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Abstract. It is shown how to construct infinitely many conserved quantities for
the classical non-linear Schrόdinger equation associated with an arbitrary
Hermitian symmetric space G/K. These quantities are non-local in general, but
include a series of local quantities as a special case. Their Poisson bracket
algebra is studied, and is found to be a realization of the "half Kac-Moody
algebra 4R (x) (C [A], consisting of polynomials in positive powers of a complex
parameter λ which have coefficients in the compact real form of A (the Lie
algebra of K).

1. Introduction

Fordy and Kulish [1] have considered a class of non-linear partial differential
equations, each associated with an Hermitian symmetric space G/K, which are of
the form

β δ (1.1)

where summation is implied over repeated indices. qa(x, t) are fields in one space
dimension whose label α denotes a root of ̂  (the Lie algebra of G) such that the step
operator ea does not lie in & (the Lie algebra of K). R is the "curvature tensor"
defined by

eaKβy-* = lββ\βve-Λ-n. (1.2)

A special case of (1.1), corresponding to G = SU(2% is the non-linear
Schrόdinger (NLS) equation

2 . (1.3)

Equation (1.1) will be referred to as the Generalized non-linear Schrόdinger
(GNLS) equation associated with G/K. The NLS equation is known to have
infinitely many conserved quantities which are local [in the sense that the currents
are expressed only in terms of the fields q(x, t\ q*(x, t) and their derivatives at a
point], and are in involution (i.e. their Poisson bracket algebra is abelian). The aim
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of this paper is to construct the algebra of conserved quantities for the GNLS
equation.

The existence of such quantities is related to the fact that the equation of
motion can be expressed as a "zero curvature condition"

Fxt = ίdx + Ax,dt + At-] = Of (1.4)

where Ax, At are Lie algebra valued polynomials in a parameter λ e C (the "spectral
parameter") which does not appear in the equation of motion. Equation (1.4) is the
consistency condition for the coupled pair of linear equations

= 0, (1.5a)

= 0. (1.5b)

For the NLS equation, Ax and At are 2 x 2 matrices, and it is fairly easy to
construct the group element Φ (the "monodromy matrix"). The logarithm of its
diagonal elements can be expanded in powers of λ to give conserved quantities [2].

It is shown in [1] that the GNLS equation is associated with the pair

(1.6a)

£]+ 1/2 LΛ°X LΛ°X9 £]] , (1.6b)

where E is a special constant element which commutes with any element of /,
satisfying

ίE9ea]=-iea for alia (1.7)

and

A°x=-<fea + (f*e-a. (1.8)

For algebras of rank greater than one, the monodromy matrix (which is a path
ordered exponential) becomes difficult to work with. It is then more convenient to
use the algebraic properties of the zero curvature condition (1.4), in particular its
invariance under a gauge transformation

1ωx9 (1.9a)

ωt, (1.9b)

where ωeG. The new pair ax, at are associated with the same equation of motion as
the pair Ax, At. Olive and Turok [3] have used this invariance to study the Toda
equation. In that case it is possible to construct ω so that ax, at e A, the Cartan
subalgebra. ω takes the form

ω = exp £ λ~nωn (1.10)
n = l

and is local. Then ax and at are descending power series, and the zero curvature
condition becomes

dxat-dtax=0, (1.11)

which implies that the coefficients of arbitrary powers of λ are conserved currents.



Conserved Quantities for Non-Linear Schrόdinger Equations 633

In attempting to apply this method to the GNLS equation, one encounters the
problem that the gauge transformation which takes Ax and At into the Cartan
subalgebra is now non-local, so that Eq. (1.11) can no longer be interpreted as a
conservation law. In order to discuss non-local conserved quantities, it is necessary
to investigate the Poisson bracket algebra.

Consider first the Hamiltonian of the GNLS equation. Using (1.7) and (1.8) one
finds

Tr ([£, A%] dtA°x) = iq«qΐ*-ίqΐqΰί* . (1.12)

If qa, qa* are regarded as canonical variables, then differentiation of both sides of
(1.2) with respect to gα, gα* gives Hamilton's equations

(1.13a)

(1.13b)

where
oA°x) (1.14)

(the proportionality sign is used because there is actually a constraint which must
be taken into account).

