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Abstract. We study nonperturbative renormalizability of a d = 4 hierarchical
SU(2) gauge model that realizes MigdaΓs recursion relation as an exact
renormalization group transformation. A continuum limit of effective actions
is shown to exist as the scaling limit, both for initial Wilson and heat kernel
actions. These limit effective actions exhibit ultraviolet asymptotic freedom
and provide a strictly positive string tension.

1. Introduction

The study of nonperturbative renormalization of gauge theories is presently one of
the major efforts within constructive quantum field theory. To employ for this aim
the framework of lattice quantization [1] looks very appealing - in spite of its
obvious shortcomings - since it preserves the characterizing property of such
theories: local gauge in variance. Moreover Wilson's [2] renormalization group
approach to remove the ultraviolet cutoff introduced by the lattice, turned out to
be an extraordinarily attractive suggestion. From a physical point of view the
4-dimensional Yang-Mills theory is of central interest. Although there is
important progress in the rigorous construction of this theory [3, 4] a complete
solution has not yet been achieved. The study of the ultraviolet behaviour of this
asymptotically free theory by exact renormalization group transformations allows
us to make use of a perturbation expansion but requires i) a control of higher order
contributions, ii) a nonperturbative treatment of the "large fields," and iii) a control
of the nonlocal effective actions generated. Shortly after the pioneering work of
Wilson [1] on lattice gauge theories, Migdal [5] proposed a recursion relation
considered as an approximate real space renormalization group transformation
both for spin systems and lattice gauge theories. In the case of spin systems it was
realized some time ago that this recursion relation holds exactly on hierarchical
lattices [6], yet only recently Ito [7] presented hierarchical lattice gauge models
with similar properties. In view of the enormous complexity to be mastered
attacking the full d = 4 nonabelian gauge theory, we pursue the modest aim to
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analyze the ultraviolet behaviour generated by the nonabelian Migdal recursion
relation [5] in the critical dimension. Its treatment involves the aforementioned
problems i), ii) but releases from iii), since the virtue of this recursion relation - and
clearly its deficiency! - is to strictly reproduce local actions. The price to pay is
violation of reflection positivity and of the full lattice symmetry.

Hence we investigate a sequence of "Gibbs factors" g(π) on a nonabelian group
G recursively generated from an initial one by the transformation

with u, e0 E G, e0 the unit element. g*r denotes the multiple convolution product of r
factors. In the case of a hierarchical gauge model {spin system} r is the number of
plaquettes {bonds} united by a block spin transformation, hence the minimal
value for r is 4 {2}. The equal powers of ordinary and convolution products in (1.1)
reflect critical dimension, i.e. dimension 4 {2} in gauge models {spin systems}. As
already emphasized by Migdal [5] this property rather than the particular value of
r determines the qualitative behaviour of the solutions, which is confirmed by our
rigorous analysis.

This article relies upon our previous work [8] - hereafter referred to as (I) -
where Migdal-Kadanoff recursion relations for gauge groups SU(N) and U(N),
analytically continued in the central angles, have been introduced. For the sake of
technical simplicity only we restrict our present analysis to G = SU(2). In Sect. 2 we
briefly state properties of the analytically continued Gibbs factors derived in (I)
and exhibit further functional relations (Proposition 1). These results are valid for
an initial Gibbs factor of the Wilson (2.5) or of the heat kernel form (2.20). One
should keep in mind that the real parameter β appearing in (2.5) is
proportional to the inverse square of the bare Yang-Mills coupling constant. Our
analysis covers large values of β, hence weak coupling. Section 3 contains our main
result for a single iteration step of the analytically continued recursion relations
(3.1) and (3.8), formulated in Theorem 1 and in its Corollary, respectively. We
devise an analyticity technique, inspired by Gaw^dzki and Kupiainen's treatment
of the hierarchical φ* model [9]. In contradistinction to scalar models no "large
fields" in the proper sense occur in our case due to the compact manifold;
furthermore there is no independent dominating gaussian fluctuation measure. In
order to develop a controlled perturbation expansion however, we have to divide
the group manifold into a properly chosen neighbourhood of the unit element and
its complement. The former, called "small field region," allows a convergent
perturbation expansion, whereas the latter one is controlled by a simple
nonperturbative bound. Our induction assumptions (A^-^) are a precise
formulation of this method. For large values of β, (3.3), Theorem 1 states in the case
r = 2 that these assumptions are reproduced with a change in β of order 0(1). Under
repeated iterations β eventually decreases, allowing us to proceed until we leave
the weak coupling domain. Thus β acts as a scale parameter. It is noteworthy that
in the power series expansion of ln/ι(z), see (A3), when explicitly controlling the flow
of β to order β~ 1 (included), it suffices to perform for β a third order ("two loop"),
for λ a second order ("one loop") and for σ a first order ("tree") calculation. The
Corollary contains the generalization to the case r = 4, iterating the r = 2 result
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appropriately. Such a procedure could be extended to r = 2m, m e N. The proof of
Theorem 1 is given in Sects. 4 (small field) and 5 (nonperturbative bound). In
Sect. 6 we show existence of continuum limits of effective actions on a sequence of
lattices with spacings 2~π, neN0, emerging from repeated subdivision of the unit
lattice. Gaw^dzki and Kupiainen's work on the continuum limit of the ultraviolet
asymptotically free φ% model with negative coupling constant [10] indicates that it
should suffice to prescribe the cutoff dependence of the bare marginal coupling
coefficient to third order in a perturbative solution of the recursion relations (3.7).
This holds in our case. The particular form of these coupled equations requires
some analysis (Proposition 2). Among other properties, we prove in Theorem 2
both for initial Wilson and heat kernel action, due to the chosen cutoff dependence
of the initial /?, that for any fixed lattice ("scale") the sequence of effective Gibbs
factors indexed by the cutoff, and considered as functions of the analytically
continued central angle, forms a normal family of holomorphic functions. Hence
convergent subsequences exist. This result is then sharpened in Theorem 3, the
main result of this investigation: there is a common subsequence of cutoffs
implying convergence of effective Gibbs factors for all scales. Hence there is
ultraviolet asymptotic freedom for the running [/?(~n)] ~*. Moreover, employing a
recent result of Ito [11], we deduce for the continuum limits of these effective
actions a strictly positive string tension (Theorem 4). Finally we exhibit in the
Appendix some properties of the heat kernel Gibbs factor required by our
induction assumptions. A proof of uniqueness of the continuum limit actions,
allowing us to avoid the restriction to subsequences of cutoffs, might be achieved
adapting the method of iterating differences of coupling constants as performed in
[10]. Moreover, a lower bound for the string tension should be obtainable. Work
in this direction is in progress.

