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Abstract. The continuum limit of a cubic lattice of classical spins processing in
the magnetic field created by their closest neighbours is considered. Results
concerning existence, uniqueness and (for initially small spin deviation) long
time behaviour, are presented.

1. Introduction

A classical model for an isotropic ferromagnet is provided by a collection of three-
dimensional spin vectors with unit length and arbitrary directions, located at the
nodes of a d-dimensional cubic lattice. We denote by S; or S(x;) the (classical) spin
located at the point x;=n; h; + ... +n; h,;, where the n; ’s are integers, and h; the
mesh vector in the j- dlrecuon We assume that all the mesh vectors have the same
length h.

Concerning the dynamics, a simple hypothesis consists in assuming that each

d

spin S(x;) processes in the local magnetic field 3. S(x;+h;)+S(x;—h;) created by
=1
the closest neighbours. The equations of motiJon are written [1, 3, 10, 11]

s

g+ %)= JZS(x)/\(S(x +h)+S(x;—hy), 1.1)

where A denotes vectorial product and J the (positive) nearest neighbour
exchange coupling constant. Equation (1.1) can be rewritten:

Z_f' ()= él SCe) A S(x;+hy)— 25;l(fi) +8(x;—hy) 12)

with
t=h2t*/J .

When interested in phenomena at scales large compared to the lattice mesh size
and with time scale O(1/h?), we are led to consider the limit #—0 in Eq. (1.2).
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Taking formally the limit, we obtain the partial differential equation

BN
= =SA4S, (1.3)

where S=S(x, t) is now a three-dimensional continuous vector field. The purpose
of this paper is to justify this asymptotic procedure and to investigate the regularity
properties of the limit solution. We also consider the special case where the initial
conditions correspond to spins which are almost parallel. In that case, we show
that the solution is smooth in the large and that for t— + oo, the dynamics is
asymptotically linear in a stereographic representation.

2. Existence in the Large of Weak Solutions
We construct a solution of

o8

ot

S(x,0) = S,(x)

as the limit, when h tends to zero of sequences S,(x;) solutions of Eq. (1.2). We
define right and left approximations of the derivatives in the form

Su(x;+hy) — Si(x;)

=S A4S
2.1)

D S)(x;)= A (2.2a)
Dy Sy(x)= S"(xi)“i"(x"“hf) . (2.2b)
Vi=(D*1,...,D¥) is the right/left approximate gradient.
The Laplacian is approximated by
d d
ASy(x) = 21 D; (Dj Sp) (x)= Zl D; (D; Sp) (x)- (2.2¢)
i= i=

It is easily checked that for two scalar sequences {u,(x;)} and {v,(x;)}, we have
D; (uyvy) (x;) = uy(x;) Dj+ vu(x;)+D ; uy () vp(x; + hy)
=uy(X; +hy) D} v,(x;) + D} uy(x;) vy(x;)
=3 (up(x; + hy) +u(x;)) D J+ vR(x;)

+3D J+ () (Va6 +hy) +o4(x) (23)
and similar relations for D} (u,vy) (x;).
Furthermore
Ay =w, v, +V v, Vo, +V 1, - Vo, + Auypy, 2.4
and
D] uh(xi + h}) = D] uh(xi)
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For the sequences {u,(x,)} and {v,(x,)}, decaying fast enough when |x;]— + o0, the
discrete formula of integration by parts reads

xzi Up(x) - D uy(x) = — ; u(X;) - D vg(x;) 2.6)
We define the scalar product

(uh, vy =h* ; up(x) - vy(xy) 2.7

together with the norms
|uh|1%% = (tps Up)p » (2.8a)
lfa =l + % 107wl (28b

and

gy -+ = sip%%, (2.8¢)

which is the dual norm of |- |5 with respect to the I? scalar product (-,-),. For
given h>0, let {S,(x;, t)} be the unique sequence which satisfies for all time the
discrete equation (1.2) that we rewrite in the form:

oS -
—‘%i =S, A48,=D; (S, AD;S,)
2.9)
Su(x:, 0) = S(x,)
with |SP(x;)|=1. Multiplying Eq. (2.9) by S,, we get:
ilsh(x,-, =0, (2.10)
dt
which ensures that Sy(x;, f) remains of unit length.
Taking the scalar product in I with AS,, we obtain
4 5 p*s,p=0 2.11)
dt = j PhlLy = VYo .
and thus
d d
21 ID] Stz = -21 ID;" S} (2.13)
J= 1=
with S9(x;)=S,(x;, 0). Moreover, for any sequence {v,(x;)} in H}, we have
as, a o
FE Uy \ = i=21 (SyAD; Sy, D vp)y (2.14)
and consequently
‘@ <ID} %1z @15)
at ﬁ;x
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In order to pass to the limit h—0 in Eq. (2.9), we introduce the interpolation —
operators gy, p,, and ri™ [7]:

For any point x which belongs to the cell C; = {x;, x;+ h;} x ... x {x;, x; + h,} of
the lattice, we define the piecewise continuous function

gnSu(x) =5(xy) . (2.16)
We also define p,S, as a piecewise linear function with respect to each variable. In
the cell C,,
phSh(x) Sh(xl) + Z D Sh(xl) (X X,) +..
d
+ Z D D+ D]t-l Dd Sh(xt) (X xl)
l=k

j=1
J

+D+ Dd Sh( l) H (X xl) (217)

Finally,

S, (x) = 8,(x;) + Z D“S,,(x) - (x—x;)

j*m
+D{ .0y 1Dy ... DJ Sy(xy) H “(X~x;). (2.18)
l#m
We have the relation [7]
0
é‘;;phsh—rh )(D+S ) (2.19)

Let the initial data So(x) for Eq.(2.1) satisfy |Sq(x)|=1 and o eLz(lR") We
construct a sequence Sy such that p,SY—S, in HL (RY. From estlmates (2.10),
(2.13), and (2.15), we deduce that [9]:

% p,S, remains in a bounded set of L*(0, T, H '(RY),

PS> @nSps ™S, remain in a bounded set of L°(0, T, HL (IRY)).

