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Abstract. We present a method of reduction of any quaternionic Kahler
manifold with isometrics to another quaternionic Kahler manifold in which
the isometrics are divided out. Our method is a generalization of the Marsden-
Weinstein construction for symplectic manifolds to the non-symplectic
geometry of the quaternionic Kahler case. We compare our results with the
known construction for Kahler and hyperKahler manifolds. We also discuss
the relevance of our results to the physics of supersymmetric non-linear
σ-models and some applications of the method. In particular, we show that the
Wolf spaces can be obtained as the 17(1) and Sl/(2) quotients of quaternionic
projective space MP(ή). We also construct an interesting example of compact
riemannian F-manifolds (orbifolds) whose metrics are quaternionic Kahler
and not symmetric.

1. Introduction

Quaternionic Kahler and hyperKahler manifolds are of increasing interest to both
physicists and mathematicians. In quantum field theory nonlinear σ-model
lagrangians with self-interacting scalar fields on these manifolds play a very special
role: they admit supersymmetric extensions. It is very well known that in
4-dimensional spacetime JV = 1 (JV = 2) globally supersymmetric interactions of
bosons and fermions are determined by geometry of a Kahler (hyperKahler)
manifold M [1, 2]. Scalar σ-model fields φ(x) are then maps from 4-dimensional
coordinate space (for instance Minkowski or Euclidean space) into M.ln N = 2
local supersymmetry the situation is different: The riemannian manifold M is
restricted to be quaternionic Kahler manifold of negative scalar curvature [3].

A more realistic picture must include also interacting gauge bosons. Thus, one
would like to be able to couple fermionic and bosonic σ-model matter fields to the
Yang-Mills vector multiplet without breaking supersymmetry. This issue was first
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investigated by Bagger and Witten [4, 5]. They showed that under certain
assumptions it is possible to gauge holomorphic isometries of a Kahler manifold in
an N = l locally supersymmetric manner. Later, Hull et al. [6] presented a very
detailed discussion of consistent, supersymmetric gaugings of isometries on
Kahler manifolds. They also discussed N = 2 supersymmetric σ-models and
gauging isometries on hyperKahler manifolds. We refer the interested reader to
that work for all the details.

In all cases when the gauging described in [6] is possible one can introduce the
supersymmetrically and gauge invariant action. If one does not include the kinetic
term for the Yang-Mills fields then they are auxiliary and, consequently, after
solving their algebraic, non-propagating equation of motion, can be eliminated
from the action. From the geometrical point of view this can be understood and
interpreted as the symplectic reduction of a Kahler or a hyperKahler manifold
with isometries. Hitchin et al. [7] have given a complete discussion of such
symplectic quotients in both the Kahler and hyperKahler cases. This is a rather
simple generalization of the Marsden-Weinstein reduction of symplectic mani-
folds with symmetries [8], since all Kahler manifolds are symplectic and all
hyperKahler manifolds have three independent symplectic 2-forms. The above
construction, formulated in the language of so-called momentum mappings, is of
special interest also for mathematicians. It was implicitly used by authors of [9] to
construct new hyperKahler metrics. There is quite a long list of examples of
hyperKahler metrics that can be obtained through hyperKahler quotients of R4n.
We give it in our paper in Table 1 (see also [10]).

As we already mentioned, in the case of AT = 2 local supersymmetry the
situation is very different. A σ-model manifold M must be quaternionic Kahler.
Again, one would like to address the problem of gauging isometries of the σ-model
manifold M in a way which is consistent with JV = 2 local supersymmetry. The
problem was investigated by de Wit et al. [11]. They coupled N = 2 supergravity to
an arbitrary number of scalar and vector multiplets. In our previous paper we tried
to understand this coupling from the point of view of the geometry of the σ-model
manifold M [12]. We pointed out that there exists a very general construction that
allows for a consistent reduction of the quaternionic Kahler manifold with
isometries. Since there is a very beautiful mathematical description that corre-
sponds to the gauging of isometries of N = 2 supersymmetric hyperKahler
σ-models given in terms of the momentum mappings, one should ask a natural
question: Is there any generalization of the Marsden-Weinstein reduction to the
case of quaternionic Kahler manifolds? From the point of view of field theory, such
a formalism would correspond to the gauging of isometries of the N — 2 locally
supersymmetric σ-model.

Though a quaternionic Kahler manifold with non-zero scalar curvature does
not have a symplectic structure, we show that a quaternionic Kahler quotient can
indeed be consistently defined and that many examples of quaternionic Kahler
metrics can be obtained as the quotient of quaternionic projective space JHP(ri). In
general, when the isometry group does not act freely on the zero level set defined in
Sect. 4, the above reduction leads to manifolds with singularities or orbifolds.
However, these are special, quaternionic orbifolds with a well defined quaternionic
Kahler metric everywhere away from singularities. We construct examples of such
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orbifolds and show that they are not quotients of Wolf spaces by finite groups. In
principle, one can always write locally supersymmetric σ-model lagrangians on
orbifolds. The metric defined locally on the non-singular part completely
determines the interactions between the σ-model and the supergravity fields.

Our paper is organized as follows: In Sect. 2 we recall the original Marsden-
Weinstein construction for symplectic manifolds. It can be applied to any Kahler
manifold with holomorphic isometries. In Sect. 3 we review how the above
reduction generalizes to the case of hyperKahler manifolds with triholo-
morphic isometries. We also give a simple example of the Calabi metric. In
Sects. 4 and 5 we present our main result. We introduce a quaternionίc Kahler
quotient and we apply it to quaternionic projective space HP(rc). As examples
we show that the Wolf spaces X(ή) = U(n + 2)/U(n)xU(2) and Y(ή)
= SO(n + 4)/SO(n)xSO(4) are just 17(1) and SU(2) quotients of quaternionic
projective space. We also discuss an example of the quaternionic orbifold that was
first introduced in [12], showing that it is not a quotient of a Wolf space by some
finite group. And finally, in Sect. 6, we briefly discuss our results and their possible
applications. Since many statements are given without rigorous proofs, we refer
the reader interested in details to [6-8, 13-15].