2. General Properties of the Analytically Continued Gibbs Factors

In the sequel we consider exclusively the (gauge) group G = SU(2). The Gibbs
factor attached to a plaquette in the case of a gauge model or to a link in the case of
a (chiral) spin system after n iterations of the renormalization group transfor-
mation is denoted by g(n\u). It is a real valued, positive function of u e G and has
the following properties, see (I): (2.2), (2.5), (2.6), with e0 the unit element of G
and u,veG,

g(n\e0) = l, (2.1)

έn\vuv-l} = έn\u), (2.2)

g<»>(u-i) = gW(M), (2.3)

valid for neN0. Usually g{0\u) is chosen as a function of positive type; this
property iterates too, see (I).

We first treat MigdaPs recursion relation for the simplest critical setting,
r = 4 = 2 in (I): (2.10 M),
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In (2.4) we introduced an additional translation on the group in the "direction"
given by the diagonal Pauli matrix σ3, with xeR. Moreover dυ is the Haar
measure on G and Jf determined by (2.1).

Starting with the Wilson action, /?eR+,

g<»=exp{/?(tracew-2)}, (2.5)

we proved inductively in (I): (Proposition 1), that the functions

g("V, x) : = gW&Γ^ii), n e NO (2.6)

can be analytically continued:

(2.7)

and the functions g(n)(w, z) are (i) continuous in u for fixed z e (C, (ii) entire and real
analytic in z e C for fixed u e G.

From these properties we can furthermore infer the following functional
relations, with weG, ze(C, x'eR,

g(»>(e-fa^u,z) = g(">(ιι,x/ + z), (2.8)

g(n\u,z) = g(n\u-1,-z). (2.9)

For fixed x', u all the functions appearing in (2.8) and (2.9) are holomorphic in z.
The relations are obvious identities for z e R [use (2.3) in the case of (2.9)] and thus
valid for z e C due to uniqueness of the analytic continuation.

In particular the functions

(2.10)

are entire holomorphic in z 6 (C, periodic with period 2π and even functions due to
(2.9),

h(n\z + π) = h(n\z-π), (2.11)

h(n\z) = h(n\-z). (2.12)

The functions h(n\x) are the Gibbs factors, which are class functions, (2.2),
expressed in terms of the central angle.

The analytical properties can be further exploited. Parametrizing u e SU(2) by
u = M0σ0 + iu σ with {w0, u} e S3, the unit matrix σ0 and the Pauli matrices σk,
k = 1, 2, 3, we arrive at the

Proposition 1. For z e (C, |z| < \, we have

#), /or

w/zere
θ2 = Θ2(u, z) = 4/(i{l - w0 cos2 - u3 sinz}) , (2.1 3)

, (2.14)

g<" }(M= J"y"" for

n

are defined by inversion ofη = sin2 -as a holomorphic function of θ2, i.e. θ2 = 4f(η).
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Hence, with \η\<ί9

/W=^ι(ii;!;>/)]2. (2.15)
Moreover Θ2(u,z) and Θ2(u,z) are continuous in u and holomorphίc in z in their
respective domains.

Remark. Due to (2.11), (2.12) h(n\θ) and h(n\π-θ) are even functions of θ and θ,
respectively; for notational convenience only we use θ, # instead of θ2 and θ2 [we
take the main branch of the square root in (2.13), (2.14)].

Proof of Proposition 1. Since the Gibbs factors are class functions, (2.2), we have
for xeR,

g(n\u, x) = g(n\e ~ ίxσ* u) = g(n\e ~ ίθσ>) = h(n\θ) (2. 1 6)

with the central angle θ and its complement θ=π — θ given by

cos# = w0cosx + M 3sinx = — cos#. (2.17)

This implies the claim of the proposition for z = x real, |x|<^. Since Θ2(u,z) and
Θ2(u, z) are holomorphic in z, |z| < £, and h(n\θ\ h(n\π — θ) entire and real analytic in
θ2 and θ2, respectively, existence and uniqueness of the analytic continuation to
|z| < J conclude the proof.

Remark. We observe that the symmetry (2.8) is reflected in a corresponding
symmetry of (2.13), (2.14). Combining this property with Proposition 1 leads to a
representation of g(w, z), u e G, z e <C with |Imz| < d < i, in terms of h(θ), |Imθ| < d,
which vice versa can be applied to define g(w, z) for a given 2π-periodic and even
function h(θ\ being holomorphic in \lmθ\<d. It is important to note that

|Imz| in the domain of θ. This is deduced from the map

r/i ,τ Λ, Λ ω=cos0 f /ReωV /ImωV
{θ:\ίmθ\ = t} - ><ω:( — — + \^r-}1 ' ' ; [ \coshtj \smhtj

for arbitrary t>0, taking into account cos0 = w0cosz + w 3sinz due to (2.17). A
similar consideration yields |Im#(w, z)| ̂  |Imz| in the domain of θ. We further note
that (with our choice of the square root) 05^Re0(w,z)<f π, OίgRe#(w,z)<f π in
their respective domains.

For later convenience we define particular subsets of G. Let z e <C, |z| < ,̂ and
ρeR+, ρ<^. Then

0[z,ρ]:={ιιeG:fi0>0 and \θ2(u,z)\<ρ2} . (2.18)

Moreover by χ( z, ρ) we denote the characteristic function of this set, i.e.

1 for we^[z,ρ]
. '^J (2.19)

0 otherwise .

Besides the Wilson action (2.5) we consider the heat kernel action (HK) in the
initial Gibbs factor

(j+i-)2

β " χ», (2.20)
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with 7 eR+, the characters χ,. of SU(2) and a normalization factor Jf fixed by (2.1).
The real-valued function g$£ is positive on G, see Appendix.