As a consequence, there exists a subsequence S, such that p,S, converges strongly
in I2_ to S and thus almost everywhere; q,S, converges almost everywhere to the

. . 0 .
same limit. b—;p,,S,, converges to g—f in L*(0, T, H™ ') weak *.
Now, for any ve L*(0, T, H') and any sequence v, such that p,v, converges to v

in L*(0, T, H"), we have

0 _
sphvhé;phsh= jPhDiJr(Sh AD;S,) - prvy - (2.20)
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oS
When h—0, the left-hand side of Eq. (2.20) tends to <v, §>
0 oS\ .

To show that p,D;* (S, A D; S,) converges to a(S A g> in L*(0, T, H,})
weak *, we first notice that since S, A D; S, is in a bounded set of L*(0, T, 3,
4,(Sy AD; Sy, pu(Sp A D S,), and H™(S, A D;S,) converge to the same limit in
L0, T, I*) [7].

Now, _ _
4u(Su A Dy Sp) = quSu A Dy S
and
q,S,—S almost everywhere,
qxD; S,,—»gxE in L*(0,T,L[?) weak *[7].
Thus

oS ADFS)—SA S

ox. in L°(0, T, I?) weak *;

0 _ 0 oS\ . ., - .
a_xi”"(S“D‘ Sh)—>5x—i<S/\ E) in L*(0, T,H™") weak *.

1

Now, from (2.19)

. _ d _
D (S, AD; ;)= 7. PSuA DS,

and the right-hand side of Eq. (2.20) tends to Zi SA 8 in L*(0, T, Hy,¢)
sk i ax 6xi
weak *.
This leads to

Theorem 2.1. For any S, such that |So(x)|= 1 almost everywhere and g—i in [*(RY),
there exists for all time a weak solution of Egq.(2.1) with |S(x,t)|=1 almost
everywhere and g% e L*(R*, I*(R%). The solution is obtained as the (weak) limit
when h—0 of sequences {S,(x,)} satisfying the difference equation (2.9).

Remark. We do not know if the weak solution obtained in Theorem 2.1 is unique.

3. Local Existence of Smooth Solutions

Notations. W™P(IR%and H™(IR? denote the Sobolev space of (vectorial) functions
equipped with the usual norms

m

|telyym, o = <
0

[ulgm= (
0

% ID“uI”)”", (3.1a)

1A
A

A
A

m

> |D"u|2)1/2 . (3.1b)
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For the sequences {S,(x;)}, we define the A"-norm by

IShIﬁ;r=< 2 lﬁ"Shl%g)“z- (32

O=|k|sm
In Eq.(3.2) - .
Dk — D> ,

IaIZ:=k

where « is the multi index (o7, a7, ..., , ;). We use the notation

o= 3 o +o)
and
D= (D7) .0 (D) (33)

Theorem 3.1. For initial condition S(x) such that |Sy(x)|=1 and DS, in H™* *(R?)
(m>d/2), there exists a constant C such that on the time interval [0, T,[ with
T, =C/|DSg|fm+ 1, Eq. (2.1) has a unique solution of unit length S(x, t) with spatial
derivatives DS € L*(0, T, H™**(IR%). The solution satisfies

t
IDS(0)|m+ 1 S IDSgf2ms 1 €xp | IDS(@)[3 1, dr . (3.4)
(4]

Proof of Theorem 3.1. As in Sect. 2, we construct the solution of (2.1) as limits,
when h tends to zero of sequence {S,(x,)} satisfying

o5,

at = Sh A ZTSh
(3.5)
Su(x:, 0)=Sp(xy) .
We choose S7(x;) such that
PuSh—So (3.6)

and
ppD*S)—D*S, in I? forany k=1,...,m+1.

To obtain a priori estimates on S, and its “spatial derivatives,” we first
differentiate Eq. (3.5) with respect to ¢:

%S,

¥Ta =(Sy AAS) A AS,+S, A A(S, A AS)) . (3.7)
Using identity (2.4) and the fact that
IS4(xi, )l =ISp(x) =1, (33
Eqg. (3.7) is rewritten
625’,, A2 4G )2 12 CRAY R

+(S,-D; 48,)D;* S, +(S,- D7 AS,)D; S,
—(Sh.Di+ASh)Di+ASh—_(Sh.Di_Sh)Di_ASh‘ (3.9)
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One then deduces from (3.8) that
- d
Sy 4Sy=—3 3 (D' S,)*+(D; 84)%), (3.10)
i=1

S+ A28y = —3 A{(Di* S,)* +(D; $)*} —(4S,)> = D;* S - D 4S,—D; S, D; 4S,,
3.11)
and (see Appendix A.a for details)
2

