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Abstract. The group of automorphisms of the conformal algebra su(2,2) has
four components giving the usual four components of symmetries of space
time. Only two of these components extend to symmetries of the conformal
superalgebra - the identity component and the component which induces the
parity transformation, P, on space time. There is no automorphism of the
conformal superalgebra which induces Tor PT on space time. Automorphisms
of su(2,2) which belong to these last two components induce transformations
on the conformal superalgebra which reverse the sign of the odd brackets. In
this sense conformal supersymmetry prefers CP to CPT. The operator of
charge conjugation acting on spinors, as is found in the standard texts, induces
conformal inversion and hence a parity transformation on space time, when
considered as acting on the odd generators of the conformal superalgebra.
Although it commutes with Lorentz transformations, it does not commute
with all of su(2,2). We propose a different operator for charge conjugation.
Geometrically it is induced by the Hodge star operator acting on twistor space.
Under the known realization of conformal states from the inclusion SU(2,2)
^Sp(8) and the metaplectic representations, its action on states is induced by
the unique (up to phase) antilinear intertwining operator between the two
metaplectic representations. It is consistent with the split orthosymplectic
algebras and hence, by the inclusion of the superconformal in the orthosym-
plectic, with the orthosymplectic algebra.

The conformal superalgebra of Minkowski space-time is a special case of a class of
superalgebras defined in [12]. We shall give a definition of a subclass of these
superalgebras in Sect. 2, and will be interested in studying their automorphisms.
We begin with some notational preliminaries.

Let V be a complex vector space endowed with a (pseudo) Hermitian scalar
product ( , ). That is, ( , ) assigns a complex number (M, V) to a pair of vectors u and v
in V and satisfies

(auι + bu2, v) = a{uγ, v) + b(u, v) linearity in u,

(v, u) = (ΐL/ϋ) Hermitian property,
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and

(w, v) — 0 for all u implies υ = 0 non-degeneracy.

This last condition replaces the usual condition (u, u)>0 for wΦO in the
axioms for a Hubert space which is the reason that some authors use the prefix
pseudo. We won't, but simply call (,) a Hermitian form. Just as in the real case
any such form on a finite dimensional vector space has a signature p, q. That
is, we can find an isomorphism of V with the vector space (C" (of all column
vectors - n tuplets - of complex numbers) with the Hermitian form

where n =
If V and W are complex vector spaces, a map L: V-+W is called linear if

L(au + bv) = aLu + bLv
U,VEV,

and anti-linear if L(au + bv) = άLu + bLv. L is called an isometry if (LM, LM) = (u, u)
for all M e K An isometry can be linear or anti-linear. A linear isometry L: F—• V is
called unitary while an antilinear isometry is called anti-unitary. A unitary map
satisfies (Lu, Lv) — (u, v), while an antiunitary one satisfies (Lu, Lv) = (ϊζD) = (v, u).
But (especially in the split case, p = q)wQ can also consider anti-isometries which
satisfy (Lu, Lu) = —(u, u). They also come in linear and antilinear versions which
satisfy (Lu,Lv)= —(u,v), and (Lu,Lv)= —(ΰ~v), respectively.

1. Weyl Spinors and the Complex Hodge Star Operator

Recall that the group SL(2,(C) (all complex two by two matrices of determinant
one) is the universal (in fact double) cover of the proper Lorentz group. Indeed we
can identify the vector (x0, x l 5 x2, x3) in Minkowski space with the skew adjoint
matrix

x = i(x°-χ*
\Xi -i

so that

HptY— v 2 -I- v 2 4- v 2 4- v 2

Then K G S L ( 2 , (C) acts on X by sending X into RXR*, where * denotes adjoint
(relative to the standard positive Hermitian scalar product on (C2). Since det̂ R
= det.R* = 1, this gives a real representation of SL(2,(C) on Minkowski space as
Lorentz transformations. The only elements which act trivially are / and —/.
Hence it is a double cover.

The group SL(2, (C) has two inequivalent complex representations on (C2. They
are given by
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and

and are usually labeled by (^,0) and (0,χ). These are the Weyl spinors (called
undotted and dotted Weyl spinors in the physics literature). They are not
equivalent as complex representations, in the sense that there does not exist any
complex linear isomorphism L:(C2->(C2 such that LRL~1=R*~1. (This is clear
because the matrix entries on the left are complex linear in the entries of R while
those on the right are antilinear.) On the other hand there is an anti-unitary map
which does implement the above equation. Indeed, define ® :(C2->(C2 by

y

— x

Then ® is clearly antilinear and satisfies

and

® 2 = - i d . (1.2)

For any two by two matrix define

U b\a ( d -I
c dJ-\-c aj ( O )

This is just the "adjoint" operation that appears in Cramer's rule. Thus

AAa — (det A) (1-4)

and

(AB)a = BaAa. (1.5)

An immediate verification shows that

®A = Aa*®. (1.6)

In particular if det# = l so that Ra = R~1, we get

Thus, if we regard (C2 as a real four dimensional vector space, then ® intertwines
the (̂ , 0) and (0, j) representations as four dimensional representations over the
real numbers, even though they are inequivalent as two dimensional represen-
tations over the complex numbers. We should also record the infinitesimal version
of (1.7) which is

®A=-A*® if t r^ = O, Aegl(2,<E). (1.8)

For any complex vector space we let F* denote the dual space, the space of all
complex linear functions on V. We let <Z,u> denote the value of a linear function
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/ G F* on the vector ueV. Thus, for example, if (C2 is the vector space of column two
vectors, then we may think of C 2 as the space of row vectors with

A Hermitian form ( , ) on V induces an antilinear map J: V-+V* given by

(Jv, u) = (M, V) . (1-9)

That is, Jv is that linear function whose value on any u e V is given by (u, v). For the

case of (C2, for example, J < > = {w, z}. Given vectors u and u e F, we can define the

linear transformation H(u,v) = u®Jv by

H(M,U)W = (W,I;)M. (1.10)

Thus, for C 2

as a matrix. It follows directly from the definitions that

H(μ,v) = H(v,u)*, (1.11)

and that, for 4̂ : F-» F a linear transformation,

H(Au,Av) = AH(u,v)A*. (1.12)

In particular the map S given by

S(M, t;) - i [if (M5 u) + //(u, M)] (1.13)

is symmetric and real bilinear (i.e., bilinear only over the real numbers) and takes
values in the real Lie algebra u(V) of all skew adjoint linear transformations on F
In view of (1.12) it is equivariant for the action of GL(F). For the case of F = (C2 we
thus get a symmetric map from Weyl spinors (of type (̂ , 0)) into the translations
which is equivariant for the action of SL(2,(C). This is the fundamental building
block for space time supersymmetry, cf. [3 or 15].

The space of Dirac spinors is the direct sum (C4 = C 2 © C 2 = (^,0)©(0,^) of
IA,

Weyl spinors of opposite type. We shall write a typical Dirac spinor as w = '

and the group SL(2,(C) acts diagonally, i.e.,

Ru

On the space of Dirac spinors we introduce the Hermitian form of signature 2,2
given by

(w9w
/) = (u,υ/) + (v,u/). (1.14)

This Hermitian form is clearly GL(2,(C) invariant. Up to putting arbitrary non-
zero real factors in front of the summands on the right, it is the only SL(2,(C)
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invariant Hermitian form. We may define

for X in Minkowski space (and thought of as a skew adjoint 2 x 2 matrix).
Then

Rγ(X)R~1 =y(RXR*) R e SL(2,(C)

(1.16)

so that the γ(X) determine a complex representation of the Clifford algebra,
C(3,1), of Minkowski space. They are Dirac matrices, to use the language of the
physics literature.

In the physics literature one finds an operator, C, acting on Dirac spinors
called "charge conjugation." C is to be a map of (C4->(C4 which is SL(2,(C)
invariant and which interchanges the two Weyl components. It is also to have no
effect on space time, and satisfy C 2 = 1. The first two conditions already determine
C up to a scalar multiple. So let us take

Then C is antilinear with

C 2 = Id and (Cw, CW) = - (w^w7).

