
Communications in
Commun. Math. Phys. 110, 391-414 (1987) Mathematical

Physics
© Springer-Verlag 1987

Action of the Loop Group on the Self Dual
Yang-Mills Equation

Louis Crane*
Department of Mathematics, University of Chicago, Chicago, Illinois USA

Abstract. Recently Kac-Moody symmetry has played an important role in
mathematical physics. Dolan and Chau, Ge and Wu discovered an infinitesimal
action of the Kac-Moody Lie algebra on the space of solutions of SDYM. We
have discovered an action of the loop group on the space of generalized solutions
of SDYM, which exponentiates the Kac-Moody action. The group acts by
adding a special type of source onto the solution. The action is a geometric
construction using the twistor picture.
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Chapter I. Introduction

Kac-Moody Lie algebras appear in mathematics in the theory of completely
integrable ordinary differential equations and systems of partial differential
equations in two variables [1], The representation theory of Kac-Moody Lie
algebras has played an important role in modern quantum field theory [2].

Consequently, it was considered very interesting when L. L. Chau et al. [3] and
L. Dolan [4] discovered a representation of the Kac-Moody Lie algebra for SU(N)
on the space of solutions to the self dual Yang-Mills equation (SDYME) in four
Euclidean dimensions. Chau and Dolan left open the problem of finding a group
action corresponding to the (infinitesimal) action of the Kac-Moody algebra, and of
providing a geometric interpretation. In addition, they did not specify which
topological completion of the algebra acted. The normalization which they used to
obtain a unique action of the algebra cannot actually be carried out, as there is a
holomorphic obstruction.

In this paper we provide a reformulation of the situation in which the action of
the algebra is easily understood by using the twistor program, as adapted to the
Euclidean regime by Atiyah and Ward. Solutions of SDYME are coded into
holomorphic bundles over CP3 [5], which are described by a transition function G.
The holomorphic bundle is regarded as a scattering problem, and its essential data is
analogous to an associated linear problem, or "Lax pair." Elements of the loop
group act by left and right multiplication on the transition functions, and the Kac-
Moody algebra is identified as the Lie algebra of the loop group. The action of the
loop group becomes simple and natural, and its effect can be analyzed by
computation. The action of the algebra is clarified as a by-product.

The natural space for the loop group action is larger than the equivalence classes
of solutions to SDYME. We show this by calculating the effect on 1-instanton
solutions. The Kac-Moody action does not complete to R4u{oo} = S4, and the
loop group adds "sources" of a special type. It is also possible to define the action of a
larger group; namely the holomorphic twistor matrix functions in a neighborhood
of R4 x S1 a CP3. We conjecture that instanton adding transformations can be
constructed from the larger group.

Our results are thus both positive and negative. We have a simple twistor picture
of the Kac-Moody algebra action, which does not preserve finite energy conditions.
The group action does not preserve the reality condition which keeps the solution of
SDYME in SU(N). On the other hand, our larger class of "solutions with sources"
may have intrinsic interest; and our approach unifies treatment of reality conditions
corresponding to the real forms SU{N-M,M) of SL(N, C).

The plan of the paper is as follows: In Chap. II we introduce notation and
develop the necessary background material: the SDYME, Kac-Moody algebras and
their actions, loop groups, the twistor correspondence, holomorphic bundles,
Birkhoff decompositions> and Riemann-Hilbert problems. In Chap. Ill we review
the construction of Chau et al. and reinterpret it in the twistor picture. In Chap. IV
we propose a group action via solutions of Riemann-Hilbert problems. We then
note that this action can be greatly simplified by reformulating the problem. We
state and prove our main theorem in this section. We also demonstrate the existence
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of a larger group. In Chap. V we investigate the action of the loop group on the zero
solution, and on the one-instanton solutions. In order to do this, we rewrite the one-
instanton solution in our formalism, where its simplicity is remarkable. We show
the appearance of sources, under the action of special elements of the loop group.
In Chap. VI we investigate the behavior of the group and algebra actions at
infinity.

Chapter II. Background and Notation

A. The Self Dual Yang-Mills Equation

Gauge theories are at the heart of contemporary field theory. A gauge theory is
defined by specifying dynamics for a unitary connection on a complex vector bundle
over a Lorentzian manifold M. The Lagrangian used to specify the dynamics is the
Yang-Mills Lagrangian

LYM = \dx\Fμv FμvI (Einstein convention),

where Fμv = dμAv — dvAμ + D4μ,^4v] is the curvature of the connection A.
In any frame for the vector bundle, the connection is specified by a Lie algebra

valued 1-form Aμ9 i.e., a section of T*® SM(Aί). Fμv is then a Lie algebra valued 2-
form. The dot in the definition of LYM denotes the usual bi-invariant trace inner
product on the Lie algebra su(N). The Euler Lagrange equation associated with LY M,
DμF

μv = 0 (where Dμ = dμ + [Aμ9 *] is the covariant derivative associated with A) is
called the Yang-Mills equation, (for further discussion, see ref. 5)

The situation of most natural interest in physics is the Yang-Mills equation over
a 4-dimensional Lorentzian space-time. However, in the Euclidean path integral
approach, Yang-Mills equations over Riemannian 4-manifolds are also important.

Over a Riemannian 4-manifold (M,g), there are two simpler systems of
eauations Fμv = ± * F μ v , where * denotes Hodge duality, which in 4 dimensions
takes 2-forms to 2-forms. These two systems are called the self dual and anti-self dual
Yang-Mills equations. Since they are interchanged by a reversal of orientation, I
refer to either as SDYME.

Any solution to SDYME is automatically a solution to the Yang-Mills
equations. It is a conjectured that all global solutions to Yang-Mills on S4 are
solutions to SDYME. Solutions on S4 to SDYME are called instantons. For SU(2)
bundles they are completely classified [5, 6].

The SDYME is conformally invariant. Hence solutions on R4 and S4 — {oo} are
equivalent. A solution of R4 extends across oo on S4 iff its curvature is square-
integrable [7].

To summarize: The subject matter of this paper is the solutions of the SDYME
for SU(N) bundles over S4, R4 or an open subset, with the standard metrics. Some
generalization is possible [8] but we have not investigated it.

