, t) in
turn converges to the combination of linear and nonlinear heat kernels:

θ*(x,t)= Σ Γ^θfί^βΔr;, (1.23)!
• =i V ]/t )

θf(x)

2 if 0; = (

(1 23)2

~bimι oo _ Z i d y

2 [e 2 , (1.23)3

m,Ξ I θ;(x,0)ίίx. (1.24)4
— oo

Theorem 1.2. Under the same hypotheses as in Theorem 1.1, the solution of (1.7), (1.2)
exists in C((0, oo), Hι)nL2((0, oo),Hι + 1) and satisfies, for any σ > 0 sufficiently small

ψ + 1~^ + Ί (1.24)

Of particular interest is the case where p = 1 and p = oo. From the conservation
laws (1.1) we have

J u(x,ήdx= J φ,0)dx,
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and so the solution u(x, t) in general does not decay in Lγ. Because of (1.16), we have
the decay of u~ θ* in L1:

J \u(x,t)'-θ*(x9ή\dx = O(l)δΓ* + σ. (1.25)
— oo

About the convergence in L^, we have the following more precise formulation in
the self-similar coordinates:

sup ltlί2u(U + Vtx, t)-θfixjrj =
xeh(t)

AOΞΞ — G O , λn+ί==co. (1.26)

In Sect. 2, we make basic estimates on diffusion waves. In Sect. 3 we first use
Moser's inequalities to estimate the nonlinear terms in (1.20). This allows us to
prove the decay result, Theorem 1.1, by employing an analysis of Kawashima [2]
on the energy decay for weakly nonlinear systems. Theorem 1.2 is proved in Sect. 4
as a corollary of Theorem 1.1. Finally in Sect. 5 we indicate how to generalize our
analysis for (1.7) to the general system (1.1). This will involve linear hyperbolic
waves in the construction of diffusion waves, [5], and energy estimates for
hyperbolic-parabolic systems, [6, 7] and references therein.

Recently, Nishida [9] announced a similar L2 decay result for two equations of
viscous barotropic gas. For two viscous conservation laws, there exists a
coordinate of Riemann invariants which allows explicit computations. Kawa-
shima has also announced the L2 decay result for general system of hyperbolic-
parabolic type using his earlier works [2] and that of [5]. However, he does not
give LP,p + 2, oo, description of the convergence. The pointwise description (1.26)
is the natural one. Our analysis is carried out for (1.7), and therefore does not
require the existence of a strictly convex entropy function. By studying the linear
hyperbolic waves carefully, the rate of convergence for the general system (1.1) is
the same as that for (1.7).

The rates obtained in the above theorems would be optimal if σ = 0. If we view
(1.20) as a perturbation of the linear system depending on diffusion waves θ:

\JV UΛ \jX OX

instead of

dv dv d2v

as is done in the present paper, we would obtain optimal rates. This is, however, left
to the future.

It is interesting to compare the similarity and differences in the large-time
behavior between solutions of viscous conservation laws (1.1) and of hyperbolic
conservation laws (1.8). Each mode for (1.1) depends only on one time-invariant
(1.23)4. For (1.8) each nonlinear mode has two time-invariants, while each linear
mode has infinitely many time-invariants, see [4] and references therein.
Moreover, the Lx-convergence rate to diffusion waves for solutions of (1.1) is
around t~1/2. On the other hand, the convergence rate to JV-waves of solutions of
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(1.8) has been shown only to be 0(1 )t 1 / 4 [4], for general systems. Although for the
scalar hyperbolic conservation law the rate is still ί~1/2, for the general system
t ~1/4 may be optimal. In other words, the nonlinear coupling of different modes for
(1.8) may be substantially stronger than that for (1.1).

2. Diffusion Waves

We want to study the properties of diffusion waves. The first proposition relates
the solution θfat) of (1.11), (1.12) and θf of (1.23).

Proposition 2.1. Suppose that

00

— 00

is bounded. Then θ(x, t) converges to 0* time asymptotically in the sense that

(i)
LP

for some 0(1) independent of t and δ. Moreover in the self-similar coordinate we have

JL-I-!
2P 2

(ϋ) limjΛp1
it + j/ίx, ί ) - Dι

xθf{x)

Dί+1e 2) f yθfaΰjdy, for 6i = 0,

(iϋ) ]/ί {ί 2 ( D ' ^ ^ ί + j/ίx, ί ) - Dι,θf{x)

btφf(+co)-φf(-ooy
for

U= ί (φ?(y)-φ?{-<χ>))dy+ l(φ?{y)-φ?{+co))dy,
- oo 0

uniformly in x.