(Sy- D" ) Di" ASy+ (S, Di Sy Dy A4S, = — %D: (DS (D 49)} . (3.12)
One also has (see Appendix A.b and A.c)

- - d
—(AS)?+(Sy- A%Sp)=— Y. {4D; D} (DS, D;S,)
i 1

ij=
+3D; Dy (D{" Sy D Sy)+D; Di (D Sy~ Dy Sy},
(3.13)
and
{Di+Dj+(Di_Sh'Dj_Sh)} Sh(xk)=Di+Dj+((Di_Sh'Dj_Sh)Sh)
+ D {(D;" Si(xi) - Dj Sylxi+ 1) Di" Sy(x)}
+{D{ D} $,(x0) - D} Sy(xi+hy)+Dj Si(xi) - ASy(xic+ 1)} Dif Sy(x,) » (3.14)

together with similar expressions for Df*D; (D S;- D S,).
Substituting in Eq. (3.9), and noticing that

(Zsh(xk"‘hj)'D,'JrS(xk))'i'(Sh(xk)'DfZSh(xk))=Dj+(Sh'ZSh)
=—3D/ (D $p)*+(D;7 S, (3.15)
with
1(S,- 48,) 48, + 1 D¥(S,- 4S,)DES;=4DE((S,- AS,)DFSy),  (3.16)
Eq. (3.9) is rewritten:
@_zé'h
ot*
+D; Dy [(D; S D} S)Si1+ 3 D; Dy [(D;'S,- Df S4) 8,1}

+Zzsh= Z —{%D;D;[(Di—sh'Dj_Sh)Sh]
iJ

+3D} {(Di_Sh -D; 8y) (e +h) Di S+ (DS, D; S,) (x,—h)) D;* S,D;” S,

(DS (DS
2

Dj_Sh} +3Df {(Di_Sh'Di_'-Sh) (xx+h)D{ S,

D S.)? +5.)?
( lSh) ;—(Dz Sh) DJ+Sh}

+h2D; {£((D;} D} 8,)* +(D; D} $,)>) D S,—5(D} S,)* D} 4S,} . (3.17)

+(D;* Sy D S;) (3 —hy) D; S),—
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To obtain a priori estimates on the “spatial derivatives” of S, one applies to both
sides of Eq. (3.17) the operator D*(|«|=m) and take the I? scalar product with

5“%. The left-hand side of the resulting equation reads:
1d(|,08 ~
2 dt(D o o +|D AShIL,%). (3.18)

In the right-hand side we write
(597 105,707 50 Gt hy i s, 0+
h

<05,

<|D*D; {(D; S, D; Sy) (i +h) D Sy}lzz D F

(3.19)

i

We then use Corollary (1.a) of Appendix B to obtain that the right-hand side of
(3.19) is bounded from above by

CUBS g 15728, +15S gz 15 (D7 8,D 5, (s Mg} [
L(3.20)
with
[D™*Y(D; S, D; Sy) (xi+ hy)lp2 < CIDS, | D™ *2S, 2. (3.21)
It follows that the left-hand side of Eq. (3.19) is bounded from above by
CIDS, 3 (D™ +28,)z 15"'% . (322)

Analogous results are obtained for similar terms appearing in (3.17). Let’s now
turn to the terms of the form

as,

<D"’D+D (D7 S, Dy S8, D

> = <‘D~4Di+D;— {(Di—Sh * DJ~Sh)Sh}
h

—D*D;} D} (D; S, D; S4)S), D* aas,,>
h

<D“D D/ (D;S,-D; S,,)S,,,D“aas") (3.23)
h

Using Corollary (1.b) of Appendix B, the first term of the right-hand side of
Eq. (3.23) is bounded by

C(IDNShILg,0 |§m+1(Di_Sh . Dj_Sh)]Lz + IDSh|L,1 |Dm+2Sh|L2)< ClDShIL‘Z? IDm+2S |L
(3.24)
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For the second term of right-hand side of Eq. (3.23), we write, using integration
by parts:

h"ZD“D*D*(D Sy-Dj s,,)<s,, D“5§”>

= —hY B*"D}(D; S, D; S,)D; (S,, Daa;,,)

=—h'Y. D*Df (D; S, D} Sh)<D S, - D“a;" (x,—hy)

+8,(x,) - D D* = O (xk)> (3.25)

The first term is similar to those already considered and is thus bounded from
above by

m O5n| (3.26)

CIDS B ID™* *S)lzz D" <t
Li

0
For the second term of (3.25) we use the fact that S, - ;; =0 by writing

oS oS, 05,
ot ot ot

Using Egs. (B.17) and (B.18) of Appendix B, its [?-norm is bounded by

~., 08 oS ~
D 4T |D'"“Sh|Lg), (328)
%4

—8,- D7 D* L =D; D“(S,, ) —S,-D7D*—t (3.27)

D ©
<| ShlL 7t h+

where

os,| -
—| =4Sz -
at Zf = ’ ShIL;.

For. the three last terms of Eq. (3.17), we use two factors h to decrease the
number of derivatives and thus obtain terms similar to those already bounded. For
example,

h*D; {(D; D S;)* D S} =D; {(D; Sy(x,+h))— D Sy(x))*Dj S, . (3.29)

~ ~ ~ 0S,|?

