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Abstract. The general method of construction of integrable dynamical models
in quasicrystals is presented in the paper. It is illustrated on the example of the
model of interacting spins for Penrose nonperiodic tiling of the plane. Another
example constructed is the three dimensional model of interacting spins for
icosahedral tiling of the three dimensional space. The bulk free energy is
calculated for these models.

1. Introduction

The interest for nonperiodic tilings came first from problems of mathematical
logics [1,2]. However, since the invention by Penrose of his well known aperiodic
tilings of the plane [3-5], the motivations have changed to the study of the
geometrical properties of these patterns. The important role in the study of these
tilings belongs to J. Conway and de Bruijn [6]. A tiling is a covering of the whole
plane by shifts of a finite number of polygons, which don't overlap, and there are no
holes. The tiling is not periodic (there exists no shift that does not change the tiling).
But it is quasiperiodic. It means that any finite part of the tiling appears infinitely
many times in the whole tiling. Some of the tilings have additional symmetry.
Penrose tiling has the axis of the fifth order, which is forbidden for the periodic
tiling. Another kind of symmetry is deflation. The initial polygons can be cut into
pieces, these pieces can be sewn in such way that the new tiling is similar to the
initial one. Below we shall discuss the tiling of the plane by two rhombuses, see
Fig. 1. The deflation for these rhombuses is depicted in Fig. 2. The inverse
transformation is called inflation.

R. Ammann and Mackay [7] proposed a three dimensional generalisation of
Penrose nonperiodic tiling. The three dimensional tiling has icosahedral symmetry
[8] which is incompatible with a periodic lattice. The experimental discovery of
icosahedral symmetry (a rapidly quenched alloy of srf£bJUί) [9] played an
important role. Its crystalline structure was explained by the Penrose nonperiodic
tiling [10-12]. (It was the first example of a quasicrystal.) This discovery has
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aroused intense activity among theorists [13-21]. The interesting problem is to
analyze dynamical systems in the quasicrystal [22-27].

The main result of this paper is the construction of exactly solvable models in
quasicrystals. (Exactly solvable dynamical models are studied intensively in the
literature, see [28-44] and references in these papers.) The general method of this
paper is illustrated in two examples. The eight-vertex model is constructed for
Penrose nonperiodic tiling of the plane. The eight-vertex model of interacting spins
is equivalent to two interacting Ising models. In the three dimensional case the
Zamolodchikov solution of tetrahedron equations is used to construct an exactly
solvable model of interacting spins for icosahedral tiling of the three dimensional
space.

In Sect. 2 Penrose nonperiodic tiling of the plane by two rhombuses is
constructed in such a way, which permits us in Sect. 3 to construct a completely
integrable model of interacting spins for this tiling. In Sect. 4 icosahedral tiling of
the three dimensional space is constructed. Two rhombohedra are used instead of
two rhombuses. Rhombohedron is a special case of parallelepiped. Section 5 is
devoted to the Zamolodchikov model of interacting spins in three dimensions. The
model is based on the solution of tetrahedron equations. In Sect. 6 the model of
interacting spins is constructed for a three dimensional quasicrystal.

2. Penrose Patterns

Here we shall remind the reader of the construction of nonperiodic tiling of the
plane by rhombuses, see Fig. 1. We shall denote this tiling by Q. Each rhombus of
the tiling can be obtained from a pair of rhombuses by translation and rotation.
This pair is: the obtuse rhombus (angles 72° and 108°) and the acute rhombus
(angles 36° and 144°), see Fig. 2. The length of each of the sides is equal to one. To
describe an orientation of the rhombuses in the tiling it is convenient to introduce
five unit vectors,

eJ = exp{2πίJ/5}, J = 0,1,2,3,4. (2.1)

Here we used complex coordinates in the plane. Complex conjugate vectors are
equal to ej = e_j; we use here formula (2.1) for J = 0, - 1 , - 2 , — 3, -4 . It will be
also useful to introduce five vectors dp which are orthogonal to the vectors e7:

; = 0,l,2,3,4. (2.2)

The J*-+j correspondence is given by the following table (corresponding vectors
are orthogonal):

do<->eo, d 1^>e 3, d2<-+e1? d 3^>e 4, d4^->e2. (2.3)