Expressing the characters χ^u) as polynomials of trace u, [12], the analytic
continuation of (2.20) is given by

oo _ J L 2 J

1=1 k = 0

For αeR+ we denoted by [α] the integer part of a. A little exercise shows that
£ HK(W? z) is f°r βχed u an entire holomorphic function of z e (C. Hence, due to our
derivation in (I), the functions g(Hκ(u,z), rceN0, also have the general analytic
properties exhibited in this section, originally derived for the Wilson action.

3. Weak Coupling Analysis of the Analytically Continued Recursion Relation:
Inductive Assumptions and Main Single Step Result

The functions g(π)(w, z), (2.7), are inductively defined by the analytically continued
recursion relation (2.4) of Migdal,

(3.1)

In order to simplify the notation we introduce for a general n e N0,

g(u) = gW(u\g = g(n\h = h(n\ (3.2)

g'(u) = g(n+ί\ul likewise g,h'.

Let βeR+ be defined by the power series expansion around z = 0,

(3.3)

We establish and inductively reproduce assumptions on the function g(w, z) in the
weak coupling region

β^β,βeΊ£ί+ sufficiently large . (3.4)

Our assumptions fall into two parts: i) existence of the logarithm of h(z) in the
"small field" region,

|z|<jTα, with f^α<i(fixed), (3.5)

together with bounds for the first three coefficients and for the remainder of its
Taylor series; ii) a nonperturbative bound on g(w, z). We might allow for f < α < |;
the choice (3.5) simplifies our analysis, however.

After these introductory remarks let us state our assumptions on the
analytically continued Gibbs factor g(w, z).

(Ax) General Properties. g(w,z) is continuous in uεG for fixed zeC and entire
holomorphic in z for fixed u. Moreover g(u) = g(w, 0) is real and positive, satisfying
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(A2) Nonperturbatίve Bound. For u "far from the unit element," which is the
nonperturbative region, we assume the bound, see (2.18):

For yeR, \y\<β~* and w

with l < / c < l + ε (ε>0 small) and ^
κ2

(A3) Small Field. In the domain ze(C, |z|</Γα, there exists a holomorphic
function V(z) such that

jδ e!R+ is large and \β~ U|, |/Γ *σ| are bounded by constants. Moreover the bound
\V(z)\<Dβ~2 holds in the domain, with a constant D.

Remarks. From (AJ follow the properties for g(w,z) stated in Sect. 2. Due to the
relation, z = x + iy with x,yeR,

g(u,z) = g(e-ixσ>u,iy), (3.6)

implied by (2.8), we consider in (A2) purely imaginary values of z without
restricting the generality.

The bound (A2) is sufficient to estimate the nonperturbative contributions to
h'(z) in the small field domain \z\<κβ~" which arise in (3.1) (with u = e0) from v
outside an Θ(β~Λ) neighbourhood of e0, as exponentially small.

We formulate our main result for one iterative step in

Theorem 1. Given βelR+ sufficiently large the assumptions (AX)-(A3) for g(u,z)
with β^β imply (A1)-(A3) to hold for its transform g'(w,z), (3.1), with primed
couplings /?', λ', σr and remainder V' associated with g'. Moreover these couplings
satisfy

(3.7)

In order to prove this Theorem we recall that the reproduction of the general
properties (Ax) is proven in (I) and quoted in Sect. 2. The reproduction of the
properties (A2) and (A3) for g' is deferred to Sects. 5 and 4, respectively.

Theorem 1 is a consequence of the recursion relation (3.1), which corresponds
physically to a two-dimensional chiral spin system. In the case of a lattice gauge
model in 4 dimensions with smallest block length (1=2) we have to deal instead of
(3.1) with the recursion relation - see (2.1), (2.10 M) of (I) with q = r = 4 -

(3.8)
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We can reduce its analysis to the preceding one. As a prerequisite we observe that
we might have introduced an arbitrary constant factor E eR+ in the definition of

K
the domains occurring in the induction assumptions, viz. \y\< — (Eβ)~a and

] in (A2) with p replaced by pE~2« in the bound, and \z\ <(Eβ)~" in
(A3). This change would not affect Theorem 1, as follows from its proof.

Defining now

f d Ό g ί u υ SfJsUf

(19)

and writing for g' defined by (3.8) g'(w,z) = (^4)g)(w,z), we have

connecting the recursion relations (3.8) and (3.1). It remains to trace the domains.
For the map [^2)&]1/2 we consider small field domains with E=ί. Then

Theorem 1 implies, denoting there β' = β'(β,λ,σ,...) etc.,

)}.

In the succeeding application of ̂ 2) we use small field domains with E = 2, then

β2=β'(βι,Λ1,σ1,...),

|z| < (2β2) ~ « : (^2)[^2)g] 1/2) (*0, z) = exp { - β2z
2 + tf (z4)} .

Hence, from (3.11),

β" : = 2β'(± β'(β, λ, σ), i λ'08, A, σ), i σ'08, A, σ), . . .) ,

|z|<0»Ό-β:(^4)g)(βo,z) = exp{-A2 + Φ(z4)}. (3.14)

Thus we obtained the important

Corollary. Theorem ί is valid too in the case of the recursion relation (3.8) provided
we replace the transformation (3.7) of the coupling coefficients by

(3.15)

The initial (analytically continued) Gibbs factor g(0)(w, z) both with Wilson action
(2.5) and with heat kernel action (2.20) satisfies (AJ as shown in (I) and in Sect. 2,
respectively. The properties (A2) and (A3), stated for the weak coupling region β ̂  β
with large β, are easily seen to hold in the case of the Wilson action. For the heat
kernel action they are derived in the Appendix.
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4. Reproduction of the Small Field Assumptions

In this section we analyze h'(z) = g'(e0, z) in the region z e <C, |z| < (/?') ~a<κβ~Ά. Let
£, £' be fixed positive numbers with

(4.1)

Denoting by χ(v) the characteristic function of ^[0,ξ'j?"α]cG, see (2.19), i.e.

