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Abstract. We consider the time-dependent Schrόdinger-Hartree equation

ίut + Δu = (-*\u\2 \u + λ-, (ί,x)eRx (R3, (1)

(2)

w h e r e λ ^ O a n d Σ2>2 = {geL2; \\g\\2

Σ2,2= Σ \\Dag\\l+ Σ l l * ' 0 l l i < <*>}.

We show that there exists a unique global solution u of (1) and (2) such that

ueC(U;HU2)nL™(M;H2>2)nL£c{U;Σ2>2)

with

UtGLι [W, LJ ) .

Furthermore, we show that u has the following estimates:

I |w(ί)lk2^c, a e

and

2, a.e. teU.

1. Introduction and Main Results

We consider the time decay of solutions to the Cauchy problem for the equation
i n L 2 = L2(lR3)

iut + Δu = f(\u\2)u + λVu, teU, (1.1)

«(0) = φ, (1.2)

where ut = dtu,f(\u\2) = \xΓ1*\u\2=$\u(t,y)\2/\x-y\dy,λ^0,V=l/\x\ and φ
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is a given initial data. Let Σlm be the Hubert space defined by

Σι>m = {geL2;\\g\\2

Σl,rn=Σ \\D*g\\2

2 + Σ 11*^111 <*>}

with the inner product

where

{f9g)=Sf-gdx9 Da = dγdfdf and xβ = x{'xβ

2

2xβ

3"

( | α | = α 1 + α 2 + α 3 , \β\= β,+β2+β3).

We shall prove the following:

Theorem 1. We assume that λ ^ 0 and φeΣ2'2. Then there exists a unique global
solution u of (1.1) and (1.2) such that

with

uteLw(U;L2). (1.3)

Furthermore, there exist positive constants C1 depending only on | |0| |£2,i and C2

depending only on \\ φ \\ Σi,i such that

.2UCu a.e. teU, (1.4)

and

^ C 2 ( l + | ί | ) - 1 / 2 , a.e. teR. (1.5)

In what follows positive constants will be denoted by C and will change from
line to line. If necessary, by C(*,...,*) we denote positive constants depending
only on the quantities appearing in parentheses.

It has been shown in [9] that any solution ueC(M;Σ2'2) of (1.1) and (1.2) with
λ = 0 satisfies

(1.6)

and

(1.7)

Therefore, one of our results (1.4) is an improvement of (1.6).
When λ > 0, Chadam and Glassey [1] showed that there exists a unique global

solution u of (1.1) and (1.2) such that

with

uteL?oc(U;L2). (1.8)
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Furthermore, they showed that

H"(ί)l l2.2^C(| |φ | | 2 > 2 )exp[C(| |φ | | 2 f 2 ) | ί | ] , a.e. teU. (1.9)

In [3] Dias and Figueira (see also Dias [2]) considered the time decay of
solutions of (1.1) and (1.2) satisfying (1.8). They showed the following 1/(2 <p^6)
decay estimate:

Hence our results (1.3) and (1.4) are improvements of (1.8) and (1.9), and our result
(1.5) is a new estimate in the case of 6 < p 5Ξ oo. Finally we put J = x + 2/ίV =
UxU~1 = S2itVS~\ where U = U(t) = exp(ίtΔ) and S = S(t) = exp(i\x\2/4ή.

2. Proof of Theorem 1

We start with stating some useful lemmas.

Lemma2.1. (The Gagliardo-Nirenberg Inequality) Let 1 5Ξ q, r ^ oo, and let 7, me
N u {0} satisfy 0 ^ j < m. T/zen we

^ C(mJ,q,r,a) Σ ll^flfli i l^ l l ίΛ

for any geHm'rnU and 1/p = j/3 + (1/r — m/3)a + (1 — a)/q, for all a in the interval
j/m g a S 1? wiίΛ the following exception', if m — j — (3/r) is a nonnegative integer,
then the above inequality is asserted for a = j/m.

For Lemma 2.1 see, e.g., Friedman [4].

Lemma 2.2. (a) Let 1 < p < q < 00, 0 < δ < 3 and 1/q = 1/p - <5/3. T/zen we Ziαi e

\\Iό{g)\\qύC(δ9p9q)\\g\\p9 for any geU,

where Iδ(g)(x)= I g(y)/\x-y\3-δdy.