Putting together all the estimates, we finally obtain
+ DS |+ )
Hy

d 28, |?
dt
(3.30)

ot |
By using an extension to sequences of Sobolev-type inequalities (see
Appendix B, Proposition 2), it follows that, for m>d/2,

iy
d {|os, [
dt

2

ot

Y 2 ash N2 2
1BS, B b <122 4 1BS ) (3.31)
ry " Ot gy §
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Thus p,D* % and p,D**18, (0 < k<m) remain in a bounded set of L*(0, T;, [?)

with T, =(C,/|DSP|gm+1). For h<1, this time can be bounded from below by
C/|DS¢|%m+:. We then pass to the limit in Eq. (2.1).
To prove (3.3), we differentiate Eq. (2.1) with respect to ¢, and get (0;=09/0x;)

2
aa_ts + A28 = —(AS)2S+(S- AS)AS+(S- 42S)S+2(S- 0,45)0,S. (3.32)

Using that S is of unit length, we have
S A%S—(4S)? = — A((VS)*) —2(0,S - 6,45) —2(4S)?
= —2{(0;S - 0,48) + (0},S)* + (45)*}
=—2{0%(0,5 - 9jS)} S . (3.33)
Thus, Eq. (3.32) reads
?2s 2
e +4°S=—20,(0,S - 0;S)S—(V'S)* AS+2(S - 0,45) 0,8
= —20,{(0;S-0;8)S1+20,[(3;S-0;8)0,S]+2(4S-0;5)0;S
+04VS)?0;S—(VS)*AS+2(S - 0;45)0;S
= —20,[(3,S-9;,8)S]1+20,[(8,S - 9;5)0,51—20,(VS)*0,S) .

On this equation, one establishes estimates (3.3) using the same method we
used for the sequences. Uniqueness readily results from regularity.

4. The Special Case of Initially Quasiparallel Spins

a) The Equations of Motion in the Stereographic Representation. As long as it
exists, the solution S(x, t) remains on the sphere S? of radius 1. Therefore, we shall
rewrite the equation of motion using the stereographic representation of the unit
sphere S? on the plane x5 = 1. Each point S = (S, S,, S5) of the unit sphere [except
the south pole P=(0,0, —1)] has an image Q(«, f5, 1) obtained as the intersection
of the straight line PS with the plane x;=1. Defining

St=8,+iS, 4.1)
and
z=a+if, “4.2)
we have the relations
*= 4—:-%{7, (4.3)
4~z

3T A1
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Equation (2.1) is first rewritten

ost
ot
as,
ot
Substituting (4.3) in Egs. (4.4), we have

<_3§“:_4 z, zz,+zz,
o \|zZP+4 (lz|2+4)2

0S8, 2Z,+ 2z,

o 2P+
By elimination and substitution, we get

oz . as* 05,
3 8“'*‘”(‘@7“2@—:)

5 4 z? _
{ (l ’2+4)z(lzl + )—i—l [2+4Az— lZ|2+4AZ

- 1
+8Vz- V(l £ ) 222V2-V(W)}. (4.6)

. 1 . .
Computing V (m) and 4 <m>, we finally get for the representative point

—I(S3AS+_S AS3)
. (4.4)
=%(S+AS‘—S‘AS+).

@4.5)

H

z, the equation

0
ia—i +Az=F(z,Vz), @.7)
with
_2%(Vz)?
F(Z . VZ) = W .

b) Existence of Global Solutions. Equation (4.7) is a nonlinear Schrédinger
equation which for small z is essentially cubic. It however does not directly enter in
the framework considered by Klainerman and Ponce [6] and Shatah [14] because
F7_ is not real. We shall consider initial conditions such that z is “small.” In the
pr1m1t1ve variables, this means that initially the components S9(x) and S9(x) are
“small” and S9(x) is “close” to 1. In other words, the spins are initially almost
parallel.

Proposition 4.1. (See for example [6].) The solution of the linear Schrodinger
equation

5
ia-i+Az=O

4.8
2(x, 0)=2,(x) @
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Satisﬁes
d
T2 *

LR

z®lLa=C(1 +1) [Zolwnp.p (4.9)

1 1 2—p
or —+-=1,q9q=22,and N,>d——.
f P 4 oop

Proof. We recall elements of the proof for the sake of completeness. The solution
of (4.8) satisfies.
|2(0)| Lo < Ct ™2 |20|L, (4.10)

and
z()l2=1zolL2- (4.11)
By interpolation between L? and L®, we have

—-d _d

- 1 1
2O < CE 2 d)zgls for S+ =haz2. 4.12)
To avoid divergence at t=0, we write, using Sobolev embedding theorems
12()lLa = Colz(®)lwm.> = Cylzolwm.» = Cylzolwrsp. » (4.13)
with
1 1 m 1 1 N,—m 2—p
a>§'—'c—i‘ and '2—>E— pd or Np>dT

Estimate (4.9) follows from (4.12) and (4.13).
Lemma 4.1. For ze W*?(R%) and |z|;.. <1, then
for i=1 or 2 |D*S,<C|D*z|,, (k=0) (4.14)
ID*S3l. < CID*2l, (k2 1). (4.15)
Proof. This is a particular case of a result of Moser [12], (see also [4]).