χ(v) = χ(v;0,ξ'β-"), (4.2)

we write, recalling (3.1) and the symmetry (2.9),

' (43)

with

and

*ω= / ;>, / . x x - (4.5)
J<foχ(t>)g (i;,-

The denominator in (4.4) is obviously positive. Since the following analysis will
show that K(z) does not vanish in |z| < 2(1 — ξ)β~Λ, the denominator in (4.5) is non-
zero, too. Moreover, K(z) and L(z) are even and holomorphic in |z| <2(1 — ξ)β~a

due to (Ai).
We first analyze X(z) in the extended domain,

|<2(l-£)/rα. (4.6)

For j? sufficiently large, (4.1), (4.6) and χ(v) = ί imply with (2.13),

2,<β~2" (4 7)

Thus we can use the assumption (A3) together with Proposition 1 leading to

(4.8)
Jd»χ(ι;)exp{-27(βo)}

|j and Θ0 : = θ(v, 0).

We rewrite K(z) defining the probability measure on G,

with the definitions 0± : = θ ( D, ± |j and Θ0 : = θ(v, 0).

= e-2V(9o)χ(v)dv, (4.10)
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hence

X(z) = <exp{ - V(θ+)- V(θ.) + 2V(θ0)}y . (4.11)

Introducing the notations,

A ,0 = w + zl — wzl ,

£? = t;3sin-,

we recall from Proposition 1

(4.13)

It is convenient to expand V(z) in powers of 1 — cosz. From the definition in
(A3) and with the coefficients

σ, (4.14)

we obtain in |z|</J~α,

V(z) = 2β(i - cosz) + 5(1 - cosz)2 + 1(\ - cosz)3 + V(z) . (4.1 5)

The difference V—V resulting from the orders z8, z10, . . . of the convergent series of
(1 - cosz)* for k = 1, 2, 3 is estimated from the leading term as (9(βv ~ 8α) in |z| < β~Λ.
Thus from (A3) follows

in \z\<β~\ (4.16)

where 1 -8α< -2 due to (3.5).
Employing now (4.13) and (4.15), we obtain

dt;, (4.17)

and

+ V(θ+)+V(θ_)-2V(θ0). (4.18)

From (4.12) we calculate, using w = C?(jS~2a) and A = Θ(β~2Λ\

(4.19)
= v%A(2-A),

Inserting (4.19) into (4.18) we first observe that the pure powers of A give, because

of (4. 1 5) with z replaced by -, the leading terms in the expansion of 2 vi - 1 , with the
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remainder of order z8 being &(βl ~8α) in the small field domain (4.6). Moreover we
define

ζ = - 4βwA + 2sA(2w + 2vl - 2w2 - 2wA - v\A)

+ 6ί A(wΔ + w2 + 2wt?§ + 2ι?§ J) , (4.20)

and write (4.18) in the form

V(θ+)+V(θ-)-2V(θ0)=^z2+^z*+-^z« + ζ + R(v,z). (4.21)

Due to (4.18), (4.19) we have for resuppχ(u) and z in the domain (4.6)

R(v, z) = V(θ+)+ F(0_) - 2F(00) + Θ(βl ~ 8«) (4.22)

and R(v,0)=0. Using the decomposition (4.21) in (4.11) we arrive at

(4.23)

In (4.23) we split

, (4.24)
2) exp( - *)> , (4.25)

K(2)(z) = <(exp( - 0 - 1 + ζ - K2) exp( - K)> , (4.26)

where K(1) contains the (convergent) perturbation expansion for the effective
action "to two loops for the β-vertex."

Due to k~ ζ-l+C-iC 2 |<ICI 3, for |f|<3, the remainder K(2\z) is estimated
uniformly in the region (4.6) as

|K<2>(z)|^<|C|3>expH^^ (4.27)

where we use (4.16) to bound R and s = Φ(β), t = Θ(β), w = &(β~2*\ Δ = (9(β~2Λ] in
(4.20), thus avoiding a more careful estimate of the expectation. Our choice α ̂  -f
ensures 3 — 12α< — 2, which is good enough.

In order to evaluate (4.25) we need the "moments"

/„.*(*) = <w"vlm exp { - R(v, z)}y . (4.28)

First we split the measure conveniently. The Haar measure dv in the neighbour-
hood of υ = e0 (|v| small) reads

dυ= ̂ -2^-Λ-w = v0 = ]/ϊ^. (4.29)
2π 1—w v

We put in the correct normalization constant which, of course, drops out in the
expectations. Using (4.29) in (4.17), the measure dμ can be written

dμ = * [i _ 2sw2 + 0(β2 ~ 8α)] exp { - w(4j8 -1)} χ(v) d3v. (4.30)
2π
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We used w = G(β ~ 2α) due to the restriction χ(v) = 1 , see (4.2), and s = Θ(β\ t = Θ(β).
Finally we expand w in terms of v2 consistently within the desired order, and
obtain

- . (4.31)

---
The order term is &{β 7 J, and therefore not needed explicitly. A simple
calculation gives

with exponentially small orders that estimate the effect of extending the integration
to all of R3; these depend on (n, w), of course.

Employing (4.31), (4.32) and the expansion w = iv2 + |v4 + 0(β~6α), we
calculate the expectations (4.28) explicitly for the index pairs (0, 0), (0, 1), (1,0) and
(0, 2), (1, 1), (2, 0) to order β~ 2, with remainders 0(βl ~ 8α) and Θ(β- 3), respectively.
At z = 0, where R(v9 0) = 0, we obtain

/o.0(0) = l, (4.33)
β), (4.34)

(4.35)

8 ), (4-36)

(4-37)

(4-38)

The higher moments Inιm(0) = &(β~"~m) are not needed explicitly.
In order to estimate the difference /„ m(z)— /„ m(0), we use for R of (4.22) the

bound (4.16)

\e-R-ί\^4Dβ-2 + &(β1-Sx), (4.39)

since the arguments θ = θ ± , Θ0 in (4.22) are restricted to the domain |θ| < β ~ α. Thus
we deduce

8α)}. (4.40)