Furthermore

(u\ ( R®v W ®K -Λ (u

) { ) { ) C R

SO

RC=CR. (1.18)

Also

v(X)c(U)-(° X)( ®v\-(-χ®u\-( ®χaA_c(V x

y{X)C\v -\Xa 0 \-®u ~\Xa®v -\-®Xv Γ \Xa 0

T h u s Cy(X)C~1=y(X)9 (1.19)

which expresses the fact that C has no effect on space time. (We shall modify our
view of this interpretation in Sect. 3. We shall introduce a different operator as our
choice for charge conjugation in Sect. 5.)

Notice that we can consider the real four dimensional subspace M of (C4

consisting of those w which satisfy

^ ί u
Cw = w, or w =
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In view of (1.19), γ(X)McM. In other words, the y's act as real transformations of
the real four-dimensional space M, and, of course, will satisfy (1.16). The elements
of M are called Majorana spinors and a Majorana representation is a matrix
representation of the y relative to a basis of M, so that in a Majorana
representation all the matrix entries of the y's are real. At this point it is essential
that we use the signature + + H— for our metric on Minkowski space rather than
_l 1 (This point was emphasized to me by Mitchell Rothstein and uncovered
an error in sign in [13].) Indeed the Clifford algebra C(3,1) is isomorphic to the
algebra R(4) of all four by four real matrices. On the other hand the algebra C (1, 3)
is isomorphic to H(2), the algebra of two by two matrices over the quaternions. It
has no representation by real matrices in any dimension less than eight. See [6] for
a complete discussion of the Clifford algebras of arbitrary signature and their
associated spin representations.

The equations (1.1)—(1.8) can all be readily verified by direct calculation. All
that is involved is manipulation with complex two vectors and two by two
matrices. On the other hand they have a natural extension to higher dimensions
once it is recognized that the operator ® is just an example of the Hodge star
operator. Here are the details: Let V be an ̂ -dimensional complex vector space
endowed with a Hermitian form. Then each of the exterior powers A\V) inherits a
Hermitian form determined by

(vί A . . . Λ Vk, Wt Λ . . . Λ Wk) = det((^j, Wj)) .

In particular Λn(V) is a one dimensional space with Hermitian form. Pick some

element δeAn(V) with |(<5,<5)| = 1. [Actually (δ,δ) = {-l)q, where p,q is the

signature.] Define

by

(y, ®M)<5 = MΛU, all υeAn~k(V). (1.20)

A direct computation in terms of an "orthonormaΓ basis shows that the correct
generalization of (1.1) is

®v) = (-i)q(ϊζv). ( i . iy

Similarly

® ® =(-l) f c(«- f c) + «icl. (1.2)'

If A : Λ\V)-+Ak(V) is any linear map, define Aa: An~'\V)-*An~\V) by

ΛuΛv = ιiΛAav. (1.21)

Then (1.5) and (1.6) follow directly from the definitions. Everything else then
follows as before except, of course, that detX is not quadratic unless X is a two by
two matrix.

Another identity which we will need later on and which can be verified directly
in the C 2 case is

H(u9v)a = (-\)qH(®v,®u). (1.22)
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Indeed let u, V, zeΛkV and weΛn~kV. Then

H(u, v)z Λ w = (z, ι;)w Λ w = (w, ® (z, υ)u)δ = (w, (zTϋ)® u)<5 = (z, ι;) (w, ®u)δ.

By (1.1)' this equals

(-l)q(®v, ®z)(w, ®κ)<5 = (- l) β zΛ(w, ®w)®ι; = (- l)*zΛiϊ(®ι; 5 ®w)w,

proving (1.22).

2. Unitary Lie Algebras and Lie Superalgebras

Let g = gewen®goάd be a direct sum of vector spaces. Suppose that # e v e n is a Lie
algebra and that we are given a representation of ge v e n on godd and a bilinear map
[ > lodd of #odd x #odd^0even which satisfies

[A, [u, ϋ]o d d] = [AM, ϋ ] o d d + [M, At;]o d d, (2.1)

and either the + or — version of

["> ]̂oddW = ± [u, w]oddι; - [u, w]o d du. (2.2) +

In these equations u, v, w are in # o d d and A e # e v e n . There are now two interesting
cases: The map [ , ] o d d is antisymmetric and (2.2) + holds. We then define

[A,u] = Au=-[u,A] (2.3)

and drop the subscript odd. Then we have defined an antisymmetric bracket [ , ]
mapping gxg-^g and (2.1) and (2.2)+ (together with the fact that \_A,E\u
= ABu — BAu because we have a representation of geven on #o d d) gives the
remaining Jacobi identities so we have made g into a Lie algebra. It is an ordinary
Lie algebra with a Έ2 grading in the sense that

L^even' ΌevenJ -̂ Geven ?

[0even5 0odd] ^ #odd >

L^odd? ^oddJ C ̂ even

The other interesting case is where [ , ] o d d is symmetric and (2.2) _ holds. Then (2.3)
makes g into a Lie superalgebra, with (2.1) and (2.2) _ giving the super Jacobi
identities, cf. [3]. In [12] we introduced the notion of a Hermitian Lie algebra in
which we are given a bilinear map of godd x godd^gfwen (the complexification of
0even) which is Hermitian, and whose real part gives a Lie superalgebra and whose
imaginary part gives a Lie algebra. Rather than discuss the general theory, let us
illustrate how it works for Hermitian vector spaces. Let W be a Hermitian vector
space and let H: W x W—>gl(W) be defined as in (1.10). There are two ways we can
make a skew Hermitian operator from H(u,v): We can antisymmetrize:

I(u9v) = H(u9v)-H(v9ύ) (2.4)

is skew Hermitian by (1.11). We can also symmetrize and multiply by i:

is skew Hermitian. Let us first consider the antisymmetrization.
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Suppose that the vector space W contains an element e such that (e, e) = — 1.
Let V = eλ and let w, v, w be elements of V. Then it follows from the definitions (1.10)
and (2.4) that

I(e,ύ)I(e,v)e = (v,u)e
• and

I(e, u)I(e, υ)w = (w, v)u = H(u, v)w .
Thus

[7(e, K), 7(e, ϋ)] e = - tr7(w, ι?)e,

[7(e, u), 7(e, u)] w = 7(u, t;) w .

We can interpret the relations (2.5) as follows: Let g be the Lie algebra su(ΐF). Let
0even = u(V). We can consider ge v e n as a subalgebra ofg by letting ,4 e w(F) act on e
by v4e= — (tr,4)e. Then we can take godd= F, where each υe V is identified with
7(e, y). We have thus identified

u(V)@V with su(]^). (2.5)'

Of course, if we start with the vector space V we can always adjoin an e with
(e, e) = — 1 to get W. This shows that the map [w, i;]o d d = 77(M, V) — 77(ί;, M) satisfies
the axioms (2.1) and (2.2)+ and that the total algebra obtained is isomorphic to
su(FΘ<C~). For example, taking F = (C2 '2, we see that M(2, 2)®(C2 '2 fit together to
give su(2, 3).

Notice, by the way that the map 77 is already equivariant by (1.10), since
Ά* = Ά~ι for A unitary.

Now let us consider the symmetrization. Define

S{u,υ) = ilH{u,ϋ) + H{υ,u)]. (2.6)

As before, adjoin a vector e with (e, e) = — 1 but now consider W as a super vector
space, i. e., W = WQven + PFodd, where Wewen = V and Wodά = <Ee. Extend A e u( V) to be
defined on l ^ d d by letting Ae = (tvA)e so now the supertrace [7] of A vanishes. Let
S denote the symmetrized H for W considered as a Hermitίan vector space, so, for
example S(e,ύ)z = ί((z9u)e + (z,e)u). Then, as before, S(e,u)S(e,v)e = (υ,u)e and
S(e, u) S(e, υ)w = (w, υ) u, so

[S(e, u)S(e, v) + S(e, y)S(e, w)] e = [(u,υ) + (v, M)]

and

e, v)S(e,«)] w = (w, ι;)w -f (w, w)

Thus identify ve V with S(e,v) and define the [ , ] o d d : Vx V->u(V)®u(l)Qg\(W)
by

["> ]̂odd = S(u, t;)A - i [S(e, M) 8(e, υ) + S(β, ϋ) S(e, u)] .