Lemma 4.2. For ze H"*Nss*2(RHNAW™ %R (m=Nsy) the functional F
defined in (4.7) satisfies:

|F(Z, VZ)'Wm+N5/6+ 1,506 < C|Z|%Vm+ 1,6|VZ’Hm+N5/6+ 1. (416)
Proof. ()2
v
F(z, Vz)=2fz(l2%, 4.17)

ZVz- 0, Z 2 5 20,0510 50,
0.F(z, Vz)=2{ZZVZ oVz  0z(Vz)* z(Vz) (zalz+26lz)}.

|z|* +4 z|>+4 (212 +4)? (4.18)

Let us consider the first term of the right-hand side of (4.18) and write

ZVz-0,Vz\ miNss . o ZVz m iy
D"'+N5/6(—|Z|2+4 >= ‘20 C{n+N5/6D1<W>D Ns6=ig Wz, (4.19)
=



Continuum Limit 443

Using Holder inequalities, we have, for 0<j<m,

[ ZVz . z
D’ DmtNsis=ig .y <C Vz|m,6 |V O0iz|gm+n
<l2|2+4) al ZL5/6— |Ziz+4 Wm,sl ZIW ’5| azzlﬂ 5/6
(by Lemma 4.1)
éCIZI%Vm+1,5lVaiZle+N5/6, (4203)
and for j between m+1 and m+ N q:
A ZVz . [ ZVz
D/ DmtNs;s—ig.p <C\D| —— Vo,zlyn, -1.6
<|z|2+4> A <|z|2+4>m' s
(4.20b)
with
; zVz _ J i DF z i-kyy
D <___|Z§2+4 k‘éo Ci LW D z. 4.21)

The (m+1) first terms in the summation (4.21) are bounded from above in L*? by

z

¢ 2|2 +4

V2| g v - (4.22)
Wm,6

The (j —m) last terms in the summation (4.21) are bounded from above in L*? by

m+1 z
b (Izl2+4>

Putting together inequalities (4.19)—(4.23), one gets,

Vz)?
m+Nsis| 5 (
g <Z |z|2+4>

c [Z] = (4.23)

HNs/6-1

éClZ'%pm+1,s‘VZ|Wm+1+N5/6 (424)
L5/6

provided m= N> ?

Estimates for the other terms appearing in F or VF are similar.

Proposition 4.2. For initial data Sy =(S%, 89, 83) such that |So(x)| =1, |S|zm+2 and
|89 gm+ 2 < O With |SS — 1|gm+2 < 8, where m>d/2 and & sufficiently small, there exists
a finite interval [0, T,] such that

ISCx, =1,  VSeL*(0, T, H""'(R")

and
S, +iS,

w=2
2l Sy+1

L

During this time interval, S satisfies estimate (3.3).
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Proposition 4.3. In dimension d=2, and under the hypothesis

{IZO|Wm+1,6<5 (m>d/2)
|VSOlH'”x<5 m1;m+N5/6+1
the quantity

M(T)= sup (140" z(Olyms e (4.25)
St=Ty

remains bounded by a constant M, independent of T,.

Proof. From the above propositions, we deduce that the solution of (4.7) satisfies,
for te[0, T;]

t
12(O)lm+ 1.6 SCUA+8) " |zolymysis+ [ (1 +E—17) "3 |2(0)Zm+ 1.6 |V 2(T) | gm, d7T .
)

with (4.26)
[V 2(7)|gpm, < CIVS(2)|5m, < CIV S lggm, expi IDS()31, dt’. (4.27)
But
IDS()ir1.0 < Clz(Dff2.0 S Clz(t)fyme 1.6 for m+1> c—é
<CM(T,)2 (@ +1)"2453, (4.28)
and thus
exp {) IDS() s, wdt’ < exp(CM(T,)2) (g '+ 1)‘“/%/)
<exp(KM(T)?) if dz2. (4.29)

Substituting in (4.26), we obtain

. a3
M(T) <5 {1 ML) expkM T | o ) (l‘fr)u,s} . @30)

For d =2 this integral is uniformly bounded in ¢, and M(T;) satisfies the estimate:
M(T)) <6(1 + M(T,)? exp(KM(T,)?)) . 4.31)

Proceeding like in [6], one shows that M(T,) is uniformly bounded by a constant
M, provided ¢ is sufficiently small.

Theorem 4.1. In dimension d =2, for initial data S, such that |So(x)| =1, |SS|pm+ 1.
7d

and |8 ym+1.6<6 (m>d/2) and |VSo|gmy+1 <0 <m1 =m+ 5 + 1), there exists a

unique solution S of Eq. (2.1) of unit length, with S, and S, in L°(R*, W™* 1:6(R%)).
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Moreover,
VS()lym.s =0 43).

Proof. During the time [0, T;] where Theorem 3.1 holds, we have been using the
above propositions:

t
IVS(®)|gm, < CIVS®|gm, €XP {CI VS5 dT}
0
t
S CIVS°|gm, exp {C F17z(t)3 1. dr}
0

t
ZCIVS°|gm, €xp {CI [V z(T)|Zm.s dt}
0

< CIV SO, exp {CM2} < CS exp {CM2} 4.32)

and
CM,

[z(D] = A3

< 1. We then reapply

2

the local existence theorem to obtain the existence of a smooth solution satisfying
(3.3) and |z|;.<1 for time te[T, T,]. During this period of time, we have
M(t) £ M, with the same M, and

CM
Now, choose ¢ sufficiently small, such that —————o—m
(170

CM,
< F
‘ZlLoo= (1 +t)d/3 .

