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Abstract. In a previous paper we proved the global existence of generalized
solutions of the spherically symmetric Einstein-scalar field equations in the large.
In this paper we study the regularity properties of the spacetime and the scalar
field corresponding to a generalized solution. We also prove a uniqueness
theorem which shows that a generalized solution is an extension of a classical
solution.

Section 0. Introduction

In [1] we began the study of the global initial value problem for the Einstein-
scalar equations Rμv = 8πdμφdvφ in the spherically symmetric case. In terms of a
retarded time coordinate u and a radial coordinate r, the spacetime metric has the
form

ds2 = - e2vdu2 - 2ev + λdudr + r2dΣ2,

where dΣ2 is the metric of the standard 2-sphere. The problem is best formulated in
terms of the function h: = d(rφ)/dr. If / is a function of u and r we denote by / the
mean value function of/:

Defining then
v o
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and

ξ: = 2rDh,

we showed in [1] that the spherically symmetric Einstein-scalar equations are,
through the identification ev + λ: = g, ev~λ: = g and φ: = h, equivalent to the
equations

= —(g-g)(h-h) and Dm=~-ξ2.
2r g

The function m(u,r) represents physically the mass which at retarded time u is
enclosed within the sphere of radius r. The initial data of the problem is the
specification of the function h at u = 0, namely on a future light cone with vertex at
the center of symmetry. The integral curves of D play an important role in the
problem and we call them characteristics.

In [ 1 ] we first proved the local, in retarded time, existence (Theorem 1 of [ 1 ]) and
global uniqueness (Theorem 2 of [1]) of classical solutions of the initial value
problem. We then proved that if the initial data is sufficiently small there exists a
global classical solution (Theorem 3 of [1]). In [2] we studied the problem in the
large. We introduced the concept of a generalized solution of our problem and we
proved, without any restriction on the size of the initial data, the global existence of
generalized solutions (Theorem 1 of [2]).

In the present paper we study first the regularity properties of the spacetime and
the scalar field corresponding to a generalized solution (Sect. 1). Here the function ξ
plays a central role. This function is in physical terms the local radiative amplitude.
We also study the behaviour of generalized solutions at null infinity (Sect. 2). We
then state and prove the following uniqueness theorem (Theorem 1): a generalized
solution having the same data as a classical solution coincides with it in the domain
of existence of the latter. The proof of this theorem uses the quantity L, introduced in
Sect. 3, which is a measure of the difference between the two solutions. In Sect. 4 we
derive various estimates of which the main one depends on the spacetime integral of
the main integral identity of [2] and on an inequality in Orlicz spaces. These
estimates lead to an ordinary differential inequality which in turn leads to the proof
of Theorem 1.

We wish to note that for generalized solutions of the Navier-Stokes equations a
uniqueness theorem of the above type was proven by J. Leray in his original work of
1934 [3]. Despite the fact that we now have a better understanding of the regularity
properties of those solutions (see [4]), the situation regarding uniqueness has
remained unchanged.

In a subsequent paper we shall study the asymptotic behaviour of generalized
solutions as w-> oo.
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Section 1. The Structure of Generalized Solutions

We have seen in the proof of Theorem 1 of [2] that the restriction of ξ to the
characteristic χuι( ; r j through each (uur1\rιφ0 belongs to L2 (0, u j considered as
a function of u. This implies that the restrictions of h~ and g to each χUl( ; r j belong to
H1(0,u1) and the restrictions of m and g are absolutely continuous functions of u.
Hence the tangent of each characteristic is absolutely continuous in the parameter u.
These results follow from the corresponding evolution laws.

In the course of the proof of Theorem 1 of [2] we have also seen that the metric
functions g and g are continuous with respect to r even at r = 0. However, this
property is not enough to guarantee either uniqueness or existence of characteristics
through a point on the central line r = 0. Nevertheless, since, g(u, 0) is a measurable
function of u and 0 ^ # ( M , 0 ) ^ 1 5 we can define the measure g(u,0)du which
represents proper time duration on the central line. We note that the function g(u, 0)
may vanish for a set of values of u of non-zero du measure. Such a set will correspond
to a set of events on the central line whose duration as observed from infinity is non-
zero but whose proper time duration is zero.