B. Kac-Moody Lie Algebras: Loop Groups

Let us start with any finite-dimensional Lie algebra with generators Ta and structure
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constants Caba i.e.,

We can construct an infinite dimensional Lie algebra, which we shall refer to as a
Kac-Moody algebra, with generators 77, where ίeZ. The bracket is defined via

[Γ? T^ = CabcΓί+p

and is then extended by linearity to finite linear combinations of T?, and by
continuity to various completions.

Definition, An infinitesimal action of a Kac-Moody Lie algebra on a system of
partial differential equations is a function which to each element of the algebra and
each solution s of the system assigns a solution of the linearized form of the system
around s and satisfies appropriate bracket relations.

Formally, the linearized form of the system may be derived by substituting s + εt
into the system, and keeping only terms of the first order in the "infinitesimal
parameter" ε. One likes to think of solutions of the linearized form as corresponding
to 1-parameter families of solutions near s; but that is not always the case. One great
merit of our approach to SDYME is that it deals with group actions, thus avoiding
many mathematical complexities involving completions of algebras, differentiability
properties, and exponentiation of infinitesimal actions. As we shall see, the group
action we discover does not stay in the set of solutions to SDYME.

Infinitesimal actions of Kac-Moody algebras have been discovered on many
important physical systems. These include dimensionally reduced general relativity
[9], two-dimensional sigma models [10], and the sine-Gordon equation [11]. Since
an infinite-parameter symmetry corresponds to an infinite family of conserved
quantities, these actions have a deep relationship to integrable systems, and soliton
behavior, which is not fully understood.

The systems with Kac-Moody actions seem to form a hierarchy. Solutions of the
sine-Gordon equation form backbones for solutions of sigma models in two
dimensions [12]. Dimensionally reduced gravity reduces to the Ernst equation [13],
which can be thought of as a more complex two-dimensional sigma model
[29, 30, 14]. The equation for axisymmetric monopoles, which is a specialization of
SDYME, also reduces to the Ernst equation [13, 15]. SDYME appears to be the
most complex system in which the Kac-Moody action appears and to include the
others as special cases. (As we shall see, it is natural to think of SDYME as a
holomorphic problem in two complex dimensions. Kac-Moody symmetry seems to
be a two-dimensional phenomenon.)

From our point of view, the Kac-Moody algebras appear as the Lie algebras of
loop groups.

Definition. A loop group is the set of analytic maps of the circle into a Lie group

ΩG=Cω(S\G%

with pointwise multiplication.
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An element in the tangent space to ΩG corresponds to a map from Sf to the Lie
algebra of G. Expanding such a map in Fourier coefficients gives the generators
described above for a Kac-Moody algebra, plus a natural completion.

C. The Twίstor Correspondence

Although Penrose developed the twistor program to understand fields in Minkow-
ski space, it actually works equally elegantly in the Euclidean signature [6].

The Euclidean twistor approach begins with the observation that complex
projective 3-space fibres over the 4-sphere with fibre the 2 sphere.

S2-*CP3

i PF
S4

PF is the twίstor fibratίon.

Let us describe PF. A point in CP3 can be denoted {πί:π2:η1:η2) as an
equivalence class of 4-tuples of complex numbers, not all zero. Let us pick
coordinates (X\X2,X3,X4) on R4 = S4- {oo}: To a point in R4 we associate a
matrix

(2.1)

The solutions to the equation

(2.2)

form a complex projective line in CP3. Thus to each point in R4 there corresponds a
CP1 ~ S2 c CP3. Every point in CP 3 lies on exactly one such line, which defines
where PF sends it; unless ηχ=η2 = 0? m which case PF sends it to 00 eS4.

The inverse image of any point of R4 under P F can be parametrized by a complex
parameter λ = η2/ηl9 which is holomorphic on CP3.

The holomorphic structure of CP3 is naturally described by four coordinate
patches; one where each of the four projective coordinates is nonzero. If we delete the
line over 00, where ηi=η2=0; then t w o patches suffice: ηι Φ 0, corresponding to
λφoo, and η2φ0, corresponding to λΦO. We can introduce holomorphic
coordinates.

^w2\ and \ λ \ ^

If we introduce complex coordinates on R4 y = (x1 + ix2\ z = (x3 — ix4); we
discover from (2) that wx = 3; + λz, w2 = λy — z.

Thus, in using the twistor formulation over R4, only two coordinate patches are
needed. It is to be emphasized that CP3 — CP1^ is topologically a product, but that
its holomorphic structure depends on w1 and w2 rather than y and z, and is not a
product. Also, the topological structure of CP3 as a whole is not a product, λ is not
defined on P F ~ ̂ oo), and our two coordinate patches do not extend there. The "half
twist at infinity" is very important in the flavor of this theory.
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The point of introducing the twistor picture is that solutions of SDYME take on
an elegant form, which is easy to analyze.

A bundle with a (unitary) connection over S4, # 4 , or any open subset can be
pulled back along PF to (an open subset of) CP3. SDYME is just the right condition
for the connection to "define a holomorphic structure" on the lifted bundle [5, 8].

Any connection on a complex bundle over a complex manifold can be used to lift
the d operators from the manifold to the bundle. It is demonstrated in [6] that an
integrability condition suffices to define a holomorphic structure on the bundle, and
that that integrability conditon is exactly SDYME.

In coordinates, a section s of the lifted bundle is holomorphic if

<3xs = 0, d^s = (λAy - A2)s, d^2s = (λAz + A9)s.