(b) j\g(x)\2/\x\2dx^4\\Vg\\l for any geH1-2.
[R3

(c) j \u(t,x)\2/\x\2dxS\\Mή\\2

2/t2, foranyJu(ήeC(U;L2).
u3

Proof (a) and (b) are well known results (see, e.g., Stein [10]). We only prove (c).
We have by (b)

= \\2itVS~1u(t)\\l/t2 =

This completes the proof.
We consider the auxiliary equation

KuH\ + Δun = f{\uH\2)uβ + λVHuH, (t,x)eUxU\ (2.1)

Mπ(0,x) = </>„(*), xeU\ (2.2)
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where 2 ^ 0 , neN9 Vn = l/(\x\ + (l/n)) for λ > 0 , Vn = 0 for i = 0 and {<£„} is a
sequence in the space ^(IR3) of rapidly decreasing infinitely differentiable functions
such that φn~>φ strongly in X 2 ' 2 as n-> oo. For the sake of brevity we suppress
the subscript n of un for the moment.

Proposition 2.1. For any neN, the Cauchy problem (2.1) and (2.2) has a unique global
solution u such that

). (2.3)

Furthermore, u satisfies

(2.4)

• λ{Vnu{t),u{t))

Φn\ (2.5)

(2.6)

and

Proof. In the same way as in the proof of Lemmas 3.1-3.3 in [1], we have (2.4)-(2.7).
(For details see Chadam and Glassey [1].) We prove (2.3). M. Tsutsumi [11]
showed that there exists a positive number T* such that the Cauchy problem (2.1)
and (2.2) has a unique solution weC°°([- T*9 T*];^([R3)) for each φn. By the
proof of Corollary 3.2 in [11], (2.3) is obtained if a priori estimates of || u(t) | | s 2 (s >
(3/2)) are shown. Therefore, (2.7) gives (2.3). This completes the proof.

Proposition 2.2. Let u be the solution constructed in Proposition 2.1. Then we have

\u\2)u(t),u(t)) + λ(Vnu(t),u(

= \\xφn\\l + 4\s(Uf(\u\2)u(s),u(s))
0

+ (4λ/nψ

IΛWI3

2\\Ju{s)\\2ds

\\Vnu(s)U

sail*.

ύC{\\φn

ds,

1*.

Ml

.),

+ 1.1)

for

for

I>I2

n>4λ,

I and n>4λ.

(2.8)

(2.9)

(2.10)

and

Proof. When 1 = 0, (2.8) was shown by Ginibre and Velo [6,7]. When λ > 0, (2.8)
was shown by Dias and Figueira [3], Therefore, we prove (2.9) and (2.10). We
assume that t S; 0. The case ί ̂  0 can be treated similarly. Differentiating (2.8) with
respect to t, we have

jt(\\ Ju{t)\\l + 4t2(Uf(\u\2)u(t),u(t)) + λ(Vnu(t),u(t))))
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= 4ί(!(/(|M |2)M(ί),w(ί)) + λ(Vnu(t),u(t))) + (4A/n)ί || Vnu(t)\\l (2.11)

We multiply (2.11) by f"1 and integrate with respect to £ to obtain

\ ] d s , forί^l. (2.12)
1 1

By (2.5) and Lemmas 2.1-2.2 we have

|(/( l« l 2 )«( ί ) ,«( t ) ) l ^ C | | M ( ί ) | | ί 2 / 3 ^ C ( | | φ n | | l j 2 ) , (2.13)

I ( ^ ( ί X u(ί))I g II KBtι(ί) II2II «(ί) II2

^ CII VM(t) II2IIi*(t) II2 ^ C( II φ n II l i 2 χ (2.14)

and

We have by (2.8) and (2.13)-(2.15),

n)\s\\ Vnu{s)\\2ds
0

2, forί^O. (2.16)

We obtain by (2.12)-(2.16),

r1\\Ju(t)\\2

2 + (ί-(4λ/ή))\s-2\\Ju(s)\\2ds^C(\\φn\\Σl,1), f o r ί ^ l . (2.17)
1

Since {4λ/n) < 1 (2.16) and (2.17) give (2.9) and (2.10). This completes the proof.

Remark 2.1 (2.10) plays an important role to improve (1.6).