Let us remind ourselves of the fact that the lines u = const represent future light
cones. If at a certain value of ugll2ξ/grll2GL2{0,rQ) for some (and therefore for all)
r0 > 0, we shaJl call the corresponding light cone "regular" On the other hand, if at a
certain value of u the contrary is true, the corresponding light cone shall be called
"singular." ξ is physically the local radiative amplitude. By the definition of a
generalized solution g1/2ξ/gr1/2eL2((0,u0) x (0,ro)),κo,ro arbitrary. Therefore at
almost all values of u g1/2ξ/gr1/2eL2(0,r0\ r0 arbitrary. Thus we have:

Corollary 1. The set of singular cones is of zero measure.
From Proposition 2 of [2] we have:

Corollary 2. On a regular cone ξ/g1/2 is continuous and uniformly bounded and tends
to 0 as r -• 0.

Corollary 3. On a regular cone Dm -> 0 as r -• 0.
Let us consider the behaviour of the sectional curvatures. The nonvanishing
components of the curvature tensor are given by (4.8)-(4.12) of [1]. The sectional
curvatures for planes tangential to the light cones, that is K(IXX\ K(l,ζ2) and

are continuous everywhere in the complement of the central line. The same is true for

R(n,ζ1,lfζ1) = R(n,ζ2Jiζ2) = ~.

On the other hand, the sectional curvatures for planes transversal to the light cones,
that is KfaζάKfaζz) and K(n,l):

K(n, CJ = K(n, ζ2) = ̂ , K(n, l) = ^-(h- h)ξ - ~,
r2gg r2g r 3
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while continuous on each regular cone (we are excluding the vertices), may in fact
blow up at the singular cones. However, at each r > 0:K(n, d), K(n, ζ2)

E^ (0> u0) and
K(nJ)eL2(0,u0),u0 arbitrary, as functions of u.

The following proposition clarifies the relation of the evolution law oϊhio that
of ft.

Proposition 1. On each regular cone the limit

\im-\D[-[hdr)dδ
ε-oεo \rί )

exists and equals Dh.

Proof. From the nonlinear evolution equation we can derive the evolution law of

-]hdr

for any given δ > 0. We have:

^hdr) = $g(\]hdr-U) + ̂ (Dh + tiί-
rί J \r2J

δ r J rJ

δ\ or

~g(rF- δh(δ)) - ~g(δ)h(δ) - ~)d-?-l dr
2r 2r 2r § cr

Now, on each regular cone
r _ __ fc

lim J g(h - h)— = ξ.
δ^O δ V

Also, by the bound (5.6) of [2] on h,

lim
δ-^0

Thus, we need only show that

lim-]g(δ)(h(δ)~h(δ))dδ = O.
ε-»o ε o

But

\g(h-h)dr
o o

(g

\g(h-W~
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Therefore, by the continuity of g with respect to r at r = 0,

1

ε
\g{δ){h{δ)-h{δ))dδ
0

: (8π
τ[ϊ(g(ε)-g(0))ll2^0 as

We shall now show

Proposition 2. On α regular cone g1/2 h tends to a limit fas r-»0. The function f(u),
which is thus defined for almost all u, belongs to L2(0,u0),u0 arbitrary.