We quote verbatim Theorem 5.2 from [8]: "Let E be a hermitian vector bundle with
self dual connection over a self dual manifold X, and let F = p*E be the pulled back
bundle on P(F_). Then (1) F is holomorphic on P(F_), (2) F is holomorphically
trivial on each fibre, (3) there is a holomorphic isomorphism σ:τ*F-+F*, where
τ:P(F_)-»P(F_) is the real structure, such that σ induces a positive definite
hermitian structure on the space of holomorphic sections of / on each fiber.
Conversely, every such bundle on P(F_) is the pullback of a bundle E with self dual
connection on XΓ

We do not need the generality of 5.2. For us, P(F_) = CP3 and τ sends λ to — 1/X.
Thus, we have a 1-1 correspondence between gauge equivalence classes of solutions
to SDYME and holomorphic equivalence classes of holomorphic bundles over
(suitable open subsets of) CP3 satisfying (a) holomorphic triviality on fibres of PF,
and (b) symmetry under λ -> — 1/ϊ

D. Holomorphic Bundles, Birkhoff Decompositions, and Riemann-Hilbert
Problems

It should now be clear why we are interested in the theory of holomorphic bundles.
Let us review those facts from the theory which we shall need [16].

α) A holomorphic bundle over a complex manifold is a bundle all of whose
transition functions can be chosen to be holomorphic functions of the base.

β) (Grauert) Any holomorphic bundle over Cn is trivial.
γ) (Grothendieck) Any holomorphic bundle over CP1 is a direct sum of line

bundles. Line bundles over CP1 are classified by an integer (the first Chern class).
Holomorphically, the set of integers in the decomposition of a vector bundle is
invariant up to permutation. Topologically, however, only their sum is invariant.
Hence the holomorphic structure of a bundle over CP1 can change discontinuously
under perturbation.

δ) (Serre) Any holomorphic bundle over CPn has an algebraic structure (i.e., can
be given a set of transition functions which are rational in the coordinates).

It follows from α and β that a solution of SDYME over R4 can be described by a
single transition function G(y,z,λ) between the two coordinate patches over
PF~1(R4). G must be holomorphic in w1? w2, λ in some neighborhood of \λ\ = 1 (for
example), but can in fact be chosen holomorphic for λ Φ 0, oo.
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We shall need to understand the holomorphic decomposition of a vector bundle
over CP1 in terms of its transition function given in a neighborhood of \λ\ = 1. This is
equivalent to understanding the Birkhoff decomposition [17] of G.

Definition. Any holomorphic nonsingular matrix function of a complex variable
G{λ) defined in a neighborhood of the unit circle admits a decomposition

G = φ0Aφoo,

where φ0 is holomorphic in the interior of the unit circle, φ^ is holomorphic in the
exterior, including oo, and A is a diagonal matrix whose entries are integral powers
of λ. Such a decomposition is called a Birkhoff decomposition.

The exponents in the entries of A are the Chern classes of the line bundles which
occur in the holomorphic decomposition of the bundle with G as transition function.

Definition. If A is the identity matrix, i.e., if G = φ0Φoo t n e n t n e decomposition is
called a solution to the Riemann-Hilbert problem.

This name is historically inaccurate, but ubiquitous in the literature. If a solution
of the Riemann-Hilbert problem exists for a given G, it is unique up to a
transformation

φ0 = φ0M

where M is a constant matrix.
The case in which A — J, i.e., in which the Riemann-Hilbert problem has a

solution, is in fact generic [18]. Unfortunately, Birkhoff decompositions are hard to
compute.

Chapter III. The Infinitesimal Construction of Chau, Ge, Wu, and Sinha

A. The Infinitesimal Construction of Chau, Ge, Wu, and Sinha

In a series of three papers [3], the above authors constructed some actions of the
SU(N) Kac-Moody Lie algebra on the space of solutions of SDYME. Their
construction hinged on the existence of an associated linear problem to SDYME,
which emphasizes the connection with the theory of the inverse scattering transform
[19]. We shall see later that the associated linear problem is closely related to the
twistor picture.

The infinitesimal construction uses Yang's J formalism [20]. Yang's idea is to
regard the base manifold JR4 as C2, i.e., to choose complex coordinates y, z. He then
observed that SDYME can be written

Fyz = F?z = Q, (3.1a,b)

Fyy + FzS = 0. (3.1c)

Equations (3.1a) and (3.1b) now state that the connection is flat in certain complex 2-
planes in complexified 4-space. This means that the connection is pure gauge along
these planes, i.e., there exist nonsingular N x N matrix functions of y, z, j/, and z
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denoted D and D such that

Ay = D-1D9y, A^D-'D^ (3.2a)

A^D-'Dy, A^D-'D^ (3.2b)

We still have to include Eq. (3.1c). If we write J = D D " 1 , then (3.1c) becomes

(J-'J^ + iJ-'JJ^O; (3.2c)

an equation reminiscent of the equations of motion for the chiral model. Thus we see
that SDYME can be thought of as analogous to a chiral model in two complex
dimensions.

The associated linear problem for SDYME which Chau et al. use is

d£ = Wy + J- %)X, - dy-x = λ(δz + J-'JJχ, (3.3)

where χ(y, z, λ) is a complex nonsingular N x N matrix function.

Definition. An associated linear problem for a system of PDEs is a system of PDEs
in the variables of the original system plus auxiliary variables, linear in the auxiliary
variables which has solutions for the auxiliary variables iff the original variables
solve the original system.

Fact. Equation (3.3) is an associated linear problem for (3.2c).
It is important to note that the solution of (3.3) for a J which satisfies (3.2c) is

problematic. If we require χ to be holomorphic in λ it will not, generally speaking,
admit solutions globally in λ. Also, there is a great deal of nonuniqueness in χ.
Multiplying χ by any holomorphic matrix function A(λ, λy + z,λz — y) on the right
gives another solution for χ. Chau et al. attempt to make a unique choice of χ by
specifying χ(oo) = /. As we shall see from the twistor picture, there is an obstruction
to defining χ on all of K4 plus oo. Certainly the formulas for χ associated to a 1-
instanton solution published in an earlier paper [21] diverge at oo. The solutions in
[21] have poles at various values for λ. Thus there is a great deal of ambiguity in the
following construction.

The first family of infinitesimal transformations is now written

J - M j / = χ(α)Γ β χ- 1 (4 (3-4)

where Ta is a generator of SU(N). I have slightly modified the original notation to
emphasize that the transformation depends on a complex parameter α. (I will not
discuss the calculation which shows that (3.4) is an infinitesimal transformation for
(3.2c), because I do not use infinitesimal methods in the sequel.)

When δa

a is expanded in a Taylor series in α, the generators of a Kac-Moody
algebra result.