Since, up to a factor of ι, [ , ] o d d is given by an anticommutator, condition (2.2) _
holds. We thus get a Lie superalgebra. In the terminology of [3 or 12] it is the
superalgebra su(F/(C). For the case F = (C 2 ' 2 this is the superconformal algebra, cf.
[3 or 13].

The Lie algebra su( F0(C") and the Lie superalgebra su( F/C) are both built
entirely out of the Hermitian structure of F. Hence any unitary map A: F-> F
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induces an automorphism of these algebras. Indeed, this is a consequence of (1.10)
as we remarked above. But let us also consider the case of an antilinear anti-
isometry L. Then

u= -(L~ιw,v)Lu= -L((L~1w,v)u)= -L[H(u,v)L~1w']

In other words
H(Lu,Lv)= -LH{μ,υ)L~ι. (2.7)

Then ίH(Lu,Lv) = LίH(u,v)L~"* by the antilinearity of L, so, by (2.6),

S(Lu,Lv) = LS(u,v)L~1 . (2.8)

Thus u^Lu, Λ^LΛL"1 defines an automorphism of the superalgebra su(F/(C). In
particular, the operator C defines an involutive automorphism of the entire
superconformal algebra su(2,2/1). Let us see what the fixed subalgebra is. For the
odd piece we have already verified that the fixed vectors are Majorana spinors.
Write the most general matrix in (C2'2 in block form. Then direct computation
shows that

i ί ) ( £ -£)
The condition that ί I belong to w(2,2) is

A=-D*, X=-X*9 Y=-Y*.

Now for two by two matrices A = — Aa if and only iϊtrA = 0. Thus the subalgebra
in question consists of all matrices of the form

As an algebra, it is isomorphic to o(2, 3). In particular, C does not commute with
all of su (2,2).

We close this section with an observation in the split case where p = q. Suppose
we choose two complementary totally null subspaces (like the (̂ , 0) and the (0, \)
type spinors on the C 2 ' 2 example). Call one subspace gγ and the other g_ l 5 so that
^ = 0odd = 0-i®0i The elements of geven = u(V) have block form

Λζ Λζ* y yjjs

Thus we can let

g2 consist of all I X= — X* ,

(A 0
q0 consist of all

\0 — A

/_2 consist of all
0 0

Y 0
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Then

is a Z gradation which refines the Έ2 gradation in the sense that [gb gj]Cgi+j and
godd

 = 9-ι®θi a n d Qwzn=zQ~2®9o®92' This is true for the Lie algebra and Lie
superalgebra cases.

Notice that g1®g2 forms a subalgebra. In the case of (C 2 ' 2 this is the space time
supersymmetry algebra provided we identify g2 with space time translations.

3. Conformally Flat Geometry and Supergeometry

In this section we wish to give a geometric interpretation to the construction of the
preceding sections. The basic fact is that su(2,2) is the Lie algebra of all
infinitesimal conformal transformations of Minkowski space. Before explaining
this we review the basics of conformal geometry.

Let U be a real finite dimensional vector space with a real symmetric
nondegenerate bilinear form of type p, q. It is a theorem of Liouville that if
dim U > 2 then the group of conformal transformations of U is a finite dimensional
Lie group isomorphic to 0(p + 1,^ + 1). More precisely, let U = TBJf>q and consider
the quadratic form of type p-M, q + i on ] R P + 1 4 + 1 = R n + 2, where n = p + q
= dim U. The set Ό of null lines of this quadratic form is a projective variety which
carries an O(p + 1 , g + 1) invariant conformal structure of type p, q. Indeed, a point
x e U is a line through the origin in W + 1 ' q + *. Denote this line by Lx. This defines a
line bundle L-> £7. Similarly!^ is an n -f 1-plane andL^ 3 Lx, since Lx is null. Thus
Lχ/Lx is an w-plane canonically associated to x, so we get an π-plane bundle Lλ/L.
It is easy to verify that we have an O(p + l,g + l) invariant identification of T(U),
the tangent bundle of £7, with Hom(L, Lλ/L). NowL^/L x has a well defined non-
degenerate metric of type p, q. Therefore Hom(Lx,Lx/Lx) has a metric defined up
to a factor. This gives the conformal structure of type p, q on U. It is easy to check
that this structure is conformally flat. Indeed, the space U can be identified as the
space of all null lines which are not orthogonal to some fixed null line, x^, called
"the point at infinity." In fact, U is the unique open orbit of the subgroup P+ fixing
x^. (In the case of Minkowski space the group P+ is the Poincare group together
with the scale transformations.) Thus Ό can be regarded as the "conformal
completion" of U: any locally defined conformal transformation of U extends to a
globally defined transformation of Ό given by an element of O(p + ί,q + i). See
[10] for a discussion of these facts, particularly the notion of conformal completion
from the group theoretical viewpoint.

If p ^ l and q^ί then O(p + 1 , ^ + 1) has four components. This is because in
terms of a block decomposition

q+1

P

R

q + r

s 1
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(where R p + 1 ^ + 1 = ] R ί ' + 1 ® l R ^ 1 with ΈLP +1 a positive definite and ΊHq + x negative
definite subspace) an element of O(p + l,g + l) will have both P and S non-
singular. Therefore d e t P = ± 1 and detS= + 1 give the four components. In the
case of 0(2,4) the components have the familiar geometrical interpretation in that
if C e 0(2,4) and if Cx = x so we can think of C as lying in some P +, then C can
have positive or negative determinant (parity conservation or reversal) and
preserves the forward light cone or send it into its negative (time reversal). [We
should point out that this is so even though the conformally completed space Ό
has no global causal structure. That is, despite the fact that O(p + 1, q + 1) has a
center with four elements

0
I — y * i

the element

±IP+i

0

acts trivially on projective space. So for the case p = l , q = 3 the space Ό is
orientable but without a global sense of future or past. Nevertheless we could pass
to the double (or to the universal cf. [9]) cover and regain a global causality. On the
covering space it is only the connected component of 0(2,4) which preserves both
the orientation and the forward light cones. We shall not pass to this covering
space since the geometry is more transparent on £7.]

The Lie algebra o(p+l,q + l) can be identified with the space Λ2(W+1'q+ί)
according to the usual rule which assigns to u A V the linear transformation given
by (uAv)w = (w,vyu—(w,u}v, where < , ) denotes the scalar product on
W+1>q+1. Suppose we pick a "point at infinity" x^ e U and an "origin" x0 e U.
That is, we pick a pair of non orthogonal null lines x 0 and x^ in R p + 1 > * + 1.
Together they span a two dimensional subspace, call it W, of signature 1,1. This
choice puts a grading on o(p + 1 , q +1) as follows: Let e be some non-zero element
of x^ and / a non-zero element of x0 with (e,f) = ί. Set

Q^ = {eAv\, veW1

The pieces have the following geometrical interpretation: g2 consists of all
infinitesimal translations of U. The subalgebra A2WL is just o(p9 q) the algebra of
infinitesimal orthogonal transformations, while Λ2W = Ί^e Λ / consists of in-
finitesimal scale transformations and g_2 consists of the proper infinitesimal
conformal transformations. In terms of local coordinates the vector fields
representing elements of g _ 2 vanish to second order at the origin. All of this is
explained in [10]. Consider elements ofθ(p + ί,q + l) which act trivially on Wand
are reflections about a line in WL and interchange the lines x0 and x^. These are
the "conformal inversions" which send the origin into the point at infinity.