2. The Marsden-Weinstein Reduction of Kahler Manifolds
with Holomorphic Isometries

In this section we review the discussion of [7] (see also [5]). Let M be a smooth
Riemannian manifold with a metric h : TM x TM-»R:

, (2.1)

where {xα}; α = l,...,dimM are local coordinates on M. Let us introduce an
almost complex structure on M, i.e., an endomorphism of TM; J : ΓM-> TM such
that J2 = — 1 . The manifold M is complex when the almost complex structure J is
integrable or, equivalently, when

N(X, Y)d=2(&JX JY-g>xY-J3>xJY-J3>jXY) = Q (2.2)

for all X, Ye TM. N : TM x TM->TM is called the Nijenhuis tensor.
Let us suppose that the metric (2.1) is Hermitian with respect to the complex

structure J:
h(X, Y) = h(JX, JT); VZ, 7e TM . (2.3)

Then M is called a Hermitian manifold. If the complex structure is covariantly
constant with respect to the Levi-Civita connection F

VXJ = Q\ XeTM, (2.4)

then M is called a Kahler manifold. Now, we can define a 2-form ω e Λ2M,

ω(X,Y)=fh(JX,Y). (2.5)

Since both the metric h and the complex structure J are covariantly constant with
respect to the metric connection F, ω is also covariantly constant. Consequently, it



120 K. Galicki

is a closed, non-degenerate 2-form globally defined on M. It is usually called the
Kahler form and it defines a symplectic structure on M. Thus any Kahler manifold
(M, /ι, J) is symplectic.

Let G be a connected Lie group and G x M-* M an action on M . If the above
action preserves the 2-form ω we call it a symplectic (or holomorphic) action.
Correspondingly, the infinitesimal action of G on M is given in terms of vector
fields X such that for any one-parameter subgroup of G generated by X,

Q. (2.6)

If the above action preserves the metric h it is an isometry of M and

J2?rA=0. (2.7)

Infinitesimal isometrics are generated by Killing vectors; a Killing vector on a
Kahler manifold which satisfies (2.6) is called a symplectic (or holomorphic)
Killing vector. To each element of the Lie algebra ^ of the Lie group G that acts
holomorphically on M there corresponds a holomorphic Killing vector field X on
M. With each symplectic Killing vector field X we associate a Hamilton function

/' on M, such that ixω = dfx . (2.8)

The Hamilton function fx is defined only up to an arbitrary constant. Equation
(2.8) defines a so-called momentum mapping Φ in the following way: For every
element of the Lie algebra ^ we have a function on M given by (2.8). With each
point m e M we associate an element Φ(nί) of the Lie co-algebra ^* :

,X>=/x(m). (2.9)

Variation with respect to m gives us a smooth mapping

Φ:M->^*. (2.10)

Furthermore, the action of G on M is called Poisson if

f[X'Y] = {fx,fγ} = ω(X,Y). (2.11)

For a Poisson action of G on M the following diagram commutes:

ίφ I*
or in other words the momentum mapping Φ is equivariant. In general the function
fίx> Y] differs from the Poisson bracket of fx and fγ defined in (2.11) by a constant

fίX'γι = {fx,fr} + C(X,Y). (2.12)

C(X, Y) is a bilinear, skew-symmetric function on the Lie algebra of G. Using the
Jacobi identity we obtain the following property:

C([JT, Y], Z) + C([Z, X],Y) + C([Y, Z], X) = 0. (2.13)

If we choose different integration constants for /*, then C(X, Y) is replaced by:

C'(X, Y) = C(X9 Y) + ρ(ίX, 7]), (2.14)
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where ρ is a linear function on the Lie algebra. C is called a two-dimensional
cocycle of the Lie algebra ̂ . The relation (2.14) defines equivalence classes: C and
C are in the same cohomology class when (2.14) holds. One can introduce the
cohomology group H2(^; R). For semi-simple, finite-dimensional Lie groups
H\9;1ϋ) = H2(9;ΊK) = Q. This means that all two-dimensional cocycles are
cohomologous, and that the action of G on M can always be chosen to be Poisson
just by adding constants to the Hamilton functions fx. The notion of the
momentum mapping is due to Souriau [16]. He also showed that the momentum
mapping Φ is equivariant with respect to a certain affϊne action of G on 0*.

It was first noticed by Bagger and Witten [4] that the non-vanishing of C(X, 7)
is an obstruction to the consistent gauging of holomorphic isometries on a Kahler
manifold. Hull et al. [7] gave an explicit method of calculating the obstructions
C(X , 7) in both the Kahler and hyperKahler cases.

Let us assume that our momentum mapping is equivariant. Consider a level set
of the momentum p:

Mp = {meM:Φ(m)=p}'9 pe<$*. (2.15)

In general, Mp is not G-invariant. Only the isotropy group of p in the co-adjoint
representation leaves Mp fixed. We call this subgroup GDGp. If p is a regular
value of Φ (so that Mp is a smooth submanifold of M) and if Gp is compact and acts
freely on Mp, then the orbit space:

M/=X/Gp (2-16)

is again a smooth Riemannian manifold of real dimension dimMp

= dimM — 2dimGp. The projection mapping Mp onto Mp

π:Mp-+Mp (2.17)

is a principal Gp-fϊberation. Moreover (see [8]), there exists a unique sym-
plectic 2-form ώp on Mp such that

π*ώp = ΐ*ω, (2.18)

where i is the inclusion mapping of Mp into M. The same pullback defines a unique
complex structure on Mp:

π*Jp = ΐ*J, (2.19)

and a unique Riemannian metric hp. It can easily be shown using the O'Neil
formulas that Jp is a co variant constant, Hermitian complex structure on (M p, /Γp)
(see [7]). Thus the reduced manifold Mp is not only symplectic but also Kahler.