Proposition 2.3. Let u be the solution constructed in Proposition 2.1. Then for any
n > 4λ, we have

|| «(t) II 2 , 2 ^C( WφJ^), (2.18)

and

\\ut{t)\\2^C{\\φn\\ΣiΛ (2.19)

Proof. A standard argument gives

λlm(Δ(Vnu(t)),Δu(t)). (2.20)
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We consider the second term of the right-hand side of (2.20),

lm(Δ(Vnu{t)),Δu{t)) = 1m{{Δ Vn)u(t),Δu(t)) + 2\mφVn-Vu{t\Δu{t))

= ϊm((Δ Vn)u{t\ - iut(t) + / ( M X O + λVnu(t))

- 2Im (VnΔ u(t\ Δ u(t)) - 2Im {¥„ Vw(f), V4 u(t))

= \lt{{Δ v«Mt)Mt))-2lm(VnVu(t),S7Δu(ή). (2.21)

W e d e n o t e t h e s e c o n d t e r m of t h e r i g h t - h a n d side of (2.21) b y Iγ. W e h a v e

h=- 2lm{Vn V«(ί), V( - iut(t) + f(\u\2)u{t) + λVnu(t)))

= -jt(VnVu(t), Vu(ή) - 2lm(VnWu(tUVf(\u\2))u(ή)

- λIm(VV2

n Vu(t),u(t)Y

Similarly we have

- Im (VV2 Vtί(ί), «(ί)) = Im (V2Δ u(t), u(ή)

= lm(V2( - ίut(t) + f(\u\2)u(t) + Vnu{t))Λt))

=-\jt\\Vnu(t)\\2.

Collecting everything, we obtain

~ ( | | Δ u(t) || I + λ(λ || Vnu(t) III ~ ((Δ Vn)u(t), u(t)) + 21| V\12Vu(t) || \))

(2.22)

By Appendix and Proposition 2.1 (2.6) we have

\121 ύ Ct~2\\Ju(t)||11| Vtί(ί)II2 \\Δu{t)\\2

^ C ( | | ^ | | l f 2 ) r 2 | | J M ( i ) | | | M « ( i ) | | 2 f o r t ^ l . (2.23)

We get by (2.4) and Lemma 2.2

^ CII V « ( ί ) II6II « ( ί ) II6II M(ί) 1 2 1 K B u ( ί ) II2

2)ί" 2 | |Λ(ί) | | 2 | |/lM(ί) | | 2 f o r ί ^ l . (2.24)

Since λ ̂  0 and Δ Vn S 0, we obtain by (2.22)-(2.24)

|| Δu(t) || I g \\Δ «(1) | | 2 + A(A || Fn«(l) || \ - ((4 FΠ)M(1), H(1)) + 21| F ^ 2 VM(1) || | )

j J 5 . (2.25)
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We have by Lemmas 2.1-2.2 and Proposition 2.1,

|| Vnu(X)\\\ ύC\\Vu{\)\\l ίί C(\\φJu2), (2.26)

| |^ 1 / 2V«(l) | | i^CM«(l) | | 2 | |V«(l) | | 2^C(| |0J | 2, 2), (2.27)

and

= -2Re(VnΔu(l),u(l))-2(VnVu(l),Vu(ί))^C(\\φJ2t2). (2.28)

We have by (2.25)-(2.28),

\\Au(t)\\l^C(\\φJ2a)h+μ-2\\Ju(s)\\2

2\\Δu(s)\\2dsj.

This and the Schwarz inequality give

\\Δu(t)\\2<C(\\φn\\2Λ)\ l + ^s-2\\Ju(s)\\2ds + ls-2\\Ju(s)\\2\\Δu(s)\\2ds\.

(2.29)

We obtain by (2.29), Proposition 2.2 (2.10) and Gronwall's inequality,

\\Δu(t)\\2^C(\\φJΣ2>ί). (2.30)

Proposition 2.1 and (2.30) yield (2.18). From (2.1), Lemma 2.2, Proposition 2.1 and
(2.3) we have

\\ut(t)\\2^\\Au(tn2+\\f(\u\2)u(t)\\2 + l\\vnu(t)\\2

| |2 + C||V«(ί)||2

Ml χ1.I) + C| |M(ί) | | | | |V«(ί) | | 2 gC(| |^ l l 11^..).

Here we have used

\l/2

rdy) \\ψ\\2

(2.31)

This completes the proof.