Now, the equation of motion can be read off from the zero curvature condition
(1.4) as the coefficient of A0:

dtA°x = dxA?HAiAn, (1.15)

where A? is the coefficient of λ° in (1.6 b). In this way one obtains an explicit
expression for H in terms of the fields qa, q** and their derivatives.

It was shown in [1] that instead of considering At given by (1.6 b), one can look

At= Σ VAn

t, (1.16)
n = 0

by substituting into the zero curvature condition (1.4) and equating coefficients of
λn to zero. The coefficient of the highest power of λ9 i.e. A?9 is left undetermined, but
must be a constant element of i. When A^ = E, the resulting expression for At is
local, but for a general element A* = ke/ί9 one finds that At is non-local. AN(k) will
denote At having the leading term λNk.

Each possible choice of AN(k) will give rise to a different equation of motion,
given by the coefficient of A0 in the zero curvature condition:

dN9kA
o

x = dxA°N{k) + lA°x9 A°N(k)2 . (1.17)

The collection of operators dNtk will be regarded as independent evolution
operators defining infinitely many "times." When N = 2 and k = E, AN(k) is given by
(1.6b), and so d2>E is the GNLS evolution operator. For a fixed value of k one has a
hierarchy of equations of motion labelled by N ^ 0. When k = E this will be referred
to as the "GNLS hierarchy."

For each equation of motion (1.17), one can obtain its Hamiltonian in the form
(1.14). The Hamiltonian for the equation arising from the pair Ax, AN(k) will be
denoted by HN(k). It will be seen that HN(k) is non-local in general, but the
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Hamiltonians HN(E) of the GNLS hierarchy are local. Furthermore, the entire
collection oϊHN(k) will turn out to be conserved quantities for the GNLS equation.
To show this it is necessary to construct the Poisson bracket algebra of the
Hamiltonians, and this is done by considering the commutation relations of the
evolution operators dNΛ. One first has to find closed expressions for dNik and AN(k)
(the method used in [1] of solving the zero curvature condition gives the
coefficients of AN(k) recursively). This is where the gauge invariance property
proves useful. It turns out that a non-local transformation of the form (1.10) can be
constructed so that

Ax->ax = λE. (1.18)

The zero curvature condition will then be satisfied by

(1.19)
where N ̂  0 and k e A is constant. Now the gauge transformation (1.9 b) is inverted
to obtain

At = ωaN(k) ω 1 — ωNkω =λωkω — ωNkω . (1.20)

If At is chosen to have only positive powers of λ, then one can equate
coefficients to obtain

At= X λN~n(ωkω" 1)Λ = AN(k) (where ωkω~ί= £ λ~n{ωkω-\). (1.21)

Also, one finds that the coefficient of A" 1 in (1.20) gives

which is the equation of motion associated with AN(k) in closed form. This will be
used to derive the main result of this paper;

ίSN,k^M,Mo

x = dN+MΛKΛA
o

x (1.23)

for all N, MΞ>0, k9j€/£. In other words, the evolution operators form "half" of a
Kac-Moody algebra (since N and M take only positive values). Equation (1.23) will
be used, together with the Jacobi identity, to establish the final result

{HN(k\ HJj)}=HN+M(lk,β), (1.24)

which states that the Hamiltonians have the same "Kac-Moody" algebraic
structure under the Poisson bracket. In particular, one has

{HN(k),H2(E)}=0. (1.25)

This means that the entire collection of Hamiltonians are conserved quantities for
the GNLS equation.

In Sect. 2 it will be shown how the gauge transformation ω is constructed in
terms of the field variables qa, q**. The solution of the zero curvature condition to
give AN(k) and dN>k in closed form will be discussed in Sect. 3. In Sect. 4 the
Hamiltonians and their Poisson bracket algebra will be considered, and it will be
shown in Sect. 5 that HN(E) is local for all N. Finally, in Sect. 6, the results obtained
will be compared with the work of Olive and Turok, and possible generalizations
to other systems will be discussed.
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2. Construction of ω

Let G/K be an Hermitian symmetric space, where A (the Lie algebra of K) is the
centralizer of E and ̂  (the Lie algebra of G) decomposes as

# = £®m. (2.1)

The step operators of the Cartan-Weyl basis of ̂  which lie in / are denoted by
Latin letters (ea), while those which lie in m are denoted by Greek letters (ea). The
set of positive roots whose step operators lie in m is called θ + .