As an illustrative example let us consider 2n-dimensional complex vector space
CM with a flat Hermitian metric

α = l,...,n (2.20)

and the Kahler 2-form . ,_., , „ ,~ Λ / l λω = ιdzΛAdzΛ. (2.21)

We take the following holomorphic £7(1) action on C":

φt(z) = e2πίtz; ίε[0,l). (2.22)
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It acts freely on Cπ\{0}. In standard coordinates, the holomorphic Killing vector
field has the form

Now, one can calculate the Hamilton function for this [/(I) action from (2.8):

fx(z,z) = zz. (2.24)

The p-momentum for the p Φ 0 level Mp is just S2n~ i. Gp = C/(l) and it acts on the
non-zero momentum level freely. The induced symplectic 2-form ώp

ώp = idz* Λ dz" - idz'z" Λ dzβzβ (2.25)

is just symplectic l/(n)-invariant 2-form on CP(n — 1) with the standard Fubini-

Study Kahler metric: Kp = (δ«β_z«^®dz* . (2.26)

The possibility of obtaining new Kahler metrics through the symplectic quotient
reduction is of rather little interest, since there are many other ways to generate
interesting examples of them. However, the above method has proven to be
extremely fruitful when generalized and applied to the hyperKahler case. Together
with the Legendre transform method it has led to the discovery of many new
hyperKahler metrics [9].

3. HyperKahler Quotients

In this section we review the generalization of the Marsden-Weinstein construc-
tion to hyperKahler manifolds with triholomorphic isometries. Let us recall that a
hyperKahler manifold is a riemannian manifold M with three independent
complex structures Jl; i = l,2, 3,

f J^-δVid + tίW, (3.1)

that are covariantly constant, and metric h that is Hermitian with respect to all
three complex structures. Consequently, M is a Kahler manifold with respect to
these three complex structures. Thus, as in the previous section, we can define three
closed, non-degenerate, symplectic 2-forms on M:

ωl(X9 Y) = h(JlX, Y) X, YE TM i = 1 , 2, 3 . (3.2)

Now, let us consider the group of isometries on M generated infinitesimally by
Killing vector fields. If the action of some subgroup G of the isometry group
preserves all three symplectic 2-forms then we call it a trisymplectic (or
triholomorphic) action. In terms of the triholomorphic Killing vector field on M
we can express the above statement in the following way:

<exω
l = Q V i . (3.3)

We can exactly follow the method of the previous section to calculate the Hamilton
functions of the Killing vector field X with respect to all three symplectic 2-forms
ω\ We can think of them as of three equivariant momentum mappings:

Φ':M-»^* (3.4)
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or, equivalently, we can consider mapping Φ:

Φ:M->^*(χ).R3. (3.5)

Furthermore, let us introduce the p'-momentum level for each mapping

Mpί

 d^f {m e M; Φί(m) = pi} pl e %* , (3.6)

and let us take

where p = (p1, p2, p3) e ̂ *® R3. If p is a regular value of the mapping (3.5) then Mp

is an algebraic smooth submanifold of M. Again, we can consider a subgroup of G
such that p*'s are stationary points in the co-adjoint representation Ad* p1 = p\ We
denote it, as before, Gp. Assuming that G^ is compact and that it acts freely on Mp

we can introduce a space of orbits Mp = Mp/Gp. Mp has a uniquely defined
quaternionic structure in terms of three closed 2-forms ώl

p given by (2.18) or in
terms of covariantly constant tensors Jj, as in (2.20). Consequently, Mp is a
hyperKahler manifold of real dimension dimM^dimM — 4dimGp (see [7]).

As an example (see [9]), we consider the (7(1) quotient of Hn^R4w. Since Hn

has an ίntegrable global quaternionic structure we can work with global
quaternionic coordinates {UΛ} α = 1, . . ., n. We take the standard flat metric on H" :

ds2=ΣdύΛ®du«, (3.7)
α

where ΰΛ is the quaternionic conjugate of wα. We introduce the H-valued 2-form ω,

ω=Σdύa/\du". (3.8)
α

For any two H-valued forms of degrees p and q we have

Ψ7~Θ = ( - ί)pqΘ Λ Ψ . (3.9)

We observe that ω is purely imaginary since ω + ώ = 0. The three quaternionic
components of ω, ω = ωiei correspond to the quaternionic structure in (3.2).
(e1, e2, e3) ά=(ij, k) are the imaginary quaternionic units. It is trivial to see that ω
is closed. Thus Hw with the metric (3.7) and the quaternionic structure (3.8) is a
trivial example of an hyperKahler manifold.

Now, let us consider the circle action on H" defined as follows :

φt(u) = e2nitu; ί6[0,l), (3.10)

where i is one of the quaternionic units. Infinitesimally, the above action is given by
the H-valued Killing vector field X:

X\u) = iu* (3.11)

which is triholomorphic.
Now, we want to calculate the Hamilton functions of this Killing vector field. It

is trivial to see that

(3.12)
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Table 1. HyperKahler quotients of flat spaces

Manifold M Quotient group Gp dimMp HyperKahler metric on Mp

H" [/(I)"'1 4 Multi-Eguchi-Hanson
gravitational instanton

JH^xR^S1 U(\γ-^ 4 Multi-Taub-NUT
gravitational instanton

ΊΆn 17(1) 4n-4 Calabi metrics on Γ*(CP(n-l))

H"" 1xR 3xS 1 t/(l) 4n-4 Lindstrόm-Rocek metrics :
new generalization
with Taubian infinity

Ή" U(i)m 4n-4m Multi-Calabi spaces

Hm(n+m) U(m) 4nm Lindstrόm-RoSek spaces:
hyperKahler metrics
on cotangent bundles
of complex Grassmannians

fx is now a quaternionic valued, purely imaginary function on M. We consider the
•p d= Pie* momentum level in HM:

Mp= ίt/αeHw: ΣίW = p; p = -p\. (3.13)

For p Φ 0 it is a (4n — 3)-dimensional algebraic submanifold of M. The circle action
is free on Mp so that Mp = Mp/U(ί) is well defined, smooth manifold with
hyperKahler metric. Topologically it is the cotangent bundle of complex
projective space Mp = T*(CP(n — 1)) and the hyperKahler metric on it is called the
Calabi metric. In 4 dimensions, the Calabi metric is simply the well known Eguchi-
Hanson gravitational instanton. A very large class of hyperKahler manifolds with
explicitly known metrics can be obtained as hyperKahler quotients of JR4n. In
Table 1 we list all such non-singular examples. They can be found in [9,10]. One
must specify the action of the quotient group Gp in such a way that it is
triholomorphic and it acts on the non-zero momentum level freely. As already
mentioned, only then is the orbit space a smooth Riemannian manifold.
Otherwise, in more general situations, one obtains manifold with singularities. If
these singularities arise due to finite isotropy groups, then the quotient leads to
interesting examples of F-manifolds or orbifolds with a hyperKahler metric
everywhere away from singular points. Table 1 does not contain a complete list of
hyperKahler spaces and hyperKahler metrics. It is, for instance, known that the
K3-surface admits a hyperKahler metric, but its explicit form has not been found
yet. Notice that all the manifolds listed-in Table 1 have Killing vectors.