We are now ready to evaluate X(1)(z), (4.25),

(4.41)
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The order estimates in (4.40), (4.41) are valid uniformly in the domain (4.6). From
(4.41) and the bounds (4.27), (4.40) together with s = &(β\ t = &(β) due to (4.14) and
(A3), we conclude that for sufficiently large β the function K(z\ (4.23) is
holomorphic in the extended domain (4.6), |z| < 2(1 — ξ)β~Λ, and bounded there by
|1 — K(z)\ = &(β~2a\ so InK(z) is holomorphic in the same domain with

12θί). (4.42)

Hence lnK(z), (4.23), is holomorphic in the domain (4.6), too, and has the power
series representation

-lnX(z) = ]51z
2 + iΛ1z

4 + i(τ1z
6+Pi(z), (4.43)

where V±(z) is the sum of the even powers higher than six. The contribution of InK
to the coefficients of the power series (4.43) is derived from (4.41), the expectations
(4.33)-(4.38) and the bounds (4.40). The couplings λ, σ are reintroduced by (4.14)
and A from (4.12) has to be Taylor-expanded at z = 0.

Moreover the powers of z2 emerging from /M,m(z) — /n,m(0) and z-dependent
order terms are controlled by the Cauchy estimate for derivatives using the bound
(4.40). After some calculation we find

(4.44)

The leading order in the Cauchy estimates for the coefficients of the power series
FΊ(Z) results from /0>0(z) — 1, bounded by (4.40) in the extended domain (4.6).
Taking the nonleading parts into account by a factor 1 + δ l 5 with δj = &(β5 ~12<x),
we obtain the following bound on Ft(z) in the restricted domain \z\<(β')~Λ,

(4 45)

With our choice ζ^ $ the bound is smaller than ^D(β') 2 for β large enough.
It remains to estimate the nonperturbative contribution L(z), (4.5), to ή'(z), (4.3),

in the restricted region z e <C, |z| < (β'}~α. The denominator of (4.5) is obtained from
the result (4.43) for K(z) and from the measure dμ, (4.31), together with the bounds
assumed in (A3)

/ ~\ / A
= \K(z)\ίdμ

(4.46)

where z = x + ί>;x,je!R, \z\<(β')~". With the characteristic functions [see (2.19)]

(4-47)
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we decompose the numerator of L(z) as follows, replacing where possible

g v, ± - by h(θ±\ θ+=θv,±- 1, due to Proposition 1,

/<3>= \dv\_\ -χ(ι>)] χ+[l -χ_

(4.48)

(4.49)

(4.50)

(4.51)

v,-^. (4.52)

These integrals are estimated using in the small field region \θ\<β~a the
assumption (A3), i.e.

h(θ) = exp {- βθ2 4- Θ(βl ~ 4α)}. (4.53)

Moreover, due to the symmetry property (2.8), we have

*y\ l(4.54)

Θ2v, ±|j =6>2U+ί2<Γ3t;, ±/| (wheredefined)

such that

Recalling

bound of assumption (A2), which yields

z

(4.55)

*<—β α, we can thus use in the supports of 1— χ± the

(4.56)

Treating /(1) first we easily deduce from (4.12), (4.13) for \θ±\<β~" and

*). (4.57)

The support of 1 -χ(v) implies

w = ί-

Hence we obtain

(4.58)

(4.59)
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From (4.54) and (2.14) we derive for \θ±\<β~" and \z\<(β'Γ\

Re^=2[l-(^+l2<T3i;)oJcosh^-i|j +00?~4α), (4.60)

and hence, due to (4.53)
ί M2

 1 , }
|MM<expjjS(Jj +W1-4α)j. (4.61)

Together with (4.56) we infer the bounds

-PP- ̂ @2j expWf)2

+^-)

(4.62)

due to |x|<(j?')~α and p-j>0 in (A2). Furthermore, due to |x|<(β')~α,

(4.63)

In the bounds on I(k} we absorbed orders &(βi~4Λ) or &(β~2Λ) by part of the
negative G(βl~2a) terms in the exponent, possible for β large enough. Collecting
pieces we obtain from (4.3), (4.46), (4.48) and (4.59), (4.62), (4.63), the final result for
the iterated Gibbs factor in the small field region,

) = K(z)2{\ +(9(e-*δ2βί~2")} , (4.64)

with
<52 = min[p-i(£')2].

It implies holomorphy of — lnh'(z) in \z\<(β')~Λ with couplings /?',Λ/,σ' and
remainder V'(z) receiving exponentially small corrections to the contributions 2/?l5

2λι, 2σi9 and 2?i(z) coming from (K(z))2.
Thus we proved (3.7) and the reproduction of (A3), where the bounds on Λ/, σ'

are immediately read off from (3.7). We still have to prove (A2) for g'(w, z), which is
done in the following section.

5. Inductive Reproduction of the Nonperturbative Bound

From (3.1) we have the recursion relation

with the convolutions

J(u,iy)= SdvgluΌ~l,^y\glv,l

M= $ dv[g(v}]2. (5.3)

In order to reproduce the bound (A2) for g' we have to consider

S')-α] (5.4)
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From the assumptions (A2) and (A3) we can easily deduce

M = const β-^μ+Θtf1-4*)}. (5.5)

Introducing the characteristic functions, (2.19),

(5-6)

(5.7)

and the corresponding squares of the central angles, (2.13),

(5.8)

(5-9)

we decompose (5.2) as follows:

J(u,iy) = Σ J<*>, (5.10)
k=ί

(5.H)

(5.12)

(5.13)

(5.14)

In writing this decomposition we used in the small field region \92\<β~2cί the
representation for g given in Proposition 1. In this region we can use (4.53).