It is explained in Appendix / that E satisfies the property

[£, ej = κea , (2.2)

where K is a constant for all aeθ+. E will be chosen so that

κ=-ί. (2.3)

Now, following [1], define

Ax = λE + A°x, (2.4)

where

A°x=-<fea + <f*e-Λem. (2.5)

The main object of interest is the "zero curvature condition"

Fxt=ίdx + Ax,dt + At-] = 0, (2.6)

where At is a polynomial in λ with coefficients in ^. The only restriction on At is that
the resulting equation of motion for the fields q\x, t) implied by (2.6) must be
independent of λ.

Equation (2.6) is invariant under a "gauge transformation"

μ μ = (x,t)9 (2.7)

where ω(λ; x, t) e G. In other words

0. (2.8)

Equation (2.8) is associated with the same equation of motion as (2.6). However, it
may be possible to find a transformation such that aμ is independent of the fields qa,
<f*. In that case, the equation of motion is implied by the transformation (2.7) with
μ = t, which can be thought of as an equation of motion for ω. Such a
transformation will, in fact, prove to be very useful in what follows.

Notice that Ax and At can be thought of as elements of the "loop algebra"
$ ® (C[/l, A" 1] (where (C[/l, ΛΓ1] is the algebra of Laurent polynomials in the
complex variable λ). It is therefore natural to consider ω as an element of the "loop
group." It will be chosen to have the form

ω = exp Σ λ~nωn, ( ω π e ^ ) . (2.9)
« = i

This is the type of gauge transformation used in [3] in connection with the Toda
equation. By expanding (2.9) as a power series in λ one obtains the identities given
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in Appendix II, which can then be used to write ax (2.7) as a power series:

ax = λE+ Σ λ-nan

x = λE + {A°-lωu £]}
« = 0

1[ω1, EJ]-[ωl3

-1/6ίω ι [ωx [ ω i , £]]] - [ω2, 4X°] +1/2 [ ω i [ωu A°XJ\

+ δ x ω 2 -l/2[ω 1 ,δ x ω 1 ]} + .... (2.10)

It will now be shown that it is possible to construct ω so that

ax = λE. (2.11)

One can see from (2.10) that α° = 0 if

\ωί,E\ = A°x. (2.12)

Using (1.8) and (2.3), this implies

ωΓ = [£, A{£ = Ufea + Uf*e-u, (2.13)

where ωf denotes the component of ωι in «. Now consider α'. The commutation
relations (1.14) can be used to equate the / and <*? components to zero:

(axy = 1/2 [ωf [ ω 1 , £ ] ] - [ ω T ' > ^ ] + δ X = 0

i.e. 3 X = l/2[ωT,A2], (2-14)

using (2.12), and

i.e. [ω2, E] = dxω^-1/2 [ωf, ^l°] , (2.15)

using (2.12) again. Notice that (2.14) determines ωf non-locally:

{ ι° (2.16)
whil (2.15) gives

ωl= - M S +1/2 [£[AS, Γ 1 D4°[AS, £]]]] . (2.17)

For a general term α"(rc>l) one has

<Z=-lωn+i,E] +1/2[ωx[ωw? £]] +1/2[ωM[ω1? £ ] ] - [ ω Λ , ^°]

+ dxωn + (terms involving ω^ < n). (2.18)

This can be split up into A and m components and equated to zero to obtain

+ (terms involving CQJ < J , (2.19)

+ δ^ω^ + (terms involving ω J < M). (2.20)

So for each n the requirement that an

x = 0 determines o/n and ω*+ 1.



Conserved Quantities for Non-Linear Schrδdinger Equations 637

In [3], only the condition (α")^ = 0 is imposed, so that o/n is left undetermined
and can be chosen to be zero to all orders. This gauge transformation will be
denoted ώ. The first few terms are obtained from (2.10) as follows:

lώuE]=A°x, i.e. ώ^lE9Al~\9 (2.21)

[ ώ 2 , E~] = dxώι, i.e. ώ2

= — SXAX , (2.22)

[ώ3, E] = -ί/6lώ1lώ1[ωl9 Elfl + lβlώάώu .42]]+ 3 ^

i.e. ώ 3 = V3[£[ώi[ώ 1 ,^2]]]-^»ώ 1 , (2.23)

and so on. Notice that, unlike ω, ώ is local to all orders.