All vectors dj belong to the left half plane. Let us associate rhombus rkj to each pair
of vectors dfc,d7 (k>j). They are orthogonal to the edges of the rhombus rkj, see
Fig. 3. In this way the set of vectors (2.2) generates ten basic rhombuses, five obtuse
ones and five acute ones (in different orientations). So we shall label each of basic
rhombuses by a pair of numbers j,k (4^/c>j^0). All rhombuses of the tiling Q
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Fig. 1. Penrose nonperiodic tiling of the plane by two rhombuses

Fig. 2. Obtuse and acute rhombuses and their deflation

can be obtained from the basic ones using translations only. The relative frequency
ωkj of appearance of a given basic rhombus in the whole tiling is important. In the
case when tiling has pentagonal symmetry [4-6] the frequencies of each acute
rhombus are the same (we shall denote it by ωa) and the frequencies of all obtuse
rhombuses are also the same (ω0). They are equal to [3-6]:

o = l/5τ,

Here τ is a golden ratio:

(2.4)

(2.5)

(It should be noted that the plane can be tiled by translations of only one basic
rhombus in the periodic way.)
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Now we shall give the construction of this tiling Q by means of the duality
transformation [6]. It is very useful for construction of completely integrable
models, see Sect. 3. First we shall construct the grid (E, and then by means of the
duality transformation we shall construct nonperiodic tiling Q. The grid (E is
constructed as follows. Let us consider the straight line ί3 orthogonal to the fixed
vector ej (2.1):

/j(nj) = {ze(C\ Re(ze_,) + 7j = n3}. (2.6)

Here z is the point of the complex plane, y3 is a real parameter and n3 is an integer
number. The straight line f5 is directed along vector dj? see (2.2), (2.3). Let us
consider now the equidistant set of parallel lines ί3. It means that n3 takes all
integer numbers from — oo to + oo. Construct now such a system of straight lines
for each of five vectors t3 (2.1). Parameters γ3 should be chosen in such a way that
no three straight lines i3 intersect in one point. This set of straight lines will cut the
plane into an infinite set of different polygons; we shall call them the faces of the
grid. So we have constructed the grid (E.

Let us make the duality transformation. The vertices v of Q correspond to the
faces of (G. The edges of Q correspond to the edges of (E (they are orthogonal). The
faces of Q correspond to the vertices of (E. To do the duality transformation it is
convenient to associate five integer numbers Πj with each face £F of the grid:

nJ(i?r) = [Re(ze_J) + y J ] 9 zeF. (2.7)

Square brackets here mean the integer part. [Roughly speaking n3 are the numbers
of the straight lines (2.6), which form the boundary of the face #\] The vertex v of
Q, corresponding to J^, is given by:

v ( # > Σ ejHji^). (2.8)
j = o

In this way all the vertices are constructed. Let us construct the edges of Q. We
shall connect some of vertices by the segments of straight lines. Consider two
adjacent faces of G (they have a common edge) and connect the vertices v cor-
responding to these two faces by a vector. One can show that this vector is one of
five vectors (2.1). So each edge of Q can be obtained by shifts from (2.1). The faces
of Q correspond to vertices of (E. To see this consider four faces of (E, which
have a common vertex. Four vertices of Q, corresponding to these faces are the
vertices of the face of Q. This face is the convex hull of its vertices. Faces of Q
are the ten basic rhombuses mentioned above. So we have constructed the
tiling Q.

It should be mentioned that the duality transformation is a general method for
construction of nonperiodic tilings [6, 8,13,16, 21]. (There exist a lot of different
nonperiodic tilings.) For each of these tilings the completely integrable spin model
can be constructed, see the next section.