We now show how to identify su(2,2) with o(2,4). Consider the space Λ((£2'2).
It inherits from (C 2 ' 2 a Hermitian form which is easily computed to have signature
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2,4. Also ® :yl2((C2 '2)^yl2((C2 '2) with ® 2 - i d and (®ω, ®σ) = (ω"σ) for
ω, σ e /L2((C2'2). Hence the real six dimensional space consisting of all ω satisfying
®ω = ω has a quadratic form of type 2,4. We claim that the group SU(2,2) leaves
this space invariant. Indeed, for any A e GL(4, (C) let B = A2 A denote the induced
transformation on Λ.2((C2'2). Then

Ba = (det'Λ) B ~1 = (det A) A2 A ~1,

while

B* = Λ2A*.

If det.4 = 1 and A* = A~ι [which are the conditions for A to lie in SU(2,2)],
then ®B = Ba*® = B®, so B preserves the equation ®ω = ω. The restriction of
SU(2,2) to the set of solutions of this equation thus gives a homomorphism from
SU(2,2) onto SO(2,4). (It is a double cover.) Notice that for ω satisfying ω = ® ω,
the equations ω A ω = 0 and (ω, ω) = 0 are the same. But the equation ω A ω = 0 is
precisely the condition that ω be decomposable, hence determines a plane, with ω
and λω (λ φ 0) determining the same plane. This will be a null plane if and only if
®ω = ω. Thus the conformal completion of Minkowski space can be identified
with the set of all

null planes or of null lines

i n C 2 ' 2 all i n R 2 ' 4 '

Two null planes (corresponding to σ and OJ say) are non-singularly paired if and
only if σΛωφO, which means that they have no line in common. The group
SU(2,2) acts transitively on the set of all such pairs. Thus we may take x0 to be the

space < ( H of undotted Weyl spinors and xO Q= I > to be the space of dotted

spinors. With this choice, the gradation of this section coincides with the gradation
of Sect. 2.

The group of automorphisms of SU(2,2) has four components. [This is because
the maximal compact subgroup is S(U(2) x U(2). We may interchange the two
U(2) components and also conjugate the center, U(l).] We have already seen what
they are: They are given by conjugation by linear isometries, linear anti-isometries,
anti-linear isometries, and antilinear anti-isometries. Each of these elements acts as
conformal transformations, giving the four components of 0(2,4). To see what
they are in terms of the discrete symmetries of space time it is enough to choose
representatives, conjugate with the translation

0 X\ χ = iί
xo-χ3

0 0/ \X1—ίX2

and see what we get. The linear isometries, of course, map onto the connected
component of 0(2,4). Here is a linear anti-isometry:

I 0

0 - /
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Conjugation by it gives

-i)\o 0Λ0 -i)~\o o
So it induces the discrete symmetry PT (parity and time reversal) on space time.

It follows from (2.9) that for the antilinear anti-isometry C we have

o o

Thus C sends x0 into x^ and a computation shows that it is conformal inversion.

We can apply the linear isometry I I to move x^ black to x0. Thus further

. . , /0 A
conjugation by ί I gives

0 Λ cΓ° x)c(°/ oy vo o/ y o
Now

xo — x3

Thus the operation X^>Xa is just the parity transformation P. Thus in terms of the
discrete space time symmetries we have the table

linear isometries -• parity and time conservation
linear anti-isometries -• parity and time reversal (PT)
antilinear isometries -• time reversal (T)

antilinear anti-isometries -• parity reversal (P).

We have already seen that linear isometries and antilinear anti-isometries induce
automorphisms of the full superalgebra g = u(V)@V. It is easy to see that the
elements of the other two components do not. Indeed, since the automorphisms
form a group, it is enough to prove the following:

There does not exist any automorphism of g which restricts to conjugation by

L=l ) on su(F)Cg e v e n.
K0 -I,

Indeed an automorphism preserves the center and so is given by a real linear
transformation D: F-> V satisfying Dc = cD or Dc = cD for c e C and

(i) LAL~1D = DA all Aesu(V)

and

(ii) S(Du,Dv) = LS(u,v)L-1.

Conjugation by linear and antilinear maps belong to different components of
Aut(su(F)) so (i) implies that D is linear. Since U(V) acts irreducibly on V,
Schur's lemma implies that L~1D = cI so D = cL. But now (2.7) and the linearity
of D implies that

contradicting (ii). S(Du>Dυ) = ~
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We have now reached one of the main points of this paper. Whereas the group
of automorphisms of su(2,2) has four components, only the identity and the parity
components extend to be automorphisms of the conformal superalgebra. The
remaining two components reverse the signs of the odd brackets. As charge
conjugation is intimately connected with P, it is CP which is an automorphism.
(We shall see the geometrical connection between C and P more clearly in the next
two sections where we consider the action on states.) In particular CPT can never
be implemented so as to be an automorphism of the conformal superalgebra. It
must change the sign of the odd brackets. To the extent that one is troubled by this
change of sign in the odd brackets, conformal supersymmetry prefers CP to CPT.

Now there are many conformally supersymmetric field theories in the
literature. To the extent that CPT is a formal consequence of the axioms of
relativistic quantum field theory, cf. [14], this would appear to contradict what we
have written above. To see what is involved in these models, we should observe
that (since Wigner) time reversal is implemented by an antiunitary operator. Now
the even elements of any superalgebra must be represented by skew-Hermitian
operators in order that the corresponding group be represented by unitaries. Since
conjugation by an antiunitary carries unitaries into unitaries, it also carries skew
Hermitian operators into skew Hermitian operators and induces an automor-
phism of the commutator bracket. For the odd elements we have two choices:

a) Represent all the odd generators by self-adjoint operators. Then odd
brackets will go over, not into the anticommutator but into i times the
anticommutator. That is, if ξ and η are odd elements and ρξ and ρη their images as
operators, then

Q[ξ,η] = ίlQξQη + QηQξ]

With this choice, conjugation by a unitary can preserve the odd brackets but
conjugation by an antiunitary changes the sign of the odd brackets since

i \uρξΰ~ 1ΰρηΰ~x + ΰρηύ"1ΰρξύ~*] = - ΰi [ρξρη + ρηρξ~] ΰ,

where ΰ is antiunitary, due to the fact that ΰi= — iύ.
b) Represent the odd generators by operators ρξ whose spectrum lies on the

lines through e± π ι / 4 (cf. [12]) and so that odd bracket goes into anticommutator:

Q[ξ,η] = QξQη + QηQξ> a n d s o t n a t t n e Q[ξ,η] a r e a ^ skew-Hermitian.
Without having examined all the models, I suspect that the proponents of these

models have chosen a) in which case they are prepared to accept the change in sign
of the odd bracket as a necessary concommitant of the existance of antiunitaries in
any supersymmetric theory. It seems to me that the choice b) is more natural. A
consequence of the theorem proved above is that for conformal supersymmetry
there is no way of choosing b) (or a)) so as to induce an automorphism of the
conformal superalgebra which gives PT on spacetime (and does not reverse the
sign of the odd brackets) even if antiunitaries are avoided.

Perhaps some more comments on the choice between CP and CPT are in
order, this time from the point of view of group theory rather than supersymmetry:
If a group H is a subgroup of a group G, disconnected components of H might
become connected in G. For example, if we embed SI(2, C) in its complexification,
we find that this complexified group contains a subgroup containing PT together
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with Sl(2, C). In other words, PT becomes connected to the identity in the
complexification of SI (2, C). Now SI (2, C) is the natural group to consider in a local
Poincare field theory, and the passage from SI (2, C) to its complexification is a
consequence of the locality and causality of the quantum fields. This is the essential
line of reasoning of the CPT theorem, [14].

In a conformal theory, a natural group to consider is the global symmetry
group SU(2,2). We could embed this group into its complexification, giving the
embedding SU(2,2)->S1(4, C). Since the linear isometries belong to Sl(4, C), PT
becomes connected to the identity in SI (4, C). Thus the above embedding prefers
CPT. However, we also have the inclusion SU(2,2)c>Sp(8,R), where Sp(8,R) is
realized as the group of real linear transformation of R 8 =(C 2 ' 2 which preserve the
imaginary part of the Hermitian form ( , ). [The imaginary part, im( , ), is an anti-
symmetric non-degenerate real bilinear form.] From many points of view,
particularly representation theory and symplectic geometry, this inclusion is the
more natural one. Notice that the anti-linear antiisometries belong to Sp(8), so
that this inclusion prefers CP to CPT.

