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Abstract. For the semi-infinite Ising model in two or more dimensions, we
prove analyticity properties of the surface free energy and map out the phase
diagram in the absence of an external magnetic field. We prove that this phase
diagram contains critical lines where the parallel and/or the transverse
correlation lengths diverge. The critical exponent, v l5 of the transverse
correlation length is shown to be equal to the exponent v of the Ising model on
an infinite lattice. In a second paper, these results will be used to analyze the
wetting transition.

1. Introduction

We consider a binary system in the two-phase region, with phases + and —. We
suppose that the system is in the — phase. If we insert a wall, which adsorbs
preferentially the + phase, there is formation of a film of the + phase between the
wall and the bulk phase. There is a partial wetting of the wall when the thickness of
the film is microscopic, and complete wetting when the thickness is macroscopic.
The wetting transition is the transition from partial wetting to complete wetting.
This phenomenon can be analyzed in the Ising model. Let us consider the Ising
model on TLd, with Hamiltonian

- ΣKσ(z>(j)-ΣMO, (1.1)
<U> i

where <(/> indicates a pair of points {ί,j} such that \ί—j\ = 1. We insert a wall by
setting σ(ΐ) = 1, for all ΐ = (ί1,..., id) e Zd with id ̂  0. In this way we get a semi-infinite
model on the sublattice

JL={ίeZd; id>Q}=Zd-lxZ+ (1.2)

with coupling constant K, external field λ and boundary field K. We generalize the
model by admitting an arbitrary boundary field h and by choosing a coupling
constant J for the interaction of two spins inside the first layer of 1L,

d=l}^Zd-1. (1.3)
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Our final Hamiltonian is

H(j, κ,h,λ)=- Σ κ(i, jMH/) - Σ MO - Σ MO (i .4)
<i/>cIL ielL ieΣ

with K(i, j) = J if < i j y C Σ, and otherwise K(ί, j) = K. The model is always taken to be
ferromagnetic, i.e. J > 0 and K > 0. If h > 0, the wall adsorbs preferentially the +
phase. Notice that both fields h and λ act on the first layer Σ.

In this paper we analyze
1) the surface free energy,
2) the surface equilibrium states,
3) the correlation lengths,
4) the phase diagram at h = 0 and λ = 0.
The wetting transition is considered in a second paper, where we analyze
5) the wetting transition; phase diagram at λ = Q and Λ>0,
6) the layering transition; phase diagram at λ<0 and /z>0.
The condition h = 0 means that the wall does not adsorb preferentially one of

the phases. We have studied this case in [1] for multicomponent spin models. In
[1] we also have obtained results on the behaviour of the spin-spin correlation
function of the Ising model near the wall, when J^K<^1, orK<^J<^l .

The above model, for J = K, A = 0, and dimension d = 2, has been solved by
McCoy and Wu [2], and for J Φ K, by Au Yang [3]. Our approach is different. We
use mainly correlation inequalities (or moment inequalities), and therefore our
results are valid for d^. 2. But even in two dimensions some of our results are new.

The results of this paper are formulated in Sect. 2, and the proofs are given in
Sects. 4 and 5. In Sect. 3, correlation inequalities and some consequences of these
inequalities are summarized. In particular, the duplication trick is explained. Most
of the results of this section are known, or are extensions of known results (e.g.
Lemma 3.3). This section is basic for understanding the proofs of this and the next
paper. The positivity of J and K, as well as the two-body character of the
interaction are essential, since F.K.G. inequalities, duplicate variable inequalities
and the Lee Yang theorem are used.

Our main results have been described in [4], where a discussion of points 5) and
6) may be found.

2. Results

2.1. Thermodynamίc Functions

We start by defining the thermodynamic functions which describe the behaviour of
the model near Σ. Let Λ(L, M) be the finite box in 1L, defined by

(2.1)

Let the spin configuration outside Λ(L, M) be fixed, σ(i) = 1 for all i e 1L\Λ(L, M). If
we restrict the summation in the Hamiltonian (1.4) over all pairs <ι/> ClL, such that
{i,j}nΛ(L, M)Φ0, then we obtain a Hamiltonian H^ M for the model in the box
Λ(L, M) with + boundary condition (+ b.c.). The corresponding partition
function and finite- volume Gibbs state are Z£tM and < >^M. Similarly, we define
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— b.c. or free b.c. by taking σ(ΐ) = — \ or σ(ί) = 0 outside A(L, M). The bulk free
energy is given by the formula

FB(K, λ) = lim -—lnZ + L(J, K, h, λ) . (2.2)

In (2.2) \Λ(L,L)\ is the number of points inside the box Λ(L, L), and the left-hand
side does not depend on J, h or the choice of the b.c. Indeed, the boundary terms
give a contribution to lnZ^L of order O(Ld~1} and \Λ(L,L)\ is of order 0(Ld). The
definition of a surface free energy F(J,K,h,λ) is more delicate; this problem is
partially studied in [5, 6]. It is not true, anymore, that F is independent of the
choice of the b.c. when the system is in the two-phase region, i.e. when λ — 0 and
K > Kc(d\ the critical coupling constant of the d-dimensional Ising model defined
by (1.1). One usually considers the surface free energy F(J,K,h,λ) for Λ,φO, and

then one defines F + ( J, K, h, λ) = lim F(J, K, k λ) and F ~ ( J, K, h, λ)
λ i o

= HmF(J9K,h,λ). F+ and F~ are the surface coefficients (or surface tensions) of
A T o

the wall against the + phase, the — phase, respectively. The analysis of the
difference F~ — F+ corresponds to the analysis of the wetting phenomenon, and is
the subject of our second paper. We proceed in a slightly different way. We define
two surface free energies F+ and F~ using + b.c. and — b.c. For /IΦO it is likely
that F+ = F~ , but we cannot prove this equality in full generality.

Let us consider the precise definition of the surface free energy F + . It is
convenient to consider another copy of the model in a box Λ'(L, M), which is
obtained by reflection of Λ(L, M) with respect to the hyperplane id = 1/2. For both
copies we choose + b.c. We may consider these two separate systems as one
system contained in the box Ω(L, M) = Λ(L, M)uΛ'(L, M)cZd. The corresponding
partition function is (Z^M)2. In the box Ω(L, M) we also consider the Ising model
with Hamiltonian (1.1) and -f b.c. The partition function is Q£tM Let

(2.3)

where Σ(L) = Λ(L,M)r\Σ. We define

F + ( J, K, h, λ) = lim F + L( J, K, h, λ} . (2.4)
L-* oo

In the same way we define F~(J,K,h,λ).
If we replace the + b.c. by the periodic b.c. for Ω(L, M) we obtain, instead of

(2.3), a quantity FltM(J,K9h,λ) and Fp= lim FP

L L. This definition is natural for
L->oo

the following reason: The partition function β£ M in the denominator in (2.3) is the
partition function of the Ising model on a torus. One knows, at least for d = 2, that
the leading term for lng£ L is of order 0(Ld\ but that the next term is of order
strictly smaller than 0(Ld~l). In contrast, the partition function in the numerator
in (2.3) is the partition function of the Ising model on a cylinder with two surfaces of
volume \Σ(L)\. Thus, in (2.3), we extract a boundary contribution which we
interpret as the surface free energy coming from the presence of the wall. This
definition is used in [2, 3].
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In Sect. 4, we prove the following results.
a) F+ and F~ are well-defined for any h and any λ.
b) F+ is right-continuous in h and λ. F~ is left-continuous in h and λ.
In particular, if F+ =F~ for /iφO, then the surface tensions of the wall against

the + phase and the — phase are given by (F = F+ =F~, for ΛφO)

lim F(h, λ) = F+(h, 0), (2.5)

and

lim F(h, λ) = F~ (h, 0). (2.6)

c) F+=FP if λ^O and h^O.
In particular, the free energy computed by McCoy and Wu and by Au Yang is

F+ for Λ^O, but F~ for ftgO, since F+(J,X,/z,l) = F~(J,X, -h, -λ).
d) F+ is analytic in h for /IΞ>0 and Re(Λ + Λ,)>0.
e) F+ is analytic in λ for /z^O and Re/l>|ImA|.
Once the surface free energy is defined, we can introduce (see [7])

MΣ = — —, the layer magnetization, (2.7)

dM
XΣ= ——-, the layer susceptibility, (2.8)

oh

dF
Ms= — ——, the excess surface magnetization, (2.9)

uλ

X
x°

where F is F+ or F

Remarks. 1) For proving a) and b) we use F.K.G. inequalities.
2) c) is proved in the Appendix.
3) d) is a direct consequence of the Lee Yang theorem.
4) e) is a consequence of correlation inequalities with imaginary angles (see

Sect. 3).
5) In (2.3), it is not necessary to choose M = L. We may choose M = La with

0<α<l. This fact is used in our second paper.