3. Solution of the Zero Curvature Condition

One wishes to find At such that the zero curvature condition (2.6) is satisfied with
Ax given by (2.4). As in [1], At will be assumed to be of the form

At= £ λn4. (3.1)
Λ = 0

Consider the gauge transformed potentials

ax = ω~ΛAxω + ω~Λωx = λE , (3.2a)

at = ω~ίAtω + ω~1ωt, (3.2b)

where ω is the gauge transformation constructed in Sect. 2. One can see from the
identities (ILla), (II.2a) that at is a descending power series of the form

r V + .... (3.3)

Now substitute (3.2a), (3.3) into the zero curvature condition

dxat-dtax+[ax, α t ]=0, (3.4)

and equate powers of λ to zero:

= 0 i.e. aΓNe4, (3.5)

-N] = 0. (3.6)

Split this into parts in A and m to obtain the result that a~N is a constant and
a}~N G A. Continuing in this way one finds that all of the coefficients of at are
constant elements of A. One can choose

at = λNk. (3.7)

Now invert the transformation (3.2b):
1 — ωtω~1=λNωkω~1 — ωtω~ί . (3.8)

Since ωtω~ι has only negative powers of λ, and At is chosen to have no negative
powers, it follows that

At= f λ\ωkω-\_n. (3.9)
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where (ωkω~ι)m denotes the coefficient of μ~~m in ω(μ)kω~1(μ). By (II. 1 b), At given
by (3.9) has λNk as its highest order term. Since N and k are arbitrary, the notation
ΛN(k) will be used for the object defined by (3.9).

Turning now to the negative powers of λ in (3.8), one can equate coefficients
to obtain

(ω tω- 1) I i = (ωfcω-% + I I (3.10)

for all n ̂  1. The derivative with respect to t corresponds to the equation of motion
arising from ΛN(k). For each choice of N or k there will be a different equation of
motion, and so the evolution operator dt associated with ΛN(k) will be denoted dNΛ.
The collection of these operators can be thought of as describing the evolution of
the fields with respect to infinitely many independent time variables.

In this notation, (3.10) becomes

+n (3.11)

for all rc^l, N^O. In particular, choose n = ί. Then, using (IL2b)

dNΛωγ={ωkω-\+1. (3.12)

By (2.13), this implies

(3.13a)

(3.13b)

where (ω/cω~1)± α is the coefficient of e±0L in ωkω'1. Equations (3.13) give the
equation of motion corresponding to the pair Ax, AN(k). [One can check them
directly from the zero curvature condition (2.6), using (2.4) and (3.9).] Consistency
of (3.13a) and (3.13b) requires the restriction to the compact real form of ̂  [1],
which means that k must be of the form

ki*=-ki

9 (3.14a)

k"*=-k-a, (3.14b)

(where k = k% + k% + k~ae_a).

4. Poisson Bracket Algebra

The algebra of the evolution operators will now be investigated. This will allow the
construction of the Poisson bracket algebra of the Hamiltonians for the equations
of motion (3.13).

Recall Eq. (3.12), and act on both sides with the evolution operator dMJ

O ) to obtain

N

P = o

Σ Wω-Wi-^^ω"1)^ (4.1)
0
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(Use has been made of (3.11) and the identity

3μ(gArg-1) = [gμg-1, gXg-'l+gd.Xg'1 for all ge G, I e f )

The same calculation with (M, j) and (AT, k) interchanged leads to

N + M+ί

lUN,k> 8M,j]ωi= Σ Ucokω~1)N+M+ί_q9 {ωjω~\~\
0

( 4 2 )
using (3.12).

In particular, (2.12) enables one to write

ldNtk, dMJ]A°x = dN+MΛkJ]A°x for all N, M^O, kjed. (4.3)

Equation (4.3) states that the evolution operators form an algebra isomorphic to
£R®<L [A]. iR denotes the compact real form of i [this distinction is necessary
because of the consistency condition (3.14)] and C[/l] denotes the algebra of
Laurent polynomials in positive powers of λ. The algebra defined by (4.3) can be
thought of as "half" of a Kac-Moody algebra [4].

