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Abstract. This paper deals with the existence of multiple solutions of Hartree-
Fock equations for Coulomb systems and related equations such as the
Thomas-Fermi-Dirac-Von Weizacker equation.
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I. Introduction

We want to present here various existence results of multiple solutions of Hartree
and Hartree-Fock equations for Coulomb systems. More precisely, we consider the
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34 P. L. Lions

standard quantum description of nonrelativistic electrons interacting with static
nucleii through the purely Coulombic TV-body Hamiltonian,

H= - Σ ΔXI+ Σ v(Xί)+Σ 7-1—7, (i)
ί = 1 i = 1 i <j I Λi Λj I

where

m

V(x)= -Σ Zj x-Xj\~\ rn^l, zj > 0, Jc^eR3 are fixed,
j = ι

acting on the Hubert space L2 (IR3]V) or its subspace L2

a (IR3]V) (consisting of
functions which are antisymmetric in x1 , . . . , XN). All functions will be complex-
valued but everything we say below is trivially adapted to real-valued functions or
complex-valued spin-dependent functions. The ground state energy is then defined
by

R3N), J \Φ\2dx=\, (2)
IR3*

with

(HΦ,Φ)= J \VΦ\2dx + f |χ KOO+Σ Γ^-TIΦI 2- (3)

The interpretation of this energy functional is as follows: the first term corresponds
to the kinetic energy of the electrons, the second term is the 1-body attractive
interaction between the electrons and the nucleii "located at jcy," each of which
having a total charge Zj for 1 rgy ̂  m, and the third term is the usual 2-body
repulsive interaction between the electrons.

Because of dimensions (37V), the direct computation of E seems rather hopeless
and approximations are needed. Historically, the first method was introduced by
Hartree [27] ignoring the antisymmetry (i.e. the Pauli principle) and choosing test
functions in (2) of the form

Φ(xl9...,xN)= Π <Pi(xϊ) (4)
ΐ = l

Later on, Fock [24] and Slater [54] proposed another class of test functions - which
take into account the Pauli principle - namely the class of Slater determinants

~Vlσl Π Φσ(o(^)9..., γN\ a

where the sum is taken over all permutations σ of (1, . . . , N} and |σ | denotes the
signature of σ. If we "restrict" the infimum in (2) to these classes of test functions,
we obtain the following minimization problems

...9φN)/φieH1(^) V i, (φl9...9φN)eK}9 (6)

for all l^i^m, for
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where $, Kare given in Hartree case (4), or Hartree-Fock case (5), respectively by

N

~^~~ Σ fί \9ί\2(x) } ι~ \9j\2(y)dxdy, (7)

K= {(<?!,..., φw) eL2 (R3)»/ J \φt |
2 dx=ί for l£i£N\, (8)

I / R3 J

and

\rφt\
2+V\φι\

2dx (9)

-i ίίIRS \x — y\

φiφfdx = δίj for l ^ j ^ T V , (10)
IR3

JV

where z* denotes the conjugate of the complex number z, ρ (x) = 2] I Φi I (*) is the
Λf ί = l

density, ρ(χ9y)= ^ <Pi(x)φ*(y) is tne density matrix.

The Euler-Lagrange equations corresponding to Hartree problem (H in short),
i.e. problem (6)-(8), are the so-called Hartree equations (H equations in short)
which may be written as

Λ \

ε.φ. = 0 in IR3 for l^i^N, (11)

where λt= —εt is the Lagrange multiplier and (φ 1 ? . . . , φN)εK. In the case of
Hartree-Fock (HF) problem (6)-(9)-(10), we first observe that (9)-(10) are
invariant under unitary transforms of (φ^,..., φN), i.e. if U is a N x N unitary
matrix and (φl9...9φN) = U(φl9...9φN)9 then «(φί9..., φN)= <$ (φ 1 ? . . . , φN)
and (φl9..., φN~) e K. Now, iΐ(φl9...9 φN) is a minimum of the HF problem, the
corresponding Euler-Lagrange equations are

\ V / (12)

for some hermitian matrix (λ^ ) of Lagrange multipliers. Hence, if we diagonalize
this matrix and we use the above invariance, we find another minimum (φ 1 , . . . , φN)
solving the Hartree-Fock (HF) equations

i^ J ρ(x9y) Γ—.φi(y)dy + B^ = 0 in R3, V z
-

(13)
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for some εf € R and (c^,.. . , φN) e ^Γ. In fact, D. Hartree originally derived the
Hartree equations without going through the minimization procedure, and it is
quite natural to look for "all" solutions of (12) or (13) (excited states), the possible
minima of (6) being of course the most important ones (ground state). H and HF
equations are extensively used in Atomic Physics - see for instance Hartree [28],
Slater [55], Bethe and Jackiw [13], Schaeffer [51]. Notice also that very often
restricted Hartree equations are considered where some of the φfs are taken to be
equal: for example, for Helium (m = l,xί=Q9zί = 2,N=2) one often encounters
the restricted H equation which is nothing but (11) with φ^ = φ2, i.e.

-Δu+Vu+(\u\2*—}u + εu = Q in R3 (14)

with εeR, j \u\2dx= 1, Z= 2, V(x) = ~~ (for Helium).
R3 \X\

Let us finally mention that a related equation namely the Thomas-Fermi-Von
Weizacker equation occurs in Thomas-Fermi theory (see Lieb [31, 32]; Benguria et
al. [10]): this equation may be written as

~Δu+Vu+(\u\2*—-} u + λ\u\p~1u-{-εu = 0 in R3 (15)

withεeR, J \u\2 dx = 1, p > 1, λ > 0.
1R3

In this paper, we prove (in particular) the following

m

Theorem. We denote by Z= Σ z the total charge of the nudeiί.
j = ι

1) (Hartree equations). Assume Z>(7V—1), then there exists a sequence of
distinct solutions (φ",...,φ^) (n^.1) of H equations (11) such that φ" have
exponential decay at infinity and

J |φ» | 2 ώc=l, for all n^l.l^i^N.
K.3

2) (Hartree-Fock equations). Assume Z^N, then there exists a sequence of
distinct solutions (φ",. . . , φn

N} (n ̂  1) o/HF equations (13) such that

I φn

ίφfdx = δίj, for all l^iJ^N.n^l.
R3

3) (Restricted Hartree equation). Assume Z ̂  1, then there exists a sequence of
distinct solutions (un) (n ̂  1) of (14) with j | un \2 dx = 1.

IR3

4) f TFW equation). Assume Z ̂  1, p ^ f, then there exists a sequence of distinct
solutions (un) (n^l)of(l5) with j | un \ 2 dx = 1.

1R3

Remarks, i) In the following sections, additional information on these solutions
(regularity, exponential decay, spectral properties) will be given.
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ii) It is an important open question to determine the best condition on Z (or
more precisely on zj? xj for l^j^m) insuring the existence of solutions of the
various equations considered in the above result. In fact, best conditions (if they
exist) should depend on the number of solutions one wants, the first step being best
conditions for the existence of a ground state. For restricted Hartree and TFW
equations it is possible to discuss the existence of a positive solution (see Benguria et
al. [10] and Sect. II below).

iii) For Hartree-Fock equations, the only reference we know is the work of Lieb
and Simon [37, 38] (see also Lieb [33]) where the existence of a minimum (ground
state) is given requiring Z>(N—1). We recall in Sect. II their method of proof and
we detail some of the arguments sketched in [37]. For Hartree equations, most
references we know are concerned with the existence of a positive solution (without

prescribing the L2 norm) of the restricted Hartree equation I with V(x)= --

which is obtained by bifurcation or related arguments: see Reeken [51], Gustafson
and Sather [26], Bazley and Seydel [7], Bazley and Zwahlen [8, 9]; Bazley et al. [6].
For the same problem, Bader [3] showed the existence of a minimum (ground state)

with the normalization constraint I j \u\2dx= 1 ) and Stuart [58, 59] proved the

existence of infinitely many normalized solutions (by bifurcation and nodal-
spectral arguments) - see also Bongers [14] for some partial results. Still for the
restricted Hartree equations (and general V\ we investigated in [41, 42] the
existence of multiple unnormalized solutions by critical point theory arguments.
Finally, J.H. Wolkowisky proved in [65] the existence of infinitely many
normalized solutions of the Hartree equations in the spherically symmetric case

in particular V(x) = -—-1 by a fixed point and nodal-spectral arguments.

iv) In [39], Lieb and Simon proved that the HF approximation method is
asymptotically exact. D

We would like now to make a few comments on the proofs of the above
theorem. In fact, even if we will give only one proof of the above theorem in its full
generality, we will present below three different strategies of proofs which will give
different results and two of those will work only in particular situations (basically
the spherically symmetric case). These three strategies may be briefly described as
follows.

1) Direct variational, min-max critical point theory: Here, we build convenient min-
max values which yield the desired solutions through abstract results which are
variations of standard results (seeRabinowitz [50], Ambrosetti and Rabinowitz [2],
Berestycki and Lions [11]...), provided one checks the so-called Palais-Smale
condition (a compactness condition). And this is where one encounters a non-
standard difficulty: observing that we are dealing with semilinear elliptic equations
which are in a vague sense sublinear (the nonlinear terms are "positive"), one sees
that the only mathematical difficulty lies with the fact that one is dealing with R3.
And, to check the Palais-Smale condition amounts to show that we can avoid the
"continuous spectrum", and this happens to be equivalent to a difficult spectral
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problem: one has to show that 0 cannot be an eigenvalue for a Schrόdinger operator
with a potential which behaves roughly speaking like a Coulomb potential at
infinity. Unfortunately, this spectral problem does not seem to be solved easily and
we only succeeded in showing it in the spherical symmetric situation where we can
check the conditions required by a powerful result due to Agmon [1 ]. This approach
is developed in Sects. III. 1-2.

2) Fixed point on the potential: This approach due to Wolkowisky [65] is a
mathematical version of iterative methods used for numerical purposes by
physicists (successive improvements of the potential). The idea, say for problem
(14) to simplify, is to consider the mapping Tk which associates to weL2(IR3),
j \u\2 dx :g 1 the normalized eigenfunction (Tku) of the operator

\ I -

corresponding to the kth eigenvalue, for any k ̂  1 fixed. One immediately sees that
this method requires in order to be meaningful to have eigenvalues of multiplicity 1
and the only way we can check this condition is by imposing spherical symmetry
(see Sect. III. 3). Then, under appropriate conditions one checks that Tk is well-
defined and that Tk is continuous, compact and thus admits a fixed point. It would
be interesting (and important for many applications) to get around the possible
multiplicity of eigenvalues.

3) Critical point theory and index bounds: The idea is to use as in approach 1) critical
point theory but to complement this by information on the index of the critical
points (see Bahri [4], Viterbo [64], Bahri and Lions [5], Coffman [21] for results
showing the relations between min-max critical values and indices). Then, we
obtain solutions of approximated problems with a fixed upper bound on the
number of negative eigenvalues of the linearized equations. This additional
information (at least when Z ̂  TV) enables us to avoid the continuous spectrum by
appropriate verifications on the number of negative eigenvalues of Schrodinger
type operators: in some vague sense, the spectral problem described in 1) above is
replaced by a much easier spectral problem where we only have to check that certain
operators have enough negative eigenvalues (verification which is also at the basis
of the approach 2)). This approach is developed in Sect. IV and this is the one which
enables us to prove the above theorem in full generality. Let us mention that this
approach is also used to give a new proof of the existence of a ground state for
Hartree and Hartree-Fock equations in Sect. II. 3 (reproving thus the results of Lieb
and Simon [37]).

We conclude this introduction by mentioning first that a preliminary version of
the above theorem was announced in Lions [40]. Let us also point out that
somewhat different Hartree-Fock equations - namely those occuring in Nuclear
Physics - are studied in Gogny and Lions [25] and that we hope to come back on
important variants of Hartree-Fock equations in future publications (Hartree-
Fock equations with temperature in Atomic and Nuclear Physics).
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To simplify notations, throughout this paper we will denote by

D(φ,ψ) = JJ φ(x)- -ψ(y)dxdy
R3χiR3 \χ—y\

whenever this double integral makes sense.

II. Minima

In this section we want to consider the existence of minima for the various problems
described in the Introduction. In the first three sections we treat the Hartree
minimization problem (6)-(8) and the Hartree-Fock minimization problem (6)-
(10). We recall in Sect. II. 1 the results due to Lieb and Simon [37, 38] and we present
briefly a list of open questions on the existence and qualitative properties of
minima. In Sect. 11.2, we detail the proof of the existence of these minima (in
particular because, as remarked in Lieb [34], the proof of the existence of a
minimum for HF problem sketched in [37] has to be corrected and supplemented
with a few details). Another reason to present this argument is to show the
difference with another approach that we describe in Sect. II. 3: the argument we
will use there will be one of the basic tools needed to prove the existence of infinitely
many solutions. Finally, in Sect. II. 4 we consider variants: we first treat briefly the
case of generalized restricted Hartree equations and we then consider the Thomas-
Fermi-Von Weizacker (TFW in short) equations and the Thomas-Fermi-Dirac-
Von Weizacker (TFDW in short). We will give existence results for TFW and
TFDW equations which are contained in R. Benguria, H. Brezis and E. H. Lieb [10]
in the case of TFW equations and which seem to be new in the context of TFDW
equations. In order to do so, we will use the concentration-compactness method
(Lions [43, 44]), arguments introduced in Sects. Π.2-Π.3 and we will need to make
general observations on the concentration-compactness arguments that we develop
in the Appendix.

ILL Main Results for H and HF Problems

Theorem Π.l. Let Z > N — 1, Then, every minimizing sequence 2 of the H problem
(6)-(8) or of the HF problem (6)-(10) is relatively compact in (H1 (IR3))*. In
particular, there exists a minimum and any minimum (φ1 , . . . , φN) is (up to a unitary
transform as described in the Introduction in the case of HF problem) a solution ofH
equations or HF equations.

And in the case of the H problem, each ε^ is the minimum eigenvalue of the operator

(16)

andε, >0.

minimizing sequence (φ",...,φ^) is a sequence satisfying: £°(φl, ...,<pj) -> Inf( —),
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In the case of the HF problem, εί,..., εN are the N lowest eigenvalues of the
operator

H=-A + V+ρ*~-R, Rφ = f ρ(x,y) ——φ(y)dy for all φe$(Ί&3) (17)
\χ\ R3 \χ-y\

and εί9 ...,%> 0.

Remarks, i) The fact that if a minimum exists it is a solution of H or HF equations,
is standard and the study of its regularity is also standard: one shows that
φl9 φNEC™(R3 — C7), where U is any neighborhood of {xl9...9xm}9

φl9...9φNE JF2'P(R3) for all 2 ̂  p < 3 (in particular φί9...,φNe C1>α(]R3) for all
αe(0,1)). In addition, if εf > 0, then φt has an exponential fall-off. All these
properties are valid for any solution in H1 (IR3) of the H or HF equations (or of
TFW. TFDW, restricted Hartree equations...).

ii) It is not known if the condition Z> N— 1 is necessary. In fact, few non-
existence results seem to be known. These questions together with similar questions
on the exact TV-body problem are developed in Lieb [34] where it is proved that no
minimum exists if N > 2Z+ m. We also make some comments on these questions in
Sect. II.3 below.

iii) All the questions related to uniqueness or non-uniqueness of minima,
symmetry breakings seem to be open. For instance, if TV = 2, is the minimum (u9 v} -
when it exists - of the H problem unique and thus v = u ? Even if the minimum is not
unique, do we have u = vl In the case of an atom (x = 0 for ally), the minimization
problems are invariant under orthogonal transforms of R3: a natural and open
question is to determine when the minima have spherical symmetry or when there
are symmetry breakings... If m — 2, similar questions may be raised with the
axisymmetry around the axis xίx2. For general m, we may have some particular
geometric configuration of the points xj which leads to some invariance of the H or
HF minimization problems and again the possible symmetry breakings are to be
investigated.

iv) The reason why we insist on the fact that all minimizing sequences are
relatively compact (and thus convergent to minima up to subsequences) in the
above statement is that this yields easily the orbital stability of such minima for the
time-dependent H of HF equations (see Cazenave and Lions [19]). This might also
be useful for numerical analysis purposes.

v) It seems important to study numerical procedures to find solutions of H and
HF equations (in particular the minima). Physicists are using some iterative
methods which roughly speaking correspond to build (<p" + 1 , . . . , φίv^1) as the N
lowest eigenfunctions (for the HF problem) of the Hamiltonian Hn obtained
through the preceding configuration (φj , . . . , φ^). D

We conclude this section by a few notations: we will denote by /the infimum
given by (6) and we will also use the notations /H, 7HF to make the difference between
H and HF problems when necessary. Finally, the potential V being fixed, we will
denote by IN (or /$, /$F) the infimum corresponding to the TV-body Hamiltonian H
considered in the Introduction.
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77.2. Lίeb-Sίmon's Approach

We start with a remark: the infima 7H, 7HF are also given by

(18)

(19)

This is a general observation due to the facts that the minimization problems are set
in R3 and that V -* 0 as |Λ: | -» oo. We could ignore the proof of these equalities and
prove Theorem II. 1 as follows (in doing so we would in fact prove the equalities for
Z > N— 1) but we prefer to show them since we believe the argument involved illu-
minates the nature of the functionals <fH, <ίHF. We prove (19) (the proof for (18) is
similar and simpler): clearly we just have to prove that if (φί9 . . . , φN) e771(R3)and

J φiφfdx]^(δij) then ^HF(φ1? ... , φN) ^7HF Indeed, let aij = δij- f φtφfdx,
R3 / ]R3

the matrix (a^) is hermitian and nonnegative. We consider (ψ^ , . . . , ψN) e Q) (IR3)
such that J ψiψfdx^dij. By a trivial scaling argument, we may choose

R3

(y/i , . . . , ψN) such that for any given ε > 0

(20)
Z Z lR3xlR3 l^""^!