3. Exactly Solvable Spin Model in Two Dimensional Quasicrystal

Here we shall construct an eight-vertex spin model for the Penrose tiling of the
plane, described in Sect. 2. Spins σ are associated with the vertices v of the tiling Q.
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Fig. 3. This is basic rhombus rkj. Vectors άk, d, are orthogonal to its edges

Each spin has two values ± 1 . Spins interact round a face of Q. (All faces are
rhombuses.) The Hamiltonian H of the model is equal to

1 faces
(3.1)

Here Tis the temperature. The sum is over all the faces of Q. The expression in the
square brackets is the contribution of the given rhombus rkj to the Hamiltonian.
Spins σΛ σn, σm, σp are situated in the vertices of the rhombus, see Fig. 3. The values
Pkj, P'kj, and P" are dynamical coefficients. Let us consider the vectors dy (2.2); they
belong to the left half plane. First consider the pair of vectors dfe,dy (k>j)
corresponding to the given basic rhombus rkj, see Fig. 3. (They are orthogonal to
its edges.) Shade the sector between these two vectors (and the opposite sector).
The pair of vertices of rhombus rkj belong to the shaded sectors (σn, σe\ another
pair belong to unshaded sectors (σp, σm). The interaction of spins in the shaded
sectors is given by the coefficients Pkj, the interaction of the spins in the unshaded
sectors are given by coefficients Pkj. Coefficients Pkj and Pkj are orientational
dependent. There are twenty one dynamical coefficients. The object of statistical
mechanics is to calculate the partition function:

Z=χexp{-
{}

(3.2)

In the thermodynamical limit the free energy F= — T lnZ is proportional to the
number of rhombuses N. The bulk free energy f is of interest:

f = \im(FIN). (3.3)

It would be highly desirable to solve the model for any choice of dynamical
coefficients, but the author knows of no way to do this. What can be done is to
calculate f, if dynamical coefficients depend (in some special way) on six
parameters. The corresponding parametrisation can be written in terms of elliptic
functions. Their modulus A is the first parameter. Each unit vector d ; (2.2) is
associated with an independent real parameter α,- (y = 0,1,2,3,4). We shall call α,-
spectral parameters. They form an increasing sequence α f c>α7 , if k>j. The last
parameter is the coupling constant λ. Let us associate the values

(3.4)
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with each basic rhombus. These parameters must satisfy the following inequalities:

0<akj,ockj<λ<2jf', k>j. (3.5)

The values Jf and Jf' are the complete elliptic integrals of the first kind of
moduli A and £' = {\ —£2)112 respectively. Dynamical coefficients are expressed in
terms of six independent parameters by the following formulas:

j = am{i(Jf'-ockj)}, (3.6)

The values ockj fix the interaction of spins in the shaded vertices of the rhombus
(Fig. 3), and αk7 fix the interaction of spins in the unshaded vertices of the rhombus.
In this way the exactly solvable spin model is constructed.

The model can be solved in the following way. First one must reformulate the
model on the grid G dual to the quasiperiodic tiling Q, see Sect. 2. Now spins σ are
associated with the faces of the grid. Spins interact round a vertex of the grid. Each
straight line t j (2.6) is associated with the spectral parameter acj, see (2.3). The value
of the spectral parameter is the same for the parallel straight lines. So this model is
equivalent to the special case of the eight-vertex model on an arbitrary planar
lattice [33]. It permits us to solve the model. The bulk free energy f is equal to:

f= Σ ωkjU(Pkj,P'kj,n. (3.7)
4 ^ k > j 1 0

The sum is over ten basic rhombuses, ωkj are relative frequencies (2.4), f 0 is the bulk
free energy for the periodic case. For a periodic tiling of the plane by the shifts of
one of the basic rhombuses the spin model is defined in a similar way. It is
equivalent to the standard eight-vertex model, the exact solution of which is
presented in detail in the book [28]. The bulk free energy of this model is denoted
by f0. Solution of the periodic model was imbedded in the frame of quantum
inverse scattering method in the paper [32]. The periodic model depends only on
three dynamical coefficients P, P, P". Partition function Z has a symmetry (see the
Appendix), which permits us to consider dynamical coefficients only in the region:

(3.8)

In this region the bulk free energy f0 in the periodic case is equal to:

oo χ-n(χ2n_πn\2(χnιχ-n_n_-n\

-ur.r.rvτ-r+r+r+ ,Σ " J ί ^ ^ '
(3.9)

Here

q = exp {- 2π JίT '/Jf}, x = exp {- πλ/lJf),

z = exp{-π(α'-α)/2jΓ}.
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Fig. 4. Icosahedron generates crystalline structure alloy

The local magnetization and polarization are equal to

\σt/= 11
1-x 4n-2

n= 1 \ 1 — ί+x2

(3.11)

(3.12)

So we have solved the spin model in the two dimensional quasicrystal. In the case
jP" = O, (3.1), (3.6) the model is equivalent to two Ising Hamiltonians for the
quasicrystal. The Ising model is equivalent to free fermions. In the case P" = 0
correlation functions can be calculated, see [33]. For correlation functions of
interacting fermions see for example [34].