There are thus two arguments appealing to "mathematical naturality" which
would indicate that the conformal group "prefers" CP to CPT. Now a superficial
reading of the Fitch Cronin experiment [2] shows that both CP and CPT are not
conserved. It requires a more detailed analysis using the language of local
Lagrangians to conclude that CPT is conserved and CP violated. But CPT is a
formal consequence of the axioms of quantum field theory according to the CPT
theorem [14]. So perhaps the framework used to interpret the experiment
determines the interpretation. It is, of course, difficult to interpret any experiment
without placing it in some theoretical context. But the above appeals to
mathematical "naturality" suggest that we reexamine the experimental evidence of
CP violation, preferably from a viewpoint independent of the axioms of quantum
field theory and of local Lagrangians. This requires, as a first step, a description of
the one particle states and their discrete symmetries from the point of view of
conformal geometry. This we do in the next two sections. (Of course CP violation
does not contradict conformal supergeometry since the symmetry group of the
dynamics might only be the connected component.)

Let us turn to a less controversial topic. Let us examine what is involved in the
choice of a charge conjugation.

The group £/((C2'2) acts transitively, by conjugation, on the set of all C which
are antilinear anti-isometries satisfying C2 =id. Indeed, any such C is determined
by the real four dimensional space M = M c of solutions Cw = w - the space of
associated Majorana spinors. Indeed

(3.1)

and C(w + iw') = Cw-ίCw\ w,wΈM. (3.2)

The space M is also real isotropic, i.e.,

Re(w,wO = 0, w,w'eM. (3.3)

Conditions (3.1) and (3.3) imply that M is symplectic for the imaginary part of ( , ),

L e ' J t h a t Im( , ) is non-degenerate on M. (3.4)
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From (3.4) it follows that we can find a basis w1? w2, w ,̂ w2 of M and hence of (C2-2

such that

(Wf5 Wj) = (W , W;) = 0

and
(wk,wί) = δkιi.

The group U(2,2) clearly acts transitively on the set of all such bases, hence on the
set of all M's satisfying (3.1) and (3.3), hence on the set of all C's.

Any C carries a null complex two dimensional subspace of (C 2 ' 2 into another
such, hence it acts on £7, the conformal completion of Minkowski space.
Furthermore, if x and y are two points of U which have a complex line in common,
so will Cx and Cy. Thus C carries the "null cone" through x into the null cone
through Cx. Hence C acts as a conformal transformation.

We have seen that for the particular C we chose in Sect. 2 we have that

C acts as a conformal inversion. (3.5)

Of course the C interchanging x 0 and x x is not uniquely determined by this
property. Indeed, we can multiply C by any non-zero complex number, z.
Multiplication by a real number r changes the conformal inversion which involves
a choice of element eex^, once we choose the plane W. Equally, it involves the
choice of a negative definite line in this plane. Since the stabilizer of C is o(2, 3), we
see that this is the choice of a negative line in R 2 ' 4 . Multiplication by eιφ has no
effect on the conformal geometry.

Up until this point we have been treating the superalgebra and the conformal
geometry separately. The natural setting is in the framework of supermanifolds
[5, 7]. We briefly indicate how the transcription of the preceding results goes over
into superconformal geometry. Let g be a superalgebra and h a subsuperalgebra.
Given any h module JV, we can form the "produced" g module [1, 8],
HomU{h)(U(g), N), where U(g) and U(h) are the associated universal enveloping
algebras [3], and U(g) is regarded as a right U(h) module. In particular, we can
take h = geyen. If H is a Lie group whose Lie algebra is h, and we are given an H
action on some manifold, Q, then the sheaf of C00 functions on Q is a sheaf of h
modules. Applying the above construction gives a sheaf over Q which then defines
the structure of a supermanifold Q with an action oig as sheaf derivations. Applied
to our setting gives the super conformal geometry. Then the two components of
our automorphism group can be realized as the (two component) group of motions
of conformal superspace.

4. The Action on States

In the next few sections we wish to study the action of SU(2,2) and its group of
automorphisms on the physical states. In particular this will allow us to determine,
from purely«geometrical considerations, the action of the discrete symmetries. In
contrast to the usual theory based on the Poincare group, there will be no arbitrary
choices involved in the specification of this action - it will be determined by the
geometry of the Grassmann variety. As the mathematics that we will need to use is
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somewhat involved, it may be useful to give a brief summary of what we will
present in these next few sections. The mass zero irreducible representations of the
Poincare group all extend to representations of SU(2,2). In fact, the following is
true: SU(2,2) is a subgroup of Sp(8), the group of real linear transformations of
C 2 ' 2 which preserve the antisymmetric real bilinear form given by the imaginary
part of the Hermitian form ( , ). The double cover, M/?(8), of Sp(8) has two
distinguished representations, called the metaplectic representations. Each of
these can be slightly modified so as to yield a representation of SU(2,2) itself and
not only its double cover, and decomposes into a direct sum of irreducible
representations, each occurring with multiplicity one. These component represen-
tations remain irreducible upon further restriction to the Poincare group, regarded
as a subgroup of SU(2,2), and all such restrictions remain inequivalent as Poincare
group representations. Each of the positive energy mass zero (arbitrary spin)
representations of the Poincare group occurs by this process of restriction from
one of these metaplectic representations, and each of the negative energy mass zero
representations occurs from the other. These mass zero representations of SU(2,2)
can be realized as acting on spaces of sections of vector bundles defined over the
Grassmann variety of all complex two-dimensional subspaces of complex four-
dimensional space. The positive energy representations will be realized on spaces
of sections which are holomorphic in the domain, D~, of all negative definite
planes, while the negative energy representations will be realized on spaces of
sections which are holomorphic on D + , the space of positive definite planes. Our
space U, the eonformal completion of Minkowski space, is the Shilov boundary of
both D and D +. These facts are true with the necessary minor modifications for
arbitrary (7(/c, /), see [12 or 17] for a detailed discussion.

The situation for the positive mass representation is similar, but somewhat
more complicated. Since the scale transformation does not preserve mass, we must,
for a given spin, s, combine all the (m > 0, s) representations of the Poincare group,
P 1 0 , into a single representation of the Poincare plus scale, Pιί [which is the
connected component of a maximal parabolic subgroup of SU(2,2)]. Indeed, these
representations (for varying s) are irreducibles of Pίί and are precisely the ones
determined by the Wigner-Mackey little group method applied to the orbit
consisting of the interior of the forward light cone. Let us call an irreducible
representation of SU(2,2) a "positive energy" representation if the spectrum of the
space-time translations x e P π are of the form eιtτk'x, where k lies in the forward
light cone. Mack [18] has determined all the positive energy representations of
SU(2,2), see also [17]. In fact, [18], it is easy to see that any positive energy
representation must contain a lowest weight vector (or highest weight vector
depending on notation) and the set of all unitarizable highest weight modules
for SU(2,2) has been determined by Williams [19]. They all arise from the
decomposition of the metaplectic representations of MP(8), MP(16), or MP(24).
The metaplectic representation of Mp(S) gives rise to the mass zero particles as
we have already mentioned. Let us consider the irreducibles coming from
Mp(16) (where the Howe pair is U(2,2) x U(2), cf. [20 and 21]).

They are clearly described [indeed the general case U(p, q) x U(k) is com-
pletely treated] in the paper by Kashiwara and Vergne [17]. They each remain
irreducible when restricted to P t l (cf. [21]). Each (m>0,s) representation of P n
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occurs but now an infinite number of distinct representations (parametrized by the
integers) restrict to the same (m>0, s) representation of P n . We hope to discuss
the physical significance of this quantum number, which is present for SU(2,2) but
disappears when we break the conformal symmetry down to P1U in a future
publication. But, as is shown in [17], all of these representations can be realized on
spaces of holomorphic sections of vector bundles quite similar to the ones that
arise in the mass zero case, and our discussion carries over with little change. We
shall therefore concentrate on the m = 0, and return to the positive mass case later.