N JV

where ρ(x)= ^ I V i W I 2 , §(A;,^)= ^ Ψi(x)ψf(y) Let finally e0 be any unit
ί = l t = l

vector in R3 and let φ1} = φi + ψi(' + ne0) for all l^i^N.lt is easy to check that

J φ»(φ»)*dx—+δij9 δ**(φl9... ,<?«„)— ̂  A + <?™(φι, . . . , φN),
R3 " "

and this enables us to deduce

I^^^(φl7...,φN) + Ay (21)

and we conclude using (20). Observe also that (18), (19) immediately yield that
7H, 7HF < 0.

We now really begin the proof of Theorem II. 1 : we will do so only on the HF
problem (the proof being much simpler for the H problem). There are several steps
in the proof: the first one consists in showing that minimizing sequences of problem
(19) are weakly convergent in 771 to minima of (19), then one characterizes minima
as convenient eigenfunctions, and one then concludes.

Step 1: Minima of (19). Let (φn

l9 . . . , φ1^) be a minimizing sequence of (19). We
first check that (φ")i>n are bounded in 771(R3). To this end, we remark that by
Cauchy-Schwarz inequalities we have

\Q(x,y)\2^Q(x)Q(y) on R 3 xR 3 , (22)

' In the sense of hermitian matrices
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and we recall the following inequality which holds for all x e IR3, φ eH1 (IR3)

J Γ^lφ«|2^C||<HIL>(E3jF<p|L2(1R3) (23)
R3 \X — X\

for some C independent of x, φ. Combining these inequalities with the information
that $(φ\ , . . . , φJv) is bounded from above, we deduce the H1 bounds. Extracting if
necessary a subsequence, we may assume that φ\ , . . . , φn

N converge weakly in
H1 (IR3) and a.e. to some φίy...9φN which obviously satisfies

(ί«*>1 J T I T J

To conclude, we check that $(φl9...9 φN) is weakly lower semi-continuous on
H1 (IR3). In view of (22), it is easy to show that we just have to check that
J V I φ 1 2 dx is weakly continuous on H1 (R3) and this is a standard fact (notice for

R3

example that F-»Oas | ;x : | -»oo,Fe Lfoc with /»§...). Therefore, we proved that,
up to subsequences, any minimizing sequence of (19) converges weakly to a
minimum. To prove the existence part of Theorem II. 1 we just have to show that
any minimum (φί3..., φN) of (19) satisfies

f φίφ*dx = δij MiJ.
IR3

Step 2: Characterization of Minima of (19). We first observe that, since <fHF is
invariant under unitary transforms of (φί , . . . , φN), we may assume that

j φiφ*dx = γίδij, V z j ,
IR3

where 0 ̂  yi ^ 1 . By the same argument as in the Introduction, we may also assume
that (φ1 , . . . , φN) solve (13) for some (εlί...,εN)e fl^Λ Of course, either φ{ = 0,
or εf is an eigenvalue of the Hamiltonian H, for each L

We now claim that for each z, φ. is a minimum of

Inf <^φ, φ>/φ etf1 (IR3), J | φ | 2 Λ c g l , $φφfdx = Q9 V y Φ z , (24)
[ R3 IR3 J

where <^φ, ι//> denotes the symmetric bilinear form on H1 (IR3) associated with H,
and the value of the infimum is precisely — ε^. Indeed, one just needs to observe
that we have for each i

(25)

where

Q(φhφ)= D(]9i\
2, M2)-Re JJ φι(x)φf(y)-^—ψ*(x)φ(y)dxdy. (26)

R3 x R3 i χ ~~ y i
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Next, by Cauchy-Schwarz inequalities

J J ψi (x) φf 0) - - - φ*(x)φ (y) dx dy
3χR3 ~

£ π \χ~y\

^ Π \Ψi(χ)\2r-^--Λψ(y)\2dxdy,
IR3χ]R3 | Λ — JΊ

and thus

.) = 0. (27)

This proves our claim on φ^. In view of this claim, we just have to show that H
admits at least TV negative eigenvalues and this will imply that ( — εj, . . . , ( — ε^) are
the N lowest ones (counted with multiplicity) and that yί = . . . = yN — 1, proving
thus Theorem II. 1.

Step 3: Conclusion. We start with a general lemma (whose proof is postponed until
the end of the proof of Theorem II. 1).

Lemma ILL Let μ be a bounded nonnegative measure on IR3 such that μ (IR3) < Z.
Let Hv be the Hamiltonίan given by

Then H1 admits an increasing sequence of negative eigenvalues λn converging to 0 as n
goes to -f- oo . D

Observing that H^Hl where μ = ρ (x), we deduce from this lemma that if one
of the functions φt vanishes, say φN, then /ι(IR3)= J ρ (x) dx = N — 1 and the

_

condition in Theorem II. 1 implies in view of the above lemma that H admits a
sequence of negative eigenvalues. Therefore, εx , . . . , εN > 0, and because of (24) we
deduce a contradiction: φN cannot vanish since the Infimum in (24) is negative.
Hence, we proved that γί , . . . , γN > 0. Observe also that each infimum in (24) is
nonpositive

( use for instance a standard scaling argument: <//φσ, φσ>, where φσ = σ ~ 3/2 φ ( —
V
and thus ε l 5 . . . , ε^^O.

Now, if one of the constants εf vanishes, say εN, we deduce from (24) that

and thus in view of (25), (27)
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and the above analysis yields a contradiction. Therefore, εx , . . . , εN > 0; H admits N
negative eigenvalues; γl9...9γN=l. D

Proof of Lemma ILL It is enough to find for each integer k a subspace of
dimension k that we denote by Fk such that

(28)
IR3

To find such a Fk, we consider an arbitrary normalized φe^(R3) and we set
φσ = σ~ 3/2 <p («/σ) for σ > 0. Then we have

σ R3 σ R3 σ

where Vσ(x) = — Σ ] - - / ι ' μσ = σ3 μ(σ ). In particular, if we choose φ to be
j=ι \x — Xj/σ\

radially symmetric, we may write the last term as

TR?

^ f^ ίR3 IRS

where /i = //(IR3). Now, choosing any ^-dimensional space of radially symmetric
functions in ^(R3) and denoting by Fk the space obtained by rescaling them
(φ -» φσ) as above, we obtain (28) for σ large enough. D

113. Another Method

First of all, we would like to make a few comments on the assumption Z> N— 1
and its use in the existence proofs. The potential V being fixed, we consider the
sequence (/JV)Λ^I of negative numbers where I± is given by (one-electron ground
state energy)

/ 1 = Inf | j \Vφ\2 + V\φ\2dxlφeHl(1^\ J
ί.R3 R3

(29)
R3

Because of (18), (19), we obviously have

/N + ι^4, V T V ^ l . (30)

Of course, /! < 0 is achieved by a unique (̂  > 0 on IR3 (up to a multiplication by eϊθ

for some θ eR). And Theorem II. 1 implies that if Z > 1 then 72 is achieved. We now
claim that even if we do not assume anything on F(or Z, N. . .) we can make a few
remarks on the existence of minima for the problems 7^. We now restrict our
attention to HF problems (similar considerations hold in the H case). Indeed,
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assume that IN_ x is achieved for some N ̂  2 at a configuration (φ1,..., φN_ x) and
that the corresponding Lagrange multipliers ε 1 , . . . ,ε j v _ 1 are positive, i.e. the
operator

admits (TV— 1) negative eigenvalues, where KN_1φ= f ρN-ι(x,y) -. φ (y)dy
R3 I χ ~~ y I

N-\ N-\

and ρ^ _ 1 (x9 y) = Σ 9i (x) ψf 00? QN-I(X) = Σ Φt (•*) Φ? W Obviously, all

this holds for TV =2 (H^ = — A + F). Now, consider the problem 7N: the proof
given in the preceding section (in fact only some part of it) shows that only two
cases may occur. Either IN = IN_ 1 and <(HN_l φ9 φ> ̂  0, Vφ eTί1 (IR3) such that
f φφf dx = Q, V / ^ 7 V — 1 in which case (φί9..., <pN_ l 50)isaminimumof(19)and

IR3

there are some minimizing sequences which are not relatively compact in H1 or in
L2 (we do not claim that IN is not achieved ...).OτHN.1 admits at least N negative
eigenvalues and then IN<IN-ι, and the results stated in TheoremII. 1 hold.
Combining this general observation and Lemma II. 1, we see that in order to prove
Theorem II.1 we just need to prove it when the stronger condition Z> N holds
(indeed apply this case with IN_1 and we use the above alternative to go to 7N).

We now describe another method to prove Theorem II. 1 in the case when Z ̂  TV
for HF problems (for H problems the method below works if Z> TV— 1). To
simplify the presentation, we will restrict ourselves to real-valued functions. The
main idea of this method will be crucial for the existence theorem we stated in the
Introduction. Roughly speaking, the idea of the method below is to avoid the
possibility of "vanishing eigenvalues" by writing down the second minimality
condition ("second derivatives have to be nonnegative at a minimum") at minima
(or approximated ones). For HF problems, this condition may be written as

N

Σ ί
i = l R3 \ ^ l /

1 N

- ff Q(χ,y) ] ΐΨί(χ)ψi(y)^χdy-\- Σ εi fy •> i v i j I ^ ̂  ** -

,*)- jf
* Z IR3χR3 —

^0 (31)

for all (ψl,..., ψN) EH1 (R3) such that

f ψiψjdx — Q V/ j ; f ψiψjdx = 0 V z φ y , (32)
IR3 R3

where K(x) = 2ί^φi(x)ψt(x) , K(x,y) = Σ Ψι(X)Ψι(y) + Ψi(χ)Ψt0) and εf are
\ ί / i

the corresponding Lagrange multipliers.
Of course, all this is a bit formal since we cannot start with a minimum and

various justifications detailed below are needed. At this stage it is worth pointing
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out the relations between (31)-(32) and the observation (24) which was crucial for
the proof given in the preceding section. In some sense, (24) is contained in (31)-
(32). Indeed, for each /, we may take ψj = 0 fory φ z, and we deduce from (31)-(32)

that for all ψeH1 (IR3) such that J ψφjdx = $ Vy,
R3

(Hψtψy + Bt j \ψ\2dx^\ Π {\K(x9y)\2-K(X)K(y)}r^—dxdy9
R3 2 R3χIR3 \X— y\

where K(x, y) = [φt (x) ψ(y) + ψ (x) φt (y)], K(x) = 2 [φ£ (x) ψ(x)]. But the right-
hand side is nonnegative since we have

^D(K,K}=D(φiΨ,φiψ) and ±D(K,K) ^D(\Ψi\\ \ψ\2) .

The way we use (31)-(32) is the following: assume to simplify that Z > TV, then
by an appropriate variant of Lemma II. 1 we will show that the constants εf have to
be bounded away from 0 and this will yield the compactness we need.

To make these vague arguments rigorous, we first claim that we can build
minimizing sequences which satisfy (31)-(32) (or variants): in fact, we will see that
one may assume that (31)-(32) "almost" hold for any minimizing sequence. The
second step is to prove that the constants ε£ are bounded away from 0, and the final
step consists in passing to the limit. We first treat the case Z > N and then we
explain how to modify the argument in the case when Z = N.

Stepl: Minimizing Sequences and Nonnegative Hessian. If one just wants to
prove the existence of a minimum, it is easy to build some minimizing sequences
of (6)-(10) such that (31)-(32) or close variants hold. Let us just mention two
possibilities.

i) Replace IR3 by a ball BR of radius R < oo [i.e. set the problem (6)-(10) in the
space HQ (Bp) extending by 0 all functions of this space]. Then, the analogue of
problem (6)-(10) immediately admits a minimum by standard functional analysis
[use the compact embedding from HQ (BR) into L2 (BR)]. Equations (12) for such a
minimum (φf, . . . , φ*) hold with IR3 replaced by BR and for some constants
(εf,...,ε*). Finally, (31)-(32) hold with IR3 replaced by BR,φi,εί replaced by
φf , εf (V/). Then, as R -> oo, (<pf , . . . , φfy is a minimizing sequence of (6)-(10).

ii) Use general optimization results: by a result due to Ekeland and Lebourg
[23] (see also Ekeland [22], Stegall [56], Bourgain [15]...) we know that for all
n ̂  1, there exists (£). e/T1 (R3) [or even L2(R3)] such that H/j^ ^ 1/n (V/)
and there exists a minimum (φ" , . . . , φ^v) of

]R3f , (φι,...,φN)eK.
. < = 1 J

(33)

Then, the Hartree-Fock equations (12) are replaced by

\χ~-y\
in ^'(IR3) (34)
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for some constants (ε" , . . . , ε#), where ρn(x,y) = Σ <Pni(x} ΦΓOO? £?n(X) — £?"(Λ x)
i = l

And (31)-(32) hold with φ ί ? εf replaced by φ", εf. And it is easy to check that, as n
goes to oo, (φ" , . . . , φ^) is indeed a minimizing sequence of (6)-(10).

Unfortunately (for the reader), we are interested in the behaviour of all
minimizing sequences: let (φ\ , . . . , φn

N} be a minimizing sequence of (6)-(10). Then,
by the general perturbation principle due to Ekeland [22], we can find another
minimizing sequence (φl , . . . , φ"N) of (6)-(10) such that

, V / , (35)

and (φl , . . . , φn

N) is the minimum of

(36)

for some δn > 0 such that δn — > 0. Then, "elementary" differential calculus yields
n

the existence of (ε" , . . . , βjy) e IR^ such that the following holds

ρ» ( χ 9 y ) φ» (y) dy

+ ε?φ? — > 0 in L2(R3)
n

and the existence of γn > 0, γn -> 0 such that
n

(37)

Σ ί
\X\

i (x) Ψt (y

~l- JJ (38)

for all

IR3
(39)

1R3) satisfying

l/iφ
r dx = Q V/,y; J ψt ψ dx = 0 V / Φ y ,

R3

v v ^ w x ^ *χ v/v,^, — ̂  ψ^xjψi^) + ̂ i(*) Φ?(y)j ^""(A:) = A'"(^, x). (The equality

(37) just uses the differentiability on H1 (R3)N of δHF while (38) uses the fact that it
is uniformly twice differentiable on bounded sets of H1 (IR3)^.)

Let us finally observe that these considerations are totally general and have
nothing to do with HF (or H) problems.

where
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Step 2\ Bounds from Below on ε". This is where we use the information given by
(38). To simplify the presentation, we observe that (38) implies in particular (see a
similar argument above) that we have for each fixed /,

(38')
\ / jy

for all ψ e/ί1 (IR3) such that

\ψφ]dx = 0 Vj . (39')
R3

Now, this implies that the Schrodinger operator Hn

-zl + F+ρ"* — -
1*1

has at most N eigenvalues strictly less than — (ε" + 7").
For the reader's commodity, we give a simple proof of this trivial algebraic

observation at the end of this step.
Now, if Z > N, we use Lemma II. 1 and its proof to deduce that there exists δ > 0

such that Hn admits for all n at least N eigenvalues strictly below ( — <5). And this
yields

ε? + γn ̂  δ .

Since yn — > 0, we deduce for n large enough
n

ε?^ε>0, V z . (40)

Lemma Π.2. Let A be a bounded, self-adjoint operator on an Hubert space H, letHί9

H2 be two subspaces such that H = H1 © H2, dim^ = k < oo and P2 AP2 ^ 0,
where Pΐ , P2 denote the orthogonal projections onto Hl , H2 respectively. Then, A has
at most k negative eigenvalues.

Remark. The assumption that A is bounded can easily be disposed of in order to
accomodate the operators Hn on L2 (IR3).