Unfortunately, these transformations do not (infinitesimally) preserve the
unitarity of the connection. In order to overcome this defect Chau et al. proposed a
second family of infinitesimal transformations

δaj = - JX(oc)TaX((x)- \ (3.5)



Self-Dual Yang-Mills Equation 399

where X(a) satisfies (3.3) for λ = 1/α. It is then observed that

Δi^δi + δt* Άa

a=~ί(δa

a-δ\)

do preserve unitarity. We end up with an infinitesimal action of a real form of the
complex Kac-Moody Lie algebra generated from SL(N, C); which acts on SU(N)
solutions of SDYME.

It is this picture of two actions, one "left" and one "right," plus a combination
which preserves unitarity, which needs explanation. In summary, the work of Chau
et al. has left the following questions open.

1. Is there an efficient way to compute these transformations?
2. Can the ambiguity in their definition be avoided? (As we shall see, not

completely.)
3. What closure of the algebra of finite combinations of Kac-Moody generators

actually acts?
4. What is the group action? Does the group action take solutions of SDYME to

solutions? If not, on what space does it act?
5. Do the transformations converge at oo?
6. Are instanton solutions taken into one another?
7. What is the geometric interpretation of the transformation?

As we shall see, the twistor approach enables us to shed light on these questions.

B. Twistor Interpretation of the Infinitesimal Construction

Before going on to construct the group action, we need to clarify the relationship
between the formalism in this section and the twistor approach.

The equations which D and D satisfy define them as holomorphic cross sections
of the lifted bundle over CP3 at λ = 0 and λ = oo (written in a lifted frame). It is not
surprising that they are gauge dependent. J is then the transition matrix between the
frames at λ = 0 and oo, pushed down to R* via PF. It is clear why J is gauge
invariant.

χ(λ) has a similar interpretation. If we choose a holomorphic frame for the lifted
bundle in some region which includes 1 = 0, then χ(λ) is the transition matrix
between the frames at λ and at λ = 0, pushed down to R4. We can see that in general
there will not be solutions for χ which are global in λ or on S4.

An important step in solving this problem is translating between the geometric
picture of holomorphic frames and the physicist's picture of matrix functions on
spacetime with a complex parameter λ.

Chapter IV. The Group Action, Twistor Reformulation of the Problem

One of the great merits of the work of Chau et al. was drawing attention to the
associated linear problem, Eq. (3.3). The twistor interpretation of χ suggests that the
bundle on twistor space should be thought of as analogous to the scattering data for
a problem solvable by the inverse scattering transform [19]. In such a problem, the
action of the Backlund transformations is simpler on the scattering data than on the
original function. This suggests looking for loop group actions on bundles over CP3.
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In order to compute the action of the loop group on a holomorphic bundle, we
need to find some functions which describe the holomorphic structure of a bundle
which satisfies the conditions of Theorem 5.2 quoted above. We satisfy this by
means of the following theorem.

Theorem 1. // A is a connection in R4 expressed in some gauge which satisfies
SDYME, then there exist two nonsingular matrix functions φt(y, z, λ)i = 0, oo, with φ0

defined for λ Φ oo and φ ̂  defined for λφO, each satisfying

(λAy-A W—i-λdy + dJψi, (4.1a)

(λAz + AyWi = - (λdz + df)φb (4.1b)

dxφt = θ. (4.1c)

Conversely, if A possesses any solutions for (4.1) then A must satisfy SDYME.

Proof. Grauerts theorem (β of Chap. II, §D) assures us that any holomorphic bundle
on C3 is holomorphically trivial. Thus we can find holomorphic trivializations of the
bundle corresponding to A in each of the coordinate patches described in Chap. II,
Sect. C. We denote the two frames as ψ0, φ^. These two frames can also be written as
nonsingular matrices in the frame in which we have written A, lifted from R4 to
CP3 — CP\co). By abuse of notation, we also call these matrix functions φ ̂
and φ0. Now we recall the definition of the holomorphic structure on the lifted
bundle, Eqs. (2.3). Clearly, this is equivalent to (4.1).

The converse follow from noting that the integrability condition for (4.1a,b) is
just SDYME. We note that Theorem 1 is equally valid in a connected region in R4

whose pullback under PF is Stein, since a suitable generalization of Grauerts
theorem holds [22], namely that the classifications of holomorphic and smooth
bundles are identical for Stein manifolds.

Since our φ0 and φ^ are transition matrices between two different types of
frames, they have two types of transformation laws. Under a change of frame on R4

they transform φ-*P~ιφ. This is associated with a change in A. Under a
holomorphic change of frame on CP3, they transform φ^φM. Note that a
holomorphic matrix on CP3 is one for which the derivative operators in (4.1) give
zero.

It is interesting to note that Eqs. (4.1a, b) were written down by the physicists
Belavin and Zakharov [23] as equations for the scattering of fermions through a
solution of SDYME. Once again, the twistor picture looks like scattering data.

Equations (4.1a,b) are also an associated linear problem for SDYME, i.e., their
consistency is equivalent to SDYME. This is equivalent to the key step in the proof
of the theorem numbered 5.2 in the cited paper of Atiyah.

Our φ functions are closely related to χ. In fact φo1^) φ{{λ) will solve the
equation for χ(λ). We have succeeded in writing an infinitesimal transformation law
for φ(λ) which reproduces Eq. (3.4) if we substitute J = φ^1(oo)φ0(0) and
χ = Φo\0)φo(λ):

f ^ * 0- \(λ). (4.2)φiλ) +
— Oί A — OL
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Instead of describing the lifted bundle via φb it is possible to use the transition
matrix between them: G(y,z,λ) = φ^ 1φ0. G must be nonsingular and holomorphic
as a matrix function on CP3 (i.e., holomorphic in the variables w1? w2? λ).

In order to define a holomorphic bundle on CP3 — CP1(oo), it is sufficient to give
a transition function holomorphic in a neighborhood of \λ\ = 1 (or real-analytic on
\λ\ = 1). However, Grauert's theorem implies that it is always possible to change
frames so that G is holomorphic for λ φ 0, oo.