We will follow the paper [16] by Jakobsen and Vergne in our summary. This
paper gives a crystal clear description of all the mass zero representations of
SU(2,2) together with complete proofs of all the relevant facts, including the
relation of these representations to the zero mass equations. We strongly urge the
reader to turn to this beautiful paper for a complete discussion of many of the facts
summarized here.

We must begin, however, with a short digression on notation. In the first three
sections of this paper we have chosen a basis of (C2'2 so that the Hermitian scalar
product was represented by the matrix

0 I

1 0

i.e., so that the scalar product (HΊ,W2) is given by

where wf denotes the row vector which is the conjugate transpose of vv2. If we
make some change of basis then the scalar product will be represented by

where N is the change of basis matrix. Then all the matrix representations of
elements of 1/(2,2), etc., will have to be conjugated by N. There are various
conventional choices for the matrix form of the scalar product in the literature each

with its own advantages. In [12] we used the matrix which is convenient
\0 IJ\0 —IJ

for describing the mass zero representations in the Fock-Bargmann representation
(in terms of creation and annihilation operators). In much of the physics literature
(for example [14]) the matrix representation that is used is

0 β~Λ // 0\/0 A / / 0\ , / 0

( )[ > h [ε 0 ) \0 εj\l Oy VO c*/' ' V-l 0

Jakobsen and Vergne use the matrix

-i\ ίe~πί/4 0 \ fO I\ fe + πί/4 0

0/ V 0 e + πί/4j \I 0/ V 0 e" π ί / 4

which has the advantage of making the action of SU(2,2) on the space of negative
definite planes look like the action of SL(2, R) on the upper half plane. For the rest
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of this paper we will switch to this new system of coordinates. (There will still be a
slight discrepancy between our notation in that our space coordinates differ from
theirs by an interchange of the x1 and x3 axes. But this difference will not be
noticeable, and our notation is more consistent with most of the physics literature.)
With this notation, a matrix

^ b\ a,b,c,d

\ dj two by two complex matrices

belong to [7(2,2) if and only if it satisfies

which amounts to the conditions

αfc*-bα* = 0? dc*-cd* = 0, ad*-bc* = I. (4.1)

The group £7(2,2) acts transitively on the space, D, of negative definite two planes
(as does the set of antilinear isometries; an anti-isometry carries a negative definite
plane into a positive definite plane). The space D can be parametrized as follows:

Fix the null plane x ^ ^ ^ l )>. If 2 e D is a negative definite plane, then

λnxo0 = {0}. So λ can be regarded as the graph of a linear map Z XQ-^X^,

where x0 = < ( I >. Thus

tWJ
A = graphz= j ί ^ H w e C 2 . (4.2)

The condition that λ be negative definite is that

0> ( ( ) ( ) )

Writing z = x + iy where x and y are self-adjoint, we get no condition on x and the
condition that y be positive definite. Thus

z = x + iy, y>0. (4.3)

We will use z to parametrize D, and frequently, by abuse of language, talk about
"the point z," meaning the λeD given by (4.2). (In this sense, and in what
immediately follows, D looks like the upper half plane.) Actually, the condition
y^>0 is the same as saying that ||y||2 = detj;>0 and yo = ̂ tvy>0 in the sense of
Minkowski space. Thus condition (4.3) says that y belongs to the interior of the
forward light cone and that D is a "tube domain" associated with this cone over
Minkowski space, cf. [14].) This system of coordinates makes D into a complex
manifold, so it makes sense to talk of holomorphic functions on D. The action of
£7(2,2) on D is easy to describe:

a b\ ίzv\ ί(az + b)v

c ) )

Since, if υ φ 0, the vector on the right must have negative length squared, we
conclude that (cz + d)vή=Q. Thus cz + d is an invertible matrix, and we can write the
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right-hand side of the preceding equation as

where w = (cz + d,)v. (4.4)
w

Thus (a b
A]z (az + b){cz + dy . (4,5)

c dj

Notice that the positive definite planes can be described as the set of all x + ίy, y <ξ 0,
with the same action, (4.5) of (7(2,2). The map z-^z* sends a negative definite plane
into a positive definite plane and commutes with the action of 1/(2,2):

(Uz)* = Uz*, UeU(2,2). (4.6)

The space M of null planes is the Shilov boundary of D in the sense that a function
holomorphic in D is determined by its boundary values (in the distributional or
hyperfunction sense) on M. In fact, we shall see (as was pointed out in [16]) that the
various mass zero representations can be realized on spaces of holomorphic
sections of certain vector bundles that we shall soon describe. Notice that if we
replace (4.3) by y = 0 we get ordinary Minkowski space, R 1 ' 3 . As we have seen, this
is just M with the light cone at x^ removed. Thus x gives a local coordinate system
on this open subset of M. The formula (4.5) for the action of (7(2,2) is no longer
globally valid on M (with y = 0) since cx + d need not be invertible for all x.

The various spaces we have been considering, D, M, the space D+ of positive
definite planes, are all subsets of the complex Grassmann variety G(2,4) consisting
of all complex two-dimensional subspaces of the complex four-dimensional space
C 2 ' 2 . The group GL(4, C) acts transitively on G(2,4). It also acts as automor-
phisms of certain natural vector bundles over G(2,4) which we now describe:

E - the canonical or tautological bundle, which assigns to each λ e G(2,4) the
two dimensional subspace, Eλ, of (C2 '2 given by λ. If λ e D then Eλ consists of all
vectors appearing on the right-hand side of (4.2). A similar description is valid over

] R 1 3 C M (with y = Q) but not globally over M. For example, EXoa= U

F - the polar bundle. Fλ is the subspace of the dual space, (C 2 < 2)* consisting of
those linear functions which vanish on E. In other words, Fλ = (Eλ)°. Under
17(2,2), we have an antilinear identification (given by the scalar product), of Fλ

with (E,) 1.
/12£ - a line bundle. Over M [and under (7(2,2)] it can be identified with the

complexification of the canonical line bundle of the conformal structure, i.e., the
bundle of metrics in the conformal class.

From each of the above vector bundles we can form symmetric or exterior
powers. We can reformulate one of the important observations of [16] as saying
that the states of the m = 0, s = 0, | , 1,... representations can be regarded as certain
holomorphic sections in D of

Sn(E)®Λ2{E), n = 2s, (4.7)

while the states in the m = 0, s=—\, — 1 , —3/2,.,. can be regarded as
holomorphic sections in D of the vector bundles

(4.8)
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Thus, if we wish to regard the states as geometrical objects over M, then we must
regard them as generalized (or hyperfunction) sections of these vector bundles over
M, which are the boundary values of sections holomorphic in the interior.

In order to formulate this result more precisely and explain the relation to the
metaplectic representation we review some general facts about homogeneous
vector bundles, cf. [22]. Let D = G/K be a homogeneous space, and let E-+D be a
homogeneous vector bundle. Such a vector bundle is determined by a represen-
tation, τ, of K on a vector space, V, which can be identified with the fiber Eλo, where
Λ0 is the point of D fixed by K. A section, s, of the vector bundle E can be identified
with a function ψ: G-+V which satisfies

= τ(ky1ψ(g) all keK. (4.9)

The relation between s and ψ is given by

s(gλo) = ί(g,ψ(gm, (4.10)

where [ ] denotes the equivalence class of G x V under the diagonal action of K:

Suppose we are given a function J = Jτ: GxD->GL(F) which satisfies

λ), J(k,λo) = τ(k), J(e,λ) = I, (4.11)

where e denotes the identity element of G and / the identity element of G1(F). Then
it follows from (4.9) and (4.11) that

J(gk, λo)ψ(gk) = J{g, λo)ψ(g),

and so we may define the function / : D—>F by

(λ) = J(g,λo)ψ(g). (4.12)

We thus have three descriptions of the space, Γ(E), of all sections of £ given by s, ψ,
or/, related to one another by (4.10) and (4.12). The group G acts on Γ(E). In terms
of the three descriptions, an element h ε G acts by sending

where

where

where (

(r f) n)

rh(λ) = hs(h

rhψ)(g) = ψ(ι

\ = [J(h~\λ)

h-'g),

rιf(h- xλ).

