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Abstract. We consider the time-dependent Schrodinger—Hartree equation

1
iu,+Au=<;*|u|2>u+ig, (t,x)eR x R3, 1)
u(0,x) = p(x)e X2, xeR’, 2
where 120 and 2%? = {gel? |gl3.= Y ID*gl3+ ¥ lx’gl3 <o}
=2 152

We show that there exists a unique global solution u of (1) and (2) such that
ueC(R;H?)nL*(R; H**) N LE (R; £22)
with
u,e L°(R; I?).
Furthermore, we show that u has the following estimates:
lu®)ll,,=C, ae teR,

and

lu@lle = CA+[t)7H2 ae teR.

1. Introduction and Main Results

We consider the time decay of solutions to the Cauchy problem for the equation
in [?=I*(R?)

i, +Au=f(lul*u+ iVu, teR, (1.1)

u(0) = ¢, (1.2)

where u, = d,u, f([ul?) = x|" " *[ul® = | |u(t, p)[*/Ix — yldy, 220, V=1/|x| and ¢
R3
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is a given initial data. Let "™ be the Hilbert space defined by
Itm={gelZliglhm= 3, ID%g13+ Y IIx"g]3 <o}

l=t Bi=m

with the inner product

@9 sm=Y, (D*9,D*g)+ Y (x*g,xPg),

laf 1 Bl=m

where

(f.g)= [ f-gdx, D*=0y050% and xF=xbudech
R3

(lal =0y +o,+as, [Bl=Ph+B,+Bs3).
We shall prove the following:

Theorem 1. We assume that A =0 and ¢peX?2. Then there exists a unique global
solution u of (1.1) and (1.2) such that

ueC(R; HV2) AL (R; H?) ~ L2, (R; X 22)
with
u,e L™ (R; L?). (1.3)

Furthermore, there exist positive constants C, depending only on || ¢ | 52.. and C,
depending only on | ¢ | g2.2 such that

()|l <C;, ae. teR, (1.4)
and

[u(t) o < Co(1+[t])" Y2 ae. teR (L.5)

In what follows positive constants will be denoted by C and will change from
line to line. If necessary, by C(x,...,*) we denote positive constants depending
only on the quantities appearing in parentheses.

It has been shown in [9] that any solution ue C(R; X 2°2) of (1.1) and (1.2) with
A =0 satisfies

u@ 2,2 = C(I @l 52.0) (1 +log (1 +[¢]), (1.6)

and

lu(®)ll o < CUI P Nl s2.2)(1 + 1)V .7

Therefore, one of our results (1.4) is an improvement of (1.6).
When A > 0, Chadam and Glassey [1] showed that there exists a unique global
solution u of (1.1) and (1.2) such that

ueC(R; H?)n L2, (R; H*?)
with

u, € L5, (R; L?). (1.8)
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Furthermore, they showed that

lu@ll2,2 = C(I1 @ ll2,2)exp [C(1 ¢ 112,5)le]], e teR. (1.9)

In [3] Dias and Figueira (see also Dias [2]) considered the time decay of
solutions of (1.1) and (1.2) satisfying (1.8). They showed the following I?(2 < p < 6)
decay estimate:

lu@l, < CUI | z1.0)(A + [2])” A2, (1.10)

Hence our results (1.3) and (1.4) are improvements of (1.8) and (1.9), and our result
(1.5) is a new estimate in the case of 6 < p < co. Finally we put J =x + 2itV =
UxU™! = 82itVS™!, where U = U(t) = exp (itA) and S = S(t) = exp (i| x| /4¢).

2. Proof of Theorem 1
We start with stating some useful lemmas.

Lemma2.1. (The Gagliardo—Nirenberg Inequality) Let 1 < g, r £ c0, and let j, me
N U {0} satisfy 0 < j <m. Then we have

Y. IDPgl, < C(m, j,q.r,a) Y. |D*gll¢llglli~e,

1B1=3i lod=m

for any geH™ 12 and 1/p = j/3 4+ (1/r —m/3)a + (1 — a)/q, for all a in the interval
j/m=a=1, with the following exception: if m— j— (3/r) is a nonnegative integer.
then the above inequality is asserted for a = j/m.