The approach which seems to clarify the Kac-Moody symmetry is first to find
actions of the loop group onφ^ and φ0, then to reformulate in terms of G. In the G
formulation, the action becomes simple and computable.

Before discussing the group action, it is necessary to learn how to recognize when
the bundle described via φt or G satisfies the two conditions of Theorem 5.2 of
Atiyah et al.: holomorphic triviality on fibres oϊPF, and existence of a real structure
(or unitarity).

A. Triviality and Unitarity Conditions

It is complicated and superfluous to attempt a complete formulation of holomorphic
triviality on fibres in the φ formalism. We merely note that (4.1c) implies that the
lifted frame from RA is holomorphic on the copy of CP1 over any point, and hence
that the bundle is holomorphically trivial on fibres of PF.

Theorem 2. If a holomorphic bundle over PF~X(D) (where D c R4) is constructed via a
transition matrix G(y,z,λ) between trivial bundles over /I/O and λφco, the
constructed bundle is trivial over PF'1 {yo,zo) iff the Birkhoff decomposition of
G(y0, Z o , λ) reduces to a Riemann-Hubert problem.

Proof If G = φό1φaΰ, then φoφo = φ^Φ^ yielding a global holomorphic frame on
PF~1(xθ9yo). The converse is similar.

Since Birkhoff decompositions are difficult to compute, this appears to be a
weakness of the G-formalism. In fact, it is a strength. The loop group action does
not, in general, preserve holomorphic triviality on fibres. The natural set on which
it acts is in fact more general than the space of solutions to SDYME; we interpret
it as the space of solutions with sources. This is most clearly seen in the G
formalism.

The unitarity condition is also relatively easy to write down in the φ formalism. It
is most efficient to find the condition for unitarity in an arbitrary signature; i.e., the
condition for A to be in su(m, N — m), the Lie algebra preserving a Hermitian form
with m positive and N — m negative terms. In a unitary frame over R4, this is the
condition

A\M + MAXι = 0, for all i, (4.3)

where f denotes hermitian conjugation and M is a diagonal matrix with m copies of
+ 1 and N — m copies of — 1.

Equation (4.3) can be recast in complex coordinates as

,= -MA\M'\ A,= -MA\M-\ (4.4)
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We now use Eq. (4.1a, b) to write

λAy-At=\X-λd, + dt)ψ^λ)-}φo \λ)--λAz + A,

at any λ, where ψQ is defined, and at whose antipode, — I/I, ψ^ is defined.
Now (4.4) implies

λAy - A, + M{λAy - A$M ~1 = 0

or

or

(4.5)

where dx =λdy + d, = d^ and ψ ~f = ( i^ 1 )" : = (ιA " 7 - Multiplying (4.5) on the left by
t

c o(— 1/A)M~X and on the right by ψo(λ) we obtain

and similarly for d^r Holomorphy in λ is obvious. This implies that
Mψloi— l/λ)M~1φ0(λ) is a holomorphic matrix function on CP3. This implies that
by a new choice of ψ0 we can set:

(^\ (4.6)

This proves:

Theorem 3. Let A be a solution o/SDYME such that As su(m, N-m), then φ0 and ψ^
can be chosen to satisfy φo{λ) = Mι//~f(— l/λ\ where M = d iag(+ 1 ••• + 1,
— 1 1) with signature (m, N — m).

If we attempt to translate (4.6) into the G formalism, we obtain only

G{~Γ ) =

or
- 1

(4.7)

Theorem 4. If A is a solution to SDYME, unitary in any signature, then G may be
chosen to satisfy G ( - I/I) = G\λ).

The natural condition on G does not distinguish the signature of M.
Once again, an apparent weakness of the G formalism is in fact a strength. The

action of the loop group does not, in general, preserve the signature of the unitary
group. In this it is reminiscent of the Backlund transformation described in [24].
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We should also note that (4.7) plus holomorphic triviality on fibres implies that if
the bundle corresponds to a solution of SDYME then the connection is unitary in
some signature. Thus if

and

then

and

but G\-\/λ) = G(λ\ so that ψό\-l/λ\ ψ~\-l/λ) solve the same Riemann
Hilbert problem as I/ΌO(/1), ψo(λ). This implies

where μ is a matrix independent of λ. Now,

- 1

so

i.e.

Since μ is Hermitian it is possible to choose, on any contractible domain in R4, a
matrix function k such that kfμk = M, where M is a diagonal matrix of ± 1. Using k as
a gauge transformation, we now can recover Eq. (4.6), and therefore a solution to
SDYME on any contractible domain. Two such solutions are related on their
overlaps by gauge transformations.

Since πί(SU(N — m, m)) Φ 0, it is in general possible that more than one patch
may be required. We formulate the situation as follows.

Theorem 5. Any nonsίngular holomorphic N x N matrix function G(λ,y,z) defined on

CP2 — CP1^ in a neighborhood of \λ\ = 1 satisfying G\λ) = G(— 1/X) corresponds to a

gauge equivalence class of solutions of SDYME, unitary in some signature, on each

connected component of the region in which it has a trivial Birkhoff decomposition on

fibres of PF.

Proof It is only necessary to note that the proof of Theorem 5.2 cited above works
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equally well for a nonpositive definite real form. (See [5], p. 45.) Of course, the
signature cannot change discontinuously. It is possible to have different signatures
in regions separated by hypersurfaces on which G gives nontrivial bundles along
fibres of PF.

B. The Loop Group Action as a Riemann-Hίlbert Problem

Zakharov and Shabat [25] have proposed a general method for defining an action of
the loop group on integrable systems. They also indicated that their method could
be extended to the SDYME. I have made an adaptation of their method to the ψ^^
picture. This yields two actions of the loop group, which I interpret as the "left" and
"right" actions of Chap. III. A combination is found which looks plausible as the
unitarity preserving action. At this point, I reformulate the problem.

After completing this work, I learned that Ueno and Nakamura [26] did a
similar analysis, although in a different formulation, which I am unable to interpret
geometrically.