Proof of Lemma II. 2. Multiplying if necessary A by a positive constant, we may
assume that P1AP1 ^ -P±. Then we set A= -P^ +P2APl +PλAP2; A is also
self-adjoint, bounded and A ^ A.It is of course enough to show that A has at most k
negative eigenvalues. Now, if λ is an eigenvalue of A different from 0 and if x is a
corresponding eigenvector, we check easily that

And we conclude easily observing that P1AP2AP1 is a nonnegative, self-adjoint
operator on H± and that to each eigenvalue of this operator corresponds only one
negative eigenvalue of A. Π
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Step 3: Conclusion. Recalling that minimizing sequences are bounded in H1 (IR3),
we deduce that ε" is bounded, and thus we may assume (extracting subsequences if
necessary) that φ" converges weakly in H1 (IR3) (and a.e. in IR3) to some φt and that
ε" converges to εf which satisfies εf ^ ε > 0 because of (40). It is an easy exercise to
pass to the limit in (37) and to recover with obvious notations

i + siφi'' f ρ(x,y) - - -9i(y)dy = 0. (41)
R3 \χ—y\

In particular, we find that

ϊ ϊ^Σ c ? ί \<p"\2dχ=-lm\Σ ί
" i IR3 " L i IR3

+ Π {
IRS x IRS

and by the same arguments as the ones used to show that S'HF is weakly lower semi-
continuous on H1 (IR3), this yields in view of (41),

IR3

Σ ί \F(pi\2 + V\<Pi\2dx + JJ {ρ(x)ρ(y)-\ρ(x,y)\2} -dxdy
ί IR3 ]R3χ]R3 \X—y\

i IR3

Hence, φ" converges strongly in L2 (IR3) to φt and it is easy to conclude the proof of
Theorem II. 1.

If Z= N, we just have to modify slightly the above argument by passing first to

the limit weakly in /^(IR3). Then, the operator H= -zl + F+ίρ* — J still

has at most N eigenvalues less or equal than — ε f (V0 5 where εt is the limit
of ε". Now, if j ρ dx — TV, this means that <p" converges in L2 to φi and the proof

]R3

is over. Or J ρ dx < N and we apply Lemma II. 1 to show that εt > 0 (Vz')' this
IR3

enables us to conclude as before.

Remarks, i) If we compare the two proofs of Theorem II. 1 we gave, the new one is
clearly more complicated! However, the arguments we use there turn out to be
crucial in Sect. II. 4 for more nonlinear problems or when dealing with non-minimal
solutions. In fact, the reduction from (38) to (38') strongly uses the positivity of the
Coulomb potential (as a function and as a kernel) but is not at all necessary in the
above analysis provided one extends a bit Lemma II. 1 (see also the next section).
With this reduction the two proofs are quite parallel, but major differences can be
seen on their applications (other nonlinear problems, critical points, other 2-body
terms...) in particular because the reduction we did above is by no means
necessary. Of course, the key point behind all the proofs is Lemma II. 1 (and its
extensions as we will see below).
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ii) The proof in the case of Hartree minimization problems is slightly different
but does not present any additional difficulty. Therefore we skip it. D

ΠA. Related Minimization Problems'. Restricted^ TFW, TFDW Equations

We begin with a generalized version of the restricted Hartree minimization
problem. We consider the minimization problem (6) for the functional

g(φίt... ,<?„)= X I \Vφi\
2+V\φi\'1dx + \ X α^d^lM^I2), (42)

i = l IR3 ^ i,j = l

and where K is given by

and we assume atj = aβ ̂  0, λi > 0 for all 1 ̂  ίj ^ TV.
We will call this problem the RH problem: the usual restricted problem (14)

corresponds to N=l, λί = l, aιι = ^ while the standard Hartree problem
corresponds to λί = . . . = λN = 1, atj = 1 — <5ί7 V/,y. We have the

Theorem II.2. We assume that, for all 1 :g / ̂  TV, Σ atj λj ̂  Z an d either Σ βfj. λ < Z
7 7

or there exists j such that ]Γ a_yk A f c = Z andajt > 0. TTzeft, «// minimizing sequences of
k

(6)-(42)-(43) are relatively compact in H1 (IR3) and in particular there exists a
minimum.

Remark, i) Of course, any minimum satisfies

; + 6 iφ i = 0 in R3, Vi

and the arguments below show that εf ^ 0 V z . Furthermore, in general we can
prove that εf > 0 only if Z > ]Γ α^ A7 .

7

ii) If TV=1, the condition on Z reduces to Z^λ1a11. D

Proof of Theorem II. 2. We follow the arguments given in the preceding section. As
in step 1 , we see that we just need to consider minimizing sequences (φ\ , . . . ,
such that

n

for all / e { l , . . . , T V } and

N

Σ 1
i = l IR3

- 2 Σ OijD (Re(φ? ̂ ), ^((j9? v/*)) (45)



Solutions of Hartree-Fock Equations 51

for some yn > 0, yn -* 0, for all ψt εHl (R3) such that Re J j ψt φϊ* dx = 0 (Vz),
where ε? is given bv ]R3χiR3
where ε" is given by

(46)

One easily checks as in Sect. II. 2 that minimizing sequences are bounded in
H1 (IR3) and thus ε" is bounded (V/) In particular, if we choose for each i fixed
ψj = 0 for j φ i, we deduce for all ψ εHl (IR3) such that Re J ψ φ*!* dx = 0,

1R3

admits at most one negative eigenvalue (in fact using the positivity of — as a
kernel Hl

n is nonnegative), where Kl

n is defined by ' '

To show the analogue of step 2, we will treat only the case when

Z > Σ βϋ ̂ j' ^z ί̂ 6 8enera^ case b^ing a modification along the same lines as in

the case Z = N in the preceding section). In order to do so, it is clearly enough to
show the following extension of Lemma II. 1 :

Lemma Π.3. Let μ be a bounded nonnegative measure on IR3 such that μ(IR3) > Z>
let <?eLα(IR3) + Z/(IR3), g ^ O with l < α , β ^ 3 and let R be the nonnegative
operator defined by

Ru(x)=
\iR3 I χ ~~ y I

where ψ eL2(IR3).
Then, for each k^.1, there exists ε k >0 depending only on bounds on

(Z-//(IR3))~1, qinLa + Lβ, ψ in L2 such that the operator H = -A + V+μ*— -
+ q + R admits at least k eigenvalues below — ε f c.

Remark. If q e L1 + L3, the conclusion still holds, but εk depends on q. It is possible
to replace ψ e L2 (IR3) by v/ e LΓ (IR3) + L2 (IR3) for some r e (f , 2).

Proof. We follow the proof of Lemma II. 1 and with the same notations we find

\φ\2dx + J ~~ dy
σ R3 σ R3 171

- Jf
^ )R3χIR3
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where qσ(x) = σq(σx)9 ψσ(x) = σ^12 ψ(σx). Therefore, we just need to find a
^-dimensional subspace Fk of spherically symmetric functions φ in £^(IR3) such
that

sup §qσ\φ\2dx+ JJ Re (ψ σ (x)φ*(x))- . -ϊίQ(ψσ(y)φ*(y))dxdy\
IMI = 1 |_IR3 !R3xIR3 l ^ y\ J

as σ -> oo .

We choose an arbitrary ^-dimensional subspace Fk of spherically symmetric
functions φ in ^(IR3) supported say in {1 ̂  \x\ ̂ 2}. All norms on Fk being
equivalent, we just have to show

And we conclude since

(and similarly if q e La + Z/) while
5/3

ίί I V σ W l i i ^ w ^ j — ̂ τl^
3χiR3 I^-JI

5/3

= C σ

and this quantity goes to 0 if ψ εL2.
To show the uniformity in q, ψ of the above construction we may argue as

follows. Let qn, ψn be bounded in L? + L3, L2 and assume that the kth eigenvalue ε£
of the corresponding operator Hn goes to 0 as n goes to oo. Without loss of
generality, we may assume that qn, ψn converge weakly to some q, ψ eLα + L3, L2,
and since the above construction shows that the corresponding limit operator H
admits infinitely many negative eigenvalues, we reach the desired
contradiction. Π

Remark. If we are interested only in the existence of a minimum, it is possible to
avoid the use of Lemma II. 3 by building some special minimizing sequences
(φ* , . . . , φjy) as, for example, the minima of the same problem in a ball BR, then
φf , . . . , φζ > 0 on BR by standard arguments and thus if εf are the associated
Lagrange multipliesrs, the operator

is nonnegative on HQ (BR). Then, a simple adaptation of Lemma II. 1 shows that
/ N \

εf ^ ε > 0 ( at least if Max ^ aij^j <Z\ proving thus the compactness as in the
\ i j = l /

preceding section.
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However, since the above argument is not much more complicated and yields a
stronger result, we prefer to emphasize the use of Lemma II. 3 for we will need below
the full force of Lemma II.3. Π

We conclude this section by the study of a related problem: we consider the
following minimization problem

IR3), f \u\2dx = λ\, (47)Λ i x / v / 5 J 1 * I 1 7 \ /

I R3 J

where <f is the functional given

IR3

and the functions u are taken to be real to simplify. We assume that the nonlinearity
Fis even, Fe C2 (IR3), F(0) = F' (0) = F" (0) = 0 and we denote by/= F. Finally, in
order to have a finite infimum (47) and to be able to write simply a meaningful Euler
equation (and 2nd order conditions)

F ~ ( t ) = o(\t\ίQI*\ |/'(ί)| = o(|ί|4) as | f | - » α o (49)

(all these conditions are not really necessary for most of the results below but we will
skip such easy extensions).

Replacing the unknown u by the density ρ = \ u \ 2 , one sees that the above
minimization problem is equivalent to

a.e. in IR3, J ρ(x)dx = λ>. (50)
IR3

And when F(,s) = φ|10/3 (with c> 0) - respectively F(s) = cl |j|
10/3 - c2 s\s/3>

(with c1 ? c 2 >0) - this problem is the Thomas-Fermi- Von Weizacker problem
solved by Benguria et al. [10] - respectively the Thomas-Fermi-Dirac-Von
Weizacker problem (see Lieb [31]). These two problems occur as modified versions
of the so-called Thomas-Fermi approximation of the TV-body quantum problem
considered in the Introduction - see Lieb [31 ] for further comments on the origin of
these problems. Observe also that if F= 0, (47)-(48) is nothing but the restricted
Hartree problem (42)-(43) (with N= 1).

The fact that the infimum Iλ is finite comes from the following facts

V ε > 0 , 3C ε^O, F-(0^ε|ί |1 0 / 3 + C β | f | 2 (51)

and there exists C0 ̂  0 such that for all u zHl (IR3)

J | w | 1 0 / 3 Λ c ^ C 0 ( J \ V u \ 2 d x ] [ l \u\2dx] (52)
IR3 \IR3 / \R3 /

therefore

J \Vu\2dx+ j Vu2dx-Ceλ.
IR3 IR3
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This shows not only that Iλ is finite but also that minimizing sequences (un) are
bounded in H1 (R3) [and F+ (un) are bounded in L1].

To analyze the problem (47)-(4δ) we use the concentration-compactness
method [43, 44]: we first introduce the problem at infinity,

(53)
iR3

where

Λ»(u)= f \ru\2 + F(u)dx + l-D(\u\2

9 M2). (54)
R3 2-

And by the techniques of [43], we find that one always has 7λ^/α4-/λ°?.α,
V α e [0, λ] while the following holds.

Theorem IL3. Every minimizing sequence of (47)-(48) is relatively compact in
Hl (IR3) (and F+ (un) is relatively compact in L1 (IR3)) if and only if the following
condition holds:

/ A < 4 + 'f-α, V α G [ 0 , λ [ . (S.I)

In particular, z/(S.l) holds, there exists a minimum <9/(47)-(48).

Our goal in the remainder of this section is to give conditions which ensure that
(S.I) holds. We begin by observing that if F^ 0, then one can check that 7A°° = 0 for
all λ ̂  0. In fact, it is possible to generalize the condition F^. 0 as follows: we first
recall that \Vu\L2 is the norm of the Hubert space 01>2(IR3) (= (weL^IR3),
Vu EL2 (IR3)}), while up to some irrelevant constants the norm on the dual space
(^1>2)* may be written on its dense subspace L6/5 as

[recall that 2 1 ' 2 c-* L6 and thus L6/5 ̂  (2 1 ' 2)*]. Therefore, there exists a constant
Q ̂  0 such that for all w e^ (IR3),

\ l / 2 j

\Vu\2dx\ -D(\u\2,\u\2Y>2, (55)
1R3 / ^

and we denote by Cl the least constant such that the above inequality holds. Hence,
if F satisfies

F(t)*-i\t\3 on H*, (56)
Cl

we deduce easily <f °° (u) ^ 0 and 7λ°° ̂  0 for all A ^ 0. To check that in this case
7A°° = 0, we simply consider φ e @ (IR3) such that such that J \φ\2dx = λ, and we
compute for all σ > 0, R3

and we conclude letting σ go to +00, recalling that F(s) — o(s2).
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Corollary ILL We assume (56).
i) Every minimizing sequence 0/(47)-(48) is relatively compact in H1 (1R3) if and

only if
Iλ<IΛ9 Vα6(<U). (57)

In particular, if (57) holds, there exists a minimum 0/(47)-(48).
ii) There exists a constant λce(Q, oo] such that for λ^λc (57) holds and there

exists a minimum 0/(47)-(48), and for λ > λc9 λ near λc, Iλ = Iλ.
iii) Iff(t)/t is nondecreasing for t ̂  0, λc < oo and Iλ = Iλcfor λ > λc, and there

does not exist a minimum of (47)-(48) for λ > λc.
iv) If f satisfies

), 3C^O, (/'(0)+^C^2/3 for Q^t^R, (58)

then λc ̂  Z.

Remarks, i) Part iii) of the above result corresponds to the case treated by
Benguria et al. [10].

ii) In fact, it is possible to interpret Theorems II. 1 and II. 2 in view of the general
concentration-compactness principle. For example, in Theorem II. 2, denoting the
infimum by I(λ± , . . . , λN), we observe that 7°° (αx , . . . , α#) = 0 for all αf ̂  0, and thus
the necessary and sufficient condition given by the concentration-compactness
principle reads

7 ( λ 1 , . . . , A w ) < / ( α l J . . . , α J V ) 5 for all α fE[0,^]

N

such that Σ αΐ < Σ ί̂ And the condition given in Theorem II. 2 is just a condition
i = l i = l

which ensures that the above holds. Similarly for HF problems (Theorem II. 1), the
concentration-compactness principle yields the following necessary and sufficient
condition - see Gogny and Lions [25] for related considerations -

N
7(1, ...,!)< 7(λ l5 . . . , λN), where 0 ̂  λt£ 1, £ λt < TV,

ι = l

where 7(/L1? ... , λN) corresponds to the same minimization problem with the
constraints J φt φf dx = λί dtj. Again, the condition Z > (TV— 1) is only a condition

IR3

which ensures the above strict inequality. D

Proof of Corollary ILL Since 7̂ °° = 0 for all //^O, part i) is an immediate
consequence of Theorem II. 3. To prove part ii) we just have to show that (57) holds

for λ > 0 small enough. To this end, we prove below that —- converges to
Λ

as λ goes to 0 + ; and that this implies our claim on (57).
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An upper bound on Eί is easy to obtain: recall that E1 is achieved for some
φ1 > 0 on IR3, φ^H1 (IR3) n C0(IR3), and observe that

IR3

where ε (λ) -> 0 as λ -> 0 + ,

since F(t) = o(t2) as t -> 0. Therefore, we have

lϊm" ^£x.
A->0 + A

The lower bound may be obtained by observing that (55) implies

2 + V\u\2dx-& J | F w
R3

while we have for all δ > 0,

1 |ι/|2(x)M2(j;)
- I J - - - - - dxdy

-

- ίίε J

R3

2 1
_l

J \u\2ώc +-
1R3

Vu\2dx.

Therefore, we have for all t/e/ί^IR3) such that J \u\2 dx = A,
R3

f |Pt/ | 2^+ J F |w

and we conclude easily by convenient choices of ε, δ > 0 that not only y -> ̂  as 1

goes to 0+ but also that if uλ eH1 (IR3) satisfies

/A^^(M λ)g/ λ + oα)9 J \uλ\
2dx£λ9

R3

then —4r is a minimizing sequence of the minimization problem giving El, and thus
vλ

u
(up to a change of sign) —4= converges in H1 (IR3) to φ t .I/A

To conclude the proof of our claim and thus of part ii) we claim that for all λ > 0,
there exists uλ ̂  0 in H1 (IR3) such that

(59)
IR3
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This is another consequence of the fact that 7̂ °° = 0 for all μ ^ 0. It is deduced from
the general arguments of the concentration-compactness method [43,44]: let us just
explain the basic idea behind that fact. First, observe that since Iλ < 0 = 7λ°°, ifun is a
minimizing sequence for the problem 7A, then for some R > 0,

for some δ(R)>0 independent of n. Therefore, the only way we can lose
compactness is when un splits in (at least) two parts: u\ and u2, where u\ remains
compact, while u2 is, roughly speaking, supported outside a ball whose radius goes
to oo. Then, u\ converges (in fact strongly in 771 (R3)) to some uλ satisfying (59) - uλ

may also be obtained as the weak limit oίun in L2 or in 771 and (59) may be deduced
from careful arguments involving (55). Finally, since Iλ ^ 7α for all α e [0, λ], uλ

minimizes $ on the set {| u \2* ̂  λ} and thus by standard arguments uλ is of constant
sign, say positive. Once the existence of uλ is proved, the proof of ii) is easy. Indeed,
by standard arguments uλ satisfies

i = 0 in R3, (60)

where the Lagrange multiplier θλ vanishes if | uλ |̂  < λ. Furthermore, when λ goes to

0 + , we know that —4= converges in 771 to φί which solves
yλ

— Aφ1 + Vφί=Eΐφ1 in R3. (61)

And this yields (to be rigorous one may use the fact that \f(t)\ ^εt2 + Ct
for all t e R, ε > 0): θλ -> — Eί > 0 as λ goes to 0+ . Hence, for λ small enough,

R3

To prove part iii), we just a.dapt the method of Benguria et al. [10]. Using the

formula (50) and the fact that the assumption on/implies that F(]/t) is convex- see
also for related considerations Brezis and Oswald [18] - we see that the functional
occurring in (50) is convex and that

R3

is a convex function of λ. Furthermore, one checks easily that the infimum of Iλ over
all λ>0 is achieved for some (unique) ρ0. And, finally, ρ0eL1(IR3). Setting
λc= J ρ0dx, we conclude easily, and we refer the reader to [10] for more details.