For Lemma 2.1 see, e.g., Friedman [4].

Lemma 2.2. (a) Let 1 <p<qg<0,0<d<3and 1/g=1/p— /3. Then we have
11:9)lq = CO,p. DN gl,, forany gel?,
where 1,(g)(x) = | g0)/|x = yP~°dy.
R

®) | 19x)I*/IxI*dx <4 Vg3, for any geH" .
R

(© [ lue,x)?/|xdx < || Ju(®)|3/¢%,  for any Ju(t)e C(R; L?).
R3
Proof. (a) and (b) are well known results (see, e.g., Stein [107). We only prove (c).
We have by (b)
[lu@x)?/|x12dx = [ [S™ ult, )1/ x|> dx <4 VS u(t) |3
r3 >

= 12ieVS ™ u(t) 13/¢* = || Ju() |13/t>.

This completes the proof.
We consider the auxiliary equation

i(w,), + Ay = f(|uy[*)up + AV, 0, (6, x)€R x R, 2.1)
U, (0, %) = ¢, (x), xeR?, (2.2)
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where 120, neN, V,=1/(|x|+(1/n)) for A>0, V,=0 for A=0 and {¢,} is a
sequence in the space #(R?) of rapidly decreasing infinitely differentiable functions
such that ¢,— ¢ strongly in %2 as n— oo. For the sake of brevity we suppress
the subscript n of u, for the moment.

Proposition 2.1. For any neN, the Cauchy problem (2.1) and (2.2) has a unique global
solution u such that

ueC*(R; (R?)). 2.3)

Furthermore, u satisfies
[u@lz2=1dul2 (24)

IV 15 + 30 (Jul*)u(e), u(®)) + AV, u(t), u(t))
=1V l3 + 3 al) s $) + AV s D), (2.5)
lu@l1,2 = CUl Pull1,2); (2:6)
and

I ()l 25 1u@) 2,2 < C(| ull2,2)exp [CU @all2,2) 2] 2.7

Proof. In the same way as in the proof of Lemmas 3.1-3.3 in [ 1], we have (2.4)—(2.7).
(For details see Chadam and Glassey [1].) We prove (2.3). M. Tsutsumi [11]
showed that there exists a positive number T* such that the Cauchy problem (2.1)
and (2.2) has a unique solution ueC®([ — T*, T*]; #(R®)) for each ¢,. By the
proof of Corollary 3.2 in [11], (2.3) is obtained if a priori estimates of | u(t) ||, ,(s >
(3/2)) are shown. Therefore, (2.7) gives (2.3). This completes the proof.

Proposition 2.2. Let u be the solution constructed in Proposition 2.1. Then we have

1u(e) 13 + 46 GO (lul*)u(e), u(t) + AV, u(t), u(®))

= lIx¢, 17 + 45) sG(f ([ul*)u(s), u(s)) + MV, u(s), u(s))) ds

+ (4/1/n)£ s||V,u(s)||3 ds, (2.8)

@)1 = CUll o ll 51.1)(L +2]),  for n> 44, 29)

and

t

[s721Jus)13ds| S CIl @yl g11), for |t|=1 and n> 44 (2.10)
1

Proof. When A =0, (2.8) was shown by Ginibre and Velo [6,7]. When A >0, (2.8)
was shown by Dias and Figueira [3]. Therefore, we prove (2.9) and (2.10). We
assume that t = 0. The case ¢ < 0 can be treated similarly. Differentiating (2.8) with
respect to t, we have

%( 1Tu(@) 13 + 46 G (u?)ue), u(e) + AV, u(t), u(0))))
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= 4t(G(f (Jul?)u(®), u() + AV,u(t), u(®)) + @A/ || V,u@) 3. (2.11)
We multiply (2.11) by ¢! and integrate with respect to ¢ to obtain
e Ju@) 13 + 4eG(f (ul?)ue), u(t)) + AV, u(), u(t))
= [ Ju(D)113 + 4GS (Jul*)u(1), u(1)) + AV,u(1), u(1)))