2.2. Surface Equilibrium States

The definition of surface equilibrium states is straightforward. Surface equilibrium
states are simply the Gibbs states of the model. Two states are important: one is
defined by + b.c.

< > + = lim < >L,M> (2.H)

and the other by — b.c.

~~ 1™ ^L,M-



Semi-Infinite Ising Model 497

Both states are Z-invariant, i.e. invariant under all translations parallel to Σ
(Lemma 3.1), and are extremal Gibbs states. Moreover, there is a unique Gibbs
state in the model if and only i f < >+ = < >~ (Lemma 3.2). When λ ̂  0 and h ̂  0
<(σ(z)>+ — <σ(/)>~, for one z, implies already the uniqueness of the Gibbs state
(Lemma 3.3). Just like the free energies F+ and F~, the states < > + and < > ~ are
right continuous in h and λ, left continuous, respectively. In particular, if for fixed
J, K, h there is a unique Gibbs state for λ φ 0, <( y(J,K, h, λ),

< y+(J,K,h,G)= l im< - >(J,K,M), (2.13)
λi o

and the state < >", at λ = Q, is obtained by the limit λ]0.
Let λ > 0 and h > 0. The free energy F+(h, λ) is analytic in λ and in h. Thus the

thermodynamic quantities (2.7) through (2.10) are well-defined. We can show that

all correlation functions (σAy
+(h,λ)= / γ\ σ(i)\ + (h,λ) are also analytic functions

\ieA I

of h and λ, and we can express (2.7) through (2.10), with F = F+, in terms of
correlation functions for the state < > + .

More precisely,

, (2.14)

XΣ= Σ<σ(0);σ(0>+, (2.15)
ieΣ

X0= Σ<σ(0);σ(0>+, (2.16)
ielL

where <σ(0); σ(i)> + = <σ(0)σ(i)> + - <XO)> <σ(ί)> + .
lίi = (x,z),xeZd-1 andz = i",

Ms= Σ «σ(0,z)>+-<σ(0,z)>,:), (2.17)
z^ l

where <σ(0,z)>^ is the magnetization of the Ising model on TLά with Hamiltonian
(1.1), and is independent of z.

Remarks. 1) Proofs of (2.14) through (2.17) are given in Sect. 4.3. They are based on
the Lee Yang theorem and are similar to the proof of (2.15) given in [8]. The proof
of (2.14) and (2.15) is also valid for the XΎ model. Concerning (2.15), see also
[9, 10].

2) Formula (2.14) is valid not only for λ > 0 and h > 0, but for any values of λ
and h for which F+ is differentiable in h.

3) If we take the limit h 1 0 and λ 1 0 in (2.14)-(2.16), these formulas still hold in
the limit.

Another consequence of the analyticity properties is a proof of normal
fluctuations of block spin variables. Let h > 0, and let us decompose Σ into blocks
of the same size:

=l,. . .,</-!}, (2.18)

and Σb is the translate of Σ0 by the translation a = (2Lb1

9...92Lbd~1

90)9beZd~1.
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We define
σ(Σb)= £ σ(f), (2.19)

ί e Σ b

and the block spin variable

r(Z,)-<σ(Zb)>+). (2.20)

From [8] we have the following results: The distribution of the block spin σ(Σ0) in
the state < > + tends to a Gaussian distribution when L-> oo, which is given by the
density

1 / k2 \
i/ϊexp -^ (2-21)

Moreover, the joint distribution in the state < >+ of p different block spin
variables converges to the distribution of a product of p independent Gaussian
variables defined by (2.21) when L->oo.

2.3. Correlation Lengths

Let h^O and A^O. There are two correlation lengths: the parallel correlation
length ξΣ, related to the large distance behaviour of the spin-spin correlation
function for two spins in or near Z1, and the transverse correlation length, ξ±ί which
indicates how far the presence of the wall influences the behaviour of a spin σ(ΐ)
inside the system. It is convenient to write i = (x,z), xeZ**" 1 , z = ίd. By definition

ξ71=Hm --ln<σ(0, l);σ(0,z)> + . (2.22)
z->oo z

The correlation length of the Ising model on Zd, with coupling K and field λ, is ξls.
For this model and for λ — 0 we know, either from exact computation or from [11],
that there is a unique Gibbs state with ξls < oo and Xls < oo for K < Kc(d). When
KI Kc(d), ξls and Xls diverge. Above Kc(d) there is spontaneous magnetization.

Our results for the semi-infinite model are (Lemmas 5.2, 5.3, and 5.5)

a) ξ1.(J,K,h,0) = ξls(K9Q)9 (2.23)

if ;L = 0, ft^O, and K<Kc(d\

b) <σ(0,l)σ(0,L)>+-L~(d~2 + ί?l), L>1, (2.24)

if λ = 09 K = Kc(d\ J^Kc(d\ and h^Kc(d\ where in (2.24) ηL = η^.
c) In (2.24), η± ̂  ηls if λ = h = 0, K = Kc(d\ and J ̂  Kc(d).

d) ξ^K^λ^ξ^K.λ), (2.25)

if h^.0 and λ^.0. There is equality in (2.25) when h^K and K = J.
In particular, the critical exponent v± of ξL is equal to the critical exponent v of

ξls and is independent of J and h. Therefore, the 2-dimensional plane {(J, K, h, λ):
K = Kc(d\ λ — 0} in the space of parameters of the model is critical.

Remark. In Sect. 5 the behaviour of <σ(0, z)> + as z-» oo is analyzed (Lemma 5.4 and
the remark following this lemma).
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We now consider ξΣ for h = λ = 0 and in the one-phase region, which is charac-
terized by <σ(0>+(J,K) = 0. We define

& l = lim - γln<σ(0, l)σ(xL, I)/ (2.26)
L-> oc 1̂

with xL = (L,0, ..^OJeZ*" 1. Here we choose free b.c., for technical reasons, and
define the layer susceptibility XΣ by

*ι= Σ <σOM/)y, ieΓ. (2.27)
./ei:

Remark. In the Appendix we prove that F+=Ff when / = 0 and /z^O. By
repeating an argument of Aizenman [11] we can prove that XΣ < oo, as defined in
(2.27), implies <σ(f)>+ =0. In other words, as long as (2.27) is finite, we are in the
one-phase region and (2.27) is equal to (2.15).

The function ξΣ

 l(J, K) is a continuous function of J and K. The proof is the
same as for the Ising model (see e.g. [12]). By adapting an argument of Simon [13]
we also show that

K<Kc(d) and XΣ<co imply ξΣ<ao. (2.28)

Moreover, XΣ

 1 is a continuous function of J,

J 1 ) , J2>J,. (2.29)

These results are proved in Sect. 5.2. Summary: let the high-temperature region be
defined by

{(J, K): XΣ defined by (2.27) is finite}. (2.30)

From the above results we see that this region is inside the one-phase region, where
there is uniqueness of the Gibbs state. Moreover, ξΣ is finite in the interior of the
high-temperature region, and the boundary of this region is critical, since ξΣ

diverges when one reaches the boundary.

Remark. If K > Kc(d\ then <σ(ι)> + (J, K) > 0, and by the preceding remark (2.27) is
infinite.

2.4. Phase Diagram at h = Q and λ = Q

For d = 2, the phase diagram is known exactly. In the plane (J, K) there is a critical
line K = KC(2). If K<Kc(d] there is a unique Gibbs state, and therefore,
<σ(ί)> + (J,K) = 0 for any J^O. For K>Kc(d) the surface Σ and the bulk are
ordered. The critical exponents of the layer susceptibility XΣ and of the correlation
length ξΣ are 7^ = 0 and VΣ=\. The exponent ηΣ=l', the definition of ηΣ is

<σ(0,l)σ(xL,l) + >^L-(d-2 + ̂ , K = KC(2), L>1. (2.31)

From Sect. 2.3 we know that v± = l. The exponent β of the spontaneous
magnetization is \.

For d^3, the phase diagram is different, because the surface can be ordered
before the bulk is ordered [14]. When J — K we know that there is a unique Gibbs
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state if and only if K^Kc(d) [15]. By correlation inequalities, this also holds for
J^K. Let K^Kc(d). We define

[We have used the shorthand <σ(0)> + for <σ(0, ...,0,1)> + .] If J<J(K) and
K ̂  Kc(d\ there is a unique Gibbs state. J(K) is a monotone decreasing function of
K, J(ϋ) = Jc(d-\\ J(Kc(d)}^Kc(d). The phase diagram looks like Fig. 1.