(4.13)

(4.14)

(4.15)

It is a useful exercise to check that these three definitions are consistent under
the identifications given by (4.10) and (4.12).

Let us illustrate these identifications in the case where we take D to be the

negative definite planes under (7(2,2). Let us choose λ0 = < ί ) >. The condition

that a matrix ( stabilizes λ0 is that (ai + b) (ci + d) ~ι = ί or aί + b = — c + dί.
\c dj

Clearly all matrices with b= —c,a = d have this property. Multiplying on the right

by the inverse of I we may assume that a —I and b = 0. Then
\ -b a
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ad* — be* = ad* = 1 by one of the defining conditions of ί/(2,2) so d = I and we get
the condition z= — c + i or c = 0. Thus the stabilizer group of / 0 is given by

{C )}
and the conditions (4.1) give

(α + ib)(α + zb)* = J, (a - ib) (a - ib)* = I.

Thus

the map

gives an isomorphism of K with 17(2) x U(2), (4.17)

which shows that K is a maximal compact subgroup of (7(2,2). Let us consider the
tautological bundle E-+D. The action of K on Eλo= V = (D2 is given by

a ~b\fiv\ {i(a + ib)υ\ fa -b

aj\υj \(a + ιb)υj \b a

We can now define

and check that (4.11) holds. Thus we can think of a section of £ as being given by a
function / : D—>C2 where the corresponding function ψ : G-»(C2, and section s are
given by

ψ(g) = (ci + d)~ιf(z) if z = qi = (aί

and
a b\ίiψ(g)\

d) V Ψ(g)j V /ω

The action of h e G on sections is given as follows: Suppose that h~1 = I ,

Then, by (4.15),

(rj) (z) = (ĉ z + rfO - Vίίίi'z -f bθ {dz + d') - x ) .

fzf(z)\
The corresponding action on the section s(z) =1 I should be

V tVVα' &Λ /zίc'z + dO-VίΛ-^Λ = (z(rhf)(z)
κc' d') \d d')\{dz + drxf(h-ιz)) \(rhf)(z)

as required.
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Let τn denote the representation of GL(2,(C) on the space S"((C2) - the nth

symmetric power of C 2 . Restricted to SU(2)cGL(2,(C) this is exactly the spin -
Ί L 2

representation. Then the "automorphic factor" J corresponding to the vector

bundle S\E)®A2E is

J(g, z) - τn(cz + d) det(cz + d).

The corresponding action on sections is given by

z + dTίf((a/z + b')(c/z + dr1) if Λ~1

(4.18)

Next let us consider the bundle F^M. Over a point of D we can identify the
space Fλ = E°λC((L2'2)* with the orthogonal complement

We are interested in holomorphic sections of Fλ and its tensor powers. As the
identification of Fλ with E\ is antilinear, let us write a section of E\ as

s(z)= ( ® is the star operator of (C2,

with / holomorphic. Then, if h~ι = ( , _ I,
\c dj

κc' dj { ®f(h~ιz)
fa' V\~λ(a'

κd dj \c' d\

if we define

so
{

where ®A = Aa*® and ^ " ^ ^ ( d e t y l ) " 1 for any 4 E G L ( 2 , ( C ) .

Thus, the automorphic factor corresponding to the vector bundle Sn(F)®Λ2E

is /

J S n F β W ^ ^ ) = τII(2c* + d*)det(zc* + d*)"IIdet(cz + d) if g=Γ Λ

\c d
(4.19)

[This explains the mysterious — (n + l ) t h power of the determinant occurring in the
formulas of Jakobsen-Vergne. We are also using a slightly different factor from
theirs which fits together better with the metaplectic representations.]
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Let us now recall some facts about the symplectic group Sp(8,IR) [or, more
generally, Sp(2n,R)]. It is generated by matrices of the form

and the single matrix

0

o
Actually, a smaller collection will do, as is described in detail in [23, pp. 27-30]. The
group (7(2,2) [or more generally U(n, n)] is generated by matrices of the form

and

where αeGL(2,(C) [more generally, GL(π,(C), etc.]. The embedding of U(n,ή)
->Sp(2n,IR) is then given by foregetting the underlying complex structure, that is,
by considering a as a real linear transformation, A, and b as a symmetric real
bilinear form, B, instead of as a Hermitian form. Thus, in establishing relations
between the metaplectic representation and representations of (7(2,2), it is enough
to check them on these generators. This is the method of Jakobsen and Vergne.

One realization of the metaplectic representation is the following: The Hubert
space on which the representation takes place is L2(1RΠ). (In our case
]R" = ]R4 = C 2 with the standard Lebesgue measure d4u= — }du1du2dύ1dΰ2.)
The generating elements are represented by

ρM

0
(4.20)

(it is the ambiguity in the definition of the square root of the determinant which
requires passage to the double cover)

ίM

I B

0 /
φ \(u)-=e-iB{u'u)φ(u)

and

QM

0 /

(4.21)

( 4 ' 2 2 )

where #~ denotes the Fourier transform. In (4.21) we can write B(u, ύ) — tr bΉ(u, u)
if b is a self-adjoint two by two matrix and B the associated real quadratic form.
(Here H is the map of (C2 x(C2 into linear operators on (C2 described in Sect. 1.)

In (4.20) we would have to pass to the double cover of (7(2,2). However, as was
pointed out in [23,16,17], by multiplying by (det c #) 1 / 2

? we can modify the formula
(4.20) so as to get a representation of (7(2,2) itself.

This representation of (7(2, 2) is then given by (4.22) and

a

0 a

0
* - 1

) = a* •(-)) (4.23)
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and

ρ M l )φ \(u) = e~itrb'Hiu'u)φ(u). (4.24)

We can write

In fact, (4.25) is the eigenspace decomposition of the center, U{\) = <j ( A iθ I \ of

L 2(C 2) = ®Hn (Hubert space direct sum), (4.25)

where

Hn = {φ E L\<L2)\φ{eiθu) = e-inθφ(u)} . (4.26)

0'

0 eu

[7(2,2), and the general theory of Howe pairs [20, 21] (or see [16] for a direct proof
for C/(2,2) and [12, 17] for a direct proof for U(p,q)) guarantees that (4.25) is a
decomposition of L2((C2) into irreducibles under £7(2,2), each occurring with
multiplicity one.

For each rc^O, consider the map Tn: i/n->Holomorphic functions on D with
values in S"((C2), given by

(Tnφ)(z)= J eίtrzH{u>u)φ(u)und4u. (4.27)
<c 2

For z = x + iy and y^>0, the exponential factor β-
tr><#(«,«) = £-"*>>" j s m o r e than

enough to counteract the polynomial growth of un so the integral in (4.27)
converges and defines a holomorphic function of z. For fixed n and φeHnwe shall
write / = Tnφ. Notice that

\TnQM\0 )

= (detα*)~x

= a*u,

a 0

0 a*
Thus, for n ̂  0 and g of the form ( Λ ^ _ 1 ) we have

TnQM(g)φ = rgf, (4.28)

where r0 is given by (4.18). For g=\ I we have

(τnρM(g)φ) ω - ί e / [ t Γ z H ( I I l<)6(tt l < ) V(«) "Bd

so (4.28) again holds. Thus to check that (4.28) holds for all g e ί/(2,2) it is enough

to check it for # = ( 1. For this operator it is enough to check (4.28) on a

dense set of elements in Hn. This idea is also due to Jakobsen and Vergne.
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Functions of the form

e-^u^uZtfM2 (4.29)

span a dense subspace of L2((Cn). (This is just the expansion into Hermite
polynomials.) Thus

functions of the form e^<u'u}ei<wu'u>ύβ

1

1ύβ

2

2(βί +β2 = n) span /fw (w>0).