We reapply the local existence theorem to obtain the global solution.
¢) Long-Time Behaviour of the Solutions
Theorem 4.2. Under the hypothesis of Theorem 4.1, the solution of (4.7) exists for

— 00 <t< +00. Moreover, there exist two solutions z* of the linear Schrédinger
equation such that

|z—z%|gm,—0, where t—+oc0.

Proof. The existence of solutions — oo <t< + oo follows from changing ¢t to —t
and applying Theorem 4.1. Proceeding as in [14], we define z* and z~ by

O =20+ | Ug(t—1) F(z,V2) (@) d. (4.33)

where U, denotes the Green function of the linear Schrédinger equation,

T ot =) Fe Vol des T 1Pz, P2y (01,
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where
[F(z, V2)|gm, S Clzl3r1, 0 |V 2|gm, - 1 S Clz[Zrm,s [V zlgm, -1+ for m>d/6
C
< (—1—_-}‘:'7')—2‘1—/3— Sl:prSlg)ml—x (from 432)
C

<
= (1 +|’E|)2d/3 4 (434)
where C denotes various constant. Therefore
+ C
|2(8) = 2= ()] gm, = (3.35)

(1 + lt|)2d/3 -1

Finally, it is easily checked that z* satisfy the linear Schrddinger equation.

5. The One-Dimensional Problem

The one-dimensional problem is specific in the sense that it is completely
integrable. Lakshmanan et al. [8] interpreted the vector S as a unit vector tangent

2
to a curve having curvature k= 'S—il and torsion 7= %S . <% A 2—);) They
showed that the function
W(x, ) =r(x, t) expi | t(x, t) dx 5.1

satisfies the cubic Schrodinger equation which can be solved by inverse scattering
(Zakharov and Shabat [16]). A different approach was used by Takhajan [15] who
introduced the matrix

S;  S”
S= (S+ _Ss>, (5.2)
and put Eqg. (2.1) in the form of the Lax representation
oL
= i[L, M] (5.3)
with
0 0* 0SS 0

From the general local existence theorem proved in Sect. 3, we know that for
initial data S,(x) such that |Sy(x)|=1 and |V'Sy| € H™*}(IR) (m> %), there exists a
unique solution S of (1.3) with unit length and VSe L*([0, T,], H"*'), where
T, ~ C/|VSo|4m+1. Our aim in this section is to show that in one dimension the local
solution S can be continued for all time and that it is the limit as h—0 of the
solution S, of (1.2) with initial conditions Sy such that

PS> —So
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and
ppD*SO—D*S, in I? for k=1,...,m.

Proposition 5.1. In one dimension, the solution of (2.3) satisfies for all time
te[0,Ti],

2 4

=E,, (5.5)

L4

23

e 4

s
0x?

Qg
ot

QS’_
0x

L2
where E, is a constant.

Proof. We take the I? scalar product of Eq. (3.32) with S, and observe that

*S\ [0S as 3d.[(0S\*
ds,

dxo € H"(R), there exists

for all time T a unique solution of (2.3) with unit length such that gi— e L*(0, T, H™).

Theorem 5.1. For initial data Sy(x) with |So(x)|=1 and

Proof. It follows immediately from (5.5) that

os|? 0%S|? 0S,[® |98
- i < = -
‘(% 12 5%z 12 =IE2'+C’ 0x |12 0x?|2’
and thus
2
a—S and _6_.2 bounded uniformly in [0, T;].
5t L2 5x L2

Differentiating m times Eq. (2.3), we can see easily that all the derivatives of § are
bounded independently of T;. This enables us to apply repeatedly the local
existence theorem and prove global existence. Uniqueness of solutions results from
regularity properties.

Theorem 5.2. In dimension d=1, for any T >0, the solution S, of the approximate
equation (1.2) converges in L*(0, T, H') to the solution S of Eq. (1.3), with initial
conditions satisfying

Ptho)—’So in
pD* S0 - D*S,

Proof. The difference u,(x;)=S(x;)—S,(x;) defined at the points of the lattice
satisfies:

I for h=1,...m.

2 () =5 A ASCE) + Si(8) A Bt (i) + (eI A A= D SCx) . (5.7

Taking the I7 scalar product with u,, one obtains

1d

3 d luplZz=(Sy A Auy, u)y+ Sy A (A= D) S, uy),, (5.8)
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where
(S A Ay, )y = (DJrS,l AD%u, M)
h
<ID " SRlz lunlzse ID T uplpz < 1D SRz lunlfy,, (5.9a)
and
S(SuA A =D)S, u)y Sz 1(4— DSz (5.9b)
Taking the I? scalar of Eq. (5.7) with Au,, one obtains
1 ~ ~ o~
S SID = A 48, At (S A (A= DS, By, (5100)

(uy A A4S, Auy)y= —5 (D" (up A D" uy) + D™ (uy A D)), 4S),
=3, AD u,, D™ A4S),+ % (u, D*u,, DT A4S),  (5.10b)
(unAD "y, D™ AS), < luylf: D~ A8z
From Proposition 5.1, we have for all T

sup |D~AS|z <x(T).
T

0sts

Putting together Eq. (5.8), Eq. (5.10), we have for any te [0, T1],
d o
2 i SC1 (Dl + 7 (4—D)Sl),

V4 —Z)Slzg < Ch*D%S|;. £ Ch*k(T).
Thus

Ch*c,(T)

Cor(T) (exp(C,x(T)t)—1).

lunliis < luiligg exp(Cyre(TH ) +

When h—0, |u,|z: —0.