4. Reduction of Quaternionic Kahler Manifolds

In this section we generalize the results presented in Sect. 3 to quaternionic Kahler
manifolds. Now, the situation is very different from the hyperKahler case because
quaternionic Kahler manifolds are not symplectic. The Marsden-Weinstein
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construction cannot be applied trivially, but we can generalize it in such a way that
a consistent reduction is possible. Let us start with some definitions and properties
of quaternionic Kahler manifolds.

A quaternionic Kahler manifold is in some sense a quaternion analogue of a
Kahler manifold. It has a quaternionic structure, i.e., three locally defined (1,1)
tensors that in each neighborhood l7(α)cAf satisfy the quaternionic algebra:

J^ojJ^-Md + ε1*^; i, j,fc = l,...,3. (4.1)

Transition functions Sl7(m) on U(a}nU(β)cM:

4o("0 = Sij(m)Jj

(β)(m) m e M (4.2)

are local S0(3) rotations. Thus we have a three-dimensional vector bundle *W of
endomorphisms over M. [From now on we shall omit the index (α), remembering
that all geometrical objects with S0(3) indices are defined locally on M.] If the
manifold M admits such a bundle we say that it is an almost quaternionic
manifold. Since we also have a metric h on M we can construct a bundle f of
2-forms ω'e Λ2M over M:

ω\X, Y) = h(JlX, Y) X, Ye TM. (4.3)
Then the 4-form:

β=Σ>£Λω< (4.4)
t

is defined globally on M. The manifold M is said to be quaternionic Kahler if the
4-form Ω is parallel with respect to the metric connection. This in turn implies that
Ω is also harmonic and closed:

FΩ = dΩ = AΩ = Q. (4.5)

Equation (4.5) implies the existence of three local 1-forms on M such that

VXF =-Σ£ijkaj(X)Jk ofe Λ 1 M (4.6)
j,k

or, equivalently, in terms of the 2-forms ω\

dω^-Σ^V'Λω*. (4.7)
j,k

The f-valued 1-form α is just the Sp(ί) part of the riemannian connection with the
Sp(l) curvature 2-form

F = dtf +1 £ sίjkaj Λ α f c. (4.8)
j.k

Due to (4.5), the holonomy group of a quaternionic Kahler manifold is a subgroup
of Sp(n)xSp(l) (n = dimM). All quaternionic Kahler manifolds of dimension
bigger than 4 are Einstein spaces, which implies that the Sp(ί) part of the
riemannian curvature 2-form is proportional to ω f:

FW(n + 2ΓW, (4.9)

where λ is the proportionality constant between the Ricci tensor and the metric
(see [17]).
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In 4 dimensions Eq. (4.5) is meaningless: the volume 4-form of any 4-manifold
is closed. Equation (4.9) then may be used to extend our definition of quaternionic
Kahler manifold. It restricts M to be an Einstein and self-dual manifold. Hitchin
[18] proved that there are only two such manifolds: HP(1) ̂  S4 and CP(2). As we
already mentioned, the restricted holonomy group of a quaternionic Kahler
manifold is a subgroup of Sp(ή) x Sp(l). This implies the factorization of the
Riemann curvature tensor $ into Sp(l) and Sp(ή) parts. But even more is true:
Alekseevskii [19] showed that 2ft, can be written in the following form:

£ = ̂ HP(») + «o> (4.10)

where λ is a constant proportional to the scalar curvature, &mP(n} is the curvature
tensor on quaternionic projective space, and J?0 is the Ricci-flat part of the Sp(ή)
curvature and behaves as a curvature tensor of a Riemannian manifold with the
holonomy group contained in Sp(ή). Such manifolds are exactly hyperKahler
manifolds discussed in the previous section. We clearly see that quaternionic
Kahler manifolds with zero scalar curvature are hyperKahler. In the language of
our 3-dimensional vector bundle i^9 that means that the Sp(l) curvature 2-form Fl

vanishes and the bundle i^ is trivial (the connection 1-form ω can be gauged
everywhere to zero). The global existence of the covariantly constant 2-forms ωl

follows, and according to the definition of Sect. 3, the manifold M is hyperKahler.
All homogeneous quaternionic Kahler manifolds were classified by Wolf [20]

and Alekseevskii [19, 21]. For Λ>0 they are compact symmetric spaces:

v / I7(n)xl7(2)' v ' SO(n)xSO(4)
(4.11)

of dimension 4n, n>2. For n = l, as was already mentioned, we have only two
cases:

X(ί) = CP(2), HP(1) - 7(1) - S4. (4.12)

Taking the isometry group to be an exceptional Lie group, we obtain five more
examples

G2 F4 E6 EΊ E8

St/(2)xSP(l)' Sp(3)xSp(l)' Sl7(6)xSp(l)' Spin(12)xSp(l)' E7

(4.13)

For λ<0 there are non-compact analogues of (4.11, 13) and non-symmetric
examples constructed by Alekseevskii [21] described by quaternionic represen-
tations of Clifford algebras, classified by Atiyah et al. [22]. Examples of non-
homogeneous quaternionic Kahler manifolds are not known. Among their
interesting properties, any quaternionic Kahler manifold has a naturally as-
sociated complex manifold or twistor space fibering over it [23]. It is also known
that any quaternionic Kahler manifold of dimension 8rc is spin. In general one
cannot introduce quaternionic coordinates on M. In the compact case, the
integrability condition is so restrictive that the only example of integrable
structure exists on HP(n). Although quaternionic Kahler manifolds are in general
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not symplectic or Kahler, it may happen that there is a covariantly constant
complex structure that is defined globally on M. This is, for instance, the case for
X(ή). But HP(tt) is not even almost complex.