From Sect. 2.3, K = Kc(d) is a critical line, since ξ± diverges when one crosses
this line, moreover, V j _ = vls. The line OP is the ordinary transition line and the
critical exponents are called surface exponents. The vertical line from P to infinity
is the extraordinary transition line. The line from P to S is the surface transition
line. Here the exponents are those of the (d— l)-dimensional Ising model. Region /
corresponds to the region where there is a unique Gibbs state. It contains the high-
temperature region defined by (2.30). Assuming that it coincides with the high-
temperature region and assuming that the function K^J(K] is differentiable, it
follows that XΣ and ξΣ diverge when one crosses this line, e.g. along the line a at Al

in Fig. 1. Moreover, yΣ^ 1 (Lemma 5.13). At A2 one has a second transition. Here
the bulk becomes ordered, and ξ± diverges. If one moves along line b, there is one
transition at 51? where ξΣ and ξλ diverge. [The divergence of XΣ is not proved,
because in (2.28) we need K<Kc(d\ and we have proved only continuity in J

3. Correlation Inequalities

Let A be a finite subset. In the applications A C%d or A clL. The interaction is given
by a finite range two-body interaction K(iJ) which is always ferromagnetic:
K(i, j) ̂  0. The assumption of finite range is not important. We also add an external
magnetic field h, which is a real-valued function on the lattice. The Hamiltonian is

HA(h)=-
{ί,j}CΛ

(3.1)

The corresponding Gibbs state is < yΛ(h). IfΛcZdoΐΛcTL,& boundary condition
for the system in A is specified by fixing the values of the spins outside A and taking
into account in (3.1) their interaction with the spins inside A.
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3.1. F.K.G. Inequalities

A spin configuration is a function σ defined on the lattice with values +1. By
definition σ ̂  σ', if and only if σ(i) ^ σ'(i) Vi . A real- valued function /, defined on the
configurations, is (monotone) increasing if σrgσ' implies /(σ)rg/(σ'). Examples of
increasing functions are

//(*) = Σ <KO± Π <KO, Mσ)= Π i(l +<KO). (3.2)
ί e -4 i e A ieA

Let / and g be increasing functions. The F.K.G. inequality for / and g says
that [16]

</ g>Λ(Λ)^</>Λ(Λ)<g>κW (33)

There is a related inequality for an increasing function / (Holley [17]),

(fyΛ(h)^(fyΛ(h) if h^h. (3.4)

Applications. Let us consider some standard consequences. (See e.g. the review
[18].) Let ΛζΊLά and for each α = (α1,...,αd~1,0)eZd we suppose that K(i + a,j + a)
= K(z, ) and ft(f + α) = h(ί). Let < - > "̂ be the Gibbs state in A with + b.c., i.e. σ(ί) = 1
if iφA. By the F.K.G. inequality, we have for all AcA1r\A2,

<nAy+^(nAyΛ2, Λ 2 Λ 2 . (3.5)

Indeed, for the Gibbs state < > 2̂ the boundary condition means σ(i) = + 1 when

/ < £ Λ 2 . In particular, σ(i)= + 1 for iey4 1 \^4 2 . If we add a term J] // σ(0 in the
ieΛ1\Λ2

Hamiltonian for the system in Aί9 and let μ->oo, then σ(i) = l for all ieA^\A2.
Thus

Um<nA>;ι(μ) = <O+2, (3.6)

and the inequality (3.5) follows. Therefore, for any sequence AncAn + 1, with
An t Z

d, we have a limit

lim<^>X = <nA>+, (3.7)

which is independent of the sequence. This defines a Gibbs state < > + of the
infinite system on TLd.

Lemma 3.1. The Gibbs state < > + is an extremal Gibbs state and has the properties

<nA>
+ = <nA+ay\ (3.8)

where A + a = {ί-3ra; ieA} and a = (a1, ...9a
d~1

90).
For any ε > 0, there is a finite subset of TLά, A(A, ε), such that for all Λ~^A(A, ε)

\(nAy+-(nAy
 + \^ε. (3.9)

Moreover, for A + a, with a as above, we can choose A(A + a, ε) = A(A, ε)H-α. The
state < > + has the clustering property

lim <nA+anBy
+ = (nAy

 + (nBy
+. (3.10)



502 J. Frόhlich and C.-E. Pfistcr

Remarks. 1) We can define, in a similar way, a Gibbs state < > ~ with — b.c. In this
case (3.5) is replaced by

<nAy^<nAyA2, Λ^Λ2. (3.11)

Lemma 3.1 is valid for < >~.
2) We have chosen the lattice TLά, but it is obvious that we could take 1L and get

the same results.

Lemma 3.2 [19]. // <σ(i)> + = <σ(i)> ~ for all i, the two Gibbs states < > + and < > ~
coincide, and this implies the uniqueness of the Gibbs state.

The proof follows from the fact that the functions //, defined in (3.2) are
increasing, and therefore,

i«>+-<^>Ί^ Σ «σ(0>+-<σ(0>Ί. (3.12)
ieA

Moreover, for any Gibbs state < >, we have

<^>-g<O^<O+. (3.13)

The extremality of < >+ and < >~ follows from (3.13). We can deduce from (3.5)
and (3.11) continuity properties. Let h(i) = h for all i. Then

and

lim <nx>-(Λ1) = <^>-(Λ2), (3.14)
hi T / Z 2

lim <»^> + (/ί1) = <«/1>
 + (/ί2). (3.15)

hi I h2

Indeed, <^>+(/z1)^<^> + (ft1)^<^> + (/z2), so that for all Λ

+ (h2)^ lim <^>+(/z1)^<^> + (/?2). (3.16)
hi I h 2

3.2. G.K.S. Inequalities

We take h^Q in (3.1), i.e. Λ(0^0 for all i. G.K.S. inequalities are [20]

(3.17)

A(h) . (3.18)

We can apply these inequalities in the situation described in 3.1. For example, we
have

<Xc>+^<^>-. (3.19)

Moreover, we can define the Gibbs state <( yf with free boundary condition
exactly as the states < >+ or < )~ Lemma 3.1 is also valid for < X, with the
exception of the clustering property and the extremality property. The following
continuity property is valid,

lim <σx>
/(J1) = <σA>/(J2). (3.20)

Jl t J2
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3.3. Duplicate Variable Inequalities

Let us consider two independent copies of the same system in A. The spins in the
second copy are σ(/)', ieΛ, and the Hamiltonian is HΛ(h'). [We suppose here that
K'(iJ) = K(iJ).~] We can consider the two systems as one system, called the
duplicate system, which is defined in Λ, and for each i e Λ we have two independent
spin variables σ(ΐ) and σ(ΐ)'. Let

s(ϊ) = σ(ι) + σ(/)' , ί(0 = σ(ϊ) - σ(ΐ)' . (3.21)

The Hamiltonian for the duplicate system can be written

- i Σ WO + Λ(i)'XO - Σ WO - λ(iWO . (3.22)
ie/1 ίε/1

Let ίx = Π ί(z) and s^ = f] s(0 We also write (sAyΛ for the expectation value of SA
ίeA ieA

in the duplicate system. Let h(i) ± h(ί)' ^ 0. Duplicate variable inequalities are [21]

sByΛ, (3.23)
<tAtByA^<tAyA(tByA9 (3.24)
<sAsByA^<isAyA<sByA. (3.25)

Applications. We consider again the model defined in 3.1. In the first application
the invariance by translation a is not required. It is, however, important that
K(iJ)>0 if \i—j\ = 1. Let < > be another Gibbs state of the infinite system. We
suppose that < > = lim < >Λ > where < >Λ is a Gibbs state in the finite volume

n n n

An with some boundary condition.

Lemma 3.3. Under the above conditions, and if h(i)^Q Vi, we have
1) <σ(f)>+ >0, V ΐ , or <σ(/)>+ -0, Vί.
2) // <cr(ϊ)> + - <σ(f)> far some ί, then < > + - < >.