Proof Consider the identity

This identity shows that on a regular cone the integral

dr

is bounded by a constant independent of either r or r0. Also, integrating (1.1) with
respect to u shows that the integral

"° r° dr
U(g-g)P du
0 r r

is bounded by a constant independent of either r or r0. It then follows by monotone
convergence that (g — g)1/2h/r1/2eL2(0, oo). The identity (1.1) then shows that on a
regular cone the function g(h — ξ/g)2 tends to the limit

> Γ
L o g

dr

as r ^ O . Hence, considering the fact that on a regular cone g1/2(h — ξ/g) is
continuous for r > 0, the function g1/2(h — ξ/g) tends to a l i m i t / = + ^//^as r ^ O .
Therefore, since on a regular cone ξ/gx / 2 -• 0 as r -• 0, ^ x / 2 /Γ^ /as r -> 0. The function
/(w), defined in this way for almost all w, is then a measurable function of u. The
identity (1.1) implies, in view of Proposition 2 of [2], that the functions (gh2)(-,r),
r > 0, are dominated by an integrable function of u. By the dominated convergence
theorem we then have feL2(0,u0),u0 arbitrary, and

]f2(u)du = lim ](gh2)(u, r)du.
0 r^O 0

Corollary 4. For a regular cone h is continuous at the vertex if g is positive there.
Using Proposition 2 we can also show:

Proposition 3. For a generalized solution, the quantity

]h2(u,r)dr
o
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is an absolutely continuous function ofu and

<3 / °° \ 1 °° _ _ dv
— ( J h2(u, r) dr + - J \_{g - g)h2 + g(h - /ι)2](w, r ) —
vu\o / 2o r

2 _ 1

Section 2. The Null Infinity of Generalized Solutions

Let us introduce the following notation. Given a function / defined in Q, the
complement of the central line, we shall write

f = Ok(r~l)

i f/and dif/dr\i=\...k, are continuous in Q and at each u:f = O(r~ι) and
dif/dri = O(r~ι~i),i= 1.../c, for r->oo. According to (5.2) and (5.4) we have

Let us set

N:=$hdr. (2.1)
o

Then, since

N 1»

r rl

and

we obtain:

_ N
h = j + O2(r-3). (2.2)

It follows that

N2

# = l - 2 π ^ + 02(r-4). (2.3)

According to (4.7) of part I, the total mass M can be expressed in the form

M = \](l-g)dr.
£ o

Then, since
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we have:

2M 1 °°
1 - 0 = !(l-g)dr. (2.4)

V Y r

Taking into account (2.3) we obtain from (2.4) that:

2M N2

0 = 1 - + 2π^ + O3(r~4). (2.5)

At each regular cone we can define

CO _ Λγ

Ξ: = \im jg(h~h)—. (2.6)

The function Ξ(u) is defined for almost all values of u. Ξ is physically the total
radiative amplitude. It follows from Proposition 2 of [2] that ΞeL2(0,u0\u0

arbitrary. Since
Λγ

h))
r V

taking into account (2.2) and (2.5) we obtain:

We shall now find the relations between the functions N(u), M(u) and Ξ(u). Since

r r r

and, by the nonlinear evolution equation, δh/du = 0(r~3), we have

Since, furthermore, \gdK/dr = 0(r 2), we obtain

DK= h 0(r~2). (2.8)

On the other hand, by (2.7),

DE= — = — + O(r~2). (2.9)

Comparison of (2.8) with (2.9) yields:

%-iB. (2.10)
ou

Taking the limit of the mass flux relation [(5.43) of [2]] as rx -• oo we obtain:

1) + π\Ξ2du = M0. (2.11)
o
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Therefore

Also, the fact that M(u) tends to a nonnegative limit Mi as w~>oo implies that
ΞeL2(0, oo). We then conclude from (2.10) and (2.12) that NeH^O, u0), u0 arbitrary,
and M(u) is an absolutely continuous function of u. The function πΞ2(u) represents
the radiative power at retarded time u. It may blow up at the values of u
corresponding to the singular cones. However, given any ε > 0 there exists a δ > 0
such that for all systems of retarded time intervals whose total duration is less than δ,
the total energy radiated in these intervals is less than ε.

From the expressions for the sectional curvatures given in the preceding section
we can obtain, using (2.2), (2.3), (2.5) and (2.7), their behaviour at null infinity. We list
below the leading terms:

Section 3. The Uniqueness Theorem

The purpose of this and the last section is the proof of:

Theorem 1. A generalized solution having the same data as a classical solution
coincides with it in the domain of existence of the latter.