In the Zakharov-Shabat technique, one chooses a real analytic map from the
unit circle to SL(N, C), which I denote g(λ). Any such map will have a holomorphic
extension to some neighborhood of |λ\ = 1. One then solves the Riemann-Hilbert
problem:

ΨtWgWψΓ^λ) = φ^φφ, i = 0, or oo, (4.8)

where φooiΦo) is holomorphic in a neighborhood of the exterior (interior) of the unit
circle, including oo (0).

Since the Riemann-Hilbert problem can only be solved "generically," we have
the problem that (4.8) may not have a solution for all values of y and z. We postpone
consideration of this and all similar technical problems until after reformulation.

The two choices of iin (4.8) will give the left and right actions. I will consider only
the case ί = oo, and drop the superscript from φ. Equations (4.1a) and (4.1b) can be
written

di\l/OD = Aiψoΰ, Ϊ = 1 , 2 ,

where

d^-λdy + d* d2=-(λdz + dy-),
Aί — λAy — Aέ, A2 = λAz + Ay

These allow us to compute derivatives of both sides of (4.8). We obtain

Rearranging, we find

ΦZ1AiφO0-φ-1diφOD = φ0Aiφϊ1 +(diφ0)φϊ1 =At. (4.9)

The form of (4.9) is very important. It states that two gauge transformations over
open subsets of CP3 have equal effects on At. Since φ is holomorphic for a
neighborhood of \λ\ ^ 1, while φ^ is holomorphic for \z\ > 1, the expression can add
no new poles to the structure of At; thus it must be linear in λ. This gives us new,
transformed values for Ay, Ap Az, A2. We can check that the transformed values for A
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solve SDYME by using the fact that Eq. (4.1) are an associated linear problem for
SDYME, i.e., that existence of solutions for φ in (4.1) implies that A satisfies
SDYME.

The fact that (4.9) has the form of a gauge transformation implies that if we define

(because φoφ^ = φ^gφ^1). Then \jj'o and φ'^, together with the transformed A from
(4.9), solve Eq. (4.1). We have now proved

Theorem 6. In any region in which (4.8) can be solved, (4.9) and (4.10) define a new
solution for SDYME. In general, that solution need not be unitary.

By an argument analogous to the one given in [27] for the chiral model (one
writes an integral equation for the Riemann-Hilbert problem, and solves it
infinitesimally in g(λ)). It is now easy to see that the infinitesimal form of (4.9) and
(4.10) gives (4.2). Similarly, using (4.8) for i = 0 will give (3.5), since χ could easily be
chosen to come from φ0.

At this point in the analysis, it is not clear what combination of the two Riemann-
Hilbert problems would preserve unitarity. Further work in this direction was made
superfluous by a reformulation of the problem.

C. The Group Action in the G Formulation

If we attempt to find the transition function corresponding to the bundle associated
with the new solution, we find

Similarly, the transformation developed from (4.8) by using i = 0 gives G-^Gg'1.
We have demonstrated the following:

Theorem 7. The actions of the loop group defined by (4.9) and (4.10) act by left and

right multiplication on the function G in a neighborhood of \λ\ = 1. (If we use only

analytic elements of the loop group, they always extend to a neighborhood of the
unit circle.)

The combination of left and right actions which preserves unitarity is now easily
determined. Recall from Theorems 4 and 5 that the condition for unitarity is

- 1

This is clearly preserved by

(4.12)

Corollary. Let Gbea transition function satisfying G(— 1/λ) = G\λ) corresponding to
a solution of SDYME which is unitary in some signature. In any connected region in
which Tg(G) considered as a function of λ only has trivial Birkhoff decomposition,
Tg(G) corresponds to a gauge equivalence class of solutions of SDYME, unitary in
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some signature. The signature associated with Tg(G) may not be the same as the
original one.

We see that the transformation on G is very simple. We therefore wish to regard
G rather than A as the fundamental data for this problem. Unfortunately, the
correspondence between A and G is not simple. We summarize the facts about this
correspondence in the following:

Proposition 1. (a) Gauge equivalent A's correspond to the same set of G's. (b) Two
different G's which generate holomorphically equivalent bundles correspond to the
same equivalence class of A's. (c) If G restricted to a fibre of PF generates a
holomorphically trivial bundle, then at the corresponding point in R4 we have a value
for A.

Definition. A fibre for PF on which G has a nontrivial Birkhoff decomposition
(generates a holomorphically nontrivial bundle) is called a jumping line for G.

Proof. Although the above facts all follow from the powerful abstract theorems we
have quoted, let us demonstrate them prosaically in terms of matrix functions, (a) A
gauge transformation on A multiplies both φ0 and ψ^ on the left by a
transformation matrix independent of λ

We then see that G->(Mv>00)~1Mι/>0 = G.
(b) If Gx and G2 give rise to holomorphically equivalent bundles, then we can

write

Gi = HO0G2H0,

where Ho (H^) is holomorphic in a neighborhood of \λ\ ̂  1 ( ^ 1) in the Riemann
sphere. If G2 can be written ψ^Ψo* where φt solve (4.1) for some value of A, then Gx

can be written (ψ^H^y ιψ0H0. Since multiplication on the right by a holomorphic
matrix function of CP3 does not change Eq. (4.1), we see that the bundles generated
by G1 and G2 correspond to the same A.

(c) Finally, if G generates a bundle which is holomorphically trivial on fibres of
PF, we can choose φt to be holomorphic in λ. There can be no topological
obstruction to doing this globally; since any SL(n, c) bundle on any open subset of R4

is trivial.

Now if we define

(notation as in the proof of (4.11)) then we see that the values of A{ calculated from ψ0

and φ^ will match because G is holomorphic. Hence we see that A{ is holomorphic
except at oo, where it has a simple pole from the λ in the definition of dt.
Decomposing Ai into constant and linear terms in λ, we recover an A on R4.