— is‘z | Ju(s)||% ds + (4/1/n)j | V,u(s)||3ds, fort=1. (2.12)
1 1
By (2.5) and Lemmas 2.1-2.2 we have
I (ul®)u@), u@®)] = Clu) 125 < C(| ull1,2); (2.13)
|(Vau(®), u@)] < | Vu@) 2 u@)
S ClIVu@) |, [u@®ll, < U gally,2), (2.14)
and
<4 Vu®) )3 = C(llpull1,2)
I Vnu(t)ll%{ét_znju(t)”% (2.15)
We have by (2.8) and (2.13)—(2.15),
[Tu@®) 3 < x5 + CiS(!(f(lulz)u(S),u(S))i
+ [(Vyuls), u(s))]) ds + (44/n) j sl V,u(s)l13 ds
0
S C(J| @yl g1.0)(1 +1)?, fort=0. 2.16)

We obtain by (2.12)~(2.16),
T Ju@) 13+ A —(4/1/n))jS'ZHJu(S) I3ds < C([|$nll g1.1), fortz=1. (2.17)

Since (44/n) < 1 (2.16) and (2.17) give (2.9) and (2.10). This completes the proof.
Remark 2.1 (2.10) plays an important role to improve (1.6).

Proposition 2.3. Let u be the solution constructed in Proposition 2.1. Then for any
n> 4., we have

lu®)]2,2 = CUIPnll 52.0), (2.18)

and
lu ()2 = CUI Pull £2.0)- (2.19)

Proof. A standard argument gives
1d
7 g, 14u) 17 =Tm (Au,(t), Au(t)) = Im (A(f (lul*)u(0)), Au(t))

+ ATm (A (V,u(t)), Au?)). (2.20)
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We consider the second term of the right-hand side of (2.20),

Im (A(V,u(t)), Au(t)) = Im (4 V,)u(t), Au(t)) + 2Im (VV,-Vu(t), Au(t))
=Im (A V,)u(t), — iu,(t) + f(lul?)u(t) + AV,u(t))
—20Im (V, Au(t), Au(t)) — 2Im (V, Vu(t), VA u(t))

= % %((A V,)u(t), u(t)) — 2Im (V,Vu(t), VA u(t)). (2.21)

We denote the second term of the right-hand side of (2.21) by I,. We have
Iy = = 2Im(V, Vu(t), V(= iu,(t) + f (lul*)u(t) + AV,u(1)))

d
= — 7 (VaVu(t), Vu()) — 2Im (V, Vu(?), (V f (lul*)u(t)

— AIm (VV2-Vu(t), u(t)).
Similarly we have
—Im (VV2-Vu(t),u(t)) = Im (V2 Au(t), u(t))
=Im (V3 (= iu () + £ (lu*)u(t) + V,u(t)), u(t))

1d 5
=3 a” Vu(®)| 2
Collecting everything, we obtain
1d
3 EE( IAwW@)15 + AN V,u() 13 — (A V,)ut), u()) + 2[| V> Vu(2) | 3))

=Im (A(f (|lul*)u(®), Au(t)) — 24Im (V, Vu(t), (V f (Ju*)u(t) = I, + 2415.
(2.22)

By Appendix and Proposition 2.1 (2.6) we have

L] < Ce™2 [Ju@®) 11 Vu@) [ | Au®) |,
SCUgull )t 21 Ju® 131 Aul)ll, fortz1. (2.23)

We get by (2.4) and Lemma 2.2

(] = CIVu@) I 1V £ (ul?) @) 13| Vau®)
= ClIVu@) sl w@) lls w121 Vyu(@)l,
S C(l@ull)e™* 1 Tu@IZ 1 Au()ll, fort=1. (2.24)