According to the above theorem a generalized solution is an extension of a
classical solution. Let h be a generalized solution and h0 be a classical solution
having the same data

In this and the last section all quantities subscripted by a 0 shall refer to the classical
solution. The generalized solution is a global solution, while the classical solution
will in general have maximal interval of existence [0, u1 [. We shall show that in any
closed subinterval [0, w0] of the interval [0,ux\_ h coincides with h0. We therefore
confine our attention in the following to a given subinterval [0, w0].

Let:

β: = h-h09 (3.1)
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Aγ

βf\ (3.2)
r ΐ

and

oc: = e-AπB. (3.3)

We have

Φ = f?9o, (3-4)

where

ψ:=-$π](β-β)(ho-ho)-. (3.5)
r Y

By Theorem 1, of [2] at each u: h — heL2(0, oo), and

]{h-h)2dr
o

is uniformly bounded in [0,«0]. It follows that the same is true for β-β. In
particular, at each u; β — βeI}(091) and

]\β-P\dr
0

is uniformly bounded. Then, since dho/dr is uniformly bounded, h0 being a classical
solution in [0, ux [ x [0, oo [ ZD [0, M 0 ] X [0, oo[, the integral

\\β-β\\dho/dr\dr

is bounded by a constant. For any given r0 > 0,

sup{r|/z — /Γ|}

is uniformly bounded in [0, M 0 ] . Hence

is bounded by a constant, and since furthermore r2dh0/dr is uniformly bounded, the
integral

is bounded by a constant. Therefore

]\β-β~\\dho/dr\dr
0

is bounded by a constant. Hence

dr\dr^C. (3.6)
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Here and in the following C denotes various positive constants (which may depend
on w0). Since h0 is a classical solution, g0 is bounded from below by a positive
constant. We thus conclude from (8.4) that there exists a constant fe > 1 such that

l a Id
τύ~ύK and therefore also - ̂  - ̂  L (3.7)
k (x k a

We now define the nonnegative quantities

00

Λf: = J(l-«)dr (3.8)

and

L:=J-(l-α)rfr. (3.9)
0 OL

The quantities N and L are measures of the difference between the two solutions
h and h0 at each value of u. If we were to set h0 = 0 in N and L we would obtain
N = L = 2M, where M is the total mass corresponding to h. By (8.7) we have:

N

j^L^kN. (3.10)

The fact that at each M(1 — α) = 0(r~ 2) as r-> oc, implies that

(β — jj)2dr =— ί rά—( — 1 I = — f ( —

4π o or \oc J 4π o \α
Thus N can also be expressed in the form:

N = 4π]-(β-β)2dr. (3.11)
o α

Using this expression together with the corresponding expressions

M\K] = 2π]^(h - h)2dr, M[ft0] = 2π]^(h0 - £"0)
2dr

for the total mass corresponding to h and /z0 respectively, and taking into account
(3.7), we can show that N, and therefore by (3.10) also L, is bounded by a constant
multiple of the initial total mass:

N,L^CM0. (3.12)

Our proof of Theorem 1 is by deriving an ordinary differential inequality for the
quantity L.

Subtracting the nonlinear evolution equation for h0 from that for h we obtain

γr(g-go--g + go)(ho-ho) (3.13)

where
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is the derivative along the characteristics of the generalized solution. Subtracting
also the evolution equation for h0 from that for h we obtain:

°± & (3.14)
~H 2r 2r ' 2 v y y o ; dr '

Here

0: = lim]g(β - /?)— (defined for almost all u) (3.15)

and

η: = j(g — go)(ho — h0)—. (3.16)

We have θ = ξ — £ where

since

I C I ^ j δ / ϊ o
dr

dr.