From the definition (2.13) we deduce for \Θ2\ <β~2\j= 1,2, and \y\ <i/c(/ΓΓα,

(5.15)

(5.16)

We now derive upper bounds on the individual terms of the decomposition
(5.10). With (4.53) and (5.15), (5.16) follows for J(1),

(5.17)



Continuum Limit of a d = 4 Hierarchical Lattice Gauge Theory 277

where I± is the modified Bessel function. Since x'^I^x) increases monotonously
with x eR+, we can in (5.17) replace u0 by sup(w0) compatible with the region (5.4).
It is found on the boundary

«) (5.18)

for (w3)
2 = l — (w0)

2. With the ansatz w0 = cosι/;, ψ = &(β~Λ\ we obtain

(j8r4α = (ψ2 + /)2 + W6α)5 (5.19)

and hence
(5.20)

Employing the asymptotic expansion of the modified Bessel function in (5.17) and
using (5.20) together with the maximal value of \y\ due to (5.4) finally yields the
bound

The integrals J(2), (5.12), and J(3), (5.13), can be treated simultaneously. In the small
field region we use (4.53) together with (5.15) and (5.16) respectively, discarding the
positive terms there. The function g is bounded by the induction assumption (A2).
Integrating then over the whole group we obtain the bounds

α)]}. (5-22)

A bound on J(4) follows directly from the induction assumption (A2),

Ί}. (5.23)

Collecting these bounds (5.21)-(5.23) and incorporating there β' = β + Θ(\\ we
deduce from the decomposition (5.10),

\J(u, iy)\ < const exp {i \_β'y2 - p(β')1 ~ 2α - δ3(βry ' 2α]} (5.24)

f κ2 } κ2

with <53 = min <p, 1 —-— p> =1 —-— p. Hence due to δ3 > 0 and β' sufficiently

large, (5.24) and (5.5) imply for the analytically continued Gibbs factor (5.1) the
bound

|g'(w, iy)\ < exp {β'y 2 —p(β') 1 ~ 2α}, (5.25)

valid in the domain (5.4). Thus we have reproduced the induction assumption (A2)
after one iteration, which concludes the proof of Theorem 1.

6. Effective Actions and Continuum Limit

The inductive scheme described by the assumptions (A1)-(A3) and the one step
results of Theorem 1 and its corollary provide the basis to control the flow of
Gibbs factors under the iterated renormalization group transformation.
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We consider a sequence of successively finer lattices with spacings 2~N,Ne N0,
obtained by repeatedly subdividing the unit lattice in dimension d = 2 or d = 4.
Thus we have r = 2{4} for d = 2 spin systems {d = 4 gauge theories} of the
hierarchical "Migdal type," which we define on these lattices. Taking a smallest
spacing 2~N which provides the (physical) UV-cutoff we describe "physics" at
lower momentum scales on the lattices with spacing 2~w, n = N, N— 1, ...,0 by
iterating the Migdal block spin transformation, which implies the successive
coarse-graining of the original (cutoff) lattice. Our aim is to control on a given
lattice scale 2~n the sequence of Gibbs factors, i.e. of effective actions, which is
generated by this renormalization group from properly chosen initial ("bare")
Gibbs factors at scale ( = cutoff) 2~N, in the continuum limit JV->oo.

For this purpose we modify our notation of the Gibbs factors conveniently.
Instead of g(π)(w), n e N0, we use g(^n\u), N e N0 and n e Z with n ̂  N. The subscript
JV denotes the initial (cutoff) lattice, with spacing 2 ~N, whereas n denotes the lattice
with spacing 2~n reached after N — n renormalization group transformations 3~ .
Thus we consider the flow

8(

N-N\u)^g(

N-N+ί\u)^...^g$\u). (6.1)

Similarly we introduce the notations g(^~n\ h(^n\ β(^n} etc.
As a first step we investigate the flow of the coupling coefficients β(^n\ ^N~"\

σ(^n} for a given cutoff N, with the initial Gibbs factor g(^N) chosen such that
Theorem 1, respectively its corollary, apply (at least) N times, i.e. β$} > β. Denoting
for shortness j8^~w) by β and β£n+ 1} by β', similarly λ and λ', σ and σ', we recall the
recursion relations (3.7), (3.15).

In order to control the flow under repeated application of these recursions we
first diagonalize partially by suitable nonlinear transformations. In the case of
r = 2 they are defined by

a '. = o ,

and similar definitions for β', I', σ'. In the case of r = 4 we calculate β=β + 2λβ~ 1

+ &(β~l). We observe that within the weak coupling domain considered, i.e. β^β
(large enough) and \λβ~l\, \σβ~l\ bounded by constants, the transformation (6.2)
has a unique inverse,

), (6.3)

σ=σ.

From (3.7) and (6.2) (and similarly in the case of r=4) we obtain the "decoupled"
recursions

(6.4)



Continuum Limit of a d = 4 Hierarchical Lattice Gauge Theory 279

where we denote remainders (which, of course, depend on the respective Gibbs
factor) by R1 2,3- The positive constants A1f2,3 do not depend on the iteration step,
and the parameters c0ίc,l are

c0 = i,c_!=A: for r = 2,
(6.5)

CO = I C _ I = IL for Γ = 4β

From the positivity of c0, implying that the marginal coefficient β decreases with
increasing lattice spacing, we recognize UV-asymptotic freedom. The flow of β, as
well as that of the contractive couplings λ and σ, is controlled by the flow of β.

We define for weN0 and /?0eR+, β0>§9

(6.6)
Co o

Then one easily calculates with delR,

(6.7)

The positive constant CΊ does not depend on m and is uniform in d, \d\ < Sl5 and the
small positive s1 absorbs ln(m) terms. The flow of the effective actions is controlled
by

Proposition 2. Choosing for all NeN0 initial Gibbs factors g(^~N\u) satisfying
(A1)-(A3), with initial values β(χ~N) = BN + bN with BN from (6.6) and bN = &(Bχ1), the
recursion relations (6.4) imply for neN0 uniformly in N^n,

- 2 +

Proof. For β=Bm+d, d=&(\\ follows from (6.4) due to (6.7),

, with < . _ = J

with a constant (5 5 > 0. Repeated iteration, starting with the initial values of the
proposition, implies

^-"'=βB+&JV+JVΣVm,l</,j<(i+^μ1βm

2+2«. (6.9)
m = n

It is crucial to observe that the respective values of d occurring in these
oo

iterations are uniformly bounded, since the series £ φm converges absolutely.
m = 0

Hence an appropriate bound S1 entering (6.7) and a constant (55 can be chosen on
account of a sufficiently large value of /?0. Repeated iteration of the recursion



280 V. F. Muller and J. Schiemann

relations for I and σ together with the result obtained for ̂ "π) yields

, (6.10)