Now define the Poisson bracket between two functions A and B as

{A, B} = Σίdz(dA/dqa(z) dB/dqa*(z) - dB/dq\z) dA/dq«*(z)) (4.4)

(arguments, delta functions etc. will subsequently be suppressed for clarity).
The Hamiltonian HN(k) for the equation of motion (3.13) associated with AN(k) is
defined by the relation

dN,kA°x = {A°x,HN(k)} (4.5)

(the Poisson bracket between an element of #, such as A%, and a function, such as
HN(k\ is of course well defined). Definition (4.4) is equivalent to Hamilton's
equations:

d{k)/d\ (4.6a)

q%*k=-dHN(k)/dq\ (4.6b)

Equations (4.3) and (4.5) can be used to rewrite the Jacobi identity

{A°x{HN(k\ HM(j)}} + {HN(k) {HJjl A°x}} + {HM(j) {A°x, HN(k)}} = 0 (4.7)

in the form

{A°x{HN(k\ H

(4.8)
which implies that

{HN(k), HM(j)}=HN+M([k,n) + C^M, (4.9)

where C ^ M is a constant. Equation (4.9) states that the Poisson bracket algebra is
the"half" Kac-Moody algebra with central extension. In fact, the central term can
always be made to disappear by a suitable re-definition of the generators [5]. (In
the present case, this is simply a reflection of the fact that the Hamiltonians are only
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defined up to a constant.) For the case j = E, it is easy to check using the Jacobi
identity that Ck^fM vanishes identically. In particular, this means that

{HN(klH2(E)}=0, (4.10)

where H2(E) is the GNLS Hamiltonian. Therefore one can consider the entire
collection of Hamiltonians HN(k) to be conserved quantities for the GNLS
equation.

It only remains to find the explicit form of HN(k). First, put k = E and N = 0 in

, (4.11)

using (Π.lb) and (2.12). It is then clear from (4.6) that

H0(E) = ί$q«q«* (4.12)

(summation implied). Now use (4.10), (4.5) to deduce

^,J?T* = 0. (4.13)

It follows that

ί ( « * - ^ , r f α * ) = -2\q«N,kq** = 2Sq%*kq«. (4.14)

Next, use (3.12) to write

J T r μ 2 ω f c ω - % + 1 = J T ^ ^ (4.15)

Then use (4.14) and differentiate:

(4.16a)

(4.16b)

Comparing these with (4.6), one can choose

HN(k)= - ί / 2 J T r μ ° ω f c ω - \ + 1 . (4.17)

5. The GNLS Hierarchy

It is clear from the construction of ω in Sect. 2 that the operators dNtk give rise, in
general, to non-local equations of motion (with non-local Hamiltonians). What is,
perhaps, rather surprising is that for k = E the equations of motion (the GNLS
hierarchy) are all local. To show this, the objects AN(E), HN(E) and dN E will here be
reconstructed in terms of local quantities.

Consider the gauge transformation ώ which takes Ax into ί\

n = l
λ~nάx. (5.1)

It was shown in Sect. 2 that this is a local gauge transformation. Now, as in Sect. 3,
one wishes to find άt such that the zero curvature condition

dxat-dtάx + \_άx,άt-\=0 (5.2)

is satisfied, where άt has the general form

άt = λNa;N+... + ά? + λ-1al + .... (5.3)
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Substitute (5.1) and (5.3) into (5.2), and equate coefficients of powers of λ:

λN+u.lE, αΓw] = 0 i.e. &;Ns4, (5.4)

λN:δxat-
N+ίE,a^N-ι^ = 0, (5.5)

i.e. α " ^ " 1 ' e A and a^N is a constant. Choose at~
N = E.