To conclude, one has to emphasize that we have presented a general method of
construction of integrable models in the quasicrystals. A quasicrystal can be
obtained by means of the duality transformation from the grid [6, 8, 13, 16, 21].
The eight-vertex model can be solved on any grid [33]. It is clear that not only the
eight-vertex model but any solution of the Yang-Baxter equations [28-31] can be
used for construction of the integrable models in the quasicrystals.

4. Icosahedral Tiling of 1R3

The three dimensional case is treated similar to the two dimensional one
considered above. The most interesting quasicrystal has icosahedral symmetry [7,
8, 10-12, 15, 17]. There exist different icosahedral tilings of R 3.

We shall illustrate below the quasiperiodic tiling of R 3 by means of two
rhombohedra [7, 8,15,17]. Rhombohedron is a special case of parallelepiped; all
its faces are identical to the same rhombus. The ratio of diagonals of this rhombus
is equal to τ (2.5). First we shall construct the grid (E, and then (by-means of the
duality transformation) the quasicrystal Q. Consider an icosahedron, see Fig. 4. It
has six axes of the fifth order. Let us consider six unit vectors

j=l,2,3,4,5,6, (4.1)
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directed along these six axes. Regard the plane pj orthogonal to the vector ej9

πJ.}. (4.2)

Here x e R 3 and jj are six independent real parameters, brackets denote the scalar
product, rij is the integer number (corresponding to this plane). Consider now the
system of parallel, equidistant planes orthogonal to the vector ê  . Each plane of
this system is given by the formula (4.2) and the variable n, takes all integer values
-oo<«j<+oo. There are six different systems of planes of this kind, correspond-
ing to each e,- (4.1). This system of planes divides R 3 into the set of polyhedrons;
they are cells of the grid (E. Parameters y,- should be chosen in such a way that no
four planes have a common point. So we have constructed grid (E. To make the
duality transformation let us associate six integer numbers rij with each cell of the
grid. Let x belong to some cell c of the grid. Integer numbers are given by the
following formula:

(4.3)

(Roughly speaking these Πj are the integer numbers corresponding to the planes
bounding the cell.) Square brackets mean integer parts. The vertices v of Q
correspond to the cell of (E; they are given by the formula

γ(c)= Σ e Λ (c). (4.4)

The vertices corresponding to the adjacent cells of the grid differ by one of vectors
e, (4.1) (yί = v2 + e/ ). Let us connect these vertices by the segments of straight lines
(vectors). It will be the edges of Q. The faces of Q are constructed as follows. Let us
regard four vertices v1,v2,v3,v4 of Q corresponding to such four cells of the grid,
which have a common edge. They are connected by four edges, which form the
boundary of rhombus. The rhombus spanned on this boundary is the face of Q.
The cell of the quasicrystal Q corresponds to the vertex of the grid (E. The cells of Q
are rhombohedra IF. The basic rhombohedron Fikj is generated by three of six
vectors e, (4.1),

(4.5)

Here λj are real numbers. We shall label each basic rhombohedron by three
numbers i,k,j (the numbers of vectors e generating rhombohedron). There are
twenty (C|) basic rhombohedra. Each rhombohedron of the tiling Q can be
obtained from the basic ones by translations. One can show that ten of the basic
rhombohedra can be obtained from one standard rhombohedron by means of
rotations. We shall call this standard rhombohedron the acute rhombohedron. It
is generated (4.5) by the three following unit vectors:

e1=α(0,l,τ), e2 = α(-τ,O, -1) , e3 = α(τ,0, -1) ,
(4.6)

Ten other basic rhombohedra can be obtained from the obtuse rhombohedron
by rotations. It is generated (4.5) by the three following unit vectors:

e4 = α(0,-l,τ), e5=(τ,0,l)α, e6 = α(O,l,τ). (4.7)
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The relative frequency ωikj of the appearance of each basic rhombohedron can be
calculated [15]. It is the same for all acute rhombohedra and equal to

. (4.8)

The relative frequency ωikj for all obtuse rhombohedra is equal to:

(4.9)

At last, one should emphasize that there are many different nonperiodic tilings
(quasicrystals). The icosahedral symmetry is not necessary for them. The method
of the dual transformation from the grid is a general method for constructing
quasicrystals [6,13,8,16,21]. In Sect. 6, we shall construct a completely integrable
spin system for an arbitrary quasicrystal.