Let us consider Γ( f\p(M)®i^} : the space of differential, exterior p-forms on M
with values in the bundle i/". The Sp(l) part of the riemannian connection on if
gives us a "covariant derivative" dv,

... . (4.14)

In local coordinates of i^ we can write

dvΘ{ = d& + Σ £°V A Θk , (4.1 5)
j,k

where Θ eΓ(/\p(M)®i/~) is an arbitrary p-form.
Let us introduce a Killing vector field X on M . To carry out a reduction similar

to that presented in the previous sections we first require X to be a quαternionic
Kahler Killing vector field, i.e. such that corresponding group action on M
preserves the 4-form Ω. This means that

&XΩ = 0. (4.16)

Notice that the group action GxM-*M does not have to preserve each ωl

separately. It is sufficient that

^xω^Σ^Vα/, (4.17)
M

where r7 are some functions locally defined on M [i.e. reΓ(Λ°(M)(χ)/^)].
Using X and ωl we can introduce 1 -forms βl defined locally on M

(4.18)

It is easy to see that with each quaternionic Kahler Killing vector field we can
associate a unique section ίx= Σfi'xωieΓ(f\Q(M)®ir) of V in the following
way [13]

p = d*fi;X. (4.19)

Let us apply dv to both sides of (4.19). We have

dv^ = dvdvf^x. (4.20)

One can, however, easily check that for any ΘeΓ(/\p(M}®i^\

dvdv& = Σ είjkFj Λ Θk , (4.21)
M

where Fl is the Sp(l)-curvature 2-form defined in (4.8). Now, using (4.9) we see that

dvdvθ{ = λ(n + 2) ~ 1 Σ εijkωj Λ Θk . (4.22)
j,k

We see that, unlike in the hyperKahler case, the non- vanishing Sp(l) curvature F
allows one to find the section f* uniquely in terms of ω', α', βl. Namely, using (4.19)
we have

dp + Σ βIJV A βk = λ(n + 2) ~ l Σ εijkωjfk' x . (4.23)
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Since the forms ωl are non-degenerate and pointwise linearly independent, we can
find a unique solution for fi; x. It can be given in terms of £?xω

l as follows. Let us
apply ix to both sides of (4.23). We obtain

iχd(ίxω
i}+ Σ^(i*tfp = λ(n + 2rlΣ'P(iχ<ι>i)fk' x. (4.24)

j,k j,k

Since ixd(ixω
i) = ίx<&xω

i, using (4.17) we get

Σ rjβk + Σ £ίjk(iχ(xj)βk = - λ(n + 2) ~ ί Σ έjkfj; xβk . (4.25)
j.k i,k j,k

Assuming that when X Φ 0 ix(tf ^ Jl X are pointwise linearly independent and non-
degenerate, we can write

(4.26)

where rl is the section of i^ defined in (4.17).
Now, let {ω^ω^ω3} be a local frame field for 1Γ\

{x = 2fi .xωiu (4.27)
ί=l

ίx is a well defined, locally S0(3) gauge invariant section of the bundle iΓ , uniquely
determined by the Killing vector field X. By analogy with the previous section we
can define a "momentum mapping" for the action of G on M. At every point m e M
with each quaternionic Kahler Killing vector field X we can associate a Lie co-
algebra 9*, ιΓ-valued element Φ^m),

Σ <Φ*(m), Xm>ωl = Σ fi; J"(mW . (4.28)
i i

Varying with respect to w e M we get a smooth mapping for the G-action,

(4.29)

Because of the uniqueness of the section f* the map X-*fx transforms naturally
under G and consequently our momentum mapping Φ is always G-equivariant.

Let us assume that

MO =f {m e M; Φ'(m) = 0, ΐ = 1 , 2, 3} (4.30)

is a smooth algebraic submanifold in M (i.e., the section Φ is transversal to the
zero-section of T^). Since Φ is G-equivariant and the zero-section is G-invariant it
follows that M0 is G-invariant submanifold in M. Thus, if G acts on M0 freely, then
one can introduce a quotient space

MG = M0/G. (4.31)

One can prove [1 3] that MG is again a quaternionic Kahler manifold with a unique
quaternionic Kahler structure defined by

M4-Mo-^MG, (4.32)

π*ΩG = *•*£. (4.33)

Notice that in the /ί->0 limit (where λ is a constant proportional to the scalar
curvature of M), the vector bundle ̂  trivializes to R3 and the reduction process
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described here approaches the one in the hyperKahler case. In the next section we
shall discuss some examples of this reduction in the case of quaternionic projective
space.

5. Quaternionic Reduction of HP(/ι) and Quaternionic Orbifolds

We want to illustrate the quaternionic reduction in the case of the geometry of
quaternionic projective space. Quaternionic projective space is in some sense a
model example of a quaternionic Kahler manifold. Moreover, it is the only
compact quaternionic Kahler manifold with an integrable quaternionic structure.
Thus it is possible to introduce standard quaternionic Fubini-Study coordinates
on HP(n).

Let {wα}α=1 ..... π+1 be the quaternionic global coordinates on H" + 1. We
introduce a S4"'+3'unit sphere in H"+1:

«+ 1

(5.1)

act on S4w+3 by multiplication from the right with unit quaternions v:

wα~wαv, vv-1. (5.2)

Quaternionic projective space HP(n) is defined as the Sp(l) quotient of S4π+3.
[S4n+ 3 is a Sp(ί) principle fiber bundle over HP(n).] The wα's are usually called the
homogeneous coordinates on JHP(n). One can also introduce inhomogeneous
coordinates inert under the action of Sp(l) (the Fubini-Study coordinates). It is,
however, more convenient to work with homogeneous coordinates for the
moment.