R3

To prove part iv) we observe that if λ ̂  Z and if | uλ \2

L2 < λ - where uλ is the weak
limit of any minimizing sequence - then $(uλ) = Iλ, uλ is nonnegative (up to a change
of sign) and uλ satisfies (60) with θλ = 0. Finally, we have for all ψ«

f \^Ψ\2 + v+\uλ\
2* + f\u^\ψ\2dx + 2D(uλψ9uλψ)^0 (61)

R3 \ 1*1 Z /

(this is nothing but the 2nd order condition associated with the fact that uλ is a local
minimum of $}. We conclude using Lemma II.3 with μ=\uλ\

2, q = 2f'(uλ) + >
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ψ = 2uλ: observe indeed that ι^eC0(IR3) because of (60) and thus (58) implies
that ^^C|wA | 2 / 3eL 3(IR 3). Then, Lemma II. 3 (and its proof) contradicts (61):
the contradiction shows that \uλ\ι* = λ and this means that minimizing sequences
are compact. D

Remarks, i) In part iv) of the above result, the above proof shows that θλ > 0
if λ < Z.

ii) It is possible to replace (58) by

V^<oo, 3CΛ^0, (/(0)+^CΛf5 / 3 for O^t^R, (58')

if we use the positivity of uλ. Indeed, uλ being positive, (60) implies that — θλ is the
lowest eigenvalue of the operator

and we can prove that | uλ ||2 = λ as above using also Lemma II. 3 and its proof. G

Before giving the last application of Theorem II. 3, we want to comment a bit
(56): we wish to point out that (56) excludes interesting situations like the TFDW
problem and that in general /λ°° does not vanish identically. For instance, if

2k
F(t) ^ — — - 1 1 \ 3 in a neighborhood of 0 for some k e (0, 1) - and this is the case for

CΊ
the TFDW problem - one checks that 7λ°° < 0 for all λ>0. When 7A°° is not
identically 0, the analysis of (S.I) is much more complicated. We can prove the
following

Corollary Π.2. i) The condition (S.I) holds for λ > 0 small enough, and in particular
there exists a minimum for such λ.

ii) If (5$) holds, then (S.I) holds for 0 < λ ̂  Z, and thus there exists a minimum.

Remarks, i) In the TFDW case, (58) holds and we have proved the existence of a
minimum for λ^Z.

ii) The proof of part i) above relies upon the fact that Iλ/λ converges to E± and
/λ°°/A converges to 0 as A goes to 0 + . This enables us to use general arguments for the
verification of (S.I) described in P.L. Lions [45].

iii) The proof of part ii) combines an easy extension of the arguments developed
in the concentration-compactness method with the arguments developed in the
preceding sections. This extension is described in the appendix - and uses in a
fundamental way the fact that the Coulomb potential V decays to 0 at infinity only
in a polynomial fashion, while the condition λ^Z will imply by similar
considerations to those given in the preceding sections that the tentative solutions
decay exponentially at infinity. In fact the condition Z ̂  λ will also be used to

"deduce that V+ \u\2 * - — - is negative and decays slowly at infinity." The role of
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such conditions was observed in Lions [46] and the argument we use is very much
related to those developed in Taubes [60, 61] and Berestycki and Taubes [12].

iv) If (58) is replaced by (58'), we still have a minimum λ ̂  Z by an argument
given above using the positivity of minima.

Proof of Corollary Π.2. We first prove part i) of Corollary II. 2: as we said in the
/ 7°°

remarks above, we will first show that — -^Eί9— — > 0 as λ goes to 0 + . The upper
_ T A λ _ ^00

bound lim -̂  ̂  Eί is proved exactly as in Corollary II. 1 while lim -y- ̂  0, since
λ-»o + A λ-»o+ λ

/λ°° ̂  0. To prove the lower bound we first observe that for all ε > 0, there exists
Cε ̂  0 such that

on 1R

Therefore, we deduce using (52) \ί\u\2

L2 = λ,

J \Fu\2dx+ J V\u\2dx-ελ9
R3 R3

J \Vu\2dx-ελ,

and the convergences of — , — to Eί9 0 respectively are then easily obtained.
A Λ

Next, we argue by contradiction, and we assume there exists a sequence
λn — * 0 such that (S.I) does not hold for Iλ . We are going to use modifications of

arguments introduced in [43]. In view of the above convergences, we may assume
without loss of generality that Iλn<I™n. Therefore, αn = inf(0<α<ΛJ/λ π=/α + /^_α)
exists and αn > 0. We claim that (S.I) holds for 1^. Indeed, if 1^ = Iβπ + I^n-βn with
0 ̂  βn < αw, we deduce

and this contradicts the choice of αn. Hence, there exists a minimum vn of 1^ and
we may assume that vn is nonnegative. From the above arguments we deduce that

^= converges in H1 to φ1 , and since -̂  = — -^+(l--~) A""α" , we see that1 ,]/απ λn λn an \ λnj λn -

-^ -> 1. Furthermore, vn satisfies for some θn e IR,
λn n

n

and exactly as in the proof of Corollary II. 1, the convergence of — = to φ^ implies

that θn converges to (-E1)> 0. ^α"
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To conclude, we argue as follows

OΛ1'2

f j

//I \1/2 λ
^/^-θn (!„-«„) +C(ln-αn)2+ U -1

\\αn/ /

i Γ / Γ/; \ ι /2

• ί ί /r»+M - -
0 IR3 L \ L\α»/

Iλn ^ 7απ - θn(λn - αn) + C(AB - αn)
2 + C t^ [εαπ + Cεαn

3] ,
αn

where we use the inequality \f(t) \ ̂  ε 1 1 \ + Cε 1 1 15, hence

for n large enough. By assumption, this implies

contradicting the convergence of -—- to 0 as λ goes to 0+. The contradiction
proves part i) of Corollary II. 2.

We now turn to the proof of part ii) of Corollary II.2. We begin with the simpler
case when λ < Z to keep the ideas clear. The same argument as in Step 1 of the
method described in Sect. II. 3 (see also the Appendix) shows that, to analyze
general minimizing sequences, it is enough to consider some particular ones (see
also the Appendix) which here are sequences (un)n in Hl (IR3) satisfying

ί(u*)—+Iλ, J \un\2dx = λ, (62)
" R3

-Δun+Vun + ( \un\2*- — \un+ -f(un) + θnu
n — » 0 in H'1, (63)

\ \x\ / ** n

where
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and for all ψeH1 (IR3) such that J unψ dx = 0,

f |F
IRS

+ 2 Jί ^ W v / W - — ^ W v / W ^ ^ ^ O (64)

for some yπ — > 0.
n

We next use (64) in conjunction with λ < Z and (58) to deduce that θn (or θn + yn)
remains bounded away from 0 :

3v>0, θ π ^ v > 0 ,

and since un is bounded in H1 (IR3) we may assume without loss of generality
that θn — >θ>0.

n

And from the results of the appendix we deduce the existence of an integer
K^l, real numbers al9...,uκ, sequences y" for 2^j^K, and functions in
H1 (IR3) n C0 (IR3) Uj(x) for l^j^K satisfying

( X i ^ O , α,.>0 for 2^j^ K, £ α—A, \y]\-^ °o for
7 = 1

2^j^/:, |^-^|_»oo for Z g i φ ^A:,

«"-MI- Σ "X'+^P — ̂ 0 in Λ'1 (IR3), f [w/<& = a,.,
w .

#(«!) = /.,, <TCO(^) = /C!7 for 2gj^Jf, /A = /.,+ Σ 47,
j = 2

+ / + ̂ O in IR3,

. = 0 in IR3, 2^j^K.

Of course iίa1=λ, then the compactness is proved, and to prove that (S.I) holds we
are going to show that such a decomposition of Iλ with minima satisfying the Euler
equations with the same Lagrange multiplier is not possible. Before going into this
final argument, we would like to comment on the information given in (65): the
concentration-compactness arguments yield in fact the decomposition of a
minimizing sequence in a finite number of pieces converging to minima of
subproblems as before, the only new information comes from the Euler equations
satisfied by those minima. Indeed, all the minima share the same Lagrange
multiplier θ which is of course the limit of θn, the Lagrange multiplier occurring in
(63). In fact, we will not use here the full force of this decomposition since we will
only use the fact that this implies that all the Lagrange multipliers associated with HJ
are strictly positive (if we were able to prove directly this fact, we would not need
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such a precise decomposition). However, the full information may be crucial on
other problems. Let us finally mention that related decompositions (with different
types of lack of compactness) were investigated by Sacks and Uhlenbeck [52],
Uhlenbeck [62, 63], Brezis and Coron [16], Struwe [57]... .

We may now conclude the proof of Corollary II. 2: the idea is simple, we take K
points βj (1 ̂ 7 ̂  K) such that eί = 0, | βj = 1 for j ^ 2, | et — βj \ > 0 if i φj, and we

κ w —
consider wt = uί + u2 (x + e2 1) + Σ uj (x + ej 1 2)' ^ ~ 1 — ~ l/^ f°r t = ® ^y

7 = 3 \Wt\L2

definition Iλ ^ <f (ϋf) while \vt\
2

L2 = λ. Since we have easily

K

if we prove that for t large, ^(vt) < /αι + Σ /α°°, we reach a contradiction which
e j = 2

proves part ii) of Corollary II. 2. To investigate the behaviour of $ (vt) for t large, we
first remark that since/' (0) = 0 we deduce from (65) by standard arguments that for
every v e(0, Θ1 / 2) there exists a constant C^ 0 such that

I 7uj(x)\ + \Uj(x)\^ Cexp(-v|x |) for χ\ ̂  R, (66)

where R > max | xj \ . In particular, this implies

/ ί ^ | w f | l 2 - A + 2 £ J w^ίfcc^λ
\£i<j£K R3

for some C^ 0 depending only on v e(0, $1/2). Therefore, we deduce easily

and

Next, we claim that

K i /ι\
^(t;,) = ί(Ml) + Σ ^°°(w7.) + -{αια2-Zα2} + o - , as ί-> + oo. (67)

7 = 2 ^ \V

At this point, we just observe that in view of (65), ̂ (WI) = /ΛI, ^(u^)~l^.
K

for 2^j^K and since Z^.λ= £ αt , we have proved the desired behaviour of

^(^ί), and we may conclude.
Hence, it just remains to prove (67). Using (66) one obtains in a straightforward

way denoting by ύl = uv , ύ2 = u2 ( + e2 ί), ύj = Uj( + ej t
2) for j ^ 3

^(t?f) = #(Wl)+ f ^(uj)+ f J F(x)|w7.|
2Λ

t)- Σ
j=ι
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We first bound the last term: we have for t large enough

63

j \F(vt)-F(Uj)\dx

where ^(0 = 0, e 2 ( t ) = te2, e j ( t } = t2ej for 7 ̂ 3.
Each term in the sum may be bounded by

ί Σ l^ l + C Σ

while the last integral is easily bounded by

C j k!2+ Σ |£
n(|x + e/OI>i/2) 7=1

To conclude, we just have to prove

/ Φ 7

for 7^3

for '̂

for ^3,

as

All these equalities are simple consequences of the following observations

1*1 ί

— Z\

-dxdy $\u(x)\2dx-$\v(y)\2dy
]R3

which hold for general u,veHl (IR3) π C0 (1R3) provided M, i; "decay fast enough at
infinity", in particular if u, v decay exponentially at infinity as it is the case here.

Next, we have to explain why (62)-(64) imply that θn remains bounded away
from 0 even in the case when Z = λifunis not compact. Indeed, we may assume that
un is not relatively compact in L2 (R3) and this means (up to subsequences) that un

conver ges weakly in Hl (lR3)anda.e. to some u such that j \u\2dx = a<λ. Then,
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\un\2 converges weakly in the sense of measures (and in L3) to \u\2 and /' (un)
converges weakly in L3 4- L3/2 (for example) to /' (u). Next, we observe that the

operator -A + F+ \u\2 * \--f'(u) + 2K0withKQφ = \ (uφ)*— L admits in
1^1 2 |_ \x\ J

view of Lemma II.3 infinitely many negative eigenvalues. And if ΘM

+—»0, we
reach easily a contradiction with (64).

Let us finally mention that (58) is basically optimal since one can show (see Leon
[30]) that for any 1 < q < f and for any Z > 0 there exists a constant C(z) (going
to 0 as Z -» 0) such that any solution v of

2
-Av- — v+\υ\q-'Lv + λυ = Q in R3, ι;eL?oc(IR3)

\x\

for some λ ̂  0, satisfies J | v \ 2 dx rg C(z). Related results obtained previously may
R3

be found in Lieb [35], Lieb and Liberman [36]. On the other hand, the above
arguments yield the existence of a positive solution of this equation with J | v \2 dx
arbitrary when q ̂  f. R3

III. Partial Existence Results

Our goal in this section is to present two methods - which were briefly described in
the Introduction - which do not seem to yield the same generality of results as the
method introduced in Sect. IV. The first method relies on some easy critical point
results where some compactness condition, namely the Palais-Smale (P.S.)
condition, is assumed to hold: these results are given in Sect. III.l. The application
to H problems is given in Sect. III.2. And finally in Sect. III.3 we consider a fixed a
fixed point approach (2nd approach described in the Introduction). These two
approaches seem to work only in the spherically symmetric situation.

III.l. Some Abstract Critical Point Results

Let E be an infinite dimensional Banach space and let H be an infinite dimensional
Hubert space; its dual space H* is identified with H and we assume that E is
continuously embedded into H. We denote by || || the norm on E, \\ \\^ the norm on
E*, I I the norm on H and ( , •) the scalar product in H. Let TVg: 1, we denote by
MH, MHF the following manifolds:

Mn={u = (ul9...,uN)eEN/\ui\ = l for all l^i^N}, (68)

Mw={u = (ul9...9uN)eE»/(ui9uj) = δij for all IZiJ^N}. (69)

And we consider an even C1 functional $ on EN. We will need a few more notations:
we denote by ΓH (respectively ΓHF) the collection of all compact symmetric sets
included in MH (respectively MHF), ΓH (respectively ΓHF) the collection of all sets A
in ΣH (respectively ΣHF) whose genus is more than k, i.e.

y(A) — inf {/' ̂  1/3 h odd, continuous from A into S3~1} ^ k 4

4 For the main properties of the genus, we refer to KrasnoseΓskii [29], Rabinowitz [50],
Ambrosetti and Rabinowitz [2]
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and ®H (respectively 6>HF) the collection of all odd continuous maps from Sk~* into
MH (respectively AfHF). Here and below k denotes some integer (k ̂  1). We then
introduce two sequences of values, which at this stage are possibly infinite,

bk = inf max δ(u), Mk ^ 1 (70)
AeΓk ueA

ck = inf max δ(h(ξ)\ V& £ 1 (71)

and, when needed, bk^ b^p, c^9 c^p will correspond obviously to the H of HF
choices. Notice also that if heΘk, then y(h(Sk~1))'^k, therefore

Finally, we will say that $ satisfies (P.S.-c) on MH (respectively MHF) where
c e IR if the following condition holds:

for each sequence un in MH (respectively MHF) such that

<$(un)—> c and (δ\M )'(«")—»0 in EN* (respectively
n H n

(<^|MHF)'(W")—> ® in ^N*) then un is relatively compact in EN. (73)

Then, we have the

Theorem III.l. Assume that $ is bounded from below on M H (respectively MRP).
1) Letk^l. If<$ satisfies (P. S.-bk) or(P.S.-ck) onMH(respectivelyMHF) thenbk

or ck is a critical value of $ on MR (respectively MHF).
2) Assume that E is separable and dense into H, that bk < δ(G)for all k ̂  1 and

and that $ satiesfies the following condition'.

for each sequence vk in MH (respectively MHΈ) such that $(vk) < <f (0)

for allk^l and vk -> 0 weakly in HN, then lim S(vk) ^ δ(ΰ) (74)

then bk ΐ <f (0) as kϊ +00.