The fact that dK0/dr and r2 dho/dr are uniformly bounded implies that ζ/g r and ζ/g
are uniformly bounded. By Theorem 1 of [2], g1/2 ξ/gr1/2eL2((0,u0) x (0,ro)), r0

arbitrary, and (by Proposition 2 of [2])

and at almost all uξ/g1/2->0 as r ^ O . It follows that also g1/2θ/gr1/2eL2((0,u0)
x (0,ro)),ro arbitrary, and

sup\(θ/gll2)(u,r)\εL2{09uo)9

and at almost all uθ/g1/2^>0 as r->0.
The function 5 defined by (3.2) is weakly differentiable in the complement of the

central line. By (3.13) and (3.14) we have:

1

.dhn

Ά ,- - Jho

--(g-go)-^r
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Taking into account the fact that

rdr" " ' υ r dr * r2 2r2^ " ' δi± 2r

we obtain

DB=](β-βί^(β-β)-θ]%+]{β-β)ω-, (3.17)

where

X (3.18)
or

We shall now show:

Lemma 1. At almost all u

δDB{δ)->0 as

Proof. The function ω, defined above, is uniformly bounded; hence the second
integral in (3.17) is bounded by a constant multiple of

i\β-P\y-

Since at each u (β — fJ)eL}(0,1), we have:

31/2 _ dr δU2

δ J \β-β\—^ j \β-jf\dr-+O as 5-^0,
δ V δ

and

Therefore

δ } \β-β\ώ^Sδι/2]\β-β\dr->0 as δ-*0.
U2 r o

1 dr
δ\\β~β\ >0 as

Since

sup{r\β-β\}

is bounded by a constant, the integral

is bounded by a constant. We conclude that at all u,

δ]\ββ\ 0 5as
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The first integral in (3.17) is bounded by \Jγ + J2, where

J\: =

and

By (3.7) w e h a v e

°° _ dr k ^docdr
iύk ot(β-β)2-I = -- .

r r 4π r dr r

Since α is continuous with respect to r at r = 0, we have

I dr r I dr -> s
Also,

(5 J — - ^ < 5 1 / 2 J ^ r = ̂ 2 ( l - α ( 0 ) ) - 0 as

We conclude that at all u,

δJ1(u,δ)^0 as (5-0.

We decompose J2{u,δ) into:

^ W 1^-^11^!^+ } 1 ) 8 - ^ 1 1 0 1 ^ + J I ^ - ^ I I Θ I * (3.19)
<5 7* 51/2 Γ 1 Γ

Since θ/g1/2r1/2eL2((0, uo) x (0,1)), at almost all u we have % 1 / 2 Γ 1 / 2 G L 2 ( 0 ? 1). Thus,
taking into account (3.7) we can estimate:

ιt2^δγθ2 drV12

I g r)

δX'2θ2 drV'2

ί ^° as

and

l2ίιθ2 dr\1/2(f-dA
\o g r )
f
o g r

/ a2 drV12

2 — - ^ 0 as
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Furthermore, since the integral

is bounded by a constant, the third integral in (3.19) is bounded by a constant
multiple of

sup|0|,
r

which is finite for almost all u. We conclude that at almost all u.

δJ2(u,δ)-^0 as (5->0.

The Lemma then follows. •

The quantity L defined by (3.9) is a weakly differentiable function of u and

y = Iι+l2, (3.20)

where

°? g da °° dB
lx — — - ^r-dr = 4π #—dr, (3.21)

o α ou o ou

and (see (3.4)):

\2— (1 — <x,)—(g/a)dr — (1 — α)e^ g0——h —— αr. (3.22)
o ou o \v dw ou /

Now, Lemma 1, together with the fact that at almost all u DB = O(r~2) as r -• oo,
implies that:

r)ΠR

= j DBd(rg) = - J rg—dr.
o o o or

Therefore:

'-N(^«f>*-*K'fί-^)*
From (3.17) we have:

Substituting this in (3.22) and considering the fact that

r or or

and that at almost all u:θ-^O as r->0, we obtain:

= -2πΘ2 + 4π]g(β~β)ωώ% (3.24)
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where