Appendix A
In this appendix, we give some details on the obtention of Egs. (3.12)—(3.14).
(a) We first show that
E=(S,-D; S)D; 4S,+(S,- Dj S)D; A4S, = — %ZD; {(Df S,)*Dj 48,}.
(A1)
In the following, we shall drop the indices h for simplicity. From |S(x;)| =1, we

deduce

S-D}S=— g(z);S)2 : (A2)
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and

Y JCE
S-DyS=3(D; 5,
(S-D} $)D} AS=— g(D}‘ 8)* Dj s
—— 2 {D; [(D} S) (x)) AS(xi+hy)1—Dj (D} $)X(x) AS(xy)}
(S-D; S)D; As= S{D; [(D] S)? (x) AS(x;—hy)]=Dj (D} $)* (x)) AS(x)}

= g {D; [(D} 5)* (x) 4S(x)1—D; (D $)* (x) AS(x)} . (A3)

This leads to (A.1).
(b) To prove Eq. (3.13), one first writes:

—(48)*+8,,- 428, =3 A((D;* S)* +(D; 5)*)
—2(48)2— (DS - D AS)—(D; S - D 4S), (A4)
with
LA((D;8)? + (D7 8)*)=(D;*S - D;t AS)+(D; S - D; AS)
+ X {3(Df Df8)*+3(D; D; $)*+(D{ Dj 8)*},(A.S)
i,J
and checks that
>D;'Dj (D7 S-D; S)=(4S)*+ X (D;*'S- D 4S)+ . (D} Di )*,
i,j i i,j
> D; D; (D;'S-D; S)=(4S)*+ X.(D; S-D; AS)+ ¥.(D; D S)*, (A.6)
i,j i i,j
> DD} (D;S- D} S)=(4S)*+ 3. (D; - D; AS)
i,Jj i
+ XD} S-Di AS+ ¥ (Di D; S)2.
i ij

Combining (A.4)—(A.6) one obtains Eq. (3.13).
(c) To prove Eq. (3.14) one computes D;"D;"[(D;S-D; §)S] and obtains

isz;D; [(D; S-Dj S)S1=D; {D; (D; S-D; S)S+(D; S(x;+h,)- Dif S(x))D;t S}
=D} D;(D;S-D; S)S+D; (D;*S(x) - D; SGo,+h))D;t S
+D; (D7 S(x+h) - DF S(x))Dj S+ (Dit S(x+hy) - Dif (i +h)) D D S
=D} D} (D7 S-D; S)S +{D; (Di" S(x;) - Dj S(x,+hy)) D S}
+{AS(x,+h,) - D} S(x)+ Dt S(x,+hy) - D D} S(x)} D} S . (A7)
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In the last expression

+ (Di+ S)Z

D{ S(x;+hj)- D D} S(x;)=D; 5

+ g(Di* D} S)*. (AB)
Similarly,

>DiD; [(D;"S-D;S)S1=D; {D; (D;'S-D; S)S+(D;"S(x;,—h;)- D; S(x,))D; S}
J

=D; Dj (D}S-D;S)S+D; (D7 S(x;) D S(x,—hy))D; S

+D; (D;f S(x,—h;)- Dy S(x))D; S+ (D S(x,—h,) - Dj S(x, +h))D; D; S
=D; D; (D;}*S-Dj S)S+{D; (D7 S(x,)- D; S(x,—k;))D; S}

+{48(x,—h)- Dy S(x) + D7 S(x;,—h;)- D D; S(x,)} Dy S, (A.9)

with
- - - h
and

D/ D;[(D;S-DjS)S1=D;"{D; (D;S-D;’S)S+(D; S(x,—h;)- D; S(x;))D; S}
=D;'D;(D;"S- D} $)S+D; (D;S(x,)- Df S(x,,+h)))D;*S
+D; (D S(x,—h))- D; S(x,)) D S+ (D;" S(x,,—h;) - D; (x,+ h)) D D; S
=D;D;(D;S-D;S)S+D;{(DS(x;)- D S(x,,+ h;)) D;" S}

+{48(x,—h,) - Dj S(x)+ D} S(x, —h;) - D D] S(x,)} D’ S (A.11)

with
D} S(x,—h))- D D; S(x,)=D; (D "+ZS)2 - g(D;"Dj‘ 5). (A12)

Also

D;'D;[(D; S-D;j)S1=D; D [(D; S-D})S]
=D; {D{ (D7 S-Dj S)S+(Dj S(x;) - Dj S(x; +h))D;* S}
=D; D} (D;S-Dj S)S+D; (D S(x,—h;)- D; S(x;))D;j S
+D; (D S(x,) - Df S(x,,+h))D;} S+ (D S(x,,—h;) - Dj S(x, +h))Dj D S
=D; D} (D;S- D} S)S+D; {(D; S(x,—h,)- Dj (x,))Dj S}
+{(D} S(x;) - AS(x,.+hy)) +(D; D S(x) - D S(xi+h))} Di* S (A.13)