A"'1: dxa-iN-U + lE, α(-
(N-2>] + [αi, α Γ

w ] = 0 . (5.6)

Again, split this into parts in m and £ to find αr"
(ΛΓ"2) e / and

dxa-<N-» = la-N,alJ. (5.7)

Since άt~
N = E, and α* e /, this becomes

Choose αί~
(N~1) = 0? and continue in the same fashion. One finds that dt can be

chosen to have the form

άt = λNE+ £ λ~nάn

t. (5.9)
n = l

Now invert the gauge transformation:

At = ώάtώ~γ— ώfώ"1, (5.10)

and equate positive powers of λ to obtain

At= £ ^ ( ώ E ώ - % ^ . (5.11)
n = 0

This has leading term λNE, and is equal to ΛN(E) as given by (3.9) with k = E (and
the constants of integration set to zero). It immediately follows that

ωEω~1=ώEώ~i (5.12)

to all orders. One can deduce from this that the equations of motion (3.13) and
Hamiltonians (4.17) become local for k = E. Notice, incidentally, that the equation
of motion cannot be read off from the coefficient of λ'1 in (5.10), since ά\ is non-
zero. One can, however, obtain it from the zero curvature condition:

= -([IE, ώEώ"1])^ (since \ax, E~]=ϋ)

% (5.13)

Finally, the Hamiltonians HN(E) will be calculated for N = 0, 1, 2. One uses
(2.21), (2.22), (2.23) to obtain

^ώ,, E]) = Ύτ(Ao

xAχ), (5.14)

ώ2, Ej + ίβlώάώ^ £]]})

= Ύv(A°xlώ2, E]) (since [ ώ ^ ώ ^ £]] ei)

M a ) , (5.15)
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(only terms in m contribute)

^ ^ ^ ^ 2 . (5.16)

One can work these out explicitly in terms of the fields qa, qa* (see Appendix I) to
find

HQ{E) = i\q«q«\ (5.17)

^ * - g

β ^ * , (5.18)

H2(E) = i \qlq«* + q«*qW*R%_δ (5.19)

[integration by parts has been used in (5.19)]. Equations (5.17) and (5.18) are
straightforward generalizations of the "particle number" and "momentum" of the
NLS equation [2]. Equation (5.19) gives the Hamiltonian of the GNLS equation.

One can also check the expressions for ΛN(E) and dN E. For example, from
(5.13)

° η ^ . l ώ , , Atm . (5.20)

In terms of the fields this becomes

ιQi,E — Qxx — Q Q Q κβγ-δ>

~l(d2,E — (ixx~~Q q q^-β-γδ

as expected. The calculation of A2(E) is as follows:

2

A2(E)= Σ λn(ώEώ'1)N_n = λ2E + λlώ1, E] + [ω2,
n=0

= λ2E + λA°x + [£, dxA°J + \I21AI\AI £]] (5.22)

[using (2.21), (2.22)]. This is in agreement with (1.6b).
Of course, Eq. (5.11) ensures that the same results would be obtained if ω were

used instead of ώ, although the calculation is more complicated.

6. Conclusions

The GNLS equation has two important special cases. As was mentioned earlier,
the familiar non-linear Schrόdinger equation corresponds to g, = su(2). In that case,
A is the one dimensional Cartan subalgebra, so that any element of / is a scalar
multiple of E. Consequently only the local series of charges exists. The GNLS
equation associated with SU(n + \)/(U(\) x SU(ή)) is known as the vector non-
linear Schrόdinger equation, and has arisen (like the NLS equation) in non-linear
optics [6]. Non-local charges will exist for n ̂  2. It would be interesting to find out
whether such quantities could have any physical significance.

A major step in the construction of HN(k) was to find a general form for AN(k).
For k = E, the same expression can, in fact, be found using the P-operator method
of Olive and Turok [3] (the P-operator in the present case is the Casimir operator
for g, (x) g, [1]) although the conditions they assume no longer hold (i.e. E is not
regular).



Conserved Quantities for Non-Linear Schrόdinger Equations 643

As a generalization of the system considered here, one could begin with a trivial
solution of the zero curvature condition:

ax = λpl, (6.1a)

at = λNΛ, (6.1b)

where Λ, A are constants and \_A, A~] = 0. One then finds Ax, At as series in positive
powers of λ using the inverse gauge transformation

Aμ = ωaμω ~ * - ωμω ~1 . (6.2)

Those coefficients ωn which remain undetermined by the requirement that (6.2) be
consistent can be considered as dynamical fields (for the GNLS case this
was ωf). This will be discussed further in a subsequent paper. The evolution
operators will obey the same "half" Kac-Moody algebra, but the precise form of
the Hamiltonians will depend on the structure of Ax. It is anticipated that a
generalization of the P-operator method will be applicable.

