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Abstract. We investigate invariant circles for a one-parameter family of
piecewise linear twist homeomorphisms of the annulus. We show that
invariant circles of all types and rotation numbers occur and we classify them
into families. We compute parameter ranges in which there are no invariant
circles.

1. Introduction

We investigate invariant circles for the one-parameter family /ιk(fceR) of
homeomorphisms of the annulus S1 x R defined by

hk(x, y) = (x + y + kg(x), y + kg(x)) , (*)

where g S^R is the piecewise linear function g(x) = \x — 1/2| — 1/4, and Sl is
parametrised as R/ZL

We call hk the piecewise linear standard map since it is obtained from the
standard map

ί k k \
sk(x,y) = I x + y + -cos2πx, y+ --cos2πx 1

by replacing cos2πx by its crudest piecewise linear approximation.
For any continuous function g the homeomorphism hk defined by (*) satisfies

the twist condition, that is to say, if Kk denotes the lift of hk to the universal cover R
x R of the annulus and p^ denotes the projection of R x R onto its first factor, then

yι) whenever y2> y1 .

Furthermore such an hk preserves area, and if

ίg(x)dx = 0
o
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(which it does for our piecewise linear function g) then hk has zero flux, that is it
transports a net area of zero across S1 x {0} (or equivalently across any other circle
homotopic to it). The piecewise linear standard map is the simplest possible area-
preserving piecewise linear twist homeomorphism of zero flux.

Area-preserving twist homeomorphisms h of the annulus arise in the study of
dynamical systems [3]. A (rotational) invariant circle for h is a circle C embedded in
S1 x ]R which wraps once around the S1 factor and which satisfies h(C) = C. If h
preserves orientation any such invariant circle is a barrier to motion under h; zero
flux is an obvious necessary condition for the existence of such a circle.

Kolmogorov, Arnold, and Moser [1,10] proved some remarkable results
about the existence of invariant circles for C00 area-preserving twist homeomor-
phisms of zero flux. They showed that given any "sufficiently irrational" real number
v, any such C°° homeomorphism h close to the simple shear (x, y)-+(x + y, y) has an
invariant circle of rotation number v. Russmann [11] and Herman [6] have
extended these results to C3+ε in place of C00 and Herman [6] has shown how
KAM theory fails for C3 ~ε homeomorphisms. Numerical investigation by Greene
[4], Percival [8], and others has mainly centred on the standard map and
questions of for what range of k e R. there exist invariant circles, and of what
rotation numbers.

A priori there is no reason why the piecewise linear standard map hk should
have invariant circles for any k other than 0. Indeed Herman [6] has given an
example of a sequence of piecewise linear twist homeomorphisms tending to the
simple shear, each of which has no invariant circles. However the theory of Aubry
[2], Mather [9], and Katok [7] shows that for any twist homeomorphism of zero
flux there exist periodic orbits of all possible rational rotation numbers and
invariant Cantor sets of all possible irrational rotation numbers. With such a
simple map as the piecewise linear standard map hk it is perhaps not surprising that
there should be many values of k for which these invariant sets extend to invariant
circles. We show that this is indeed so. We prove the existence of invariant circles of
both types (conjugate and non-conjugate to rotations) for all rotation numbers,
and we classify them into families. We also compute "windows" in the parameter
range where there are no invariant circles whatever. Examples of invariant circles
conjugate to rational rotations were first found by Wojtkowski [12,13], who also
carried out a detailed investigation of the mixing properties of hk.

Our results have features in common with numerical results obtained by
Henon and Wisdom [5] for the oval billiard, a system which corresponds to a
piecewise smooth twist homeomorphism of the annulus. For instance, with certain
notable exceptions (see Sect. 6), our invariant circles contain a cancellation orbit,
that is to say an orbit which hits both the lines where the derivative of the
homeomorphism has discontinuities, and we show that cancellation orbits of any
given class extend to invariant circles for a Cantor set of parameter values.