Remarks, i) We will need part 2) of the above result in Sect. IV.
ii) These results are variants and adaptions of results given in Berestycki and

Lions [11].
iii) As usual, if bk — bk +1 = ... = bk+r for some r ̂  1 then the genus of the

critical points associated with bk [we assume of course that (P.S.) holds] is more
than r +1.

iv) If in (73) un is bounded in EN, then the condition

(<£\MJ(un)-^>0 in EN* or (δ\M^'(u

n)—*Q in EN*

is equivalent to

S (u ) — \G> (u ).,U /U —t U in Jbί 9 v l ^ ϊ ^ TV
1 n

or
N
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We will only sketch the proof of Theorem IΠ.l since it is an easy adaption of the
corresponding proofs in Berestycki and Lions [11]; and, of course, these schemes of
proofs originate from Ljusternik and Schnirelman [47], Palais [48, 49], Clarke [20],
Rabinowitz [50], Ambrosetti and Rabinowitz [2] ... .

The proof of part 1) is a standard deformation argument: some attention has to
be paid to the fact we are dealing with two spaces E, H but this is solved exactly as in
[1 1 ], and also to the fact that we have multiple constraints in the definitions of MH,
ΛίHF. This second difficulty is also solved as in [11] by building a pseudo-gradient
vector field v(x), i.e. a mapping from MH (respectively MHF) into T(MH)
(respectively T(M^)) which is locally Lipschitz on the complement of critical
points of $ \M (respectively $\M ) and such that for all u eMH (respectively MHF),

H HF

v(u)eTu(MH} (respectively ΓM(MHF)), i.e. v(u)eEanά

Vl^i-^N (vt (u), UI)R = 0 in the case of MH

V 1 g ίj ^ N (vt (u), UJ)H = 0 in the case of MHF

and v(ύ) satisfies

\\υ(ύ)\\E^2\\(£\MJ(u)\\ (respectively || (β\MJ(u) ||)

replacing obviously MH by MHF in the other situation. The remainder of the proof
follows the one in [11].

To prove part 2) we consider a nested sequence Ek of finite dimensional
subspaces of EN such that (J Ek is dense in EN and thus in HN and άimEh = k.

k*l

Then, for each k^.1, we choose AeΓk such that

δ(ΰ) + bk

bk ̂  max S(u) ^ - ^ J . (75)
ueA 2

Next, we consider the space Fk = E^_ l (orthogonal complement of Ek_ t in H). It is
standard that Fkr\A φ 0: we recall the argument since we are dealing with two
different spaces EN, HN. By way of contradiction, assume that Fkr\A = Φ, then
denoting by πk_1 the orthogonal projection in HN onto Ek_1 we deduce that

And since πk_1 is continuous on EN and obviously odd we reach a contradiction
with the choice of A in Γk.

Hence, there exists vk in Fkr\A\ because of (75), $(vk) < <^(0), and obviously
υkeM,υk-+Q weakly in HN. Therefore, lim <$(vk) ^ δ(ΰ) by assumption (74) and

k

we conclude since
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7/7.2. Application to Hartree Equations

We want now to apply the above results to the simplest example of the restricted
Hartree equation (14), i.e. we take E = H*("R?\ 77=L2(R3), N = 1, and

*(φ)=l \ V φ \ 2 + V\φ\2dx + \ f f \φ\2 (x) \φ\2^) -±—dxdy.
R3 ^ R3xR3 \x~~y\

Since $ is bounded from below on MH, we just need to check (P.S.-M) or (P.S.-cfe),
that bk < (f (0) = 0 and that (74) holds. As we will see below the main difficulty
lies with (P.S.) that we are only able to check in the spherically symmetric situation,
i.e. Λj = 0 for all j. And furthermore we will only consider radial functions
φ(x) = φ ( \ x \ ) , i.e. we will work with

φ ( \ x \ ) } . (76)

With these notations, we have the

Theorem III.2.
1) IfE=H1(1R3), 77=Z2(R3), then bk^ck <0 and (14) holds.
2) Assuming that xj = Qfor all], Z^l and taking E, H as in (76), then the new

values bk, ck still satisfy bk ̂  ck < 0 and(14) holds. Furthermore, $ satisfies (P. S.-c) on
M π for all c<0.

Before proving Theorem III. 2, we give the following

Corollary III.l. If we assume Z^l and xj = Of or all], and if we take E, H as in (76),
then the values bk, ck are critical values and bk T O , ck ΐ 0. To each critical value

k k

corresponds at least one solution φk of the restricted Hartree equation (14) such that
|φkL2(R3)= 1 for aH £=1? Φk is radial, the Lagrange multiplier εk in (14) is
nonnegatίve and if Z > 1 it is positive and thus φk decays exponentially fast at infinity.
Finally, as k goes to oo, φk converges to 0 in 7/(IR3) (for 2<p^ oo), Vφk converges
to 0 in L2 (1R3) and εk converges to 0.

Remarks. 1) It is possible to treat by the same method some equations like TFW
equations but the unnecessary (in view of Sect. IV) restrictions on the nonlinearities
make such statements almost useless.

2) At least for scalar problems, we will see below that the main difficulty lies
with the (P. S.) condition and that, for instance, we would be able to treat by similar

2;
arguments the general restricted equation (14) without restricting Fto be — - — as

|Λ: |
we do above provided one could answer positively the following question: let
ρ eL\ (R3) be such that ρ = \υ \2 with vεH1 (R3) and let u e/71 (R3) be a solution
of

|tt = 0 in R3

Then, does the condition Z>. J ρ dx imply u = 01
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3) In fact, the above result also yields the existence of infinitely many solutions
for the general Hartree equations (11) provided Z ̂  (N — 1) (and if Z > TV — 1 the
multipliers εf > 0). Indeed, observe first that by a simple scaling we may replace the
constraint J | φ \ 2 dx — 1 by J | φ \ 2 dx = λ, where λ > 0 and the above result holds

R3 1R3 j

if Z ̂  λ. Then, if we choose for all 1 ̂  / ̂  TV, φk = — -- φk where φk are the
1/τv-ι

solutions corresponding to the constraint λ — N — 1 we obtain the desired solutions.
Of course, similar considerations, hold for the more general restricted Hartree
equations corresponding to the functional (42) and we will skip them.

4) One possible way to avoid some of the difficulties encountered below in
checking (P.S.-ck) and thus solving the question mentioned in Remark 2) above
would be to check and use a condition like

N

ck < ck^ , . . . , λN) for all 0 ̂  λt^ 1 with £ λt < TV,
i = l

where ck(λl9..., λN) corresponds to the same inf-max value where the constraints
defining MH replaced by

J \φ.\2 dx = λt for 1 ̂ i^N( J φίφfdx = λίδij for all 1 ̂ / j^TVfor HF problems
R3 \R3

Since we do not know how to check the above condition, we will not pursue this
matter here.

5) Now, if we want to treat the H equations for TV ̂  2 without restricting a
priori the form of the solutions or if we want to study the HF equations, there is
another difficulty in addition to the spectral problem mentioned in Remark 2)
above: even if this spectral difficulty is solved then for TV^ 2 (P.S.-c) does not hold
for all c < 0. Roughly speaking, this is due to the possible convergence of Palais-
Smale sequences to points of the form (φ^ , . . . , φp, 0, . . . , 0) for some 2 ̂ p < TV,
where (φl9..., φp) are solutions of the Hartree equations with TV replaced by p.
This may be rigorously justified as follows: let 2 ̂ p < TV, (φi , . . . , φp) a solution
for the Hartree equations with TV replaced by p and c = $(φ± , . . . , φp, 0, . . . , 0).
Then we consider ψn in ^(R3) such that j | ι//π | 2 dx = 1, ψn converges to 0

R3

in Z/(R3) for 2<p^ oo, Pi//" converges to 0 in L^(R3) for f <q^ oo, D2ψn

converges to 0 in Z/(R3) for l ί g r r g o o . And our claim is proved since

(*\Mj(9ι, ,<PP,Ψ
n, ,ψn)-^Q in (EN)*.

To avoid this loss of compactness at least when the spectral problem in Remark
2) above is solved, as it is the case in the spherically symmetric case, it is in a vague
sense sufficient to show that

ck<ck

p for all 1^<TV,

where ck corresponds to the same problem but with TV replaced by p
(and thus ck = cfy - observe that ck corresponds to the choice λl = ... =λp=l,
λp + 1 = . . . — λN = 0 in ck (λ1 , . . . , λN) above. Again, we can solve this
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difficulty in the spherically symmetric situation. Indeed, let p < TV, to each
(φ l 5 . . . , ψp) eH1 (IR3)P satisfying J \φt\

2 dx^ 1, φt is radial for all i, wemayasso-
IR3 Γ ! -I

ciate in a continuous way the k first radial eigenfunctions of — J 4- F+ ρ * - — -
P \_ I * I J

- where ρ = £ | </>; | 2 - that we denote byψ1,...,ψkψlί...,ψkare chosen such that

VO(0)>0, IJΨj\
2dx = ί.

Their existence is deduced from Lemma II. 3 and the fact that Z> N — l^p and the
continuous dependence comes from the fact that we are dealing with radial
eigenfunctions (all radial eigenvalues are simple). Then for each ξeSk~1,we have
for all λ e IR,

k \ k
1 X~~* Y \ ι 2 X~~* v 2 Γ

ι,- ,φp,λ Σ ζiΨi] + λ Σ Ci J3

and using again Lemma II.3 this yields for all R < GO,

k \

φl9...,φp, λ Σ ξiψi]££(φ1,...,φp)-λ2vR, for some v>0

p
for all (φ!,..., φp) satisfying Σ I \9t\2dx^p. And this implies in a straight-

forward way ck

p +1 < ck, bk

p +1 < bk... .
Again, to restrict the length of this paper and to avoid unpleasant technicalities,

we will not make precise this matter here. D

Proof of Theorem HI.2. We first prove that ck < 0. Exactly as in Sect. III.2 we can
prove that for all 0 < λ ̂  1,

ck^ck(λ)= Inf Max δ(h(ξ)),
heΘ$ ξeSk~l

where Θk is the collection of all continuous, odd mappings from S^"1 into

;iR 3)/J \φ\2dx = ,

Hence, it is enough to prove that for λ small enough ck (λ) < 0. To this end we recall
(see also Lemma III.l) that there exists a ^-dimensional subspace Vk of Hl (IR3)
such that

V φ e F f c , J \φ\2 dx = l, J | P φ | 2 + F | φ | 2 ώ c ^ — v
R3 IR3

for some v > 0. The collection of those φ yields a sphere that we denote by Sk~1

identifying ξ and φ. Then, we consider the mapping heΘk defined by h (ξ) = ~]/λξ.
And we compute

Max

obviously this is negative for λ > 0 small enough.
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Observe also that even if we take E, Has in (76), the above argument still yields
the negativity of ck.

Next, we show (74). Obviously enough the condition £(φk) < #(0) = 0 implies
that φk is bounded in H1 since φk eMH. And as we have shown in the preceding
sections the fact that φk — » 0 weakly in L2 implies that

J |F|^|2^ 0,
IR3 k

therefore

lim δ(φk) = lim ̂ °° (φk) ^ 0 ,
k k

and (74) is proved.
To conclude, we just have to prove that (P.S.-c) holds for all c < 0. Indeed, if

(φn)n c M H satisfies

^UH)'(Φ")^0 n ( £ ,

we deduce that φ" is bounded in E and thus

i \
—7 } φn + sn φn - > 0 in H'1,
\x\J

where ε"= — <<f'(φn), φ"> is bounded in R. Extracting enough subsequences if
necessary we may assume that εn converges to some ε 6 R, φn converges weakly in
H1 (1R3) to some φ eH, as n goes to + oo. Passing to the limit in n we obtain

+ εφ = Q in

And, in addition, recalling that $ is weakly lower semi-continuous we deduce
that δ(φ) g c < 0, hence φ ̂  0.

Next, if j I φ | 2 dx = 1 , φn — > φ in L2 (R3) and from the equations we deduce
n

.IR3

- - J V\φ\2 + 8\φ\2dx= J |
R3 1R3

hence φ" converges to φ in /f x (R3) and (P.S.-c) is proved. Therefore we argue by
contradiction and assume that 0< J \φ\2 dx<l.In addition, we may assume that

IR3

ε ̂  0, since if ε > 0, we deduce again from the equations

ϊ im{ J \rφn\2 + ε\φn\2dx + D(\φn\2, \φ»\2)\= - f V\φ\2 dx
n U3 J IR3

= ί

and we reach a contradiction since this implies the convergence of φn to φ in
H1 (R3). And we conclude with the
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Lemma III.l. Let φ e/f * (R3) be a solution of

— Δφ — -—φ + (ρ*-—- ) φ -f εφ = 0 in R3,
1*1 V \X\J

where ε ̂  0, ρ eL\ (R3), ρ w radial Then, if Z> $ ρdx, φ = Q.

Proof. We first rewrite ( ρ * -—-} as f ———- dy' and we apply

Theorem 3 of S. Agmon [1]: the conditions stated in [1] are verified as follows,
Z 1

let p (x) = pQ (x) = -—- — ρ * -—- + | ε |, then choosing α in (0, •£), we compute

:- f
r V ~ ^ ' l

^0 for r large enough.

And thus by [1 ], we deduce that if φ φ 0

contradicting the fact that φ eL2 (IR3). D

///.:?. 77ze Fixed Point Approach

We discuss in this section another approach to the existence of solutions of H, HF
and related equations. This approach is, in some sense, the mathematical analogue
of one numerical method often used by physicists to solve these equations. It was
first studied mathematically by Wolkowisky [65] who proved the existence of
solutions for (essentially) Hartree equations in the spherically symmetric case.
However, our treatment of the existence of fixed points is somewhat different and
probably simpler.

In order to illustrate the method, we start with HF equations and explain on this
example the idea of the method. Then, we give and prove our main result. Finally,
we conclude with a brief, non-exhaustive list of results which can be obtained for
various equations by these arguments. We will define a mapping whose fixed points
will yield solutions of HF equations (13). In fact, since we will have some spectral
information on each φl9 the mapping will depend on some set of integers: more
precisely, let n1 < ... <nN be TV distinct integers. We may now define a mapping T
— T(nί , . . . , nN) on a convex, closed subset of L2 (IR3 x IR3) x L1 (IR3): we first

consider the set K= ρ eL2(IR3 x R3), τeL^R^/ρ^O a.e., τ ^ O a.e., J τdx
[ R3

^7V, Q(x,y) = ρ(y,x) a.e. and Vφe^(R3), 0^ j j Q(x,y)φ(x)φ(y)dxdy
R3χIR3

. Then, we consider the operator

-J + F + τ * — - j Q(x,y) - Γ dy.
\χ\ 4? \χ-y\
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Observing that the self-adjoint operator given by

ψ -> j Q(x,y} ψ (y) dy

M

is nonnegative, (indeed this is obvious if ρ (x, y) = £ ψt (x) ψt (y) for some M < oo,

ψi eL2 V z and the general case follows), we deduce from Lemma II.3 that if Z > N
the above operator has infinitely many nagetive eigenvalues (λk)k ^ 1 (counted with
their multiplicity). We then select the eigenvalues Λ^, . . . , / l % and consider the
associated normalized eigenfunctions ψl9...,ψN. We then set

N N

Γ(ρ, τ) = (ρ, τ) where ρ (x ,y) = £ ψi (x) ψί (y), τ (x) = ρ(x,x} = £ \Ψi(x)\2

i=l ί=l

(77)

Of course, only the last step is heuristic since in general eigenvalues may not be
simple, in which case T is not properly defined. This is where we will be using the
spherical symmetry (and it is the only place!): in general we do not know how to
define T in a meaningful way or to avoid the possible multiplicities.

Hence, from now on, we will be dealing in this section only with the particular

case when V(x)= and when all functions are radial (a better way of

implementing spherical symmetry is described in the remarks below). More
precisely, we denote by ^the closed convex set of L2 (IR3 x IR3) x L1 (IR3) defined
by

, τ) eL2(R3 x IR3) x L1 (IR3)/ρ ̂  0 a.e., τ ^ O a.e., ρ (x, y) = ρ (j, x) a.e.,

x,3ly) = q(x,y\ τ(®x) = τ(x) a.e. for all rotations & of R3,
R3

0^ JJ Q(x,y)φ(x)φ(y)dxdy^N J \φ\2dx for all φe^(R3

R3 X R3 R3

and we now pick the simple eigenvalues λn <... <λn of the operator —Δ + V
/ 1 \ i I N

+ ( τ * —r) - ί Q(χ>y) i r dy actinβ on the sPace Lr (E^3) = {/e L2 (ίR3)/

tx)=f(x) a.e. for all rotations 3t of R3}. Let v/«1? ? ψΛjt ^Q tne associated
(radial) normalized eigenfunctions which exist by Lemma II.3 at least ifZ>N: the
ψj are well-defined (up to a change of sign), are orthogonal and thus Γ(ρ, τ) = (ρ, τ)
is still defined by (77). In view of Lemma II.3, the continuity of Γis an easy exercise
in functional analysis. If we show that T is compact on K, then by the Schauder
theorem we obtain the following result.