Proof. Since K(iJ)>0 if | f — j| = l, we have by G.K.S. inequalities,

<σ(0σ(;)> + k <(τ(ίH/)>& Λ > 0 . (3.26)

Therefore, 1) follows from

. (3.27)

We consider the duplicate system in Λn constructed with the Hamiltonians giving
the Gibbs states < )An and < }An. For this duplicate system we can apply
inequalities (3.23)-(3 25J! We first prove that

<t(WJ)>An>0 if \ί-j\ = ί . (3.28)

To prove this we proceed as for (3.5). We add an external field μ s(k) for all
keΛn\{iJ}, and let μ->oo. In this limit, s(k) = 2 and ί(fc) = 0, for all keAn\{iJ}.
Therefore,

Λ>0, (3.29)
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where on the right-hand side the expectation value is that given by the Gibbs state
defined on {i,j} with Hamiltonian

I Φ j I Φ i

(3.30)
Therefore, in the duplicate system

lim <t(ί)t(j)yΛn = <ί(Oί(/)> > 0 . (3.31)

As for 1), we have <ί(i)>>0, Vi, or <f(i)> = 0, Vi, since

(3.32)

If <σ(i)>+ = <σ(i)> for some i, <ί(i)> = 0, and therefore, <σO')> + =<σ(j)> for all j.
The result follows from a variant of Lemma 3.2 [see (3.12)]. We also could use

the results of [22], since either <σ(i)> + > 0, for all i, or <σ(i)σ(./)> + = <σ(i)σ(./)> > 0,
for all i and j when <σ(i)>=0:

0>. D (3.33)

Remarks. 1) Every Gibbs state is a convex combination of extremal Gibbs states
and for those Gibbs states the hypothesis which we made on < > is verified.
Moreover, if < > is any Gibbs state, <σ(/)>+ ^<<τ(i)>. From this it follows that
Lemma 3.2 is in fact true for any Gibbs state < >.

2) In our application the lattice is Έά. The only property which is important is
that any two points i and j of the lattice can be joined by a path of points i0 = i,
iί9...,in=j such that K(il9il + 1)>0.

3) In the duplication trick it is not necessary to consider two independent
systems. We can make a self-duplication if we can divide the spins in the box into
two sets, A l and A 2 , such that for each i e A l there is one and only one / e A 2 . Then
we introduce the variables

s(ί) = σ(ί) + σ(ί) , t(ί) = σ(ί) - σ(ί) . (3.34)

Several well-known inequalities follow from inequalities (3.23)-(3.25) [21]. Let us
consider, for example, the model defined in 3.1 on the lattice 1L or Zd. The G.H.S.
inequality [23] is

^ 0 , (3.35)

provided /z(/)^OVf . We can also replace in (3. 35) the state < > + by the state < >Λ
The second very important inequality is the w4-inequality [21], which is valid if
fc(0 = 0, Vi, and <σ(0>+ =0, Vi:

<σ(/)σ( j)σ(k)σ(l)y + -
+ ̂  0 . (3.36)
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Using the duplicate system we can conveniently express the two-point connected
function <σ(z); σt/)>Ξ<σ(i)σ(7')>+ — <σ(i)> + <σ(j)> + . In the duplicate system,
where this time both Hamiltonians are identical, we find

(3.37)

From (3.37) it follows that

2<σ(J); σO)> + ̂  <<KO; σ(/c)> + <σ(/c); σ(;)>
 + . (3.38)

This inequality has been improved by Graham [24],

^ <σ(0; σ(/c)> + <σ(/c); σO')> + . (3.39)

3.4. Ellis-Monroe Inequalities

We consider a duplicate system in Λ whose Hamiltonian is

Σ^XO- Σ/ΦWO (3.40)
(i, j}cΛ ieΛ ieΛ

The Gibbs state corresponding to (3.40) is < >yl. The ί-b.c. is, by definition, t(ί) = 2,
ViφΛ, and the s-b.c. is s(ι') = 2, ViφA. Notice that ί(i)Φθ o s(i) = 0. The
corresponding states are < >^, respectively, < >^. We make a duplication of the
systems in A and consider in the second system a Hamiltonian (3.40) with λ'(ϊ) and
μ'(ί) instead of λ(ί) and μ(i). The corresponding Gibbs state is < yΛ and <^ ^Λ is
the expectation value with respect to < >^®< Xi If K(iJ)^Q, λ(i)^\λ'(i)\ and

|μ(/)| V/e/ί , then the Ellis-Monroe inequalities are [25]

Π WO + f(OT1(ί) WO - ί(OT2(/) WO' + s(0)Π3(ί) WO' - s(OΓ(0\\ ^ o ,
\ i /M

where n fc(OeN, ft = 1,2, 3, 4. (3>41)

Remark. If X(/, j) ̂  0, /l(i)7 ̂  |1(/)| and μ(i) ^ |μ'(OL then we have similar inequalities
with ί(i)'±ί(0 and s(ϊ)±s'(ϊ).

Application. We consider a duplicate model in A with Hamiltonian (3.40) and
Λt_Έά. We suppose that λ(i)^0, μ(i)^0, and K(ίJ)^0. By duplicate variable
inequalities we have for Alζ=A2,

<sAyΛl^<sAyΛ2, <tAyΛ^<tAyΛ2, (3.42)
and

(SΛ)^^)^, <tx>^^<ix>^. (3-43)

Using Ellis-Monroe inequalities we have

\<sAtByΛl - <sAtByΛ2\ g <ίB>^<s^>^2 - <tB>^2<^>^ , (3.44)

and

K^ίβ>^ - <^ίB>κ2l = <^>^1<ίn>^2 - <^>^2<ίn>κ1 - (3-45)

In the first case we use (3.41) for (tB ± t'B)(s'A + s^), and in the second case we use the
remark and apply it to (t'B±tB)(s
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Using these inequalities we can define an infinite-volume Gibbs state < X, and
a Gibbs state < >s as in 3.1. We have a lemma similar to Lemma 3.1.

We state it for the state < X, and we suppose that K(i,j), λ(ΐ) and μ(ΐ) satisfy the
in variance properties as in Sect. 3.1.

Lemma 3.4 a) The Gibbs state < X is invariant by translation a = (al, ...,ad~ί,Q):

<sAtBy=<sA+atB+ay^ (3.46)
b) For any ε > 0 there is a finite subset of TLά, A(A, ε) such that for all Λ^Δ(A, ε)

(3.4?)
Moreover, we can choose Δ so that A(A + a, ε) = A(A, ε) + a.

c) The state < X has clustering property in tA:

lim <tA+atBy=<tAy(tBy, (3.48)
|α|-» oo

where a is as above.

Remarks. 1) The proofs of a) and b) follow directly from the monotonicity
properties (3.42). To prove (3.46) we use (3.44).

2) The lemma is still true if we add interactions of the kind —λ(ΐ)s(i}2 or
— μ(ί)t(ί)2 with I(/)^0, μ(0 = 0 which satisfy the in variance property stated in the
lemma. This is useful in a self-duplication of the model, for example in the Ising
model with ± b.c. It is not true in general that the state < X has clustering
properties in SB.

3) If we take < >s in Lemma 3.4 the clustering property in c) is now valid for
SA, and not for tA.

3.5. Ginibre Inequalities

There is another way to express the duplicate system. Let θ(ΐ) be defined by

i(σ(ι) + σ(/)') = cos θ(ϊ) , i(σ(ί) - σ(ί)') = sin θ(ϊ) . (3.49)

Thus θ(ί) = k - f , fe = 0, 1, 2, 3. The duplicate Hamiltonian becomes

h')=- Σ 2K(iJ)cos(θ(i)-θ(j))~
ieΛ

(3.50)
ieΛ

If h(ΐ) = h(ΐ)\ V/, (3.50) is a Hamiltonian of the type considered by Ginibre,

-£K(m)cosm#, (3.51)
m

where m is a Z-valued function defined on the lattice (with finite support) and

mθ=Σm(ί) θ(i).
ί

If K(m) ̂  0, we have the Ginibre inequalities [26]

(cosmθX^O, (3.52)

<cosm$ cosnβyΛ ^ (coswfl)^ (cosnθyΛ . (3.53)
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In [27], a more general Hamiltonian than (3.51) is introduced,

- ΣK(m)cos(mθ-ιp(m)), (3.54)
m

where ψ(m) is a real number. If < yΛ is the Gibbs state corresponding to (3.51) and
< yA the Gibbs state corresponding to (3.54), we have the inequalities [27]

^ , (3.55)

provided K(m) ̂  0.