5. Zamolodchikov Model

Zamolodchikov constructed the model of interacting spins in three dimensions
[35, 36]. The Boltzmann weights for this model satisfy tetrahedron equations; this
is the reason why the model is exactly solvable [35-37]. The bulk free energy of the
model was evaluated by Baxter in [38,39]. To prove that all tetrahedron equations
are satisfied, Baxter reformulated the Zamolodchikov model on the dual lattice
[40]. We shall use this formulation. Let us consider a standard cubic lattice if in
three dimensional space. Spins σ are associated with the vertices of the lattice. Each
spin is free to take two values +1. They interact round a cube. The Boltzmann
weight is associated with each unit cube. The disposition of spins in the vertices of
the unit cube is shown in Fig. 5. We shall denote the Boltzmann weight associated
with this cube by:

W(a\e9f9g\b9c9d\h). (5.1)

This weight depends not only on the values of spins a, b, c, d, /, g, h, e, but also on
three real parameters θ12, Θ23,θί3 (angles). It can be written as follows:

W(a\e,f9g\b9c9d\h;θ239θ13,θί2). (5.2)

To define these parameters let us introduce three unit (three dimensional) vectors
n 1 ?n 2,n 3. They do not necessarily coincide with three unit vectors generating the

e d

Fig. 5. Arrangement of the spins a, ...,h on the corner sites of a cube
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three dimensional lattice. The vectors n 1 ? n 2 ? n 3 are similar to the spectral
parameters; they define the angles θ:

. (5.3)

To write down the explicit expression of W9 let us introduce spherical excesses:

2ao = θί2 + θί3 + θ23-π, ^ = θ]k-a0. (5.4)

Here ίj,k are a permutation of 1,2,3. Further define

j 2 , ^ = 0,1,2,3,

and

2 3 ) ,
(5.6)

Λ=ίΛ> Qi=Wi > Ri=sAwfk) -

The Boltzmann weight W (5.2) has the values given in the following Table 1.

Table 1
abeh acfh adgh W(a\e9f9g\b,c9d\h; Θ239O139Θ12)

+ + + P0-abcdQ0

+ - + Ro
(5.7)

abP1+cdQ1

The partition function of the model is defined as:

Z=Σ Π W(a\e,f,g\b,c,d\h). (5.8)
{σ} cubes

The bulk free energy fo(#23>#i3>#i2) of the model is equal to [39]:

~U(θ23>θ i3, θ12)/kBT

+ ^ Σ Wt In sin(θjk/2) + (π - a,) In COS(ΘJΊJ2)} . (5.9)

Here kB is Boltzmann's constant, Tis the temperature. The values au a2, a3 are the
three sides of the spherical triangle opposite to the angles Θ23,θi3,θ12. The
perimeter of this triangle will be denoted 2s:

2s = a1-\-a2-\-a3. (5.10)
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Here ί,j, k are permutations of 1,2,3. The poly logarithm function Φ(x) is defined
as:

Φ(x)=
sin(2mx)

2πm2 '
(5.11)

One should mention that the partition function (5.8) is Z-invariant [31], due to the
fact that weights W satisfy tetrahedron equations.