Now the element σ = I I acts as

[(ί?M<»)φ] (M) - ^ ί e-2iR*<u'v>φ(v)d*v
π

(which is the convenient normalization for the Fourier transform). A straightfor-
ward Gaussian integral shows that

QM(σ)e~i't's> = - έ Γ <•'•>, (4.31)

i.e., that

J e-2iR*<u'υ>e-<v>v>dnv = π2e-<u'u>, (4.31)'

or, more generally, that

ρ M (σ)β ί < w " <> = — ( d e t w ) " 1 eί<M' ^ ' ^ (4.32)

The same Gaussian integral shows that

(4.33)
τ

and the case π = 0, g — σ of (4.28) is then a straightforward verification.
/ d \βl ( d Y2

Applying the operator I - — I I —— I to both sides of (4.32) and applying Tn\duxj \ok2j
to both sides gives (4.28) in general.

So far we have treated n^O. For n<0 define

( 7 » ( z ) = \eiΛvzH{u<u)φ(u)(®uγAd*u. (4.34)

The same argument as above then gives

= (detα*)" 1 j eiitz'm*~H^' ίv)φ(υ)O(a*

giving (4.28) for n<0.
We have thus described a class of irreducible representations of SU(2,2) as

spaces of sections of canonical vector bundles on G(2,4) which are holomorphic

over D. To see that these restrict to the m — 0, s = - representations of the Poincare

group it is enough to make the following observations: The map u^>H(u,u) = k
sends (C2 — {0} onto the set of all k with det k = 0, k0 > 0, i. e., the forward light cone,
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and H(u\u/) = H(u,u) if and only if u/ = eίΘu. In other words, we can consider
(C2 — {0} as a circle bundle over the forward light cone. The isotropy group, in

SL(2,C) of the point I n ) *s ) I 0 i ) ^ e ^ ί a n ( ^ s o t n e v e c t o r spaces Hn can be

regarded as sections of the line bundle over the forward light cone associated to the

feiθ b \ . (feίθ b X)
representation ί -iβ)™*el"θ °^*ne "l^tle group" < I 0 _ iθ j > - the stabilizer

of the point ( n ) = ^ Γ ( ( n ) ' ( n ) ) ' B u t ^ e a c t ^ o n °̂  ^ P o m c a r ^ group [given

by (4.23) and (4.24)] on this space of vectors is precisely the mass zero spin n/2
representation of the Poincare group.

5. The Action of the Discrete Components

The various components of Aut SU(2,2) act as geometrical transformations on the
Grassmann variety and on the associated vector bundles. Hence we may
determine the action on states using the formulas of the preceding section. For
example, the anti-linear anti-isometries will map negative definite planes into
positive definite planes, and hence map sections of various vector bundles defined
over D ~ into sections defined over D +. Let us examine the antilinear anti-isometry

/® 0

Then

®υ J' (5Λ)

so

Pz = za*. (5.2)

Furthermore

P :£,->£,«, (5.3)

this map being antilinear by (5.1). Thus P:Λ2Ez->Λ2EzM. If s is a section of
E®Λ2E defined over D~, the geometrical action of P on s is given by

If
(zf(z)\ fzδλ fzδ

then, by (5.1) and (5.2)
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Thus the action of P in terms of the function / is given by

(Kp/)(w)=®/(w α *) . (5.4)

Notice that if / is a holomorphic function of zeD~, then /(vvα*) is an
antiholomorphic function of w and ® /(wα*) is a holomorphic function on D + .
Furthermore, if

f(z) = j eitrzII{u>u)φ(u)ud4u, φ e ^ ,

then

®/(wα*) - J e~ίtτwaHiu'u)φ(u)®ud4u .

But tτΛaBa = iΐAB and H(u,u)a = H(®u< ®ύ), so we can rewrite this last integral
as

We are to interpret this result as follows: Let

H+ = L2((C2) giving the positive energy metaplectic representation

and

H~ = L2(&2) giving the negative energy metaplectic representation.

T h e n RP:H
+->H\ (5.5)

(RPφ)(μ) = φ(®u). (5.6)

We should emphasize once again that (5.4)—(5.6) shows that the geometrical
action on states associated with P has "charge conjugation" built into it, in that it
carries positive energy states into negative energy states. We can isolate the
geometrical character of this ςέcharge conjugation" as follows: Recall from Sect. 4
that the map which assigns to each two plane in (C 2 ' 2 its orthocomplement
commutes with the action of (7(2,2). For positive or negative definite planes this
expresses itself by the assertion (Mz)* = Mz*, M e ί/(2,2). In particular we have an
antilinear identification

Recall from Sect. 3 that the four dimensional star operator ® 4 :/l2((D2 '2)
->/! 2(C 2 ' 2) commutes with the action of SU(2,2). Furthermore ® 4 : A2EZ-+A2EZ...
In fact, if we take

then, by definition

= (detz)(5,
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and

uz*δiKδl9z*δ2γ

Thus, up to an overall scalar factor, (independent of z), ® 4 carries the element
zδΛ (zδΛ . fz*δΛ (z*δΛ _

c Λ e into c Λ 2 ). Thus
<W \δ2/ \ δι / \ δ2

/®®4:J

in an antilinear fashion (and similarly Sn(l)® ® 4 maps SnEz®Λ2Ez^SnFz*®Λ2Ez*
and Sπ(/~ x)(χ) ® 4 maps SnFz®Λ2Ez^SnEz*®Λ2Ez*. We thus get a map, # taking
sections of E®Λ2E over D + into sections of F®Λ2E over D 1 by

\wS) \Z ) — \l\2y V&4.)S\Z) \p. I)

(with similar definitions for each of our other bundles). If we represent our section
as

fzδ,

then, up to an overall constant factor

so
( # / ) ( w ) = ® / ( w * ) if w = z*. (5.8)

Notice that if / is a holomorphic function of z then ®/(w*) is a holomorphic
function of w. If

f(z)=\eitrzH{U'U)φ(u)udu,

then

®f(w*)=Se~itτwH{u>u)φ(u)®udu9

so

^.H1^^ (5.9)

is given by

(#<?) = <£. (5.10)

In particular, if we compose (5.8) with (5.9) we obtain the map sending

of H+ into itself. Now the element P preserves Im( , ) (as do all antilinear anti-
isometries), i.e., P e Sp(8). Then, we see from ( ) that up to a phase factor we have

%-RP = ρP. (5.11)
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In order to understand (5.9) and (5.10) a little better, let us make the following
observations: The spaces H+ and H~ are not irreducible under Mp(ή) (each
decomposing into two components - the even and the odd polynomials, say in the
Fock representation). However, they are irreducible as representations of the semi-
direct product of Mp(n) with the Heisenberg group - in fact, they are irreducible
under the Heisenberg group above. [Here we have fixed some definite value, /z, of
Planck's constant, and H+ is then identified with the unique irreducible
representation of the Heisenberg algebra with ρ + (l) = /zz, where i generates the
center and H" is the representation with ρ_(l)= —hi.'] The two representations
are inequivalent over the complex numbers, but are real equivalent by the anti-
unitary operator c. By irreducibility, c is uniquely determined, up to a phase factor,
and can be given, in the Schrόdinger representation by (5.10). It is this operator, c,
uniquely determined (up to a phase) by the underlying symplectic structure, that
we propose as the charge conjugation operator. Notice that it commutes with all of
Sp(8), and hence, a fortiori, with all of SU(2,2). It is implemented geometrically by
the Hodge star operator acting on sections as described above. The "charge
conjugation" used in the standard literature, as exemplified in Sect. 3, only
commutes with an 0(2, 3) subgroup of 0(2,4).

One can check that this operation can be extended so as to work for the
orthosymplectic algebras osp(2n/fc,fc). The superconformal algebra can be
embedded in osp(8/l, 1), for example, and hence the entire picture works in the
superconformal setting. We shall discuss this point in a future publication.

Let us close this section by noting that the transformation PT is implemented
in holomorphic sections by the rule f{z)-±f( — z), as is to be expected.
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