Proof. When b~0 we have from (1.13) and (1.23) that

=
2πt

oo

J D
(χ~sy)2

9θ}dy2< ds\yθjiy9

J

l/2πί -«=Lo L ί J J
O)dy
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for some polynomial pι + 1 of degree Z+l. Here we assume, for notational
convenience that λ^O. From above, there exists y e(0,1/2) such that

v(*-y)2

y

±00

Thus we have

U\u= ί |yβ,(y,

2p

This proves (i) for bt = 0.
For bj + O, and again, for simplicity, λt = 0, we have from (1.14) and (1.23) that

oo ~(χ-y)2

o

1

o ~(χ-y)2

J * 2 ί (φ0(y)-<Po{-°o))dy,

We note that there exists

φ{x, t)

From above we have

ε0 > 0 such

|/2πί -o

that
-(χ-y)2

e 2t

0

- o o ) J e

As noted above we have

V

for some positive constants C1 and C 2 .
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Thus we may apply the chain rule to yield

tPF
£>ί+1lnl l + 4 r Σ

Σ jaj = 1+1

*—' nn I / — I

1 +
yft

~ Qt - Q/2

iDcr'...iD i + ir-

where F(y) = ln(l+y) and Cρα are some constants. Consequently by Holder's
inequality, we have

o

ί
/+1

=0(1) Σ r '2CΣΠII^CIIίi,(1+1,V
β = l \α j —T-

1/P

From the explicit form of φ we easily have

'

Similar to the estimate for the case bt = 0, we have

= 0(1) Σ |β*£|ί

ί

and so

IL =o(i)ί

A similar estimate also holds for E2. We conclude that

l±λ -L + —L
2 =O(ί)Δt 2 ^ "

ί \<Po(y)-<Po(-<n)\dy,
— oo

... + r ί / 2 Z i + 1 ) Γ 2 " 1 + ^

where we have used

Since A = O(l)δ, this proves (i) for fc^φO. (ii) and (iii) are proved using a similar
method and the dominated convergence theorem. Q.E.D.
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Proposition 2.2. Under the same assumption as Proposition 2.1 we have

(i)

(ii)

(iii) ||Z)^(ί)θ/ί))llL2 = O ( i μ 2 ( l + ί ) - ^ 2 - 5 / 4 , i + j , U = l , 2 , . . . , n .

Proo/. (i) follows easily from (i) of Proposition 2.1 and that it holds clearly for
9 = 6^. Similarly, to prove (ii) and (iii) we need only to show that they hold for
θf(x)θf(x)t~γ. In fact by explicit computations, it is easy to see that θf(x)ΘJ(x)t"1

decays exponentially in t. This proves the proposition. Q.E.D.

3. L2 Decay

To prove Theorem 1.1 on L2 decay we view (1.20) as a perturbation of a linear
system with constant coefficient

With zero data (1.21) we have

φ c , ί ) = - | J G{x-y,t-s)F{y,s)dyds,
O - o o

1

γ2πt

l e 2

\ e

0
{X-λy

2ί
^t)2

Lemma 3.1. There exist constant η>0, c > 0 such that for {θl^ + lVy

(i) \\Dl-\L(e)vy)\\Ll^c(\\e\\L2\\Dlv\\L2+\\Dl-le\\L2\\vy\\L2),

(iii) \\B'-1N(θ,vy)\\Ll£c(Σ \\Dί-χ(θlθJ)\\Ll+\\Dίυ\\L2

χ||^IL2+(!l^ll t 2 + II^L2)

x(\ΘL + \vyUi\\D'-1θ\\L2+\\D>v\\JJ\,

(iv) \\DιN(θ,vy)\\L2Sc(Σ

Proof. The lemma can be proved easily via Moser's inequalities which are listed in
Lemmas A2-A4 of the Appendix. We will prove (iii), (iv) for demonstration. The
nonlinear function N can be written as

N{a,b)=\ Σ (f"(0)ri,rj)aiaj+ Uf"(0)b,
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By Lemmas A 2-A 4,

+ ||D'-1H(0,»,)||I,))

\\Dl-1(v,2)\\LlZcQDv\\Ll\\Dlv\\lJ,

P W U L 2 + \\D\υy)
2\\L2

This proves (iii), (iv). Q.E.D.

The following lemma follows from easy computations.

Lemma 3.2. Let α, β, y be positive constants. Then

(i) *J (l+ί-5)-^
o

- 1 , y Φ l , or if

(ii) }
ί/2

, )SΦ15 or

(iii)

Lemma 3.3 (Energy estimate). Suppose that (1.20), (1.21) /zαs a solution υ(x,t) in
C([0, T], H w + 1)nL 2([0, T], H m + 2 ) . Then there exists c>0 independent of t e [0, T]

provided that |θ|oo + IVJCIOO = ^ w ^ e ^ js defined in Lemma 3.1.

The above lemma follows from the usual energy method of integrating
(Dιv) £>*((1.20)) over x and using (ii), (iv) of Lemma 3.1. The next lemma is proved
by the spectral method, [2].
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Lemma 3.4. Set

v(x,t) = J G(x-y,t)w(y)dy.
— 00

Then there exist c>0, β>0 such that

With these lemmas we are ready to prove the main decay estimates.

Proposition 3.5. Suppose that δ of Theorem 1.1 is sufficiently small and that the
solution v(x,ή of (1.20), (1.21) exists in c([0, oo],tf m + 1 )nL 2 ([0, oo),Hm+2). Then

for all σ>0 sufficiently small.