In terms of wα, the Sp(n-\- l)-in variant metric on JΆP(ή) is given,

ds2= - Σdΰ«®dua- -Σ(ΰ*du")®(dΰβuβ). (5.3)
C α C aβ

This metric, just as in the CP(n) case, is associated to the fundamental H-valued
2-form ω,

ω=-ΣdΰΛΛduΛ--Σ (ύ"du«) Λ (dΰβuβ) . (5.4)
C α C aξ

It is obvious that ω = — ώ, so that ω is purely imaginary, and we can write

(5.5)
i = l

where el = {i,j,k} are quaternionic units, c is just a constant equal to the
quaternionic sectional curvature. The H-valued Sp(l) 1-form α is given in
quaternionic coordinates,

, (5.6)
ί α

and is also purely imaginary.
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We can also write dv in quaternionic language. If Θ is an arbitrary but purely
imaginary H- valued p-form, then

<9Λα). (5.7)

The 2-form ω is indeed covariantly constant with respect to dv,

dFω = 0. (5.8)

The quaternionic Kahler 4-form Ω is then given by

. (5.9)
It is real and closed.

Now, let us consider a circle action on JHP(ri) defined by the following
infinitesimal transformations,

δλu" = iλu* = iλX*(u) λ e R , (5.10)

or globally, φ*^ = e2πu^ , f 6 [0, £) . (5.1 1)

Equation (5.10) defines a Killing vector since the above (7(1) is a subgroup of the
isometry group Sp(n + 1). Moreover, the action (5.11) preserves the 2-form ω, and
consequently the 4-form Ω. Hence, we have

&xΩ = &xh = &χω = Q, (5.12)

and X is a quaternionic Kahler Killing vector field on HP(rc). Notice that, exactly
as for complex projective geometry, where all isometries of CP(w) are holom-
orphic, here all isometries of HP(n) are quaternionic Kahler.

We can compute the section fx associated with the (7(1) action. fx is again an
H-valued function JΆP(n) _

fx(ΰ,u)=Σύ"ίu° = -fx. (5.13)
α

The zero momentum level set M0 is then defined by

f n + l I

MO =f { u* e HP(n) : Σ wαzwα = 0 k (5.14)
( «=ι J

M0 is a (4n — 3)-dimensional algebraic submanifold of JΆP(ή). It is (7(1 )-in variant
and the circle action on M0 is free [although it is obviously not free on HP(n)].
Hence, the orbit space is a smooth quaternionic Kahler manifold. One can easily
see that MG = M0/(7(l) is indeed the homogeneous symmetric space with isometry

(5.15)

We would like to mention that the above construction was first used by
Breitenlohner and Sohnius [24] to construct a locally N = 2 supersymmetric
coupling of non-linear σ-model with scalar fields parametrizing the complex Wolf
space X(n).

Another example of the quaternionic reduction is provided by the S (7(2) action
on MP(ή) given infinitesimally by the following transformations

(5.16)
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where {ei}i=lf2,3 = {ij,k} are quaternionic units. Naturally, we have

Lδ^δ^]ff=Σ^^. (5.17)

The corresponding sections of the vector bundle T "̂ are

/W!l(ΰ,u)=Σ «"«*«"• (5.18)
α

We introduce the zero level set for the action of SU(2),

M0

d^f {wαeHP(n): /(ί);X(w,w)-0, i = l,2,3}. (5.19)

The manifold M0 is an SU(2) invariant algebraic submanifold of HP(n). SU(2)
acts on MO freely. Consequently, MG = M0/SU(2) is a smooth riemannian
manifold with a unique quaternionic Kahler structure. Its isometry group is
S0(n +1) and it is a homogeneous space. In fact, it is again a Wolf space:

(s 2o)

These two cases of quaternionic Kahler reduction are the only ones we know
that give a smooth complete riemannian manifold with holonomy Sp(ri) x Sp(ί).
Unlike in the hyper Kahler case, it is rather difficult to find actions of isometrics
which are free on the "zero momentum level set" M0. It would be, however, very
interesting to look for such actions: especially on spaces with exceptional isometry
groups, such as those listed in (4.13). The question of the existence of non-
symmetric, compact, quaternionic Kahler manifolds with positive scalar curvature
is still open. It is known that in four dimensions one has only two examples of self-
dual Einstein metrics: CP2 and S4, each of which is a symmetric space. This result
is due to Hitchin [18]. But in dimension larger than four we do not know the
answer. If such spaces do indeed exist, one might expect that our method could be
used to construct examples.

Although we have not found any new examples of non-symmetric compact
quaternionic Kahler manifolds, our reduction does yield interesting examples of
compact quaternionic orbifolds with quaternionic Kahler metrics away from
singular points.

As before, we consider an S^action on the quaternionic projective space
HP(n), defined infinitesimally in terms of the Killing vector field X\u\

δλu* = iλ Σ TΛβuβ = iλXa(u), λ e R, (5.21)
β

where {wα}α=ι,...,«+ι are homogeneous coordinates on HP(n), i is one of the
quaternionic units, and Taβ is some real, symmetric matrix. (In the previous case
we took Tα/? = (Sα/?.) Let us notice that T"β can be always diagonalized by an
Sp(n + l) rotation of coordinates. We also assume that it is non-degenerate, i.e.,
detΓφO. The zero-momentum level set for the above S1-action is given by the
following constraints

ΛΛ
 n+1 1

M0=
f<u"εΊΆP(n):fx(ύ,u)= Σ ΰaiT«βuβ = Q>. (5.22)
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From the assumption that det Tφ 0, it can be easily shown that the Killing vector
field X"(u) in (5.21) is non-zero everywhere on M0. Thus the (7(l)-action on M0 is
locally free and the space of orbits Mo/S1 is an orbifold with a quaternionic Kahler
metric at all non-singular points (see [13]). Before we examine its structure, let us
recall some general facts about orbifolds.

Let G be a compact group of transformations of a riemannian manifold M.
Every orbit passing through a point m e M,

G(m) d= {m' e M : m' = gm, g e G} , (5.23)

is then a compact submanifold of M. In general G does not have to act freely on M
and we have different isotropy groups Hm,

(5.24)

at different points on M. When mx, w2 belong to the same orbit Hmι = gHm2g ~1 for
some g e G, i.e., HTOl and #m2 are conjugate. But it is, in general, not true for the
points that belong to the different orbits.