The ambiguity in G matches the ambiguity in χ which we pointed out in
Chapter III. Hence it is implicit in the nature of the loop group action. To phrase
matters differently, the ambiguity in the loop group action on A is unavoidable,
because it is precisely the ambiguity in G for a given A.
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It is interesting to examine the ambiguity in G more closely. If Gί and G2 satisfy
the unitarity condition and define holomorphically equivalent bundles, then we can
write Gx{λ) = Hί(λ)G2(λ)H\(- I/I), where Hx is holomorphic in the exterior of
\λ\ = 1 including oo. Thus the ambiguity in G is just the action of a transformation
very similar to Tg, except that g(λ) is not constant in y and z. This means that the
ambiguity in G is equivalent, in its effect on the loop group action, to choice of a
conjugacy class of the loop group in a larger group. We discuss the larger group
later.

For all the reasons cited we regard the action Tg on G as the fundamental loop
group action. We now have to make a choice as to which loop group to use. Since we
want to act on holomorphic G's, we need to be able to extend g(λ) holomorphically in
a neighborhood of | λ \ = 1. This implies that we must consider real analytic loops in a
complex group, i.e., Cω(S\SL(N,Q) or Cω{S\GL(N,Q). We choose to consider
only the former, i.e., we require det(g(λ)) = 1.

There are several reasons for this choice. If φ0, φ^ can be chosen to be algebraic,
then their determinants must be constant in λf, since any nonconstant algebraic
function has zeros. This implies det G = constant, so it seems natural to consider
only g's which preserve that property. Also, the group GL(N,C) is not simply
connected, so Ω GL( JV, C) is not connected.

There is an advantage to considering the action of a connected loop group;
namely, it cannot change the topologίcal invariant of the bundle over any fibre of Pi7.
The sum of the Chern classes of the line bundles in its decomposition remains zero.

Motivated by Theorem 4, we make the following definitions:

Definition. A generalized solution to SDYME on an open subset S of R 4 is a
holomorphic N x N nonsingular matrix function G defined on a neighborhood in
PF~\S) of |λ| = 1 satisfying G(λ) = G f ( - I/I) which defines a topologically trivial
bundle. The points of S where G does not define a bundle which is holomorphically
trivial on fibres of PF are called sources of G.

A generalized solution to SDYME has a natural geometric interpretation as a
holomorphic bundle on CP3 (or an open subset) which is topologically trivial on
fibres of PF. A generalized solution with no sources is, by Theorem 4, simply a
solution of SDYME. I believe that there should be some field which describes the
sources.

It is interesting to think of my generalized solutions as analogous to the Kaluza-
Klein description of the Dirac monopole [28]. There again, a "source" and a field are
combined into a single geometric entity, namely an 5-dimensional solution to
Einstein's equation.

We now state our main theorem.

Theorem 8. The formula Tg(λ)(G(λ, y,z)) = g(λ)G(λ, y, z)g\ - I/I) defines an action of
ΩSL(N, C) on the space of generalized solutions of SDYME. The action of any element
which extends holomorphically across the outer half of CP1 does not change the sources
ofG or the solution of SDYME in the source free regions. The action of the tangent
space to ΩSL(N, C) at I gives an action of the Kac-Moody algebra which preserves
unitarity.

It is now easy to see what infinite-dimensional algebra acts naturally, namely the
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tangent space to Cω(S\ SL(N, C)), or the space of convergent series in the generators
for the Kac-Moody algebra.

If we look back at the list of questions we asked in Sect. A of Chap. Ill, we see
that 1,2, 3,4, and 7 are now answered. An answer to 5 and 6 depends on calculation
of examples, which we shall consider in later chapters.

D. The Larger Group

If we examine the group action in Eq. (4.12), we see that the requirement that g(λ) not
depend on y, z is superfluous. We can equally well define an action for all
holomorphic matrix functions of a neighborhood of \λ\ = 1 in twistor space which
have determinant 1. For instance, any matrix of polynomials in Λ,"1, λ, wί and vv2

with constant determinant has an action. An interesting example is

WίW2 W2

λ λ

- w ί w1w2

λ

(4.13)

which, as we shall see in the next chapter, adds an instanton to the vacuum. We do
not feel that we understand the larger group yet.

Chapter V. Specific Computations

One merit of the G-formulation is its computational simplicity. It is now possible to
discover the phenomenology of the loop group action by multiplication of
polynomial matrices. We have not exhausted the possibilities of this method, but
what we have discovered is intriguing.

The two natural solutions of SDYME to let the loop group act on are the
vacuum solution φt = G = /, and the instanton solutions. In order to do anything
with the instanton solutions it is necessary to transform them into the φ^^ and G
formalisms. We did this only for the simplest 1-instanton solution. As far as we know
our result has not appeared elsewhere.

Belavin and Zakharov [23] foujid the following representation for the simplest
1-instanton solution (the others can be found via conformal transformations),

1
ΨBZ - φR2 + ίp\ -λz2 + y2/

λy2-z2/λ Ί

l-λyz- yz/λ J

z/λ λy2-

y2/λ R2

(the notation is due to [21]) where R2 = yy + zz. This expression has poles both at
λ = 0 and at A=oo. Consequently it is not a candidate either for φ0 or φ^
Geometrically, φBZ represents a meromorphic frame for the 1-instanton bundle on
twistor space. To compensate, it has the advantage of a symmetry

In order to find a candidate for φθ9 it was necessary to find a holomorphic matrix
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function on CP3 which cancelled the pole at λ = 0 but introduced no other
singularities, and preserved the determinant. Several weeks of agonizing trial and
error produced the following miraculous formula:

wf

- w ί

+2yy + 2λyz 2y2λ-2yz

-2λz2-2zy \+2zz-2yzλ\

L λ

Ί

1 -

I do not know how to explain the simplicity of this result; close to 90% of the terms in
the expansion cancelled. We can now choose \j/{^z\λ) = ΨόK— l/X)(βZ) and calculate
GBZ = φ^o

1(λ)ιl/0(λ). We obtain the square of our original holomorphic matrix,
which, since it is built up out of nilpotents, is very simple:

1 +
2w 1w 2

2w2

2

λ

-2w2

λ
1-2-

2yy - 2zz
2vz

2λyz - -y-
A

- 4yz + 2y2λ

2vz

A

(5.2)

We think the fact that the one-instanton solution can be expressed so simply in the G
formulation is remarkable.