Appendix I

Some results are given here concerning Lie algebras and symmetric spaces.
Further details can be found in, e.g., [7].

The Cartan-Weyl basis {hb er: htE A, r eΦ] of a complex semi-simple Lie
algebra ^, with Cartan subalgebra A, satisfies the following relations (where Φ is the
set of roots and r e Φ can be positive or negative):

ihhhj]=O, (1.1 a)

[Λ l,er] = r<e r. (Lib)

(If H = H'hi e A, where summation over i is implied, then

lH,er-]=Hirier = Hrer. (Lie)

The dot is used to indicate summation over Cartan subalgebra indices.)

[e r ,e_ r ] = r Λ. (Lid)

If r φ — s, then

[e r ,eJ = i\rriA.+s, (Lie)

where Nr s = 0 if r + s is not a root. One can check the useful identities:

iV,, s=-JV_ r,_ s = iV_s,_r = JVs,_r_s. (1.2)

The basis is scaled so that

.) = ,5u, (L3a)

= 0. (1.3 c)

From now on, r, s,... will denote only positive roots.
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For any element A e ̂  define the "centralizer" C(A) of A by

C(4) = { B 6 ^ : [ 4 B ] = 0 } . (1.4)

An element H e A is called regular if C(i/) = ̂ .
Let E e A be an element with the property that for any (positive) root r, E r is

either zero or takes a constant value K. (Such an element does not always exist - for
example £ 8 does not possess one.) Now define the set θ+ of roots which satisfy

E'θi = κ (1.5)

for all α 6 0 + . Denoting by Φ + the set of positive roots, and defining 9 + Ξ Φ + - S + ,
then

E-a = 0 (1.6)

for all aeθ + . The Greek letters α, /?, y,... will always denote elements of 0 + , and the
Latin letters α, fo, c,... will denote elements of 9 + .

C(E) is a subalgebra spanned by {hi9 e±a: ht e A,ae 0+}, which will be denoted
by /. Then

# = 4®*n9 (1.7)

where m9 the orthogonal complement of/, is a subspace spanned by {e±a:oceθ+}.
Notice that [£, A\sm for any element Ae /?. Also

ic 2 4-, (1.8)

where A™ is the component of A in ̂ . The Jacobi identity implies the useful special
cases:

[[£, m] fc] = [£[m, fc]] for all m e **, fc 6 / , (1.9)

[[£, m!]m2] = [[£, m2]m1~] for all m1? m2 e ̂  . (1.10)

From the definition of E one deduces the following:

lea,eβ-] = le^,e-β-]=0, (1.11)

[>«,*-,] e * , (1.12)

α ± α e θ + (if it is a root). (1.13)

Then

[/,/]C/, [/,^]C^, [^,^]C/, (1.14)

i.e., g is a "symmetric algebra" and G/K is a symmetric space. The curvature tensor
is defined as

R±*±β±γ = le±*ίe±β>e±γΏ (U5)

The identity (I.I 1) implies

Raβγ = R^β^γ = 0, (1.16)

while (1.12), (1.13) give

Rj-γ = 0, (L17)
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etc. In fact, the symmetric spaces constructed in the way described above are
Ήermitian," and the curvature tensor satisfies

(R'β1-ά* = RZ'β-iί. (1.18)

Finally, it is useful to give the commutator for two general elements of p.
Writing the components as

e-a, (1.19)

then

+ {A • aBa~AaB

(1.20)

Appendix II
00

If ω = exp Σ λ~nωn, then one can expand in powers of λ to obtain the following

identities (where A is any element of ^ and ()n denotes the coefficient of λ~n):

= rΣ ( " W Γ 1

 k Σ_n CωftlK2[.. K r,^]...]]], (Π la)

\ r-i / ι\ — \ ^-i r- Γ- r r j-ί —i —a —i /TT 1 ~ί\\

n
— 1 \ v 1 / Ί \ι* + 1 / ι\ — 1 v r r π a i m /TT ^ \

ω ωu)n= L \~*) V') L LωkiL Lω/c-i? ^u ω fcJ JJ 5 ( H . ^ a )
r = l (fcι:Σ/cί=n)

(ωμω-\= Σ (rr1 Σ K W - k - , W-]]] (« 2b)
r = 1 (k{: Σfei = n)
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