Proposition 2.4. Let u be the solution constructed in Proposition 2.1. Then for any

n > 4λ, we have

where

J2= f (xj

Proof. We put v(t) = S~1u(t) for ίe[R\{0}. It is easily verified that
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t t

where A — (l/2i)(x V + V x). Therefore, v satisfies

ivt= -Δv + ~Av + f(\v\2)υ + λVnv, ίeR\{0}. (2.32)

Since J2 commutes with i(d/dt) + Δ, J2u(t) satisfies

i(J2u(t))t =-ΔJ2u + J2(f(\u\2)u(t)) + λJ2(Vnu(t)),

from which it follows that

i ί II J2u(t) || i = Im (J2 (/(Iu \2)u{t)\ J2u(t)) + Aim (J2(Vnu(t)), J2u(t)\ (2.33)
2 at

We consider the second term of the right-hand side of (2.33). Since J 2 =
-4t2SΔS~\

lm(J2(Vnu(t)),J2u(t))

= l6tΠm(Δ(Vnv(t)),Δv(ή)

= 16ί4lm (((Δ VMt), Δ v(t)) - 2(VnVυ(t), VΔ v(t)))

= 16ί4lm((Δ Vn)v(t), ~ ίvt(t) + -tAv(ΐ) + f(\v\2)v(t) + λVHυ(t))

- 32ί4Im(FnVD(t), V( - ivt(t) + ̂ Av(t) +f(\v\2)v{t) + λVav(t)))

8t4jt((ΔVn)υ(t)Xt)) + l6t3lm((ΔVn)v(t),Av(t))

-l6t4jt(VnVv(t),Vv(t))-32tΠm(VnVv(t),V(Aυ(t)))

~32t4lm(VnVv(t),V(f(\v\2)υ(t)))-32t4λ\m(VnVv(t),(VVn)v(t))

~ptA{(Δ Vn)v{t), v(ή) - 16t4(VnVυ(ή,

- 32ί3((4 Vn)υ(t)Λt)) + 64t3(VnVv(t),Vv(t))

Vn-]v{t),v(t)) ~ l6t3lm(lA,Vn-]Vv(t),Vv{t))

~ί6t4λlm(Vv{t),{VV2)v{t)).
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We note that

[V,/l]=-iV, ίΛ,VJ=-ί(x'V)Vn and IA,ΔVJ=-i(x-V)ΔVn.

Therefore, we have

lm(J2(Vnu(t)),J2u(t))

p F>(ί), v(t)) - 16ί4(Fπ Vι (ί),

16ί3((2Fn + (x-V)Vn)Vv(t), Vυ(t)) - 8ί3((4zlFn

(t))) - 16ί4ΛIm(Vι;(t),(VF>(ί)).

We finally note that

,(VF>(ί)) = -Im(Jt>(ί), F^(t)) = - I m ( - ί»t(t) + ̂ t (t), V2

nv(t))

= \jt\\ Vnv{t)II1 + ̂ Im(LA, VlMtlv(ή)

= ~\\Vβυ(t)\\22-γt

Collecting everything, we obtain

jfiII J2u(t) II1 + 8ί4A(2(FπVt (t), V»(ί)) - ((4 Vn)v(t), »(t)) + A || Fnt;(ί) || f)]

= 8ί3l[2((2Fn + (x-V)Vn)Vv(t),

+ ((4λFπ

2 + A(x V)Fn

2 - 4Δ Vn - (x V)Δ Vn)υ(t), »(

-32t4lIm(FnVt;(ί),(V/(|t;|2)) !;(t))+16ί4Im(Zl(/(| ί;|2) l;(ί),4 i ;(ί))

= / 4 + / 5 + / 6 . (2.34)

We assume that ί ̂  0. The case t ̂  0 can be proved similarly. In view of the fact
that (x V)Fπ ^ 0, (x V)F2 ^ 0, - (x-V)ΔVn S 0 and λ ̂  0, we have

= 32t3λ[ - (FnV»(t), Vϋ(f)) + λ || Fπu(ί) || \ - 2Re(Fκzl ϋ(ί), ϋ

^ Cί3 [ || Fnt;(ί) || \ - 2Re (FB/1 υ(t), »

^ Cί || Jtt(t)| |2 + C|| JM(t)| |21| J2u(t)\\2. (2.35)

Here we have used Lemma 2.2. We obtain by Lemma 2.2, Proposition 2.2

(2.36)
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In the same way as in the proof of (2.31) we have

II f(\vVvI)IIoo ^ 2II Vt;II2. (2.37)

This and (2.36) yield

I h I S Ct41| Vv(t) || 2 ^ C || Ju(t) | |\, (2.38)

By Appendix we have

Now we put

α(ί) = i | | J2u(t)III + St4λ(2(VnVv(t), V»(ί)) - ((Δ FJϋ(ί),»(ί)) + λ|| K.»(ί)111).