One interesting fact about Eq. (5.2) is that at the origin it reduces to the identity.
Thus, any calculation on the vacuum solution is simultaneously a calculation at one
point of the 1-instanton solution. It is also important to notice that G{BZ) is the
square of our original holomorphic matrix, which is carried into itself by
g{λ)-*g\— l/λ); thus if we define

gB(λ,y,z) =

1 +
W t W 2

λ

•w? l _ ϋ ^

then

\ λ I
(5.3)

Equation (5.3) has two interpretations. If we think oϊgB as a fixed element of the
loop group for a fixed (j/, z\ then it tells us that the loop group action can convert the
identity into any fibre of Pi 7 in the 1-instanton solution. This means that anything
which can happen to the trivial solution can happen at any point of the 1-instanton
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solution and vice versa. The second interpretation is to consider gB as an element of
the larger group we described in the last section. Equation (5.3) then shows that this
particular group element transforms the vacuum into the 1-instanton solution. It
would be interesting to determine whether acting with gB on an instanton centered at
another point gives a 2-instanton solution. That could be ascertained by finding the
Birkhoff decomposition of gb(λ, y, z)gl(λ, y — yθ9 z — zo)gb(λ, y, z)\ but time pressure
has not permitted us to do the calculation. Nevertheless it seems plausible that some
element in the larger group could be an instanton adding transformation.

Returning to our study of the loop group, we see that in order to test whether the
loop group adds sources to the 1-instanton solutions we need only search for a loop
group element which takes the identity to a matrix with a nontrivial Birkhoff
decomposition.

By trial and error, we discover that if

g(λ) =

then

1 λ

λ

- i \ Γ o λ

i j'l-x-1 oj'
which clearly has Chern classes + 1 and — 1 in its decomposition. We have proven

Proposition 2. The action of elements of the loop group can add sources to the 1-
instanton solution.

By calculating the Birkhoff decompositions of various polynomial matrices, it
would be possible to determine exactly where sources are added.

Similarly, it is easy to see that loop group elements can change the signature at
points. We note that if

Γλ 0

then

Since we are restricting ourselves to detg = 1, it is not possible to end up in
SU(ί, 1). However, for N ^ 3, it is possible to have regions with noncompact forms of
the unitary group for the connection. Since the signature of a definite hermitian form
cannot change discontinuously, any path in loop space from the identity to an
element which changes the signature at some point must pass through a point which
induces a source. Further computation could greatly clarify this picture.

In one special case, we have been able to use algebraic means to calculate the
effect of a 1-parameter family of loop group elements on the 1-instanton GBZ of (5.2);
and to find the Birkhoff decomposition and locate the jumping lines. The idea is to
use
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and

Thus if we write

411

we can try to find a Uε(λ) such that:
α) ΦoW = Uε(λ)φ0(λ)fl(λ) is holomorphic for λ φ oo and

β) \

For fε we choose

Eλ 1

and we guess Uε(λ) = (I + (έ/λ)N -f- ϊλN% where ε is a function, not a constant like ε,

and JV = ιAπ(0) ( Λ Ji//̂ " 1(0), in order to cancel the pole in φ0 at 0. We find that (α)
π

demands

εA = -
1 — ε p '

where p is the lower left-hand e n t r y of φ$ 1(0)dλφo(0). N o w we discover t h a t

where /c = N^N + V̂iV1", so (/?) is satisfied unless 1 - έέk = 0.
For 1 — εέk < 0, G satisfies the (0, 2) unitarity condition. It follows that when

1 — εέk = 0, we have jumping lines, since the signature cannot change smoothly.
Substituting for φ0 our expression ΦQZ, we obtain

+ I ) ] 2 (5.4)

Equation (5.4) implies that any ray not in the y-plane eventually hits a jumping line.
(0,0) is not a jumping line until ε = 1. As ε -> 0, the hyper surface of jumping lines goes
to oo.

Chapter VI. Behavior at Infinity

The formalism we have adopted is not well adapted to studying the behavior of
solutions to SDYME at the point oo. The two coordinate patches we chose on
CP3 — CP1^ do not extend there, neither do φ^, φ0, or G. We can attempt to
understand how our loop group action looks at oo by finding a transformation on
CP3 which exchanges 0 and oo on S4, then seeing how the transformation changes
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our loop group action. Thus, if we map

π^ηi, (6.1a)

It-*** (6.1b)
we find that

^ (6 ld)
-z + yλ

Equations (6.1) tell us that in coordinates centered at oo our variable λ is rotated
by a linear fractional transformation which is different for each line through the
origin. Hence λ cannot be extended to PF~ 1(oo), and, in general, we would be
surprised if a bundle produced by the action of our loop group extended through oo.

This helps to explain a feature of our problem which appeared mysterious from
the beginning: what could the infinitesimal action on the instanton solutions
possibly look like?

The instanton {SU(2)) solutions form a sequence of connected, finite-
dimensional manifolds with boundary, one for every Chern class (or instanton
number). They are parametrized by giving the center, strength, and orientation in
the vector bundle of each instanton. Since there are no global solutions on S4 of
SDYME except the instantons, it seemed the loop group had to have some natural
action on those parameters. Since none suggested itself, we were puzzled.

The answer is that the finite elements of the group produce sources, hence do not
take the manifolds of instantons to themselves. What about the tangent space to the
group? Since having a trivial Birkhoff decomposition is an open property, how can
elements of the tangent space to the loop group avoid giving vector fields on the
manifolds of instantons? The answer is that the action of the Kac-Moody elements
"blows up" at oo.

A method exists to make this precise. K. Uhlenbeck has shown [7] that a
solution of SDYME on R4 extends to a solution on S4 iff its curvature is square
integrable. An explicit computation would in all probability show that this is
practically never preserved by the Kac-Moody action, since such a computation
would include terms which do not even go to zero as R-> oo.

The computation of the 1-parameter family of loop group actions provides an
example of a Kac-Moody element which does not converge at oo. Since as ε->0, the
jumping lines converge to oo, it is clearly impossible for the derivative of the family at
ε = 0 to converge at oo.

We do not know how to explain why the element gB of the larger group described
above takes the trivial bundle to a solution of SDYME which extends across oo, or
how to generalize the phenomenon.
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