Θ(u): = lim θ{u, r); 6>eL2(0, u0).
r-> oo

Also, from (3.5), (3.13) and (3.14) we obtain:

dφ Λ δh~0_(R ™δKoθ— = 4π—g(β - β) + 4π J — -dr
ou or i. or r

that is:

(3.25)

where

Section 4. The Orlicz Inequality; Proof of Theorem 2

To derive an ordinary differential inequality for L, we have to estimate dL/δu, given
by (3.20), in terms of L. In estimating lx we shall use the following:

Lemma 2. There is a universal constant c such that

Proof. Let

and let

Then hί=h and

g-Qo = ι

since
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- 0 o = -Sπ](](ht-ht)(β- β)-
o\r

Therefore (by the Schwarz inequality)

J r \ l / 2 i

pf—)
r ] o

where

V = m ^ IY1'2L

xe[Ooo[

On the other hand, |# — # 0 | g l . Hence:

l/2

According to (3.24),

and form (3.18) we obtain

]g(β-β)ojdr ^]g\β-

]g(β-β)ωdr

D

(4.1)

dr
dr

ϊg\β-β\\y-gol ° dr+)g\β-β\^dr. (4.2)

By Lemma 2 and (3.7) the first integral on the right is bounded by a constant multiple
of:

oo

\a\β-β\(\-v)Xί2dr,

which in turn is bounded by (see (3.11)):
,1/2/oo \ l / 2

1/2

1/2 *

To estimate the last two integrals in (4.2) we shall use the following: For any function
/eL 2(0 9 oo) we have/eL2(0, oo) and

] f ] f
o o

This fact is seen as follows. Since df/dr = (/ —f)/r and since

(4.3)

we have:

rfHr)J-tifdr) £{/*,

0

as
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that its:

r r r _ ίr \ 1 / 2 Λ - ^ 1 / 2

j p dr = j 2fjdr — rf2 g J 2ffdr ^ 21 j / 2 dr J I j / 2 <
o o o \o / \o

Therefore,

o o

holds for every r, from which the result follows. Setting now

we have by Lemma 2:

o

Thus, the second intergal on the right in (4.2) is bounded by a constant multiple of

]δί\β-P\γdr,
o

which by (4.3) is in turn bounded by:

1/2/oo \ l / 2 / A T \ 1 / 2

From (3.16) we obtain

r ~ r o ° ~~

Therefore, the third integral on the right in (4.2) is bounded by a constant multiple of

]*\β-β\ydr,
o

which, applying (4.3) twice, is bounded by:

1/2 / oo \ l / 2 / / v r \ l / 2 / oo \ l / 2 9 AT

J 7 α r I ^ — ) l o j y α r l = - 7 7 2 " -
0 / \4π/ \ 0 / 7C

We conclude from the above that lx is bounded from above by a constant multiple of

N:

h^CN. (4.4)

We now turn to 72, which, according to (3.22), is equal to l1Λ +I2,2> where

J2 χ = j (1 — cήe^gQ—dr, (4.5)
0 on

and

h.2= Ul-oι)e*-r-dr. (4.6)
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The quantity dgo/du is uniformly bounded, h0 being a classical solution. According
to (3.6) φ is also uniformly bounded. Thus 72>2 *s bounded by a constant multiple of
N. We are therefore left with 72>1. The quantity dφ/du is given by (3.25). The third
term in (3.25) can be shown to be uniformly bounded. Therefore the contribution of
this term to 72<1 is bounded by a constant multiple of N. The contribution of the first
term in (3.25) to l2Λ is bounded by a constant multiple of

which, since 0 g 1 — a ^ 1, is in turn bounded by N/2π1/2. We are left with the
contribution of the second term in (3.25). We have thus arrived at this point to the
following conclusion:

dh0

dr

\θ\
dr )dr.