Remark. We can use, instead of the variables (3.49),

i(σ(z) - (7(0') - cos θ(ί) , i(σ(f) + σ(O') = sin 0(0 . (3.56)

3.6. Inequalities with Imaginary Angles

We consider the system defined by (3.51) with K(m)^0. In the second copy of the
system we take the Hamiltonian H'Λ

H'Λ = - X K(m) cos(mθ + iψ(m)) (3.57)
m

with ψ(m) a real number. Then we have the inequalities [27]

! ̂  (cosmθ)^ . (3.58)

Applications. The following results are taken from [28]. We consider the system in
A defined by (3.1). We suppose that the external field h is complex, i.e.
h(j) = M./) + ih2(j) for all j e A. Let μ(j) = (h^j)2 - h 2 ( j ) 2 ) 1 / 2 , and let us suppose that
the function μ, je,/ί->μ(/)eIR, is strictly positive.

Lemma 3.5. Under the above hypotheses we have

a) \ZΛ(h)\ZZΛ(μ), (3.59)

b) Re<σ(j)yA(h)^<σ(j)yΛ(μ), (3.60)

c) Re(σ(j)σ(k)yΛ(h)^<σ(j)σ(k)yΛ(μ), (3.61)

d)

Proof. The proof is given in [28] and is a consequence of the inequalities (3.58). Let
us consider the proof of d). We take a duplicate system where in the second copy
the external field h is replaced by the complex conjugate field h.

We have

Π *0/)\ (Λ) ^ / Π σO)) (A*) » ^ c ̂ . (3.62)

h(Mj) + h(j)σ(j)' = 2Λ1(/) cosθ(j) + 2ih2(j) sin θ(j)

= 2μ(j)(ch(λ(j)) cos θ( j) + ish(λ(j)) sin θ( j))

= 2μ(j)coS(θ(j) + iλ(j)). (3.63)

\_λ(j) is defined by the second equality in (3.63).] Now

σ(j)σ(j)' = cos2θ(j) - sin2θ(j) = cos2θ(j). (3.64)
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Therefore, the left-hand side of d) in Lemma 3.5 is expressed in the duplicate system
with Hamiltonian

-2 X K(i,j)cos(θ(ι)-θ(j))-2 Σ μ(j)cos(θ(j) + ίλ(j)), (3.65)

as

Π cos20(j)\ . Π (3.66)

Remarks. 1) Proofs of a), b), c) are given in [28].
2) a), b), and c) have been first proved by Dunlop [29].
3) The hypothesis on the external field can be written

Reh(j)>\Imh(j)\. (3.67)

In our second application we prove a fluctuation-dissipation relation for the
Ising model. This result can be extended to the X Y model using the generalization
of Lemma 3.5b) for this model (see [30]).

Let A be a finite cube, and let hΛ be defined by

hΛ(j) = h29 jφA hA(j) = hl9 jeΛ. (3.68)

We consider the function <σ(0)> + (/ιyl), the expectation value being taken with
respect to the infinite- volume Gibbs state. (This is well-defined for h1 and h2 real by
F.K.G. inequalities.)

Lemma 3.6. a) (σ(G)y + (hA) is an analytic function of h1 and h2 if Re^ > l l m / i j j and
Re/ι2>|Im/z2 |.

b) ^-<σ(0)>+(ΛJ= Σ <σ(0);φ)>+(M. (3.69)
««1 xeΛ

c) lim <σ(0)>+(^) = <σ(0)>+(^'),
A \TLd

locally uniformly, with hf(j) = hί.
d) For the Ising model with constant magnetic field h>0 (h(j) = h),

~ <σ(0)> +(h) = <σ(0); σ(x)>

Proof [28]. Let

D = {(hl,h2)e€2:

Let ΛnDΛ. The function (σ^))^/?^) is analytic on D [Lemma 3.5 a)]. The function

8Λ,n(hM = (\ +<σ(0)>X(M~1 (3.70)

is well-defined on D, and locally uniformly bounded [Lemma 3.5b)],
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Since (^(O))^/!̂ ) is analytic, gΛtn(hί9 h2) is nonzero on D. If hί and h2 are real, the
limit π-»oo exists (F.K.G. inequalities). The limit, g^C1 15^2)5 is also nonzero on D
(Hurwitz theorem).

Consequen,,y, . » J

is an analytic function of h^ and h2 on D. We have proved a); b) follows from the
locally uniform convergence of(σ(G)yΛn(hΛ) as rc-» oo. lϊA | TLά, gΛ(h^ h2) converges
locally uniformly on D, and the limit g(/ιl5 h2) is analytic on D, and nonzero on D.
Thus <σ(0)>+(/zyl) converges locally uniformly on D asΛ |Zd. If ̂  eRand
is large enough, correlation inequalities imply that the function lim

does not depend on h2. By analyticity, this is true for any h2 in D, and we have
proved c). The last point d) is a consequence of the locally uniform
convergence. Π

In the last application we consider a model with finite range interaction. Let μΛ

be an external field defined by

μΛ(J) = μ if 7 'eΛ, dist(j,Λc)^#, (3.73)

and μΛ(j) = 0 otherwise. R is the range of the interaction. Let Λn be a sequence of
boxes, ΛncΛn+ί,ΛnΪZd. Let

. (3.74)

Lemma 3.7. Lei /z(j)^0 V j and μ>0. Tften lim< YΛ = < > + .π

Remarks. 1) This lemma is a straightforward modification of Lemma 3.6. We prove
that the limit function is analytic in μ, Reμ > |Imμ|. But for μ e R, large enough, the
limit function is < > + . Thus this is true for any μ>0 (see e.g. [28]).

2) The lemma has been proved for the first time by Lebowitz [31].
3) If h(j) ^ δ > 0, then we can take μ > — δ.

4. Thermodynamic Functions

The organization of Sect. 4 is as follows.
In Sect. 4.1 we prove the existence of the surface free energy for different b.c. We

derive an expression of this quantity in (4.8). Our tools are the F.K.G. inequalities.
In the next section, 4.2, we prove analyticity properties, using correlation
inequalities with imaginary angles. The crucial result is the bound (4.13). Once this
bound is established, the proof is standard and is based on theorems of Vitali and
Hurwitz. In Sect. 4.3, we prove a fluctuation-dissipation formula. The proof is
based on analyticity properties and correlation inequalities. The proof of formula
(4.23) is also valid for the XY model.

4.1. Existence of the Surface Free Energy

We prove the existence of F+ [see (2.4) and (2.3)]. By definition,
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Let i = (x,z\ xeZ*"1 and zeZ. We define the Hamiltonian

)). (4.2)

Let JL' = {ieZd: id^Q}, and let Σ' = {ieZd.: id = 0}. On L' we define

H'(J,K,h,λ)=- Σ K(i,j)σ(ί)σ(j)- Σ M0~ Σ MO, (4-3)
<0'>cIL' ielL' iel'

with K(i, ;) = J if <(/>CΓ, otherwise K(ίJ) = K [see (1.4)]. The definition of zlH is
such that the sum of the Hamiltonian (1.1) and AH gives the sum of H(J, K, h, λ)
and H'(J, K, h, λ) defined by (1 .4) and (4.3). We introduce tf(ί\ which is given by the
sum of Hamiltonians (1.1) and t AH. Therefore, J'f(O) is Hamiltonian (1.1) and
Jf(l) is H(J9 K, h, λ) + H'(J, K9 h, λ). Let Ξ^M(t) be the partition function in Ω(L, M)
given by Jtf(i) and + b.c. We can write

If < >i,tM(ί) is the Gibbs state in Ω(L, M) defined by 3?(t) and + b.c., we can write
the integrand in (4.4) as

+ 2(J-K) Σ <σ(x,l)σ(j;,l)>L

+

5M(0. (4.5)
<^,y>

[In (4.5) we have used symmetry properties of the state < >L?M(0, an<3 we have
omitted boundary terms.] Using Lemma 3.1 it is easy to prove the existence of the
thermodynamic limit for F + . For example, if we fix ε>0, there is a box A(ε) such
that if Ω(L, M) D A(ε) + (x, 0),

(4.6)

In (4.6), < v>
+(ί)= lim< >^,M(ί). For any α>0, if M = L\

L, M

l)>L+,L«(ί)=O(0, l)> + (t). (4.7)

Using the dominated convergence theorem we obtain

F+(J,K,h,λ)= lim F^L α=-/zJ<σ(0,
L->oo ' 0

0
Σ <σ(0,lWy,l)>+(f)Λ. (4.8)

Remarks. 1) The proof for F~ is the same. If we use free b.c. instead of + b.c., and if
we take h + λ^.0 and λ ̂  0, we can define a surface free energy Ff. One arrives at a
formula like (4.8) with < /(ί) instead of < >+(ί)
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2) The fact that we can choose α < 1 in taking the thermodynamic limit is
important for the discussion of the wetting transition.