with

h
D; D S(x;)- Dy S(x,,+h)=3D; (D; S)*+ 3 (Di*D; 8)>. (A.14)
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Putting together (A.7)—(A.14), we obtain:
iZj%Di‘“Df [(D;S-D;8)S] +%Di"Dj‘ [(D?S- DfS)S] +Di+Dj‘ [(D;S- Dj*S)S]
= {%D;‘D}L(D,-_S ‘D S)+ %D{D;(D?S . Dj+S)+D,-+Dj‘(Di‘S . DJ?LS)}S
+%Dj+{(Di—S -Dj 8) (x,+h)D;S+(D; S-D;" S) (x,,—h;))D; S}
+%Dj— {(D:‘S * DJ+S) (xk—hi)Di_S+ (Di_S * DJ+S) (xk+hl)D,+S}
+(AS(x;,+h)) - Df S(x)) D} S+ ((AS(x,—h;)- D; S(x,))D; S
+ %D}L ((D}S)*+(D; S)Z)DJ-J’S + ;{-Dj_ ((D}S)*+(D;7 S)Z)Dj_S
h h
+ Z(D;’D;rS)sz*S— Z(Di+DJTS)2Dj_S+ E(D{D;LS)ZD;’S
h _
———2~(D,- D; S)"Dj S. (A.15)

In the last expression,
(D Df S)*DfS— (D D;8)*D; S
=(D;" D $)* (x) D} S(x) —(D;" D $)* (xi, — ) D S, — )
=hD; {(D{ D $)*D; S} (A.16)
and

(D; D} S)>D;} S—(D; D; S)*D; S=hD; {(D; D} S)*D;}S}.  (A17)

Appendix B

Discrete versions of Sobolev type inequalities were established by Ladysenskaya
[7] using interpolation procedures. She proved in particular

1 1 1
[fulzg= le;.lw;,qg =, (B.1)
One also has \
|fulze < CLA Wi aq>d. (B.2)
The idea of the proof is to show the “equivalence” of the norms
0
5x—iphfh gy and D filz

and apply the Sobolev Gagliardo-Nirenberg inequalities to the function p, f;.
As a consequence, we have (by induction)

Ll L°°—C|fth'" for m>dj2. (B.3)

Another embedding property we need we is

D filzp < Clfulkz 7™ 1D™ ity (B4)
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with
1 1 i\ 1
—=i—+<1—i>-. (B.5)
p mr m/q

The proof of (B.4) is similar to that given by Nirenberg [13] (see also Friedman
[2]) in the case of the functions. We shall thus only reformulate a lemma which
requires some adjustments.

Lemma. Any one-dimensional sequence f={f;}=*% satisfies
+N " . p/r
Z f;+1 ]; Cp(Nh) < Z j;‘)-l 2.{l+f;—l >
i=K iSK h
K+N r/q
+C”(Nh)_“+"_"/"< > Ifi|q> , (B.6)
i=K

where C is a numerical constant independent of N.
Proof. We write (I<k)
Sesr = h=lfer 1= ) == fe- DI+ i fim ) — (i1 — fi- )1+ -
N1 =D == f-D1+fi—fi-s (B.7)
(and similar equality when [> k).

With the notations defined in Sect. 2, Eq. (B.7) reads:

k ~

(D¥fh=h ; Af)i+D . (B.8)
. . N 3N
Writing Eq. (B.8) for any [ between [, + 1 and [, with K <l; <K + T and K + e

< I, <N and summing the resulting equations, one obtains:
=) (O == 1)k 5 (At T (®9)

1 k— 1 . .
Since |I, — ;| > N/2, we have
K+N 2 +

O sk 3 A+ 2D, (B.10)

Summing for all [; with K<, <K+ % and all [, with K+ 3TN <L=K+N,

one gets
2 +N K+N
(Nh> |(D+f)kl<<Nh> BT ADI+s 5 U, (B.11)

and thus

() e () (2 an) + 5 (5 )}
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By Hoélder inequality

K+N 1-1/K+N 1/q
2 IfIsN q(_Z Iﬁ!q) ; (B.13)
i=K i=K
K+N b4 p(l_i) K+N pla
h"<i=ZK lﬁ-l) s(hNy - ¢ <h = lﬁl“) ; (B.14)
K+N P p(1—l) K+N plr
h"<i=ZK I(Af)il> s(hN) " (h i=2K1I(Af)il’> (B.15)

e . 2 1 1
Substituting in (B.12) and assuming on k, (K £k <N +K), we have <; = —é ;)

K+N K+N plr
h L DNl <C, {(Nh)1 *”“”"(h 2 lAf )il’>
K+N plq
+(Nh) 1-p p/r<hi§K |f1|q> } (B‘16)

This lemma is used to prove (B.4)in the case d=1,j=1, and m =2. Extension to
dimension d > 1is done by applying the previous result to each D f treating all the
indices i+ k as parameters. We then sum all these inequalities and use Holder
inequalities. Extension to other values of j and m satisfying (B.5) is done by
induction.

As consequences of (B.4) we have the following inequalities used in Sect. 3:

ID*(fignzp < CU ez 1D™lzz + gl 1D 112), (B17)
and
\D*(fign) — JuD%912; < CUD filzg 1D™ iz + 94l D™ il 2) » (B.18)

where a=(ay, ..., ;) is the multi-index with |«|=m.
The proof of (B.17) and (B.18) is analogous to that given in the case of functions
by Moser [12] and Klainerman and Majda [5].

Acknowledgements. We thank P. Constantine, S. Kamin, S. Klainerman, M. Livcic, and A.
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