Since the integral

]\δho/dr\dr/r

is uniformly bounded, for r ^ 1 we have

dh0

ί dr
—dr^Csup\θ\.
r r

Also, since dKjdr is uniformly bounded, for r < 1 we have

GO βfo \β\

J ~a7 ~7^r =
dH0

dr r

dK0

dr

| 0 | . ? dh0

dr
-dr

1 0 2 X l / 2 / 1 J \

i^) Or)
l /2

where

Ί / Ί 2 \ l / 2

ί: = ( i —dr +sup|θ|.

(4.7)

(4.8

Since θ/rι'2eL2(0,uo) x (0,1) and

sup|6>|eL2(0,u0),
r

the function 77(ι/) belongs to L2(0,t/0). We conclude from the above that:

f <1 — «>( J

^ CH

dr
—dr \dr

r J
- σ.)dr \. (4.9)

We shall now show:
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Lemma 3. There is a universal constant c such that

609

Proof. Let us recall the following [5]: If ί2is a domain in | Rn and A is an ΛMunction,
the Orlicz space LA(Ω) is defined to be the linear hull of the set of all measureable
functions / defined on Ω and such that

$Ά(\f(x)\)dx<oo;
Ω

it is a Banach space with respect to the norm

If A and A are complementary N-functions, the following inequality holds:

We shall apply the above to the case where Ω=(0,1), A and A are the
complementary N-functions

and

and/j = 1 - α a n d / 2 = Iog1/2(l/r). Then

We have

(4Λ0)

- l o g

1 / 2lo g

1 / 2(l/r) - \)dr

= ](esl/2-s1/2-l)e~sds = c,

where c is a finite constant. Hence

(4.11)

Now,

and

11(1-α)

Ό: f
J
o |_
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For t ;> 0 it holds:

Thus, taking into account the fact that (1 — α) g 1, we obtain:

where

We conclude that if for a certain positive value kί of kf(kx) ^iV, then ||(1 — α)IL,(o,x)

fcx : = w ( l + log ( 1 + - - ) ) . (4.12)

Then

l + l o g ( l + i

therefore:

ll(l-α)L,(o,αo)^ίci- (4.13)

Considering (413), (4.12) and (4.11), the lemma follows from (4.10). •

From (4.4), (4.7), (4.9) and Lemma 3, together with (3.20) we conclude that:

^C1N + C2HN + C3HN[ l + l o g ( 1+-J- ) ). (4.14)

du V \ NJJ
Thus, taking into account the facts that (see (3.10) and (3.12)) N/k^kN and

^ CMQ, we conclude:

^ ( 2 C ^ ) (4.15)
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Let us set:

x: = L/2CM0, (4.16)

since L(u) is an absolutely continuous function of u in [0, u 0 ] , the same is true for x(u),
and we have O ^ x ^ 1/2. According to (4.15) x satisfies the ordinary differential
inequality:

^ ( ) (4.17)

where:

Since HeL2(0,w0), the function a(u) also belongs to L2(0,uo). Integrating (4.17) we
obtain:

log (I/log (1/X(M))) - log (I/log (l/x(0))) S ]adu9

o

which yields

x(u) ^ (x(0)f~ladu (4.18)

The exponent of x(0) in the above inequality is less than 1 and decreases
monotonically with u. But since αςL2(0, uo)9 and therefore a fortiori αeL2(0, w0), this
exponent is greater than 0. Hence i ( 0 ) ^ 0 implies x(u) = 0 for all we[0, w0].
Now, the fact that the initial data of h and h0 coincide implies that L(0) = 0. Thus,
in fact, x(0) = 0, and therefore L(ύ) = 0 for'stll we[0, M'O]. It follows that α = 1 for all
(u, r)e[0, M 0] x [O^oo]. Hence, β-β = O, that is, δj5/3r_= 0, for all r and all ue[0, M 0 ] .
Since at each M J?->0 as r^oo, we conclude that /? = 0, hence ^ = 0. Therefore
h = h0 on [0, w0] x [0, oo[, and the proof of Theorem 1 is now complete.

We note that the generalized solution may not be unique beyond the domain of
existence of the classical solution as there may be bifurcations across the singular
cones.
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