3) In the periodic case we have a formula like (4.8) already for F£ M.
4) The right-continuity of F+, in h and λ, follows from (4.8) and the right-

continuity of < >+ [see (3.15)].
5) Using Lemma 3.7 we can prove that F~ =F+ if h + λ>0 and λ>K.

4.2. Analyticity Properties

We consider F^ M as a function of /I, and we take for the moment h = 0 and J^K.
We always suppose that Re/l>|Im/l|, so that we can apply Lemma 3.5. By
Lemma 3.5 a), (^H;y (4.9)
is a holomorphic function without zeroes for Re/l>|ImA|. There exists a unique
holomorphic function ULίM(λ) such that

p-\Σ(L)\UL,M(λ)__ ZL,M(λ))

~ o+ m ' r* ιυJ
VSL.MiΛJ

and on the real axis

UL,M(λ) = F^M(λ). (4.11)

If h = 0 and J^K, we write

1))>L+,M(ί = l)- (4.12)
\^L,MV1))

[The Hamiltonian Jf(ί = l) gives the Gibbs state in (4.12).] From Lemma 3.5d),

(4.13)

with μ = ((Re/l)2 — (lmλ)2Y/2. The last inequality in (4.13) is a consequence of
G.K.S. inequalities.

From (4.13) we have
e-uL>M(λ)^ίt (414)

Since \ime~ UL>M(λ} = e~F + (λ\ Λ,eR+, we can apply the theorem of Vitali, and we
L,M

get a holomorphic function for Re/l>|Im/l|,

(4.15)
L,M

The functions C~VL>M(X} and G(λ\ with λ eIR, have no zero. Therefore, G(λ) has no
zero on {/: ReA>|ImA|}. We conclude that there exists a unique holomorphic
function U(λ) such that

e~U(λ>, (4.16)

and, onR +
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Let J>K and h>0. We divide and multiply the quotient (4.9) by
(Z^\M(K,K,0,λ))2. Therefore, it is sufficient to consider

(417)I W M ί Ύ+ IV IS Γ\ 2 \ '|Z(1^J| ZsL M(A, A, U, Λj

As above

(4.18)

so that we conclude that

lim —-—In L^M —' ' is holomorphic.

4.3. Proof of (2Λ4) to (2Λ7)

We start with (2.14). We have

lim FΪM(h) = F + (h), (4.19)
L,M^oo

locally uniformly in h. We can write

By Lemma 3.1 we get the result [using the shorthand σ(0) for σ(0,0...0, 1)]

M^(Λ) = <(7(0)>+(Λ). (4.21)

Let hL be the function

hL(ί) = h if i
(4.22)

L(i) = ft' if iεΣ\Σ(L).

We apply Lemma 3.6. We have that

<σ(0)> + (/ί)= lim

and

(/ι)^ lim <>(0)> + (/zL)= lim X <σ(0); σ(ί)>+(/ιL). (4.23)
a L^OO an L^OO ieiL

Since we can choose h' arbitrarily, we set hf = h. Then (4.23) is precisely

~MΣ(h)=XΣ(h)= χ<σ(0);σ(0>+ . (4.24)
an iei

This proves (2.15). Next we prove (2.17). We modify the external field λ as follows:

λ(j) = λ if 1^/^JV, (4.25)
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and

λ(j) = λf if jd>N. (4.26)

Let M>N.WQ have for λ^Q and λ'^Q,

lim lim F^M(λ,λ') = F + (λ). (4.27)
N-+ oo L,M ->• oo

Indeed, if Re/l> |Im/l| and Re A' > |Im/l'|, the functions F^)M(Λ, λ') are analytic. The
convergence in (4.27) is locally uniform, and for λ^.0 and Λ/^0 the limiting
function does not depend on λ'. We can take the derivative with respect to λ before
taking the limit, and we may choose λ1 = λ,

dF+ _ N + +
dλ N-+ oo z= 1

= Σ «cτ(0,z)>+μ)-<σ(0,Z)>ι:(A)). (4.28)
z^ 1

Finally, we prove in the same way that

- X <σ(0);σ(f)>+, (4.29)

which is (2.16),

5. Correlation Lengths and Susceptibility

The first part of this section contains a study of the transverse correlation length.
The main inequalities which are used are the G.K.S. and G.H.S. inequalities. The
main result is Lemma 5.5. In the second part of the section we analyze the parallel
correlation length and prove that the finiteness of the susceptibility in the high-
temperature region implies the finiteness of the parallel correlation length. The
proof is based on [13]. However, it is more complicated, because we do not have
translation invariance. It is given in Lemmas 5.9, 5.11, and 5.12. Lemmas 5.6 and
5.7 are technical results. Lemmas 5.8 and 5.10 give continuity properties of XΣ.
Finally, Lemma 5.13 gives a lower bound on the critical exponent γ.

5.1. Correlation Lengths

In this section A, h ̂  0. We study the correlation lengths ξΣ and ξ±. It is convenient
to introduce

mΣ = ξΣ

1 = lim ln<σ(0,1); σ(xL, 1)>+ , (5.1)
L ~~* oo / j

where in (5.1) we choose xL = (L,0, ...,0)eZd"1. Similarly,

m \ = ζ ~ \ ' ΐ = lim ln<σ(0,1); σ(0, z))+ . (5.2)
z^oo z

If λ = 0 and K <Ξ Kc(d\ we also introduce

m'±= lim - -ln<σ(0, l)σ(0,z)>+ . (5.3)
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Notice that we can replace, in (5.2) and (5.3), σ(0,1) by σ(0, z'), with z' fixed, without
changing the result. Indeed,

<σ(0, z>(0, z)> + ̂  <σ(0, l)σ(0, z')> + <σ(0, l)σ(0, z)> + , (5.4)

and

<σ(0,l)σ(0,z)>+^<σ(0,l)σ(0,z')> + <σ(0,z')σ(0,z)>+ . (5.5)

For (5.2) we use the inequality of Graham,

<σ(/); <J(;)> + ̂  <σ(i); σ(/c)> + <σ(/c); σ(;)>
 + . (5.6)

Finally, we introduce, for J^K and h^K, or when MIs = 0 and <σ(0, 1)>+ >0,

α = lim - ~ ln«σ(0, L)> + - MIs) , (5.7)
L-> oo Li

where MIs = <σ(0,0)>^ is the magnetization of the Ising model on TLά in the +
phase.

Lemma 5.1. Let h^ΰ and λ^O. Then m^/zj ̂  mΣ(h2) if0^h1^h2, and lim mΣ(h2)
/ί \ ^2 I ^ll= mΣ(hl}.

Proof. We use the G.H.S. inequality,

<σ(0; σ(7)>+(Λ1,A1)^<σ(0; σ(j)> + (/z2, A 2), (5.8)

iΐλί^λ2 and/z 1 ^/z 2 . By (5. 6) and the Γ-in variance of the state < > + , the function
/(L)- -ln<σ(0, 1); σ(xL, 1)>+ is subadditive, f(
Therefore,

(5.9)
L, χ_/

and

m^/zO^m^)^^^. (5.10)

The lemma is proved using the continuity property of < >+ [see (3.15)]. Π

Remarks. 1) We have a similar result for λ2 I λ^.
2) If<σ(/)>+ =0, we can use the state < >/ with free b.c. instead of < > + , since

there is a unique Gibbs state. By G.K.S. inequalities we have nιΣ(Jl)^mΣ(J2\ if
Jv ^ J2, and as above

lim mΣ(Jl) = mΣ(J2). (5.11)
^1 1^2

Lemma 5.2. Let h^Q and λ^Q. Let mls= lim - — ln<σ(0); σ(x)y£. Then
m±(J, K, h, λ) ̂  mIs(K, λ). W " °° |x|

Proof. Let zf = z L, z = 0, . . ., p. From (5.6)

^ f[ <σ(0,z ί_1); σ(0,zί)>+ . (5.12)
i= 1
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Let z^2 and z'^ 2. Let ft too. The G.H.S. inequality gives

Using (5.13) and Lemma 3.1, we get

lim ln<>(0,1); σ(0,zJ>+ ̂  ln<σ(0,1); σ(0,L)\t(X,;,). (5.14)
P-+GO pL μ L

This proves m±^mls. Π

Lemma 5.3. Let ft ̂  0 and λ ̂  0.
a) m±(K, K, ft, A) = mIs(lC, λ) if ft ̂  K.
If λ = Q, K^Kc(d) and <σ(0, l)>+(J,K,ft)>0, then we have:
b) α(!C, K, 1C) ̂  mί(J, 1C, ft) ̂  m1(J, 1C, ft),
c) α(lC, 1C, 1C) ̂  m^J, 1C, ft) ̂  α(J, 1C, ft), vvfίft α as m (5.7).