If G and M are compact there exists a principal isotropy group H C G such that

V m e M , 3#meG, HCgmHmg~l. (5.25)

The manifold M stratifies with respect to the group action. Two points belong to
the same stratum if their isotropy groups are conjugate. The stratum consisting of
orbits with the principal isotropy group is an open, dense submanifold in M [25,
26]. If all isotropy groups are conjugate to the principal one, there is only one
stratum and the orbit space M/G is again a compact, smooth, riemannian manifold
with a metric given by the riemannian submersion. In particular, such is the case
when G acts freely on M, i.e., the principal isotropy group is trivial. If, however,
there is more than one stratum the orbit space M/G cannot be given a smooth
riemannian structure.

If all isotropy groups are of the same dimension (i.e. they differ from the
principal one by some discrete subgroups) the quotient space is an orbifold. An
orbifold is always locally R"/Γ, where Γ is a discrete subgroup of 0(n). It can be
viewed as a riemannian manifold with singularities (or upon removal of the
singular set - as a riemannian manifold with an incomplete metric).

In some cases it is known how to repair these singularities by removing
singular points and gluing in manifolds with appropriate boundaries. This
construction is called blowing up or resolving singularities. One such interesting
example is K3 metric. As suggested by Page [27], it can be obtained by gluing in 16
Eguchi-Hanson metrics to the 4-dimensional torus with 16 isolated singularities.
In general, however, and this also includes our case, it is known how to repair these
singularities on orbifolds.

Now, we want to examine the singular set of our orbifold Mo/S1. We first
introduce the following inhomogeneous Fubini-Study coordinates on ΊΆP(ή):

(5.26)

l + Σ wV 1 + Σ
t = l
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where { w1}^ = !,...,„ are n quaternions and σ is a unit quaternion. Notice that (wl σ)
parametrize the S4π+3 sphere [i.e. the constraint (5.1) is solved]. The Sp(ί) action
on S4n+3 in terms of the new local coordinates reads

(w';σv). (5.27)

Thus {w ί} j=lf ...>π are inert under the Sp(ί) action and σ gets multiplied by a unit
quaternionic from the right. It is then the action of Sp(l) in the fiber. The projection

wί (5.28)

is the canonical projection from the bundle to the base space JΆP(n). Now, let us
describe S1 action on HP(n) in {wα} coordinates. We take the matrix Taβ in the
following form,

Γ=diag(l, ...,l,g/p); q,pεZ+; q<p, (5.29)

where q and p are relatively prime integers so that q/p is rational. Thus the global
action in the homogeneous coordinates may be written

where t e 0, - 1 for even (p + q) and ί e [0, p) for odd (p + g). First, let us assume

that w w + 1 φO, and let us go to the projective coordinates. Then (5.30) becomes

(5.31)

as the circle action in the bundle S4n+3. The above action projects to the base space
[i.e. HP(n)] as follows:

(pl(w) = e2nitwle ~P . (5.32)

The zero level set M0 in (5.22) is thus given by the following algebraic submanifold
inlHP(n):

Γ n a]
0= <rfeKP(n): Σ w'iw^-i-k (5.33)

Let us introduce the following notation:

(5.34)

where {iJ9ij} are three quaternionic units. (We simply split our quaternionic
coordinates into two complex pieces: one commuting with i and another
anticommuting.) As it is easy to see,

and (5.32) gives
P + Q

9»Kw±) = e±2*ί~V±. (5.36)
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Define

: w'+=0 Vί}. (5.37)

It is trivial to see that there is a discrete subgroup of S1 that acts as the isotropy
group on M0. This is the cyclic group

and

for <p + β) even. (5.39)

(Notice that w'_ = 0 is excluded from M0 by the constraints.) However, M ' is not
the only set with the non-trivial isotropy group. Let us consider the un+ 1 = 0 case,

KP(ri) 3 MO D M" =f { wα 6 M0 : w" + 1 = 0} . (5.40)

Again, S1 does not act freely on M" . There are cyclic subgroups Z2p and Zp for
(p + q) odd and even respectively that leave M" fixed. The action of the circle is free
outside M0\{M \jM"}. Thus our manifold for any q/p stratifies into three distinct
strata. Consequently, on the orbifold, there are two disjoint singular sets M'/S1

and M"/Sl of the real dimensions 2(n— 1) and 4(n — 2), respectively. M'/S1 has the
topology of CP(tt-l) and M'/S1 has the topology of the Wolf space X(n-2). In
four dimensions, for instance, the corresponding singular sets are S2 and a single
point. It strongly resembles the bolt and the nut of CP2. However, in the case of
CP2 those are only coordinate singularities, whereas in our orbifold case these are
real singular sets.

Now, we would like to know if our examples of riemannian, quaternionic
orbifolds are different than those which can be obtained as quotients of the Wolf
spaces X(n — 1) by finite groups. We shall demonstrate that such is indeed the case.
Let us begin with explicit computation of the metric at all regular points. The
Fubini-Study metric (5.2) in the projective coordinates {wl}ί=1 „ reads

n n

ά Σ dvFφdw' ά Σ
2-l^- -- -^

n
c i + Σ w V c i + Σ

ί=l i = l

The riemannian metric on the orbifold can be obtained by the riemannian
submersion, and one can easily see that

α2+ y •"'"''

ds2 = ds2--± — fF2, (5.42)
C ί n . Λ

I 1 + Σ wlw 1
V *=ι /

where

I / , " - Λ - 1 " . . . . _
F=-(α + Σ w'w' I Σ (dw'iw1 —w>κiw') = f, (5.43)
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and a = q/p. Thus

n n

. Σ (dw'ίw'— wlM/w1)® Σ (dwliwl — wlidwl)
j*2_ι-2 i=ι «=ι _^ ? (5^44)

α2+ ^ ̂  M [ ι + 2 w V )
v A v A '

^ = w+ + jw_ =f(φ'+, i]/ΣΦ'+φ1-) +jf(φ'~, i]/Σ ̂ V^- ) (5.45)

and
/

(5.46)

Here {^+,^-}i=ι,...,M-ι are local coordinates on the regular part of the orbifold
Ma (φl± < oo, $+φ+ φO). Let us take u = cΛ. The constraints (5.35) are solved and
the circle action is fixed.