β, (6.11)
fe = «+l

with suitably chosen constants <56, δΊ.
It is straightforward to bound the sums in (6.9)-(6.11), e.g. by corresponding

integrals, and therefrom obtain the estimates stated in the proposition, uniformly
in N. Π

From Proposition 2 we deduce a very precise picture of the flow of couplings,
exhibiting general features of the transformation. Since ^N) and σ^"^ are
restricted to be (at most) &(β(

N~N)) = &(BN\ the first terms in (6.8) contributing to £ σ
are strongly damped, which we infer from the inequality, valid for N e N0, N>n,

(6.12)
o

f t

and 1 + -p being small compared to r.
Po

Thus Proposition 2 implies for any scale n e N0, uniformly in

9 6.13)

which entails due to (6.3), in the case of r = 2,

A,= -^o,

(6.14)

For r = 4 (6.14) holds with ^= -lie-
Hence the couplings β(χn\ λ(^n\ σ(^n} at scale n are found within intervals

determined by £„, uniformly in the cutoff Λ f > n + 2(lnr)~1ln(/?0 + c0n) and for
arbitrary bare actions g(^~N\u) [satisfying (A1)-(A3)], provided we fix β(j^~N} as
stated in the proposition. These bounds are inherited by the continuum limit
N-> oo, if it exists. As a basis for its construction we formulate

Theorem 2. Let the initial Gibbs factors gN~N\u) for the "cutoffs" JVeN 0 be given
either by the Wilson action (2.5) with

β==pN-Ni = BN + c,c = ̂ {±} for r = 2{4}

or by the heat kernel action (2.20) with y = BN + ̂ .
Then holds, if β0 in (6.6) is chosen sufficiently large:
1) The inductively defined functions h(^n\z\ rceN0 with n^N, which are the

Gibbs factors on scale n, expressed as a function of (and analytically continued in)
the central angle, are entire holomorphic in z e C, 2π-periodic and real positive for
zeR.
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2) In the small field domains |z| <($,'"')'",

77ιe terms in brackets [...] are rapidly damped for N large, see (6.14), and
λ*=—sk{-τhs}forr = 2{4}.

3) For z = x + iy, with x,yeR, \z\>(β^ΓΛ, \x\ίπ, \y\< (&-">)-*,

4) 77ιe families, πeN0, C4~n)(z)};v^« flr^ normal families of holomorphic
functions in the domains

ί K 1

jzeC:|Imz|<-(^-"))-β[ with

Proof. For the Wilson action (W) and the heat kernel action (HK) we have

W: 4-ΛΓ)=-ίr^-Λ'),4-ΛΓ) = ΐr^ΛO,

HK: j8iΓJΪ) = y

Both their respective analytically continued Gibbs factors g(^~N\u,z\ (2.7), satisfy
the induction assumptions (A1)-(A3). Due to the chosen initial values we have
β(^N) = BN + &(B^ί) and deduce from Proposition 2 and (6.3) that for any given
initial cutoff AT the iterations, leading to lower energy scales, can be performed until
the unit lattice is reached. Hence the properties (A1)-(A3) are valid for any
g(N~n)(U9z).

1) restates (AJ and has already been commented on in Sect. 2.
2) restates (A3) together with the values of the coupling coefficients determined

by Proposition 2 and (6.3).
In proving 3) we suppress subscript N and superscript ( — n). From the

definition (2.10) and the symmetry (2.8) we obtain VzeC

h(z) = g(e0,z) = g(e-ix«My). (6.15)

Proposition 1 shows for |z| sufficiently small \θ(e~ίxσ\ ίy)\ = |z|. Property (A2) then
implies 3). In order to prove 4) we first observe for given cutoff N and scale n the

bound, valid for \y\ < |(jSίv~M))~α

?

\h(

N-n\x + iy)\ < exp (1 + ε') Y (fa"*)1 ~ 2α 1 . (6.16)
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It follows from 2), 3) and the periodicity of h(^n\z)\ the small ε' > 0 absorbs an order

β(Nn)Γ2*)
Now consider the family of a given scale n. Because of 2) there exists

(6.17)
-IS"

In the strip |Imz|< -(/J(~w))~α the members of the family are holomorphic

functions bounded by

2 (6.18)

This proves 4), [13], and completes the proof of Theorem 2.

Remark. Part 4) states the existence of a convergent subsequence of
for fixed n, i.e. existence of continuum limits, at any scale, via subsequences of
cutoffs Nj-^co. This result is sharpened in

Theorem 3. Under the assumptions of Theorem 2 there exists a subsequence (Nj)jeK

of cutoffs, with Nj<Nj+l9 such that for any scale weN 0 the sequence (/4~M)(z))
converges,

The convergence to the holomorphic function h( π)(z) is uniform in the strip |Imz|
= i(β(~w))~α These limit functions h(~n\z] uniquely define class functions g(~n\u\
ueG, and extensions g(~M)(w,z), (2.7), satisfying (Aj). The sequence g(~n\u), neN0,
defines continuum effective actions at all scales due to the property

where &~ denotes the Mίgdal transformation (1.1), with r = 2 or 4.

Proof. Consider first an arbitrary convergent subsequence of (h(^~n))N^n at a given
scale n; i.e. assume

\z) = h(-n\z). (6.19)

The convergence is locally uniform, and thus h(~n\z) holomorphic, in |Imz|

<dn: = y(/?(~π))~α due to the uniform bound (6.18). Part 1) of Theorem 2 implies

that h(~n} is even, 2π-periodic and nonnegative for real arguments. Furthermore,
00

the Fourier expansion £ a(~n} cos(mz) of h(~n\z) is uniformly convergent in |Imz|
m = 0

^ d' < dn. Since cosmz is a polynomial in w = cosz, this series defines a holomorphic
function

on

the image of {|Imz|<dw} under w = cosz, satisfying there

(6.20)
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Thus we can define, for u e G and z e C, |Imz| < άw implying u0 cosz + w3 sinz e 2W

g(~n\u, z) = #(-"K cosz + w3 sinz) , (6.21)

which is clearly continuous in w e G and holomorphic in z, satisfying (2.8)-(2.10).
Equation (6.21) is the unique "analytic continuation," (2.7), of g(~n\u) : = g(~n\u, 0)
= H(~n\u0) which is the class function on G represented by h(~n\x) as a function of
the central angle. Note that

g(~n\u)= lim giί-->(ιι) (6.22)
j-» oo

(Nj^n)

as a uniform limit on G, due to (6.19).
The limit Gibbs factor g(~n\u) has a zero set of Haar measure zero since this set

consists at most of a finite number of conjugacy classes (h(~ n} can only have discrete
zeros). Moreover g(~n\u) is of positive type, since the gίv~π)(w) have this property.