Proof. From the G.H.S. inequality, and the G.K.S. inequalities, and since h^K,

<σ(0, 1); σ(0, L)> +(^, K, ft, A) ̂  <σ(0, 1); σ(0, L»+(K9 λ)

^ <σ(0, l)σ(0, L)> + (K, K, ft, A) . (5.1 5)

Lemma 5.2 and (5.15) give a). From G.K.S. inequalities,

<σ(0, L- 1)> +(K, K, K) ^ <σ(0, l)σ(0, L)> +(J, K, ft)

^<σ(0,l)> + (J,K,ft)<σ(0,L)> + (J,K,ft). (5.16)

This proves c). Finally,

<σ(0, l)σ(0, L)>+(J, K, ft) ̂  <σ(0, 1); σ(0, L)> +(J, X, ft) . (5.17)

This proves b). Π

Lemma 5.4. Let J = K = h. Let Λ^O. Then α^m l s.

This lemma is implicitly proved in [32].

Proof. Let us consider the Ising model with + b.c. in the box Ω =

Ω(L,M)={xeZd: \xl\^L, i=l,. . .,d-l,

We add an external field ft'σ(x) for all x with xd = 0 and the corresponding
expectation value is < >^(ft). Let y = (0,z)eΩ, z>0. We have

O(0, ^)>L+, M( ?̂ X, ̂ , A) - <σ(0, z)>+ (0)

= Σ j^ftXσOl σW^^)
jc:xd = 0 0

= Σ 1 dh'((σ(j) σ(x)} + (h'}γ 'ε«σ(j
x:xd = 0 0

00

^ Σ «σU) ,Φ)>b)1~ΊMe~κ*' const

x:xd = 0 0
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To prove (5.18) we have used the G.H.S. inequality and the existence of c>0, such
that

<σ(j); σ(x)y£(h')^exp(-ch') const. (5.19)

To prove (5.19) it is sufficient to show the following inequality for Prob{σ(x)= 1},
uniformly in Ω:

'}^\-2e-ch'. (5.20)
2 /fl

Inequality (5.20) is an easy consequence of the G.K.S. inequality, since we have a
lower bound for Prob (σ(x) = 1} by considering the special case Ω = {x} which gives
a system of one spin at x in an external magnetic field h'.

Let us suppose that mls(K,λ) = m>0. Then for any (5>0, if \j\=z is large
enough,

Σ d <σ(j); σ(x)> + ^Const <Γ(If |-*)z. (5.21)

From (5.18) and (5.21) we have

Remark. If α(X, K, K, λ) > 0, then mls(K9λ)>0. This follows from

<σ(0, - z)σ(0, z)> + - (MIs)
2 g «σ(0, z -1)> +(K, ̂ , ̂ , /I))2 - M2 . (5.22)

One obtains (5.22) by putting an external field hσ(x) for all x with xd = 0, and by
letting h] GO.

Lemma 5.5. Let λ = Q, h^Q.
a) If K^ Kc(d\ a(K, K, K) = m'JJ, K9 h) = m±(J, K, h) = mls(K).
b) If K = Kc(d\ J^Kandh^K, then the asymptotic behaviours of <σ(0,L)> + ,

<σ(0, l)σ(0,L)> + , <σ(0,1); σ(0,L)> + , and <σ(0, l)σ(0,L)>+ are the same as L-^oo.

Proof. The first part follows from Lemmas 5.2, 5.3 b), and 5.4. It is easy to verify,
using G.K.S. inequalities, that the behaviour of <σ(0,L)> + (J,X,h) as L->oo is
independent of J and hiϊJ^K and h^K. By (5.16) this behaviour is the same as
the behaviour of

<σ(0,l)σ(0,L)> + (J,K,/ι), J^K and h^K.

Therefore, this is true for <σ(0,1); σ(0,L)>+(J, K, h). From (5.15) this behaviour is
the same as the behaviour of <σ(0,0)σ(0,L)>^(K). Π

5.2. The Layer Susceptibility

We set /z^O, /lg:0, and < >L =< * >L,L? where this last expectation value is the
expectation value with respect to the Gibbs state in A(L) = A(L, L) with + b.c. To
simplify the notation we write </;J>L f°r <σ(0; σO')>L IfίφΛ(L,L) or jφΛ(L,L)
we set <σ(/); σ(y)>ί|" =0. Finally, XΣ is by definition

*.= Σ<θ;0 + (5.23)
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Lemma 5.6. // λ ̂  0 and h ̂  0, then

XΣ=\im Σ <0;/> L

+ = lim -J— Σ <i;7>ί
L^oo iel(L) L^oo |^(A)| i,jeΣ(L)

Proof. By the G.H.S. inequality,

<0;ί> + ^<0;z>L + ^0 (5.24)
and

<0;/>L

+^<0;/>L

+

2, L^L2. (5.25)

If λ^<oo, we get by the dominated convergence theorem,

lim Σ < O ; / > L + = Σ<θ;0 + (5.26)
L-+OO ieΣ ieΣ

If lim £ <0; z>^ < oo, then (5.26) is true by the monotone convergence theorem.
L -> oo i e £

To prove the second equality we notice that

i^r Σ <i J>L^ Σ <0;/> + , (5.27)
l^^jl i,jeΣ ieΣ(2L)

by (5.24) and translation invariance. On the other hand, let Σ3{L) be the box
obtained from Σ(L) by the translation jeΣ. For fixed L, let L2 = L1+L. Then

'

>,+ . (5.28)

From this we get the result. Π

Lemma 5.7. Let λ = 0 and h = Q. If <σ(0)>+ =0, then

XΣ= lim Σ <Oi/= lim Σ <0i>£= ϋm ̂  Σ <(/>£• (5-29)
L^oo ίeΣ(L) L^oo iel(L) L^oo I^V^JI ί , j e Σ ( L )

Proof. We have unicity of the state, and since

<Oi>£^<OiX, Vi6Γ(L), (5.30)

and

<0i>£^<0ί>£2, L^L2, /e^(L2), (5.31)

we can repeat the proof of Lemma 5.6. Π

Lemma 5.8. Let λ = 0 and h = 0. If <σ(0)>+ -0, and XΣ(J,K)<oo, then for any

Proof. By Lemma 5.7 we know that XΣ = Σ (ftiyf. For the state with free b.c. [see

(3.20)],
lim <θ!/(Λ,, Kn) = <Oi>/(J, K) . (5.32)
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Thus

, K) = Σ lim inf <Oi/( Jw *„) ̂  lim inf £ <Oΐ/(Λ, *„)
i i n n ί

glim sup Σ<OiX(JI1>XI1)gΣ<Oi>/(^ίO. D (5.33)
n i i

We set

/(L)= sup Σ <*y>£ (5.34)
jcel(L) yel(L)

Lemma 5.9. Let h^Q and λ^O. Then

b) If Xf

Σ<ao,then lim /(L)=Xf
L-> oo

Proof. Using the (74-inequality (3.36) we get

^ Σ <^>£= Σ Σ <*z;3
αJ ZeI(L) <yy'> zeΣ(L)

^ Σ Σ
<}>y'> zel(L)

^ Σ «^>£/W+<^'>£/(i)) (5-35)
<yy'>

From (5.35) we get a). To prove b) we notice that, as in Lemma 5.6,

Σ <Oi>{^/(L)^ sup Σ <*»'/= Σ <0/X Π (5.36)
ίeJ(L) xeΣ(L) ieΣx(2L) ieΣ(2L)

Lemma 5.10. Leth = λ = 0, and letX{= Σ <0/X^oo. // J2>J^ then
ieΣ

Proof. From Lemma 5.9 we have

(/(L))~2 ^2(^—1). (5.37)

By integration we get

1 * " ~ -JJ. (5.38)
/(L)(J2)

Taking the limit L->oo, and using Lemma 5.9b), we get the result. Π

Lemma 5.11. Letλ = h = Q,K<Kc(d) andXf

Σ(J)< oo. Then Σ <xi>f(J)< ^ far all
xelL. ie]L

Proof. The proof is similar to the proofs of Lemmas 5.9 and 5.10. We set

b(L)= sup Σ <xy>ί, (5.39)
jce/l(L) yel(L)
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and

c(L)= sup Σ <xy>ί (5.40)
xeΛ(L) yeΛ(L)

As above we find

db(L)

dJ

and similarly,

dc(L)

dJ

By integration we find

and

(5.41)

(5.42)

2(d-l)j/(L)(J'K/'), (5.43)

2(d-l)$b(L)(J')dJ'}. (5.44)
•Ί /

K<Kc(d) implies Xls(K)< oo [11]. If Jί = K,

s sup Σ
xeΛ(L) yeΛ(L)

g sup Σ <X3>>£ =*!.(*)<«>• (5.45)
xeΛ(L) yeZd

Therefore, if Jl =K and J2 = J> the result follows from (5.43), (5.44), and Lemma
5.9 b), since

sup Σ < *)>)£ = Σ <Xy)L (5.46)
xeΛ(L) yeΛ(L) y(=Λ(L)

for any x' e Λ(L). Π

Lemma 5.12. Leth = λ = 09K< Kc(d\ Xf

Σ(J) <σo,and <σ(0)> + (J, K) = 0. Then the
correlation length ξΣ<co.