Since 1 =0 and AV, £0, we obtain by (2.22)—(2.24)

TAw@) 3 < [ Au) |13 + A1 V,u(D) 13 = (AV,)u(),u(D) + 2| V3> Vu(1) 13)

+C(ll ¢y Ih,z)iS‘2 I Tu() 117 1| Auls) |l ds. (2.25)
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We have by Lemmas 2.1-2.2 and Proposition 2.1,
1Vu(M13 = ClVu)[15 = C( dull1,2), (2.26)
1Va2Vu)[13 < CllAu() | Vu() |, < C(ll dull2,2), (2.27)
and
— (A V,)u(1),u(1)) = 2Re (VV,)-Vu(1), u(1))
= —2Re(V,Au(1), u(1)) = 2(V,Vu(1), Vu(1)) < C([[ pu5,,)- (2.28)
We have by (2.25)—(2.28),

IAu@l7 £ C(ll ¢, ”2,2)<1 +§S‘2 17u(s) 113 1| Au(s) “2d3>-

This and the Schwarz inequality give

TAu@® 13 < C(ll $ull2.2) <1 + is_z I Ju(s) |13 ds + iS‘zHJu(S)H%IIAu(S)IlidS)
(2.29)
We obtain by (2.29), Proposition 2.2 (2.10) and Gronwall’s inequality,
[Au@) |, = C(Ul@nll 52.1)- (2.30)

Proposition 2.1 and (2.30) yield (2.18). From (2.1), Lemma 2.2, Proposition 2.1 and
(2.3) we have

Ol < [Au@)ll; + 1 f(u)u@ll; + 21 V,u@)],
S Clull s20) + 1 (1ul?)O) | o 6@ 12 + CHIVu@) |l
< Cllpull s2.0) + Clu@ 31 Vu(t) |2 < CU ¢yl 52.1).

Here we have used

uf(lwnnwSesssup§'¢(y)"‘”(y)' <3‘"”(y” d) 1l

dy < esssup y
y‘ xe]R3 l lZ

L2Vl v, (2.31)
This completes the proof.

Proposition 2.4. Let u be the solution constructed in Proposition 2.1. Then for any
n> 42, we have

172u(®) |2 < CUll gl 51.2)(1 + 1212,

where

Z(x +2itd;)> = U|xPU ' =8(—4r*4)S™ 1.

Proof. We put v(t) =S~ u(z) for teR\{0}. It is easily verified that veC*(R\ {0};
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S(R?),

d d 1
S™Hi—+A)Sv=|i— —=
<ldt+ > v <ldt+A tA>v,
where 4 = (1/2i)(x*V + V-x). Therefore, v satisfies

1
v, = —Av+;Av+f(|v|2)v+/1V,,v, teR\ {0}. (2.32)

Since J? commutes with i(d/dt) + A, J*u(t) satisfies
i(J2ut)), = — A2u+ J2(f(lul?)u(t) + 22 (V,u(t)),
from which it follows that

1d
3 EllJzu(t) 13 =1Tm (J2(f (Jul)u(), J2u(e) + 2Am (J* (V,u(0)), T u(1)). (2.33)

We consider the second term of the right-hand side of (2.33). Since J% =
—4t2SAS™Y,

Im (J2(V,u(t)), J2u(t))
= 16¢*Tm (A (V,v(t)), A v(t))
=16¢*Tm (A V,)u(t), Av(t)) + 2(VV,, Vo(t), Av(t)))
= 16¢4Tm (A V,)o(t), A v(t)) — AV, Vo(t), VA v(t)))

=16t*Im ((AV,)v(t), — iv,(t) + %Av(t) + f(lv]*)u(t) + AV, v(t))
— 32t*Im (V,, Vo (1), V( — iv,(t) + %Av(t) + f(jv]*)v(t) + AV, (1))

= 8t4%((A V)u(t), v(t)) + 163 Im ((AV,)v(t), Av(t))

- 16t4%(V,,Vv(t), Vo(t)) — 3263 Tm (V, Vo(t), V(Av(2)))

— 32[4Im(VnVD(t),V(f(lvlz)v(t))) —32¢* 2 Im (V, Vo), (VV,)v(¢))
= LT84V, )0(0,00) — 1640, Vol0), Volo)]

—3283((A V,)v(1), v(t)) + 6483 (V, Vo(t), Vi(t))

+863Tm ([ A, AV, u(t), v(¢)) — 1663 Im ([ A, V, 1Vo(t), Vo(?))