Thus we obtain a one-parameter family of metrics 0(α). As pointed out in [12]
we can take the limit

. (5.47)
α->0

It turns out that 0(0) is the Calabi metric [28]. #(α) is a regular function of α e (0, 1].
Our orbifold picture makes sense only for rational α, but away from singular
points this does not matter. We want to know if #(α) is locally symmetric. Since we
have calculated it explicitly we could compute the Riemann curvature tensor and
check if it is parallel with respect to the metric connection. This is a straightforward
but rather tedious calculation. Instead we give a very simple argument that g(ά)
cannot be locally symmetric for an infinite number of values of the parameter α.
Since the metric #(α) is quaternionic Kahler, the Riemann curvature tensor ^?(α)
must be of the form

(̂α) = α^MF(π) + ̂ 0(α). (5.48)

Let us apply the Levi-Civita connection Fα to both sides of (5.48), and let us take
the value of V0i at some point m e Mα on the orbifold Mα?

0(α)L (5.49)

Now, assume that for any α 6 (0, 1] the metric #(α) on Mα is locally symmetric, i.e.

F"Λ(α)|m^/(α,m) = 0 (5.50)

as a function of α. We see that /(α, m) must be continuous and smooth for α e (0, 1].
Furthermore,

lim /(α, m) = lim F«Λ0(«)L = F Wab'L Φ 0 , (5.51)
α->0 α->0

because the Calabi metrics are not locally symmetric. Thus /(α, m) cannot be
identically zero and it is some non-vanishing function of α,

, (5.52)
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which is zero for α = 1 when we obtain the complex Wolf space X(n— 1) metric.
Consequently, /(α,m) = Pα^(α)|w must not vanish for infinitely many rational
parameters α. For these α the metric #(α) is not locally symmetric, and thus
according to the Berger theorem [29] the holonomy is Sp(ή) x Sp(l). This has a
very important consequence: For all α's for which the metric is not locally
symmetric, our orbifold is not a quotient of X(n— 1) by some discrete subgroup of

We do not know if the quaternionic riemannian orbifolds described in this
section are quotients of some compact quaternionic Kahler manifolds by a finite
group. If so, the manifolds in question would provide the first examples of
compact, quaternionic Kahler manifolds with not locally symmetric riemannian
metrics. In four dimensions the answer seems to be negative. Our orbifolds cannot
be globally obtained by such a quotient because there are only two self-dual and
Einstein metrics with positive scalar curvature: CP2 and S4 - both locally
symmetric and homogeneous [18]. Thus no quotients of CP2 or S4 can produce
non-symmetric metrics on resulting orbifolds. This indicates that our orbifolds are
only locally some manifolds divided by a discrete group. It would also be
interesting to see if orbifolds described by different parameters α = q/p have a
distinct geometry.

6. Conclusions

Our paper describes a new generalization of the old Marsden-Weinstein
symplectic reduction: The quaternionic reduction of quaternionic Kahler mani-
fold with isometrics. We compare our quotient with the hyperKahler quotient of
Hitchin et al. [7]. There are two main motivations for studying such quotients. The
first one comes from field theory of ΛΓ = 2 supersymmetric σ-models. The minimal
coupling of the Yang-Mills multiplets in N = 2 globally supersymmetric σ-models
can be very well understood from the point of view of the hyperKahler quotient of
hyperKahler manifolds by their triholomorphic isometries. Hull et al. [6] analyze
supersymmetric gauging of these models in great detail. Much less, however, is
understood in the case of N = 2 local supersymmetry. We believe that our
approach gives a new insight in that problem. We clearly see that the corre-
spondence between quaternionic and hyperKahler quotients, which allows for
seeing the latter as the Λ,-»0 scalar curvature limit of the former, is precisely the
correspondence between N = 2 local and global supersymmetric gaugings of a
σ-model manifold. The /ί-»0 limit is then just the flat superspace limit (or
decoupling limit) since the scalar curvature λ of a σ-model manifold must be
proportional to Newton's constant [3, 12].

The second motivation for our work was connected with the great success of
the hyperKahler reduction method in constructing new examples of hyperKahler
metrics. It is indeed remarkable that a great many hyperKahler metrics can be
obtained as simple quotients of H" by the unitary groups. Our quaternionic
reduction can be carried out in a very similar way. We saw that the Wolf spaces
X(ή) and Y(n) are such quotients of the model quaternionic Kahler manifold -
quaternionic protective space ΊΆP(ή). Unfortunately, it seems to be rather difficult
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to find appropriate regular actions of many different isometry groups which would
act freely on the zero level set of their momentum mappings. We were not able to
apply our reduction process to construct any new compact smooth riemannian
quaternionic Kahler manifold with non-symmetric metric. (All symmetric spaces
were classified by Wolf [20].) However, we have constructed examples of
quaternionic Kahler riemannian orbifolds with non-symmetric metrics at all
regular points. Not locally symmetric metric implies that our orbifolds are not the
Wolf spaces divided by a discrete group. We discussed the geometry of these
orbifolds, their metrics away from singular sets. In the α->0 limit the metric #(α)
approaches the Calabi metric. It would be interesting to see and understand this
limit from a topological point of view. Another important question is again
connected with σ-models. Is it, for instance, possible to define a consistent σ-model
action when the scalar σ-model fields are differentiable maps from coordinate
space to some orbifold rather than manifold? How can one extend the usual
definition to include singularities, and what, if any, is the significance of these
singularities in the physics of such a field theory? What is the change in geometry of
orbifolds upon renormalization? There are many more questions like these to be
answered. Dixon et al. [30] have shown that string propagation on orbifolds is
perfectly consistent even without the requirement that singularities could be
removed by blowing up. Since the string action can be viewed as a two-
dimensional σ-model, it is then a σ-model on an orbifold.

Lately it has been shown [31] that in two dimensions N = 4 local supersymme-
try allows for the coupling of both hyperKahler and quaternionic σ-models with
positive or negative scalar curvature. The action is conformally invariant and
corresponds to the SU(2) spinning string. It would also be interesting to see if one
can replace a smooth manifold by our riemannian quaternionic orbifold in this
case. We hope to address some of these problems in the feature.
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