2. Summary of Results

If C is an invariant circle for a homeomorphism h of the annulus, the rotation
number of h\c is defined to be

v = lim (p 1 h
n(x, y) — x)/n,

n-» ± oo
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where (x, y) is any point of C and (x, y) is any lift of (x, y) to ̂  x ^?. It is a standard
result that this number is independent of the choice of (x, y) and of whether the
limit is taken as n-*oo or n-> — oo.

Invariant circles with rational rotation number can be of two types [7],
pointwise periodic (h\c conjugate to a rotation of a circle), and non-periodic (h\c not
conjugate to a rotation). The second type must still contain at least one periodic
orbit (see [7]). In Sect. 3 we prove, for both types

Proposition 1. For the piecewίse linear standard map hk any invariant circle which has
rational rotation number must contain a cancellation orbit, that is an orbit meeting
both lines x = Q and x = 1/2, where the derivative of hk is discontinuous. The circle is
periodic if and only if the cancellation orbit is periodic.

We can now label each periodic invariant circle by the number of iterations of
hk required to get from x = 0 to x = 1/2 and the number required to get from x = 1/2
to x = 1. For the circle illustrated in Fig. 1 these numbers are 1 and 2.

In Sect. 4 we investigate in detail invariant circles containing a cancellation
orbit taking 1 step from x = 0 to x = 1/2. By a trivial calculation these are the orbits
passing through x = l/2, y = l/2. We prove

Proposition 2. (i) For each rational 0 < v < 1/2 there exists a value kv of k for which
hk has a periodic invariant circle of rotation number v, through (1/2, 1/2), and a value
k( of k for which it has a non-periodic circle of rotation number v, through (1/2, 1/2).

(ii) For each irrational 0 < v < 1/2 there exists a value kv of k for which hk has an
invariant circle of rotation number v, through (1/2, 1/2).

We conjecture that Proposition 2 can be strengthened to say that the values fev

and k'v are unique and that for the values kv oϊk the restriction oίhk to the invariant
circle is conjugate to a rotation. The latter is true for rational v; for irrational v it is
equivalent to the cancellation orbit being dense in the circle.

The correspondence between v and fcv and k'v is illustrated in Fig. 2. The graph is
a Cantor set, with a gap at each rational v, the gap having left-hand end point k = k'v
and right-hand end point k = kv. For k in one of these gaps the orbit of (1/2,1/2) is
no longer ordered and therefore cannot extend to an invariant circle. The fcv for
irrational v correspond to accumulation points of the rational ones. Henon and
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Fig. 2. Invariant circles through (1/2,1/2); the graph is a Cantor set but only the main gaps are
shown

Wisdom [5] obtain a similar Cantor set for a fixed type of cancellation orbit to
extend to an invariant circle, in the oval billiard problem. In their piecewise
smooth but not piecewise linear situation there is presumably an excluded interval
of rotation numbers around each rational v.

In Sect. 5 we examine some other families of invariant circles containing
cancellation orbits with a specified number of steps (and circuits of S1) from x = 0
to x = l/2 or vice versa. Some of these families are illustrated in Fig. 3. By
Proposition 1 every circle with rational v lies in such a family, and in two such
families if it is periodic. We conjecture that every circle with irrational v occurs at
an accumulation point of the (fc, v) diagram of circles with rational v.

In Sect. 6 we consider the special case k = 4/3 and we prove

Proposition 3. (i) For each rational 0<v^l/2, /ι4/3 has two invariant circles of
rotation number v, both non-periodic, but intersecting in a periodic orbit.

(ii) For each irrational 0 < v < 1/2, /ι4/3 has an invariant circle of rotation number
v. This circle does not contain a cancellation orbit and /ι4/3 is not conjugate to a
rotation on it.

(iii) The island chains contained by intersecting pairs of rational invariant
circles (i) together occupy full measure on the annulus.

The orbits for k = 4/3 are illustrated in Fig. 4. The picture is remarkable in that
there is an apparent regularity for fc = 4/3. Every point on the annulus has a well-
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defined rotation number since it is either in an island or on an irrational circle. In
this respect k = 4/3 resembles k = 0 but with the rational circles blown up from zero
measure to full measure.