— 3263Im (V, Vo(2), [V, ATo(t)) — 32¢4Tm (V, Vo(t), V(£ ([v]2)v(2)))
— 16t AIm (Vo(2), (VV2)0(2)).
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We note that
[V,A]l=—iV, [A4,V,]=—ixV)V, and [4,4V,]=—i(x'V)AV,.
Therefore, we have

Im (J2(V,u(t)), J2u(t))
= %[8t4((4 V) u(t), v(t)) — 16t (V, Vo(r), Vo(t))]

+1683((2V, + (x- V) V,) Vo(t), V(1)) — 8£3((4AV, + (x- V) AV,)u(t), v(t))
—32t*Im (V, Vo(t), V(S ([v]*)v(t))) — 16t* Alm (Vou(t), (VV 2)u(1)).
We finally note that

Im (Vo(t), (VV2)u(t)) = — Im (A v(t), V2o(t)) = — Im ( — iv,(t) +%Av(t), V20(t))

1d 1
=551 )3+ 7rm (L4, V() v(0)

1d
=571V W3 -5 ((x V)V 2u(t), v(0)).

Collecting everything, we obtain
d
E[% 172u(t) (13 + 8t* A2V, Vo(t), Vo(t) — (AV,)v(t), () + Al V() |3)]

=83 A[2(2V, + (x-V)V,) Vo(t), Vo(t))
+((EAVE + Ax-V)V2 —4AV, ~ (x-V)AV,)o(t), v(t)) ]
— 32t* AIm (V,, Vo(t), (V£ (Jv]?)o(t)) + 16t*Tm (A (£ (|v]?)v(t), A v(t))
=1,+1s+1,. (2.34)
We assume that ¢ = 0. The case t <0 can be proved similarly. In view of the fact
that (x'V)V, <0, (x*V)V2<0, —(x-V)AV, <0 and 4 =0, we have
4] < 326 ALV, Vo(t), Vo(0) + 4[| V,o() |3 — (AV,0(0), 0(t))]
=323 AL — (V,,Vo(t), Vu(t)) + A|| V,0(t) |3 — 2Re (V, A v(t), v(t))]
SCEL Vo1 — 2Re (V,40(1), 0(1))]
SCE(IVoO I3+ 1 V@2 1 Av(®) )
SCellJu®))) 3 + CllJue) o 11T u(®) | (2.39)

Here we have used Lemma 2.2. We obtain by Lemma 2.2, Proposition 2.2

[T < 324 4] Vo) [, 1| V,0(0) 12 | f2Re vVD) |, < CE* A Vo) 131 £ 10V )] -
(2.36)
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In the same way as in the proof of (2.31) we have
| £ (100Dl < 21V 3. (2.37)

This and (2.36) yield

[Is| < Ce*|Vo@) |13 = Cl| Ju(@) |5 (2.38)
By Appendix we have

I I{ SCtHJu@) 3172 u) 2,
L ClVu@)l | Tu@) 1311 72u) .- (2.39)
Now we put

a(t) =31 2u(@) 13 + 8t* A2V, Vo(t), Vo(t)) — (A V,)v(e), v(0)) + A V,0(0) 13).