Z
Theorem III.3. Assume Xj = 0/br allj, i.e. V ~ and Z^ N. Then for each set

\x\
of integers 1 ̂  n^ < n2 < ... < nN, there exists a solution (φ^,..., φN) in H1 (IR3)
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0/HF equations (14) such that J φiφjdx = δίjfor all 1 ̂ z j^ΞTV, φl9...,φN are
w

radial and for each ί the Lagrange multiplier εt in (14) is nonnegative and is the
opposite of the radial eigenvalue λn of the operator

N

with ρ (x) = ρ (x9 x), ρ (x, y) = Σ <Pt (x) 9ι 0;) Furthermore, ίfZ > TV, the eigenvalue
ί = l

( — ε f) is negative and φt decays exponentially fast at infinity for all 1 ̂  z ̂  TV.

Remarks. 1) We prove in fact below that if Z > TV, Γis compact and thus we obtain
the above result in the case Z > TV. The case Z — TV is obtained by a limiting
argument below.

2) There is a better notion of spherical symmetry than the one above (which
corresponds to the real meaning of spherical symmetry in Physics). This
notion may be easily explained on solutions of HF equations (14): assume that
((/>! , . . . , φN) is a solution of (14) such that ρ (βx, 3ίy) = ρ (x, y) for all rotations ̂
of 1R3 (in particular ρ is radial), then (take Z > TV to simplify) the eigenvalues of

^= -A + V+ρ*-*--^ where 7?φ = J ρ(χ9y)—ϊ—φ(y)dy (Vφe^(IR3))
1*1 IRS i χ ~~ y I

may be classified as follows: let μk(k^l) be the eigenvalues of the Laplace-
Beltrami operator on S2, i.e. μk = k (k — 1) with multiplicity 2k— 1, then for each

^l consider the eigenvalues λntk(n^.l) of 3tf + — -̂  corresponding to radial
\x]

eigenfunctions. Then, as it is standard, the collection { A n f c / / t ^ l , k^.1} is the
sequence of eigenvalues of Jtf. Hence, the Lagrange multipliers εί , . . . , εN are in
that set and the consistency of spherical symmetry requires that if one of the st

corresponds to some k^.1 then there are (2k — 2) indices distinct from i in
(1, . . . , TV} such that the corresponding ε; are equal to εt and the associated ψi9 ψj

span precisely the eigenspace. In other words, instead of requiring in the definition
of T all the φt to be radial and choosing the eigenvalues λnιΛ9...9 1% 1? we may
choose λni}kι9 . . . , λn Λ withp ^ 1, nt ̂  1, kt ̂  1 for 1 ̂  / ̂ p and n{ φ τ?7 if kt = k for

p

all 1 ̂ ίφj^p, and where p9 ni9 k{ are such that ^ (2ki—l) = N. Then, we
i = l

define Γas above, selecting the eigenfunctions as follows: for each kt equal to 1 we
take the normalized radial eigenfunctions and for each kt ̂  2 we take the (2kt — 1)
normalized and orthogonal eigenfunctions spanning the eigenspace corresponding
to Λ,n.)A... Then, we form ρ(x,y) with these TV normalized and orthogonal
eigenfunctions.

One checks easily that the above theorem still holds for such choices.
3) Let us recall that in the above result, φί has precisely ( f t/— 1) simple

nodes. D

Proof of Theorem III.3. We first show that, if Z > TV, T is compact, and then we
consider the case Z = TV. To prove the compactness of T9 it is sufficient to show that
Γ(ρm,τm) is relatively compact in L2 (IR3 x IR3) x L1 (IR3) if (ρm,τm)e^ is
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bounded in L2 (R3 x R3) x L1 (IR3). Since Z>N, Lemma II. 3 implies that
eigenvalues /I™, . . . , λ%N and the corresponding eigenfunctions ψ™9...,ψ™ satisfy

(y/7)m is bounded in H1 (R3) Vj, λ™ < . . . < λ™N ̂  - ε0 < 0 V m ̂  1

for some ε0 > 0 independent of m. This implies obviously that T(ρm , τm) is relatively
compact in LjL(IR3 x JR3) x Aoc(IR3) Hence, we just have to check that

J I ψ ™ 1 2 ώx -> 0 as R-> co, uniformly in m for all/
I j c l ^ Λ

If the exchange term (the operator K) were not present this would be almost
obvious since ψj1 would be a normalized eigenfunction of — A + q — λ%, where q is
radial and q(r) -» 0 as r -» oo, and this would yield a uniform exponential decay of
ψV using the fact that λ* ̂  -ε0 < 0.

Here, we may argue as follows: let χ e Q° (IR*), χ = 0 if \x\ <. %, χ = 1 if \x\ ̂  1,
0 ̂  χ ̂  1 (we may choose χ radial if we wish). Then multiplying the equation
satisfied by ι//J* by the quantity ψ^ χ|, where χR = χ ( /R) and integrating over R3,
we deduce

ί \rψT\2ή + ε0\Ψ?

Qm(x,y) .χ—y\
hence

2Z\
£n —

ίί
,]R3χ]R3

1/2

C
^^2 + ̂  Π Iv/κ 3 x 3

/2

where C denotes various constants independent of m, and we conclude.
Having thus proved the existence of solutions for Z > TV, we now treat the

case when Z = N. In that case, we approximate Z by Z + ε, find by the above
proof a solution (φ\, . . . , φε

N) of HF equations (14) satisfying all the conditions
stated in the theorem. We denote, with obvious notations, by Jf ε the operator

'dy and by λnι<...<λnιt the eigen--A-— -+ρε*r—- $Qe(x,y)τ—
| Λ | |Λ: | |Λ y\

values of ffl ε (of order n1 , . . . , %). The functions (φ\ , . . . , φε

N) are clearly bounded
in H 1 (IR3) (bounded in L2 by definitions and the gradient bound is deduced from
the equation) and, extracting if necessary subsequences, we may assume that

N

φl — > (pt weakly in H1 (IR3). If J ρ dx = ]Γ j | φ{ |
 2 dx < N then the limit operator

' 1R3
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3tf admits infinitely many negative eigenvalues (use again Lemma II. 3): in parti-
cular, λnι < . . . < λnjt < 0 and λε — > λnι. But this means that there exists ε0 > 0 such
that for ε small enough

λ£ < ... <λε < -ε0<0.»! nN — υ

Then, the proof above applies and we deduce the strong convergence of φε to φi in
L2 (R) reaching a contradiction. Therefore, j ρ dx = N and φ\ — » φ{ in L2 (R3)

IR3 £

for 1 <; z <^ TV. The strong convergence in Hl (R3) is deduced from the equations as
usual and the rest of Theorem III. 3 follows. D

We now conclude this section with two applications of the above method: the
first one is a slightly more general form of the restricted Hartree equations
[Euler-Lagrange equations associated with (42)-(43)] and the second one is the
equation associated with (47)-(48) containing in particular the TFW and the
TFDW equations. Hence, the first set of equations we will consider is

= n

j=ι

for all l^i^N (78)

with the constraints j | φt \ 2 dx = λt , where λi > 0, atj ^ 0 and atj = aβ for all ij, and
R3

for all z, Vi (f) satisfies

Vε>0, + eL^R^ + L^lR3). (79)

For instance, Vί(f)= h-y satisfies (79) if at> —\.

Then, if n± < n2 < ... < % are N fixed distinct integers, we define a mapping
T(ρl,..., ρN) defined on the convex set

A:=J(ρ l J . . . s ρ Λ r )6L 1 (R 3 ) J V /0^ρ ί , piisradial, \ Qidx^λi for all
[ R3

by (ρ!,..., ρN), where ρf = \φi

 2 and φ^ is the radial normalized eigenfunction of the
N ( 1 \operator A f = — A + Ff + ^ aV] ( ρj * -— corresponding to the nί eigenvalue. This

7=1 V \X J

is possible by Lemma II.3 and (79) if Z>Σaijλj for all z and again by a limiting
procedure we prove as above the j

Theorem III.4. We assume (79) and for each ί either Σaijλj<Z, or Σaijλj = Z,
j j

and there exists j such that Σajkλk = Z, αί7 >0. Then, for each set of integers
k

1 ̂  nί < n2 <...<%, there exists a solution (φ1,..., φN} in H1 (R3)N 0/(78) such
that j \φt\

2 dx = λt for all z, φί9...,φN are radial and for all i the Lagrange
IR3
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multiplier &{ in (78) is nonnegatίve and is the opposite of the radial eigenvalue λn of the
operator

Furthermore, if Z> X^^, fy > 0 and φί decays exponentially at infinity.
j

Remark. This result contains Wolkowisky's result [65] which corresponds to the

case v.(r) = -- + ?L for some a{ > 0, aij=\-δij, λt = l9 Z>(7V-1).

We conclude with the equation

-Aφ-~φ + (\φ\2*~\φ + 1-f(φ) + sφ = () in IR3 (80)
\x\ \ \ χ \ / *•

with the constraint \ \ φ \ 2 dx = λ, where λ > 0 and /is an odd C1 function on R
R3

such that /(O) =/' (0) - 0 and

as f - > o o , /+(0 = 0(ί5/3) as ί^0 + (81)

(the analogue of (58)-(49)). Notice that (80) is the Euler-Lagrange equation
associated with the minimization problem (47)-(48). For

ρeA:= jzeL^IR^/z^O, z is radial J zdx^λ

we define a mapping Γby Tz = \ φ \2, where φ is the radial normalized eigenfunction
corresponding to the eigenvalue λk (for some fixed integer k ̂  1) of

We claim that Lemma II. 3 implies that such an eigenfunction exists if Z> λ.
Indeed, denoting by q — i/fe1 / 2)ρ~1 / 2, we deduce from (81) first of all that

hence the operator is bounded from below on the sphere of L2, and next that

and Lemma II. 3 applies. And we obtain the

Theorem III.5. Assume (81) and Z^λ. Let k^l, then there exists a radial solution
in H1 (IR3) of (80) such that j \φ\2dx = λ and the Lagrange multiplier & is

R3

nonnegative and is the opposite of the radial eigenvalue λk of the operator

Z 1 1
-A--+\φ\2*-- + -

Furthermore, if Z> λ, ε > 0 and φ decays exponentially at infinity.
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Proof. Again, the case Z = λ is obtained by a limiting procedure. If Z < λ, we just
have to check that T is compact on K and this is done exactly as in the proof of
Theorem III.3. G

IV. General Existence Results

The organization of this section is the following: we first state our main existence
results for H and HF equations and we briefly explain the strategy of proof in
Sect. IV. 1. The actual proof is given in Sect. IV.2, and we explain in Sect. IV. 3 how
this method also yields various existence results for related equations.

IV. 1. Main Results and Presentation of the Method

Of course, when dealing with H equations (respectively HF equations), the
functional ^ will be the one given by (7) [respectively (9)]. With this convention our
main result is the

Theorem I V.I.
1) H equations: Assume Z>(N— 1). There exists a sequence ((φ\ , . . . , φk

N))k^1 of
distinct solutions ofHartree equations (11) in H1 (IR3)^ which satisfy: j | φk \ 2 dx = 1 ,

IR3

V 1 ̂  i rg N, V k ̂  1 . In addition, the Lagrange multipliers ( — &\ ) are positive and φ\

decays exponentially at Infinity for all i, k. Finally, as k goes to oo, ε^ - >• 0,

Pφf-^0 in L2(R3), Φ?-y-»0 in Z/(R3) for 2<p^oo.

2) HF equations: Assume Z^N. There exists a sequence ((φ\, . . . , φ^k^i °f
distinct solutions of Hartree-Fock equations (13) in H 1 (IR3)N which satisfy.
J φ\ φj * dx = δtj for all 1 rgz j ' rgTV, k^l. In addition, the Lagrange multipliers

R3

( — εf) are nonnegative and if Z> N, they are positive and the functions φ\ decay
exponentially at infinity for all i,k. Finally, as k goes to oo,

εf-^0, Fφf-^0 in L2(IR3), <P?-γ-»0 in Z/(IR3) for 2<p^oo. D

We next sketch the proof of the above theorem. To this end, we need a few
notations. We will approximate the H or HF equations by similar equations the
only difference being that we replace IR3 by a ball BR and we will let R -» oo . We will
always consider HQ (BR) as a closed subspace of H1 (IR3) extending functions in
HQ (BR) by 0 outside BR . In the first step, we consider the values ck

R which are
defined by (71), where we choose H= L2 (BR)9 E = H^ (BR), and <ί is the functional
corresponding to H or HF equations. We check that for each k^ 1, ck

Rίck as
R ΐ + oo , where ck corresponds to the same value where H—L2 (IR3), E = H1 (IR3)
and we recall that ck < 0, ck ΐ 0 as k ΐ oo .

In the second step, we deduce from the results of A. Bahri [4] that if k is chosen
such that ck < ck + 1 , then for R large enough there exists a critical point (φf , . . . ,
of S\MH or S\MHΪ in H^ (BRf such thatHΪ

, ^ Mk for some constant Mk ind. of R, (82)
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and the number of negative eigenvalues of the quadratic form defined by

δ"(φR)-(βl(φR\φ*\ with φR = (φ*, . . . ,

is bounded from above by k.
Finally, in the third step we show that φR converges in H1 (IR3)^ to some

solution φ of H or HF equations (this is where we use the assumption on Z ) which
satisfies ck ̂  <?(φ) < 0, where k is still chosen as above. This enables us to conclude
the proof of Theorem IV. 1.

We would like to mention that the convergence argument in step 3 is the same as
the ones introduced in Sect. II, and that step 1 is very easy. Let us also remark that
we could also have used the critical points results due to Viterbo [64] or Coffman
[21], modifying a bit the above scheme of proof but keeping the same basic
ingredient namely a bound on the Morse index of some convenient critical point.

To conclude this section, we wish to point out how the above arguments fail if
N— 1 < Z< TV for HF equations. Indeed, in this case, we only build a sequence
((ΦΪ , . . . , <pjv))fc£ i of solutions of HF equations (13) in H1 (IR3) such that
J φ*φ1jdx = Q if i ή=j and for each k ̂  1

R3

either J (φf)2 dx = 1 for all /,
IR3

N

or Z ̂  £ J (φf)2 dx < N and for each i
i = l R3

\(φ\)2dx<\ implies ε? = 0.
IR3

In the case of minima this alternative was sufficient to conclude (by excluding the
second possibility) but for more general critical points we were not able to get
around this difficulty. From the Physics viewpoint however, there is no difference
between the assumptions Z> N— 1 or Z ̂  TV since Z is integer-valued !

IV. 2. Proofs

Step 1. By the very definition of cf we see that cζ i as R ΐ oo and that cf ^ ck for all
R < oo . In addition, we already know from Theorem III. 2 that ck < 0 and that ck ΐ 0
as k ΐ CO.

To conclude, we just have to show that ck = lim cf . To this end let ε > 0 and let
tft 00

heΘk [i.e. an odd continuous map from Sk~ 1 into MR or MHF, with the choice of
spaces E= H1 (IR3), H= L2 (IR3)] be such that

Then, we observe that h (Sk~ *) is a compact set in H1 (IR3) and we wish to deduce
from this fact an approximated map hR still odd and continuous from Sk~ 1 into the
manifolds MH or MHF corresponding now to the choices of spaces E = HQ (£#),
H= L2(BR) and such that

Max | |/KO-MOII//>(iR3)^0 as £-^co. (83)
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If this is the case, we conclude since we deduce

cf ^ Max δ (hR (0) ̂  Max δ(h (£)) + δR^ck + ε + δR,
ξeS"'1 ξeSk~l

where δR —> 0 as R -> oo .
Next, to prove (83) we first truncate the functions given by h(Sk~l), i.e.

we consider χe^(R3), O r g χ ^ l , χ = l on B1/2, χ = 0 if | x | ^ l ? and we set

χR (x) — χ I — 1 then we denote by

where hi denote obviously the components of the map A. Using the compactness of
h(ξ) it is straightforward to deduce

llff' (ιι )-Ό as Λ - > o o .

In the case of H problems, we conclude by setting for R large enough (so that
M i n \ K ξ 2 > 0

In the case of HF problems, we build the map hR for ̂  large enough by a standard
orthonormalization procedure

and for 2 < z < 7 V \

7 = 1 \\L2(BR)

and we conclude observing that hR is still odd and continuous.