Proof. Fix Γ > 0 and set

M / Ξ Ξ M / ( T ) Ξ Ξ s u p {ί+tr + *~σ\\Dιυ{t)\\L2, 0 ^ / ^ m + l . (3.3)

From (3.2), Lemma 3.4,

} )vy + N(θ, vy))(s)\\L2ds,
0

ί/2 i_i

d^ (3 4 )

111= J (ί+t-s)τ^
ί/2

For I we apply (ii), (iv) of Lemma 3.2

Except the terms involving Dι+1v, the right-hand side above is estimated using
Proposition 2.2 and (3.3). We use Lemma 3.3 to deal with Dι+1v:

+ Σ
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where we have also used (1.21). We use (3.2) and the Sobolev inequality to yield

and so from (iii) of Lemma 3.2 and Proposition 2.2,

l/2

4 2

Similarly from Proposition 2.2, Lemmas 3.1 and 3.2 that

4 2

4 2

4 2

We conclude from (3.4) that

), M=
1 = 0

(3.5)

It follows from (3.5) that for δ sufficiently small M = 0{\)δ. This proves the
proposition. Q.E.D.

Finally, the proof of Theorem 1.1 follows from Proposition 3.5 and the
standard local existence theorem for uniform parabolic systems.

4. Asymptotic Behavior

We first prove Theorem 1.2 for p = oo. From (1.18) we need to show that

This follows immediately from Theorem 1.1 and the Sobolev inequality

2 4" 2 J2 Γ 2

The estimate (1.26) follows from this estimate and Proposition 2.1. Next we
prove Theorem 1.2 for p = ί. From Proposition 2.1, (1.18) and (3.2) we have

\\Dι{u-θ*)\\Lp(t)=\\Dι + h\\Lβ)
ί/2 oo

ί ί
0 - o o

ί
ί/2
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From Proposition 2.2, Lemma 3.1 and Theorem 1.1 and the above estimate on L^
decay, we have

By the explicit form of G, a similar decay also holds for G:

Thus we have from the usual estimates for convolution that
ί/2

\\D(u-θ*)\\Lί(t)^ j | |D z + 1G(ί-s)| |
o

ί

J \\DG(s)\\Lί\\DιF(t-s)\\Lιds
ί/2

ί/2 -L-L

0

t — i _ i_ +

j (1+s) 2 σ ( l+ί-s)~ 1 / 2 d5.
ί/2

This implies Theorem 1.2 for p= 1 by virtue of Lemma 3.2.
It remains to prove Theorem 1.2 for pφ 1, /?=f=2, pφ oo. This follows from the

usual interpolation formulas:

P-2

i-2-

This completes the proof of Theorem 1.2.

5. General System

In this section we indicate how to generalize our analysis to systems of the general
form (1.1) when the viscosity B(u) is not the identity matrix and (1.1) is not
uniformly parabolic but hyperbolic-parabolic. Most physical models such as the
compressible Navier-Stokes equations have such properties. First, we follow the
approach of Sects. 3, 4, and 6 of [6] in deriving the asymptotic state. The
asymptotic state consists of diffusion waves ψ (with slightly a different construction
from θ in Sect. 2 of the present article) and a linear hyperbolic wave ξ. Write

+ u*, v(x,t)== J u*(y,t)dy, u(±oo,t) = 0, t = 0,
— (X)

so that v satisfies cf. (6.29) of [6],

vx\
2 + \ξ\ + \ψx\

2+(\vx\ + ξ)\ψx\ + Σ.I
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The system is then viewed as a perturbation of a linear system

cf. (2.20)'. The next step is to use the Fourier transform to study the decay property
of the solution operator of the linear system

We then apply the argument in the proof of Theorem 4.1. If the case (1.1) is
uniformly parabolic there exists an energy estimate similar to (4.7). The situation is
somewhat more complicated here because F depends on v, Dv, and D2υ; while F in
(2.20)' depends only on v and Dv. Nevertheless, we need only to apply the energy
estimate twice to express Dι+2v in terms of Dιv. When (1.1) is not uniformly
parabolic one needs to use the particular coupling property of the equations in the
system to derive the energy estimates, cf. [6] and references therein. Finally, F also
depends on the linear hyperbolic wave ξ. This causes no problem because ξ has
higher rates of decay than the diffusion wave ψ, Sect. 7 of [6].

Appendix

Lemma Al (Sobolev inequality). // ί eH'(R), then

for some constant c.

Lemmas A2 and A3 are Moser's inequalities [3].

Lemma A2. // u,veHιr\U°, then

Lemma A3. Suppose N is a smooth function in the neighborhood of Oe IRΛ Suppose
v is a ΊR.N-valued function ί; e if * nL 0 0 . Then 3 constant η depending on N and constant
c(η) such that

\\D'N(v)\\L2ίc(η)\\D'v\\L2,

provided Ivl^^η.

Lemma A4. Suppose H is a smooth function in the neighborhood of Oe IRΛ and H(b)
= O(\b\p) near b = 0. Suppose v is a ΈJ*-valued function, v e HlnU°. Then 3 constant η
and c, as in Lemma A3 such that

\\DιH(v)\\Ll^c(n)\v\^^v\\L2\\Dιv\\L2.

Proof This is a direct consequence of Lemmas A2 and A3.
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