Proof. For the infinite d-dimensional Ising model, with coupling constant K, we
choose R so that

= i, (5.47)
y \\y\\ =R

where | |y| | =max{\yl , i=\, ...,d}. For any xeJL we define

(5-48)

By correlation inequalities we have

(X, K,h = K)9 (5.49)

where x = (x1,...9x
d~1

9x
d-l)9 y = (y\ ...,/"1,/-l). If, in (5.48), we replace

.(xyX by (xyY(K,K\ respectively, (xyyf(K,K,K), we get functions which we
denote by 00(x) and α + (x). Clearly, α0(x) ̂  α(x) and α+(x) ̂  α(x). The functions α0(x)



520 J. Frohlich and C.-E. Pfister

and a + (x) are monotone increasing, decreasing, respectively, and since K<Kc(d\
we have (uniqueness of the Gibbs state)

lim α0(x) = lim a + (x)= Σ <0j>>£. (5.50)
jcd~+oo xd^oo \\y\\ = R

Thus, there exists an L'< oo, independent of J, such that

max(J,K)'a(x;R)^3/49 Vx with x'^L'. (5.51)

For each x with xd =7 and 7 < L', we choose Rj such that max(J, K) - α(x; #_,-) ̂  3/4.
This is possible by Lemma 5.11. We can now apply the argument of [13]. Let
L>Rί. Since there is a unique Gibbs state, <OxL> + = <OxL>/ with XL = (L, 0, . . . , 0)
the inequality of Simon gives

<oxL/:g Σ Σ κ(y,z)<oyy'(zxLy. (5.52)

Here X(y, z) is the coupling constant between the spins at y and z. By our choice of
K, we have only contributions from y,z such that |z — y| = l. Hence

<OxL/ ̂  (α(0; ΛJ max(J, K) <xLf >/ g 3/4<xLz>^ , (5.53)

where z is the maximum of <XLZ>J for z at distance one from A(Rί). If L=nR,
R = max{R,Rp 7 = 1, ...,L' — 1}, then we can repeat this argument at least rc times.
Thus

<OxLX^(3/4)». D (5.54)

For K<Kc(d) and h = λ = Q, we define

J(K)-sup{J: X{(J,K)< 00} . (5.55)

J is a monotone decreasing function of K.

Remark. The function J(K) can be defined as

}. (5.56)

Indeed, if <σ(0, 1)> + (J, X) = 0, we have only one Gibbs state, and therefore,
XΣ=Xf

Σ. On the other hand, if X{< oo, we have <σ(0, 1)>+(J,X) = 0. The proof is
given in [11]. We can write

<σ(0,l)>+(J,K)--lim^(F+(J5K,/z)-F+(J,K,0)). (5.57)
HIO h

For A = 0 and h ̂  0, we prove in the Appendix that F+ = Ff. Thus, we can use free
b.c. in (5.57), and we write

-Ff(J,K,h)= lim

(5.58)

We have the upper bound

/expf Σ hσ(ί)}γ(J,K,Q)ίexp(±h2Xf

Σ(L)(J,K,Q) \Σ(L)\). (5.59)
\ VίeΙ(L) /L

If X£<oo, we get from (5.57), (5.58), and (5.59), <σ(0,1)>+(J,K) = 0.



Semi-Infinite Ising Model 521

Let (J0, K0) be given in such a way that K0 < Kc(d\ and J0 = J(K0). Let

XΣ(β)=XΣ(βJ0,βK0). (5.60)

By the above remark, if β< 1, we also have XΣ(β}=XΣ(β}

Lemma 5.13. Let λ = h = Q, K0 and J0 as above. If the function K-+J(K) is
differentiate at K0, then XΣ(β) diverges at least like (1 -β)~l as β f 1.

Proof.

XΣ '(β} = (X$ ~ Wo, βKo) ~ (*ί) " \J(βKo), βK0)

^2(d-l)(J(βK0)-βJ0) = 2(d-l)(J(βK0)-J0 + J0(l-β)). (5.61)

By hypothesis

β +i ί-β

Therefore, the lemma is proved. Π

Finally, we show that the behaviour of XΣ is the same for all 0 ̂  J ̂  K, when
h = λ = 0. Indeed,

<σ(/)σ(j)> + (K, K, 0, 0) ̂  <σ(0σ(j)> +(J, K, 0, 0) ̂  <σ(/)σ(j)> +(0, K, 0, 0)

= (tanh^)2<σ(0σ(;)> +(K, K, 0, 0) . (5.63)

In particular, the critical exponents of <σ(0)> + , XΣ are the same for all O^J^
when K = Kc(d)

Appendix. Proof of F+=FP = Ff, for λ ̂  0 and Λ ̂  0

Let ft ̂ 0 and λ^O. If λ>0, Lemma 3.7 implies that Ff = F + . Since <σ^>£M(ί)
^<^>£,M(0^<^>{,M(0? for ^C.i(L?M)? formula (4.8) and Remarks 1 and 3
following it give that Ff = Fp = F+.Wε prove F + = Fp for λ = 0 and h ̂  0. The same
proof holds for F+ =Ff.

The functions F+ and Fp are bounded, concave in h and hence continuous in ft,
fteR. If Reft >0, they are analytic in ft, and

j T? + J pp

We use now a result proved in our second paper: for h^K and J^K, there is a
unique Gibbs state. Since <σ(0)>+ and <σ(0)>/7 are analytic, they coincide when
ft>0 and J^K: <σ(0)>+(J,K,ft,0)-<σ(0)/(J?^ft?0). Similarly, we have

<σ(OMO> +(J, K, ft, 0) = <σ(0)<7(0>%/> ̂  A, 0) -

Let J^K. If ft-0, (4.8) and Remark 3 following it, give F+(J,K,0,0)
^F%/,^0,0). On the other hand, if h^K + 2(d-l)\K-J\9 the same for-
mula (4.8) can be written in terms of the decreasing functions, — σ(i),
-f.f = - (σ({) + σ(j] ± σ(i)σ(j)). By F.K.G. inequalities, for ft ̂  K + 2(d - 1) |X - J|,
FV,^,ft,0)^F + (J,X,ft,0). By continuity of FP-F+ in ft, there exists ft*(J?^)?

Q^h*^K + 2(d-l)\K-J\9 such that F+(J,K,h*,Q} =
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Using these preliminary results we prove that F + = Fp for the three cases J = K,
J^K, and J^K.

Let J = K. From the above results we have that F + (K, X, h, 0) - FP(K, K, h, 0)
for all h ̂  0, since

F + (K,KΛO) = F + (K,K,/z*,0)-f J <σ(0)> + (Λ')dΛ'. (A.I)
Λ*

Let J ̂  K and h^K.ln this case there is a unique Gibbs state. By concavity of
F+ in J, we can write

F + ( J 9 K 9 h 9 0 ) = F+(K9K9h90)-(d-ί)^σ(ί)σ(j)y + (Jf)dJt

9 (A.2)
K

where iJeΣ and \i-j\ = \. Thus F + (J,K,h,ϋ) = Fp(J,K,h,ϋ) when J^K and
ft ^ K. By analyticity in ft, and continuity in h, this holds for h ̂  0.

Let J^K. There exists Λ*(J,.K) such that F+=FP. The difference FP-F+ is
increasing in /z and increasing in J. We have, for Jl ^ J and h^^k^h*,

K9hl9Q)-F + ( J l 9 K 9 h i 9 Q ) = 0, (A.3)

provided that J j ^ X and h1 ̂  X. Therefore, if h ̂  ft*(J, K\Fp = F+ by analyticity
and continuity this is true for h ̂  0.
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