We note that £|| J 2 M(£) | | 1 ^α(ί) . We obtain from (2.34), (2.35), (2.38), (2.39) and
Proposition 2.2,

^αίO^Cdl^ll^.Oίίl + ί)2

This gives

from which we get the desired result.

Proof of Theorem 1. A simple calculation gives

| | x 2 ^ ( ί ) | | 2 ^ C | | W / J ( ί ) l | 2 , 2 ( l + ί2) + C| | J 2

W M ( ί ) | | 2 . (2.40)

By Proposition 2.1-2.3, (2.40) and a standard argument we conclude that there
exists a unique function u satisfying (1.3) and (1.4) such that as n-» oo,

un -> u weakly star in U° (M;H2>2)n L£C(R; Σ 2 ' 2 ) ,

un-+u strongly in C(U;Hia),

and

(un)t -> ut weakly star in L00 (R; L2).

It is easily seen that u solves the Cauchy problem (1.1), (1.2) in the distribution
sense. Next we show that u satisfies (1.5). From Proposition 2.3 we see that u satisfies

^ ) , a.e. ίeR. (2.41)

Proposition 2.2 and Proposition 2.4 give

| | Λ ( ί ) | | 2 ^ C(| |φ 11*1.0(1 + Iί | ) 1 / 2

? a.e. ίeR, (2.42)

and

+ | ί | ) 3 / 2

? a.e. ίeR. (2.43)
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We have by using Lemma 2.1 and (2.41)-(2.43)

.2)(l + | ί | Γ 1 / 2 , a.e. teU.

This completes the proof.

Remark 2.2. We can apply our method used in this paper to the following system:

N

i(uj)t + Δuj= X (ujvktk - ukvjtk) + λuj/r, teU,
fc=l

uJ(0) = φ J e i ; 2 2,

w h e r e j=ί,2,...,N, υjik = r~ί*Ujΰk, a n d A > 0 .
Especially the equality (2.34) in the proof of Proposition 2.4 is useful to

investigate the decay properties of solutions for the linear Schrodinger equations,

iut + A u = Vu, ί G R, w(0) = φ,

where V = V(x) is real-valued function satisfying some additional conditions.

Appendix

Lemma A. Let f(φ)(x) = J φ(y)\x — y\~1dy. Then we have

\lm(Δ(f(\φ\2)φ),Aφ)\

^CΓ2\\Jφ\\2

2\\Vφ\\2\\Δφ\\2, forφeΣ2'1 and teU\{0}. (A.I)

2*2 and teU\{0} [ ]

ί
A simple calculation gives

t*Im(Δ(f(\φ(t)\2)φ(t)),Δφ(t))= -2ί 4 lm £ (fj(Rf>φ(f)djΦ(t))Φ(t),Δφ(t))

'ύC\t\-'\\Jφ\\l\\J2φ\\2

| | | J 2 ( / ) | | 2 5 forφeΣ2*2 and teU\{0}.

Proof. (See also [9]). We put φ(t) = S~ιφ and

= ί (χ3 - yj)Ψ{y)/\χ-y\* dy9 1 ύ j ^ 3.
3

We have by Holder's inequality and Lemmas 2.1-2.2

\\fj(Rcφ(t)δjφ(t))φ(t)\\2
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From (2.31) it follows that

|| /(Re φWφ(t))Vφ(t) || 2 S II /(I ΦWφ(t) DILI Vφ(t) || 2

Therefore, we have the first inequality of (A.2). Similarly, we have

t*Im(Δ(f(\φ\2)φ(t)\Δφ(t))= -2 ί 4 lm £ (fj(Reφdjφ)φ(t),Δφ(t))

+ 4ί4lm (/(Re φWφ)Wφ(t\ A φ{t)\

The second inequality of (A.2) follows from

and

ll/CReφV^IL^ Clip11

Inequality (A.I) is obtained in the same way as in the preceding argument.
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