The final steps of our proof rely on two general properties of the Migdal
transformation SΓ, namely (i) 2Γ is continuous (with respect to the supremum
norm) on g : = (g(u) continuous class function on G, g(u) ̂  0, g(e0) = 1 }, and (ii) 3Γ is
injective on g0 : = {g e g, g is of positive type}. Both (i) and (ii) are deduced from
properties of [^"]1/r, invoking for (ii) the character expansion of g.

We fix the subsequence Nj such that (6.19) holds for n = 0, and prove (6.19)
inductively for all neN. Assume (6.19), and thus (6.22), at scale n. The sequence
(^~w~υ(z)) of the preceding scale, being a normal family for ze(C, |Imz|

K
<y(/?(~"~υ)~α due to Theorem 2, has convergent subsequences, with corre-

sponding limits (6.22) of the Gibbs factors g^"" ~1)(w) Those are mapped onto

g(~n\u) due to (i); thus there is a unique limit g(~n~ υ(w) = lim g/^"~ 1)(w) due to (ii),

which shows (6.19), (6.22) for n + 1. J"°°

The property $~g( ~n~1 \u) = g(~ n\u) implies g( ~ n\u) > 0 on G, since g( ~ " " 1 \u) is
nonnegative and vanishes at most on a set of Haar measure zero.

Finally the analytically extended version of y, (3.1), (3.8), when applied to
g(~"~1}(M,z) as given by (6.21), yields an analytic continuation of g(~n)(w,z) to the
wider strip

Iterating this argument, with rm(/?(~"~m))~α

 m^oo> oo, shows that g(~n\u, z) is entire

in z e (C for all n. Π

The continuum limit Gibbs factors g(~n\u) respectively h(~n\z) inherit small
tc

field properties at least in |z|< -(β(~n})~a which are directly read off from

Theorem 2, 2), omitting subscript N and the orders in brackets there. These results
for the "running" couplings reflect UV-asymptotic freedom.

We can iterate g(0)(w), obtaining g(1\u) = ̂ ~g(0\u) etc., and continue, thus
reaching lower and lower momentum scales. Although we leave (eventually) the
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realm of our weak coupling analysis, Ito's nonperturbative analysis [11] can be
applied, due to the properties stated in Theorem 3. It shows that g(n\u) converges
for n->oo to the strong coupling fixed point g = l. Therefore the infinite volume
limit of expectations within this hierarchical lattice theory can be performed in the
strong coupling region. In the gauge model (r = 4) the string tension can be derived
from a sequence of suitably chosen Wilson loops, see [7, 8]; Ito's result [11] then
implies

Theorem 4. The continuum limit Gibbs factors g(~n\u] of a hierarchical gauge
model, as obtained in Theorem 3, yield a positive string tension.

Appendix

In this appendix we exhibit some properties of the heat kernel (2.20). We denote
(2.20) by g(u) and by h(θ) and g(w, z) the related functions as defined in Sect. 2,
suppressing the parameter

Lemma.

(i) Λ(θ)>0,

(ii) h(θ) decreases monotonously in θe(0, π),

with ρj=0(γ2j+1e-**Ir) for y->oo,

(iv) in j|0|>/Γ", |Re0|gπ, |Im0|<|

\h(θ)\ < exp {β(Im θγ-pβ1-2*}

with a constant p = f and β' = y — 6+Qι large enough. (K and α are defined in
Sect. 3.)

Proof. From (2.20) we obtain the entire holomorphic function

with the positive normalization factor Jf determined by h(0) = i. Equation (A.I)
can be expressed in terms of the theta-function 53, [14], writing

(A3)
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From the product representation of θ3, [14], we obtain

42"'1 Π {l+242w-1cos0 + 44m-2}, (A.5)
n= 1

00

2"<?o= Π(l-<72") (A.6)
n = l

In (A. 5) each factor is strictly positive V0 e R and decreases in (0, π), thus proving (i),
(ϋ).

Employing in (A.3) the Poisson summation formula we obtain, with δ>Q
small, in® = {0e<C:|Re0|^π -δ},

sin0

exp(-4π>2)!>, (A.7)

and with θ=π — θ in ® = {#e(C:|Re#|SΞπ — δ},

iθ2 Σ exp[-4π2y(n-i)2]
sine

• {4π(n — ̂ )θ~1 sinh4πy(n — ̂ )θ— 2cosh4πy(w — ̂ )θ} . (A.8)

Both representations are explicitly holomorphic in their respective domains. For
large values of y the constant Jf' determined by normalization of (A.7) is

JT' = \ + 0(y exp {- 4π2y}). (A.9)

From (A.7) we read off (iii). Moreover we deduce from (A.7) and (A.8) bounds, valid
for y-> oo,

\h(θ)\ ̂

(A.ll)

κ2

From these bounds follows (iv) observing that p < 1 - — + Φ(β~ 1 +2α). Π

Part (iv) of the lemma directly entails the induction assumption (A2) for g(w, z\
(2.21), using Proposition 1 to represent g by h. We have to consider arguments
(w, ίy) with

For u0 ̂  0 we have g(w, iy) = h(π — 6(u, iy)) with ^defined in Sect. 2. We observe that
\lmθ\ ̂  \y\ and 0 ̂  Re^^ f , which is implied by the remark following the proof of
Proposition 1; thus π — θ is in the domain considered in (iv). For w0>0 and
\θ(u,iy)\>β~a we have g(w, iy) = h(θ(u, iy)), bounded by (iv), too. Both pieces
together establish the bound (A2).

This method to derive (A2) from a bound on h(θ) is easily applied to the Wilson
Gibbs factor, too.
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