Step 2. We choose k^l such that ck < ck + 1 . In view of the results proved in step 1 ,
we still have c^<ck+1^c^+ί for R large enough say R ̂  ̂ 0 ̂  1. Then, choosing
R = R0, there exists h0 eΘξ* (odd continuous map from Sk~l into the manifold

*» or M °̂F corresponding to HQ (BR(), L2 (BRo) such that

We then chose eeH^(BR)N such that

and we consider the set

A = ( t ί / 2 h ( ξ ) + (1 - ί)1/2 e/ί e [0, 1], ξ eS*'1} c MHF
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(with a similar construction if we are in the case of H problems). Then, we denote by

We now deduce from the results and methods of Bahri [4] that there exists for
each R^R0 [notice that Θ£nΘ£°9 since H£(BR) ^H^(BR)] a critical point
(φR , . . . , φ%) of <$R (the restriction of & to Mζ or Λ/£F) and thus in H^ (BR)N such
that

and the number of negative eigenvalues (counted with their multiplicities) of the
quadratic form S"'(φR) — ($" (φκ), φRy is bounded from above by k. In other
words, taking for example the case of HF problems with real-valued functions to
simplify notations, (φf , . . . , φR) eH^ (BR)N and satisfy

-AφR +Vφ? + (ρ** — -}φR-$ρR(x,y)- - - φR(y)dy + εR φR = 0 in BR\ \χ\/ \χ-y\ ^

S<pRφfdx = δij for ί^ίJ^N (85)

i=ι
N 1

- Σ $$QR(χ,y)} - -<ί=ι i % ~ y I

- 9R (x) Ψi (y) ̂ y{ φf (x) Ψj 0>) dxdy^O (86)

for all (ψι,.. ,ψN) in a closed subspace of HQ(BR)N of codimension at
N N

most k + TV, where ρR (x) = Σ I φf (x) 12, £^ (X J;) — Σ φf (x) φf 0;) and

<3<f Λ R Λ
δφi φi9'"9(pN ' Φί /•

Ste/7 5. We first show that φ* converges in H1 (IR3)^ to some solution of H or HF
equations. Combining (82) and (85) we see that φκ is bounded in H1 (IR3)^ and thus
εf are bounded. Then, in view of arguments we did several times in the preceding
sections it is enough to show that lim εf > 0 (at least if Z > TV in HF problems, the

R -»• oo

case Z = TV being treated by the same modifications as the ones we did several times
before). And this is achieved exactly as in the preceding sections by the combined
use of Lemma II.2, Lemma II.3 and (86).

Hence, we obtain a solution φ (depending on the integer k we chose at the
beginning of Sect. II) of H or HF equations which satisfies in addition

: = l; ε. > 0 for all 1 ̂  / g TV, in the H case (87)
R3

J φi φf dx = δij9 εt ̂  0 for all 1 ̂  ij ^N, εf > 0 (88)

for all 1 g i^ TV if Z> TV, in the HF case.
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We next observe that ck^$(φ^... , φN) and

0^-lU = Σ ί \^9i\2 + V\9i\2dx
ί = l ί = 1 R3

in the H case,

while in the HF case

since ρ(x)ρ(y)-ρ (x, y)2 ^ 0, φ 0 on IR3 x R3.
To obtain the existence of a sequence of distinct solutions we just observe that

once we have built m distinct solutions satisfying

for 1 rg / :g m, where kl < . . . < km are m integers, then we choose an integer k > km

such that

This is possible since ck ΐ 0 as k ΐ oo and $ (φ™, . . . , φ^) < 0. Then, we obtain by the
arguments above a solution (φ^ + 1, . . . , φ^ + 1) satisfying

and we build the desired sequence setting k = km+l. Observe also that the sequence
of solutions we built satisfies (87), (88) for all k ̂  1 and

< f ( φ ; ί , . . . , O ΐ O as y f c ΐ oo.

And by the argument used above to show the negativity of < ^ ( φ l 5 . . . , φN) we
deduce

M^ l2)πr ° in the H case' (89)

ίφy

ίί {Qk (x) Qk (y) - Qk (x, y)2} , 1 , dx dy — > 0 in the HF case . (90)
R3χR3 \χ-y\ k

On the other hand (87) and f(φk

l9...,φ^)<0 imply that φ\ is bounded in H1 (IR3).
And this combined with (89)-(90) yields easily that

φ\ - 0 weakly in H1 (R3) for all l^i^N.
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Observe also that ε£ —> 0 for all l^i^N. And then from the H or HF equations

one deduces easily that Vφ\—»0 in L2 (IR3), and we may conclude.

IV3. Related Equations

Using exactly the same method, we obtain the results presented below; hence, we
will only state them.

We begin with a general form of the restricted Hartree equations,

J\
2*^-}φi + εiφi = Q in R3,

j = ι \x\/

for all l^ί^N, (91)

with the constraints J \φί\
2dx = λi for all 1 ̂  / ̂  TV, where atj = aβ ̂  0, λi > 0 and

R3

Vt satisfies (79). Our main existence result is the

N N

Theorem IV.2. Assume that for all 1 g ΐ^ N, Z> Σ aίj^j or Z= Σ aίjλj, and
N 7 = 1 7 = 1

ί/zerβ exists k such that Z= Σ ajk^j an^ aik > O Assume also that the potentials
7 = 1

Ff satisfy (79) /or «// 1 ̂ i^N. Then, there exists a sequence ((φ\,..., ^N))Λ^I
0/ distinct solutions of (91) /« J^1 (R3) nΆ/cΛ ^//^ J | ̂  |2 rfx = A f /or α//

1 ^ / ^ T V , fc^l. In addition, the multiplier εf is nonnegative and if for some i
N

Z> Σ aijλj-> then εf > 0 for all k^l; in that case φ\ decays exponentially at

infinity for all k^.1. Finally, εf—> 0, φ\—>0 in Z/(R3) for 2<p^co,

Vφ\ —^ 0 in L2 (R3) for all 1 g i g TV. D

And we conclude with an extended form of TFW type equations: by this
example, we wish to show how one can extend our results and methods for
problems in RN with more general potentials V, or interactions different from

— We consider the equation

εφ = 0 in RN, (92)

with the constraint J \φ\2dx = λ, where λ > 0, TV ̂  3 and V, ̂ satisfy (for instance)
R3

TV
F~ eLN / 2(RN) + Z/(RN) for some — <;?<oo

V ε > 0 , F + - eL^R^ + L^'OR*) for some 0 < α < N, (93)

where Z > 0,

eL1 (R^ + L^^R^) for some α ̂  ̂  < TV.
(94)
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Finally,/is an odd continuous C1 function on R such that/(0) =/' (0) = 0 and

\f(f)I = o(t4/N) as ί->oo, f'(t)+=o(t2"IN) as ί->0, (95)

/(*) t ̂  J/C?) cίs for all ί e IR. (96)
o

We may then prove the

Theorem IV.3. Assume (93)-(96) and Z ^ λ if β = α. 7%e«? ί/zere ^Λ W^ α sequence
(φ ̂ )k^v of distinct solutions of (92} in Hl (1R^) such that J |φ f c

 2 dx = λ, the Lagrange
R3

multiplier — εk is non-positive and negative if β> a or if β = a and Z> λ. Finally,
e/c-^0, φ/c-^0 inLp(1R3)for2<p^<X), Fφk-^->0 wL 2(lR 3). ϋ

Remark. The assumptions (93)-(94) may be considerably relaxed or modified: we
chose this formulation to emphasize the role of the behaviours at infinity of V, W.
If (95) is natural enough in view of various standard arguments (see also Sect. II.4),
we are convinced that (96) may be extended at least to cover the case when

on IR. . . .

Appendix: The Concentration-Compactness Method Revisited

Our goal here is to make a few remarks on the concentration-compactness method
[43, 44]s We begin with a few abstract comments and we thus follow the heuristic
setting given in [43]: we consider a functional minimization problem of the form

, J(ti) = λ}, λ>0,

where His some functional space, $, /are functionals with a few formal properties
described in [43]. If one can define functionals at infinity <ί °°, /°°, one introduces the
problem at infinity

7f - Inf K °° (u)/ueH, /°° (u) = λ} .

Then, the concentration-compactness principle states that a necessary and
sufficient condition for the compactness of all minimizing sequences is

h<I* + I?-*> Vαef lU). (S.I)

And, if the problem is translation invariant and thus $ = $ °°, J=JCO, Iλ = /λ°°, a
necessary and sufficient condition for the compactness of all minimizing sequences
is

/Λ </. + /;.-«, Vαe((U). (S.2)

In other words (at least for locally compact problems, see [43] for more details) the
only possible loss of compactness is when a minimizing sequence (un) breaks into
several parts u\ , un

2 , . . . , u
n

κ for some K ̂  1 (Kis in general finite but may be in some
problems infinite) which are essentially supported in sets whose distance goes to
infinity and un

l9 respectively w" = w" ( + j>") for some |j;"| — > oo 0^2), is a

minimizing sequence of 7αι, respectively, I™, for some o^ ^ 0, α,- > 0 for j ^ 2 such
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K K
that Σ y,j = λ, Iλ = I^ + Σ /α^°. In addition, either M" is "compact" or ίίj "vanishes''

7=1 7=2

(see [43]) for all y'^2, and in many cases vanishing is easily excluded.
Of course, all this is a bit formal and needs to be justified on each problem.

We want to explain in this appendix why additional information on u\ , . . . , un

κ

are often available. In particular, we will show why (65) holds and precise results
will be given on two examples. Roughly speaking, we claim that in order to analyze
(S.1)-(S.2) and the behaviour of arbitrary minimizing sequences, we may only
consider minimizing sequences (un) which are "almost minima" of Iλ (this will be
analyzed in particular in terms of 2nd order positivity conditions) and satisfy

<gf(un}-θnJ'(un)-^Q in H* (A.I)

for some Lagrange multiplier θn . Furthermore, in many cases one can prove that u"
breaks (up to subsequences) in a finite number K of pieces which are all compact up
to different translations. Of course the case of compact minimizing sequences
corresponds to K=\ (one compact piece). Again roughly speaking, there

K K

exist oq^O, α 2 , . . . , α ^ > 0 such that /« + Σ /α00 = 4 > α 1 + Σ α ι / = λ

/ 1 j = 2 ' j = 2

(and thus / β ι+Σ/» = /βι + /, + Σαj., Σ47 = //rΣ^foranysubset/of{2, . . . ,^}
\ jeJ jeJ jεJ jeJ

with β = Σ α/ ) and there exist u^ minimum of 7αι (ul = 0 if al = 0), ύj minima of

7α for 2^j^K and sequences 0?)πeRw for 2^j^k, such that |j"|-^oo,
\yn.-yn

k\ — > oo for 2^j^K, or 2^j<k^Kand

un-Σ «,-(• - )φ - ^i -r ° in H- ^A 2)
7 = 2

In addition, if θn (or a subsequence) converges to θ, then uί , ΰj for 2^j^K satisfy

/(«j) for ^2 (A.3)

In other words, this means that m orίfer ίo c/zecfc (S.I) or (S. 2) (at least in good cases
when vanishing is easily excluded) one has to show strict subadditivity conditions
for a finite decomposition for which minima exist and satisfy (A. 3), i.e. the
associated Euler-Lagrange equations but with the same Lagrange multiplier.

We begin with a few simple abstract remarks on the sufficiency of minimizing
sequences satisfying (A.I). Indeed, by Ekeland's result [22], we know that for every
minimizing sequence («")„, there exists (un\ such that

J(un) = λ, un-un-*Q mH, &(υ) + εn\\v-un\\H

(A.4)

for some εn > 0, εn — > 0. Obviously, it is enough to analyze the behaviour oΐ(un)n.

Now, if $, J are differentiable at un this implies

\\f'(u»)-θnJ'(un)\\H.£εa9 (A.5)
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while if S , / are uniformly twice differentiable on bounded sets (or on minimizing
sequences) we also deduce for some yn > 0, yn — » 0,

<?"(u")(ψ,ψ)-ΘnJ"(un)(ψ,ψ) + yn\\ψ\\2^0 (A.6)

for all ψ εH such that </' (M"), y/> = 0 [in fact one needs considerably less regularity
on $ and / in order to derive (A.6) . . . ].

Next, in order to make rigorous the above considerations, we will consider two
examples. The first one is the one considered in Corollary II. 2 [see (65)]

Examplel. We choose J(ύ)= \\u\2 dx, δ(u)= J \Vu\2 + V\u\2 + F(u)dx
IR3 R3

u\2, \u 2), where F satisfies the conditions used in part ii) of Corollary II. 2.
Assuming Z ̂  λ, we show the above decomposition of a minimizing sequence, i.e.
we show (65), completing thus the proof of Corollary II.2 D

Example 2. We choose J(u)= \\u2dx, δ(u)= J Vu\2 + -\u\2pdx
IR3 IR3 P

^ — o ίί I M I 2 ( X ) I M I 2 0 0 V(x — y)dxdy, where β>0, p>2, and F is a given
2lR3 x I R3

potential that we assume to be nonnegative, spherically symmetric, nonincreasing
with respect to \x\ and V e L1 (ΊR*) + Lβ (ΊR3) for some β<oo, VφO. In this
example, we assume that λ > 0 is such that Iλ < 0. Of course, we choose the space
here to be H1 (IR3) if p ^ 3 and H1 (IR3) n L2p(ΊR3) if p ^ 3.

Before stating the result we want to prove, let us briefly discuss the assumption
on Iλ. By a simple scaling argument one sees that Iλ g 0 always holds for all λ > 0.
And we claim there exists λ0 e [0, oo) such that Iλ < 0 if λ > λ0 (λ0 only depends on
F): indeed there exist #< oo, φ e^(R3) such that

\BR / W

then we compute for σ > 0,

ft (~\\<σ IP \2dx σ3-
\φ\σ =σλ Ψ pλ

-σ6 jj |
IR3χ]R3

where VR(x)= V(x)llx^R. Remarking that

JJ \φ(x)\2\φ(y)\2σ3VR(σ(x-y»dxdy
-° J

we conclude that if φ — I < 0 for σ large enough, proving thus our claim.
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In the case of Example 2, we want to show how minimizing sequences satisfying
(A.I) can be decomposed as in (A. 2), (A. 3) with the conditions on uί , ύj given before
(A.2), (A.3). Notice of course that in the Example 2 we have <?= <y°°, J=JC0.
Finally, let us mention that we are only interested in the compactness up to
translations of minimizing sequences since the problem is translation invariant (i.e.
either K= 1, or K=2 and uί =0). The implications of such decompositions in
Example 2 will be discussed elsewhere.

On these two examples we consider minimizing sequences un which satisfy (A.I)
[or (A. 5) and (A.6)]. Of course, un is bounded in H and in the two examples the
Lagrange multiplier θn = (£" (un), uny remains bounded. Therefore we may assume
without loss of generality that θn — > θ.

Step 1. We show that θn remains negative and bounded away from 0, i.e.

3v>0, θ ng -v<0. (A.7)

In the case of Example 1, this is proved in Sect. II. 4 using (A.6). In the case of
Example 2, we argue as follows. Introducing as in [43, 44] the concentration
function of \un\2, i.e.

βπ(ί) = Sup J \un\2dx, for / ^ O ,
ye^3

y + Bt

we see that up to subsequences, and we will in fact neglect all the extractions of
subsequences in the arguments below, either Qn (ί) — > 0 for all t < oo or there exists

n

α > 0 such that gn(ί 0)^α>0 for w ^ l and for some ί0>0. In the first case
(vanishing with the terminology of [43, 44]) then we know by [43] that un converges
strongly to 0 in L* (IR3) for 2 < q < max(6,2/>). This implies easily

JJ \ιf\2(x)\ιT\2(y)V(x-y)dxdy-^^
R3χIR3

hence Iλ ^ 0. We reach a contradiction since we assumed Iλ < 0. Therefore, there
exist α > 0, yn e IR3 such that

J \u"\2dx^oί>ΰ.
y»+B<0

We then consider the sequence ύn — un ( + yn) which is still a minimizing sequence
satisfying (A.I) with the same Lagrange multiplier θn. Using for instance the
concentration-compactness arguments, we see that ύn converges weakly in H to
some ύ which is a minimum of /-, where α = J | u \ 2 dx e (0, λ] (using some specific

IR3

properties of $ here we may also observe that

<?(#") - (β (ύn - u) 4- δ(ΰ)) — 0 ,

and since Iλ^I& + Iλ_~ we obtain the above claim easily). It is also a standard
exercise to pass to the limit in (A.I), and we obtain

a\u\2p~2ύ-(V* \u 2)u-θύ = 0 in R3. (A.8)
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Furthermore, since ύ is a minimum of 75, using a standard symmetrization
argument one deduces that ± ύ (say w) is radial, nonnegative and nonincreasing. We
want to prove that Θ < 0, and we argue by contradiction. Assume that θ ̂  0. We
claim that there exists y > 0 such that for large |Λ: |

V* \ύ 2^y \u\2 .