At last let us formulate the model on the dual lattice and obtain the original
formulation by Zamolodchikov. Consider the dual lattice <£D to the initial cubic
lattice 5£. It is also cubic, its vertices are situated in the centers of the unit cubes of
the initial lattice ££. So the spins are situated now in the cubes of 5£Ό, and
Boltzmann weights are associated with the vertices of <£Ό. Make now the following
transformation. Adjacent spins are separated by faces of ££D. Let us define the spin
on the face of J£D to be equal to the product of spins of the unit cubes, which are
separated by this face. These are Zamolodchikov spins. The Boltzmann weight
(associated with the vertex of ^D) is denoted by

S (5.12)

Here i and k are the values of the spins on the three planes, intersecting in the
vertex, see Fig. 6) Finally, S and W are related by the equality:

s eg, ae, df, bh

de,af,bg,ch= W{a\e,f9g\b9c,d\h).

bf, ag, ce, dh

(5.13)

The arguments are given in [45] that the Zamolodchikov model is critical.
It should be mentioned that (similar to the two dimensional case) the

Zamolodchikov model can be formulated on arbitrary set of planes (no four planes
have a common point). The partition function will be Z invariant. There exists also
another exactly solvable three dimensional model [41]. It is equivalent to free
fermions. It also can be used for construction of exactly solvable models in
quasicrystals.

Fig. 6. The Boltzmann weight § of the Zamolodchikov model is associated with intersection of
three planes. Spins i, k are associated with the faces of the lattice <£Ώ. First plane intersected by two
others is depicted
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6. Exactly Solvable Spin Model for Three Dimensional Quasicrystal

The three dimensional case is treated similar to the two dimensional one
constructed in Sect. 3. Let us consider icosahedral tiling of R3, see Sect. 4. We shall
construct the spin model for this quasicrystal Q. Spins are situated in the vertices of
Q. Spins σ are free to take two values ± 1. They interact round a rhombohedron.
The Boltzmann weight W associated with a rhombohedron is:

W{a\eJ,g\b,cJ\h). (6.1)

Spins a, b, c, d, e, /, g, h are situated in the vertices of the rhombohedron in the same
way as it was in the case of a cube, see Fig. 5. The weights W depend also on
spectral parameters. To introduce these parameters let us associate the unit vector
Uj with each of the six vectors ê  , generating the quasicrystal (4.1). Vector n̂  does
not necessarity coincide with e7 ; it plays the role of spectral parameter. The
Boltzmann weight W, which is associated with the rhombohedron Fitjtk [it is
generated by three vectors e^e^, efc (4.5)] depends on three angles 0^,0^,9^:

(n,.nfe) = cos θjk, ( n ^ ) = cos θik, K n,.) = cos θυ. (6.2)

We shall denote the Boltzmann weight by

J,g%cJ\h θjkAk,θi^ (6.3)

The explicit expression for W is given by the table (5.7) (after replacement of

023~^0jk> #i3~^ifc? 0i2~*0£/) The partition function of the model is defined as

Z=Σ Π W(a\eJ,g\b9c,d\h). (6.4)
{σ} rhombohedra

The partition function Z depends on 9 angle parameters (scalar products of six unit
vectors n). The partition function is Z-invariant due to the fact that weights W
satisfy tetrahedron equations. It means that the model can be solved similar to the
two dimensional case. One must reformulate the model on the grid dual to the
quasicrystal. It will be the Zamolodchikov model on the arbitrary set of planes.
Using the "unitarization hypothesis" [42-44, 28] one obtains for the bulk free
energy f:

f= Σ ω^foί^βtt.βy). (6.5)

It is the sum of twenty terms; each of them corresponds to one of basic
rhombohedron (4.5), ωikj being the relative frequency of appearance of a given
rhombohedron, see (4.8), (4.9); f0 is the bulk free energy for the periodic case, see
(5.9). For the periodic tiling of R 3 by means of translations of one of the basic
rhombohedra the spin model is defined in a similar way. It is equivalent to the
standard Zamolodchikov model, see Sect. 5.

The completely integrable spin model can be constructed in a similar way for
an arbitrary quasicrystal.
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Conclusion

The general method of construction of integrable dynamical models in quasicry-
stals is presented in the paper. The properties of these models are close to
properties of similar models in the periodic case, as distinct from properties of
dynamical models in quasicrystals discussed before in the literature.

Appendix. Symmetry of Partition Function

Let us consider the eight-vertex spin model for two dimensional periodic lattice.
The Boltzmann weight can be written in the form

w = exp {Pσmσp + Pσ€σn + P"σ€σmσnσp}.

It takes the following values a,b,c,d:

exp{-P-P'

The partition function has the following symmetry property [28]:

Z0({a*9b*9c*9d*}) = Z0({a9b9c9d})9

So it is sufficient to consider the model in the region (3.8).
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