We note that || J?u(r)||} < a(t). We obtain from (2.34), (2.35), (2.38), (2.39) and
Proposition 2.2,

%a(t) S CUGull )@ + ) + (1 + )2 (1))

Sat)(1+6)71 + C([ dull g)(1 + 1)
This gives

%(Ot(t)(1 +0)7) S Cll ¢yl 1)1 + 1),

from which we get the desired result.
Proof of Theorem 1. A simple calculation gives
1x*u, (@) 12 < Clluy@) 1 2,2(1 + %) + Cl T2 u, @) .- (2.40)

By Proposition 2.1-2.3, (2.40) and a standard argument we conclude that there
exists a unique function u satisfying (1.3) and (1.4) such that as n— oo,

u,—»u weakly star in L°(R; H>?)n L (R; £ >2),
u,—u strongly in C(R; H"?),
and
(u,),>u, weakly star in L*(R; L*).

It is easily seen that u solves the Cauchy problem (1.1), (1.2) in the distribution
sense. Next we show that u satisfies (1.5). From Proposition 2.3 we see that u satisfies

lu@ 2. = C( ¢l 52.0), ae. teR. (2.41)
Proposition 2.2 and Proposition 2.4 give
1Ju@®l, < C(I$llsa)(1 +t)? ae. teR, (2.42)

and

172u@®l, < CUI ¢l 5.2)(A +18))°2, ae. teR. (2.43)
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We have by using Lemma 2.1 and (2.41)—(2.43)

lu() oo = CA + )™ V2 (N Jule) 1, + [ Vu(®) )2
X (L) Pu@) 2+ [Au()ll2)'?
SC( @l go2)X+1t))" Y2 ae. teR

This completes the proof.

Remark 2.2. We can apply our method used in this paper to the following system:
N
;) + Auj= Y (w0, — wv;,) + Auyfr, teR,
k=1

MJ(O) = (]f)jEZZ’Z,

where j=1,2,...,N, v;, =7~ 'su;iy, and 1> 0.
Especially the equality (2.34) in the proof of Proposition 2.4 is useful to
investigate the decay properties of solutions for the linear Schrodinger equations,

i, + Au="Vu, teR, u(0)=q,

where V = V(x) is real-valued function satisfying some additional conditions.

Appendix
Lemma A. Let f(¢)(x) = jqﬁ(y)lx yl~tdy. Then we have
IIm(A(f(WIZ)(ﬁ),ACf’)l
SCt I3Vl AP, forpeX®! and  teR\{0}. (A1)

|t Im (A(f(161)S ™1 ), A4S )|

{écltl'lilwll%llﬁ(ﬁl!z
SCIVolL1I131 T2l for deX?? and  teR\{0}.

Proof. (See also [9]). We put ¢(1)=S""¢ and
1)) = I(x — VWO Ix—yPdy, 1£j<3.

(A2)

A simple calculation gives

tIm(A(f(1¢)1*)d(1), 4 p(t) = — 2:*Tm é (f(Re ()2, (1) $(2), A p(2)

+4¢*Im (f (Re ¢(6) V(1) Vb(2), A b(2)).
We have by Holder’s inequality and Lemmas 2.1-2.2

nf,~<ReMaﬂt»¢(t> I,
< 1f;(Re p)d;00) 11316l

< ClpMa 011321 01ls = ClpD12110;60) 1,
SCIVe@ 3= Clel 3T ]3.
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From (2.31) it follows that

I/ Re p(&)VE@)VH(@) 2 < | /(1 $OVHE)) 1 [ VO
SCIVeOIZ=Clel 11T |13

Therefore, we have the first inequality of (A.2). Similarly, we have

*Im(A(f (191> ¢ (1)), Ad(1)) = — 2t*Im i (f(Re ¢0;$) (1), A (1))
+ 4t*Im (f (Re pVP)V (1), A H(2)).

The second inequality of (A.2) follows from

1fi(Redd;0) ;< Cllg@)6110;¢112 < Clel™ 1T,V

and

|/ (Re V) oo < Clel " [ TSIV -

Inequality (A.1) is obtained in the same way as in the preceding argument.

Acknowledgements. The authors are grateful to the referee for helpful suggestions which simplified the
proof of Proposition 2.4 of our original manuscript.
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