Indeed since Vφ 0 and V is radial, we can find δ > 0, R < oo such that

J

R2

Then, for | x \ ̂  —, we observe that V* | ύ \ 2 ( x ) — V* | ύ \ 2 ( x ) with x=\x\ely

V*\ύ\2^( j F(*-j)V)|£(x)|2

\\y I = l ^l /

= ( I V(z)dz}\ΰ(x)\2

<τ
Therefore, for | Λ: | large we find

\ύ-aύp~'^Q, w ^ O on R ,

since p > 2 and w -> 0 as |x| ̂  oo. This yields

u(x) ^ - — - for I x I large and for some μ > 0 ,
\x\

contradicting the fact that ύ e L2 (IR3). Hence, θ < 0 and (A. 7) is proved for n large
(that we take below equal to 1). D

Step 2. We now want to prove two related properties. The first one is the following:
let u EH satisfy j | Vu \ 2 dx :g C0 for some fixed constant C0 and

R3

-Au-θu-θu + B(u) = Q in R3, (A.9)

where θ<0, B(u) = \ \u\2 * - — }u+f(u) in Example 1, B(u) = a \u\2p'2 u
V \*\J

— (\u\2 * V) u in Example 2. Then, there exists ε0 > 0 depending only on \θ\, C0

such that
J \u\2dx^ε0=>u = Q. (A.10)

IR3

To prove this claim we may argue by contradiction considering a sequence (un)n

satisfying the above conditions and such that J \un

 2 dx — »0, unφQ. We first
R3 "

observe that un also converges to 0 in L°°(R3): one just has to use standard
regularity theory for second-order elliptic equations and the various assumptions
we made on the nonlinear terms. Next, because of (A. 9) we find

\\un\\L*(^C(\θ\) \\f~ (un) ||La(RS) in Example 1,

(\un\
2^V}un\\L,(^ in Example 2.
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In both examples, the upper bound may be majorized by επ | |Mn | |L2 ( I R3 ), where
εn — > 0, and we reach the desired contradiction.

The second property enables us to exclude some vanishing phenomena: let vn be
a bounded sequence in H satisfying (A.I), where Θn satisfies (A. 7). Then, if \vn\

2

vanishes, i.e.

Sup J \vn\
2dx — > 0 for all #<oo,

yeK*y + BΛ

then vn converges strongly in H to 0.
Indeed, we know by [43] that vn converges strongly in L5(R3) to 0 for

2<q< max (6,2;?). Then multiplying (A.I) by υn9 we deduce

Ik ll!'(»>) ̂  Czn I I vn l l/y'(]R3) + C \\f~ (vn) Htf- 1(R3) in Example 1 ,

Ik !&(*') + IKIIiV3)^ Cεπ[ |kll//ι (iR3) + IKIL^)]
\2*V)υn\\H-ί(^ inExample2,

where εn > 0, εn — > 0. Next, we observe

+ C\\f- (Ol,pj^1/β||^(R3)+ C β l l k l 2

^ <5 (ε) [|| UΛ ||L2(IR3) + I I t>B llίβdd + Cε || t,n Hi

in Example 1 with δ (ε) -̂  0 as ε -» 0, while in Example 2 we have

for some /?, ^ satisfying 2 <p < q < 6.
We may now deduce from all these ad hoc bounds the convergence of vn to 0 in

H. In fact, we only used the existence of some t > 0 such that Qn(t) -» 0. Π

Step 3. Extraction of the local part in Example 1 . In the remaining steps we will
prove the decompositions we announced by an argument which will use the fact in
particular that the functional J \Vu\2dx\s quadratic: this will allow us to use only

R3

weak limits, while for more general problems one has to use more systematically the
concentration functions as in [43] to perform the various dichotomies. In the case of
Example 1, we consider the weak limit uί of un (or a subsequence) in H1 (IR3): if
1^=0 there is nothing to do. If uί ^=0, i.e. cq = j \uί |2c/xe(0, A], we consider

R3

un = un — u1. Obviously, J | ύn \ 2 dx — > λ — a1 while
R3 "

g(u^=g(ul+un)=£(uί} + <$CG(un) + εn+ j V\ύn\2dx
IR3

JR?
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where εn — > 0. Next, we observe that
n

x — >0, Ulu
n — > 0 in L^IR3) for 1^^^3,

hence we deduce

<T(O - δ(μύ - £™(ύn) - f F(uί + fiπ) - F(WjL) -
R3

We claim that this last integral goes to 0 as n goes to oo . Indeed, by the assumptions
made on F we have

f \F(u, + δ») - F(UI) I dx-^> 0, J 1FO?)| dx-^ 0
5« " 5Λ "

for all R < oo, while we have obviously J |^(MI) I dx -+ 0 as R -> oo and

therefore J \F(uί + MW) — F(M") | dx -» 0 as ̂  -> oo, uniformly in n and our claim is
BR

proved. In conclusion, we have shown that

^(^-{^(wJ + ̂ ^^j-^O, (A.ll)

and since *(«»)_> /λ, ί(Wl)^/αι, Ijmί00^")^/^^ and 7λ^/α ι + /Λ%, we
«

deduce that w1 is a minimum of 7αι and w" is a minimizing sequence of 7λ°iαι.
In addition, by an easy passage to the limit, we see that u1 satisfies

W l) - 0W l = 0 in IR3. (A.12)

Our last claim for this step is that un satisfies

-Aun + ( \un\2 *-~}un+f(un)-θun — ̂ 0 in TT1^3) (A.I 3)
x

(i.e. (^(u^

Indeed, subtracting (A. 12) from (A.I) we get

- + n - ^ n
\ \χ\/

where
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And we prove exactly as before that Tn — > 0 in H~ 1 (IR3): for instance we will treat
n

only one term in Tn, namely the difference

From the assumptions made on/, one deduces easily that for all R < oo,

M/(^)-/("ι))-7-0, lΛj|/(fi»)— >0 in //^(R3),

while

l^/Oi)-^ in ίr1^3) as #-»oo,

and

U^{/(^)-/(^)}l^cι^(i + | W l |
4 +|^ | 4 ) | W l | .

We may now conclude, since

!^K|-^0 inL2(R3) as R-+OO,

^Oιl5 + Ki |wΊ 4 )-»0 in £6/5(IR3) as ^->oo, uniformly in n.

Step 4. Conclusion. We now argue on the sequence un in Example 1 and un in
Example 2. For these sequences we consider the concentration functions Qn(t) of
respectively \ύn\2, \un\2. In view of Step 2, \un\2, \un\2 cannot vanish (or if this
happens in Example 1, this implies un — »0 in L2(R3) and we stop the

n

decomposition) i.e. there exist t0 > 0, 7 > 0 such that

ρf ί(ί0)^7>o.

This means there exists Q;

n)n in R3 such that

where φn = un in Example 1, = un in Example 2.
And we may consider ψn = φn(yn + •) which will converge weakly (up to

subsequences) in H to some u2 . Obviously,

0< ί \u2\
2dx = QL2 ^ λ — a1 in Example 1, ^ λ in Example 2 .

IR3

Furthermore, one has obviously in Example 1, \yn\ — > oo . By the same argument
as in Step 3, we deduce in both examples

u2 is a minimum of /£,

R3
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where β2 = λ — a1 — α2 in Example 1, = λ — α2 in Example 2. In addition,

(£coy(u2)-θu2 = Q in IR3,

(^C°γ(ψn-u2)-θ(ψn-u2)—>0 in H,
n

where if00 = δ in Example 2.
The only new arguments concern the following facts:

f 3 l l vΊ 2 ' - l «2 l 2 p - ly"-«2 l 2 Ί<fc-^o

I « |2p-2 n _ | M | 2P-2 „ | m« _ U2\
2f~2 (ψ" - U2) > 0 in L2p"1,

n

the first convergence is a consequence of Brezis and Lieb's lemma [17] while the
second one is closely related. Indeed one just needs to observe that for each ε > 0,
there exists Cε < oo such that for all x, y e IR,

and that the second quantity above converges a.e. to 0.
At this stage, we consider (ψn — u2\ and we reiterate the above arguments. This

iterative decomposition stops after a finite number of times, since by Step 2 we
know that α2, α3, α4 . . . remain bounded from below by a fixed positive constant.
Hence, we obtain some integer L and positive constants α2 , . . . , αL such that there
exist u2,...,uL minima of /£ , . . . ,/*, satisfying in addition,

(O'("i)-0"i = 0 in IR3, j \Ui\
2dx = aiy

IR3

and Iλ = IΛι + Σ '«?> λ= Σ αi in Example 1, while Iλ= Σ 1%, λ= Σ «/ in

j=2 i=l 7=2 j = 2

Example 2. Furthermore, there exist sequences (yj

n)n in IR3 for 2^j^L satisfying

n = un-u1 - Σ «j( -3;n)-^° m H^ (^\ l^ίl"7^ °° mExamP le l>
L J' = 2

vn = ιf- Σ W7'(* -3 )̂-^ ° in ̂  in Example 2.
j = 2

Remark. We point out that the above arguments are somewhat related to those
used in Brezis and Coron [16], Struwe [56] ____

In an attempt to explain a bit the above arguments, we want to conclude this
appendix by a general decomposition lemma, in the spirit of the first concentration-
compactness lemma in [43, 44].

Lemma 1. Let k^.1 and let (Pn)n be a sequence of probability measures in IRk. Then
there exists a subsequence ofPn that we still denote by Pn (to simplify) which satisfies
the following properties: one can find M in IN (J {+00} and sequences (y^)π in IRfe,
positive numbers αz for 1 ̂  i < M such that
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b ' π - y ί l - + o o for ι=K/, (A.15)

Pn (£04 Rl) (J
\ \ l S / £ i - l

for some sequences Rl

n — > oo, V z , (A. 16)

z ^ l , Vβ>0, 3* <oo, p

(A.17)

n vanishes, i.e. sup Pn(B(y,R} f]An} — »0, V P < o o , (A.18)

Remarks, i) The case M = 0 corresponds to the case when Pn itself vanishes. The
case M = 1, oq = 1 corresponds to the case when Pn is tight up to the translation yl

n.
Finally, the remaining case in [41, 42] namely dichotomy, corresponds to M^ 2.
Then, we split Pn in two parts,

Rl

Pn = W'Λ1)^' WheΓe Rn ^ Rn and ^T ~^ °' Rn ~^ °°

[observe that (A.16) and (A.18) still hold with R* replaced by R^] and

i) The above proof may now be interpreted in the light of this simple general
lemma (in fact, this lemma may be used to present another proof slightly more
technical but also more general as we explain below). First of all, we may apply the
above lemma with Pn= \un\2 or Pn= \un\2 + \Vun\2 (or even Pn= \un\2 + \Vun\2

+ I un 1 2 p in Example 2) - we neglect the fact that Pn is not a probability measure, just
replace Pn by PΠ/PM(R3). Then, roughly speaking, each piece ut of the above
decomposition is the weak limit in H of un (yl

n + •)• And the fact that M is finite or
that the decomposition yields a strong convergence in H to 0 are consequences of
(A. 14) and (A. 18) combined with the crucial argument given in Step 2 [and Step 2
is the only place where we used the information (A.7)]. Indeed if M= +00, then
α£ —»0 because of (A. 14), and ut satisfies the Euler-Lagrange equation together

with (for instance) j \uί\
2dx = ai, and we reach a contradiction with Step 2. All

R3

possibilities of vanishing (Pn vanishes or !AnPn vanishes) are also excluded because
of Step 2. And we obtain Pn (An) —> 0, which implies the strong convergence in H.

As we said before, this lemma may be used to construct differently ut (adding
some information to the mere information of weak limits which is too weak for
general problems with less "quadratic" structure: recall that in an Hubert space,
if xn -* x, then \xn — x\2 + \x\2 — \xn\

2 —> 0): indeed, it is possible to consider
directly
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ni

where χ is some cut-off function, R^R^, R^ — > oo, — ?- — »0. Another way
to "cut" is also given in [45]. n

Let us also finally mention that in many problems the information necessary to
prove Step 2 [(A. 7) here] is automatic.

Proof of Lemma 1. We are going to use systematically the concentration function
β n(OofPπ,i.e.

) for all f > 0 .

We will not bother to extract subsequences, leaving to the reader the standard
diagonal extractions. Now, with these notations and conventions we recall from
[43] that either Pn vanishes and we conclude M= 0, or Qn(f) — * β(0> Vί > 0,

where β is nondecreasing and β φ 0. Let α x = lim β (?) > 0. Obviously, α x ^ 1 and
f ί +00

we deduce from Lemma 2 below that there exists y\ eIR fc such that (A. 16) and
(A. 17) hold for i—\. We then consider P* = \B(y^R^Pn, and we introduce the
concentration function β2 of Pπ

2 . Again, with our conventions, we may assume that
either Pw

2 vanishes and the lemma is proved with M = 1, or that β2 (t) — > β2 (ί),

Vί > 0 for some nondecreasing function β2 and β2 φ 0. Let α2 = lim β2 (t) > 0.
ί T 00

We claim that α2 ̂  ax . Let us argue by contradiction: if α2 > α x , there exists
zn e R*, jR < oo such that

φ^αjL+v, for some v > 0 .

Therefore, Pn (B(zn, R)) ^ α x + v , and passing to the limit we obtain β (jR) ̂  α x + v,
contradicting the definition of a1 . Hence, α2 ̂  α x . Next, we can find using again
Lemma 2 a sequence j2 e Rk such that (A. 16) and (A. 17) hold for ί = 2. We next
claim that \y* — y% \ — > oo . Indeed, observe that (A. 17) for i = 2 implies obviously

n

ί Rl\
that j;2 $B M^, — ̂  ) for n large, hence |j2 — y\ \ — > oo. Finally, we show that

α1 + α 2 ^ l . This follows easily from (A.16)-(A.17) for z = l,2. Indeed, for all
ε > 0 there exists R2 < oo such that

hence

i.e. 1 ̂  α2 — ε + αi , and we conclude.
Next, assume that we have built P*,...,Pl

n, αx , . . . , α / ? y\ , . . . , y\ satisfying
(A.14)-(A.17) for 1 ̂  i^ I We then consider

and its concentration function Ql

n

+ 1 . Again, either P^+ 1 vanishes and the lemma is
proved or Ql

n

+ 1 (t) — > Ql + l (t), Vί > 0 for some nondecreasing function Ql + 1

and Ql + 1 φ 0. We denote by αz + i = lim Ql + 1 (ί) > 0. Exactly as before we see that
rί oo
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l + l

there exists yl

n

+1, Rl

n

+1 such that (A.16)-(A.17) hold for / ̂  /+ 1, and £ αf ̂  1,
i = l

αz + ί ^ αz , \yl

n

+ 1 — ;/ | — > oo for / ̂  /. By induction, we see that the only remaining

case to be investigated is the case when the above construction yields sequences
(P'n)ι, Mi, (y'Ji, (&n)ι such that (A.14)-(A.17) hold and

α / + 1 = lim
it +00

ί + 1 _

for all / ̂  1 (with P* — Pn). Because of (A. 14) we see that at — > 0. Now in order to

prove (A. 1 8) we argue by contradiction : assume (A. 1 8) does not hold then (with our
conventions) there exists α > 0 such that

for some yn e IR ,̂ R < oo. Next, choose / large enough so that α, < α. Obviously,

βi(Λ)^Pί(5(y I I,Λ))^P Ϊ I(5(y l | 5Λ)nΛ)^α>α z,

and we reach a contradiction with the definition of αz by taking the limit in n.

Lemma 2. Let μn be a bounded sequence of bounded nonnegatίve measures on IRΛ
Assume that Iimβ l l(ί0)>0/or some ί0 > 0, where Qn(t)= supμn(B(y, ί)). ΓAe«

n j elR*

ί/z£Γ£ βΛJWίΛ1 β subsequence that we still denote by μnfor which the following holds: for
all ί>0, Qn(t) — ̂ 2(0 /^r 5Όmβ nondecreasίng function Q and denoting by

α = lim β (t\ there exists yn e Rk

r T oo

Vε>0, 3^<oo, V w ^ l , ^(^(y^^^α-e. (A.19)

Remark. It is easy to build 7^M — > oo such that Qn(Rn) — > α, in which case (A. 19)
implies

,Rn))—+a. (A.20)

<9/ Lemma 2. Again, everything we say is correct modulo the extraction
of enough subsequences. Let (x,1e(09(x)9 there exist Rί and j^eIR f e such
that μn(B(y^9R1))'^.(χll. With our conventions, we may assume that
μn(B(y*,tJ) — ̂ βHO f°r all ^ > 0, where β1 is nondecreasing, and let

^1 = limβ1(/). Clearly, /^efα^α], and if βί = a, we conclude. If β^<a, we
it oo

choose R* such that

R1

Then, let R% g ̂  , ̂  — > oo, -4 — > 0; we still have
R »

And we set μ^=μn, μl^^B^^R^γ^n We may assume that the concentration
function β^ of μ J converges for all t > 0 to some nondecreasing function β2. We
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claim that lim Q2 (t) = α. Indeed, for all ε < α — β1 , there exist Rf < oo, zn e IRk such
that r t o°

Hence, B(zn,R') is not contained in B(y^9R^), and thus for « large enough
B(zn, Λ') n B(yl

n , ft) = 0. Therefore

and our claim is proved.
Then, we choose y* e IR7", ̂ 2

 as we choose^ and yl

n , and we may assume that
t)} — > Q2(t) for all ί>0, where Q2 is nondecreasing, and we denote

by β2 = lim Q2(t). Again, β2 e [ô  , α]. If /J2 —
 α? we conclude easily, while if β2 < α

ίί 00^

we choose jR^ and R* as above ____
Repeating this argument and observing that as long as βt < α, we find

{9R^^9 for l^j^l,

hence

and we reach a contradiction for / large, proving the lemma.
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