In Sect. 7 we code orbits by bi-infinite words, listing whether successive points
of the orbit fall right or left of x = l/2 and we use criteria based on the
corresponding tangent map to prove

Proposition 4. There are no invariant circles for hk when k>4/3 or when
0.918<fc<l.

For k = 0.918 (or more precisely k the root of 2/c3 -f 4k2 - k - 4 = 0) and for k = 1
there are invariant circles, so these bounds are best possible. We conjecture that
there are similar "windows" arbitrarily close to k = 0.

Finally in Sect. 8 we show how to generalise our results to the case where the
two intervals on S1 on which g is linear are allowed to differ in length, and we
discuss the possibility of generalisation to maps with several linear segments.

3. Cancellation Orbits in Invariant Circles

In this section we prove Proposition 1.
We first consider the case when the invariant circle C is (pointwise) periodic of

rotation number p/q and period q. Let A and B be the points where C cuts x = 0 and
x = 1/2. Suppose, for a contradiction, that the orbits of A and B are disjoint. Any
invariant circle projects one to one onto S1 [6] and so hk preserves the S1 order on
C. Hence between any two adjacent points on the orbit of A there is a point on the
orbit of B and vice versa. Indeed if these 2q alternating points of the two orbits are
joined by straight line segments we obtain a piecewise linear circle C' which is also
periodic. Let A and A" be the points on the orbit of A closest to B on either side of
B. The straight line A!A' is bent by hk since AΆ" crosses x = 1/2. As hk preserves
area we deduce that the triangles A, B, A' and hk(A'\ hk(B\ hk(A") have different
areas. However h\~v takes the second triangle to the first (without bending) and
preserves area, so we have a contradiction.

We next consider the case where C is a non-periodic invariant circle of rotation
number p/q. Again let A and B be the points where C cuts x = ΰ and x = 1/2 and
suppose their orbits are disjoint, for a contradiction. The possibility that A is
periodic is ruled out by the same argument as above, this time applied to the area
bounded by the straight line AΆ" and the part of C between A and A''. lϊA is non-
periodic the sequence A, h%(A),..., hk

q(A),... tends to a periodic point Q as n-> oo
[7]. In a sufficiently small neighbourhood on either side of Q the map h\ is linear
(possibly a different linear map on each side if the orbit of Q meets x = l/2). It
follows that for large n the points hk

q(A) are all on the contracting eigenvector oίkft
at Q and indeed that C contains a straight line segment from hk

q(A) to Q. Similarly
if Q'denotes the limit oϊhk

nq(A) we see that C contains a straight line segment from
hk

nq(A) to Qf for large n; in particular C contains the straight line segment I from
hk

(m+2)q(A) to hk

mq(A) for some fixed large m. But h(^+1)q(I) meets x = 0 at A, so
hk

q(I) is bent for all large n (by hypothesis B is not on the same orbit as A so the
bending cannot be undone). However, for large n, hk

q(I) is close to Q and therefore
straight since it is contained in C. This gives our contradiction.
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If an invariant circle is periodic, then trivially the cancellation orbit on it is
periodic. For the converse, suppose that C is non-periodic but the cancellation
orbit on it is periodic. Let P be any non-periodic point on C, with limit Q say under
forward iteration of \ι\. As argued above, C will contain a straight line segment /
from hlq(P) to Q for n large, such that / expands under hk

q. This expansion cannot
continue indefinitely so eventually some h^m(I) must meet x = 0 or x = 1/2 (at A or
B). This contradicts the hypothesis that the orbit of A and B is periodic.

Finally we note that the proposition is not true for all invariant circles of
irrational rotation number. Counterexamples for k = 4/3 will be given in Sect. 6.

4. Invariant Circles Through (1/2, 1/2)

In this section we prove Proposition 2, by induction on the length of a continued
fraction expansion of the rotation number v. Throughout this section P0 will
denote (1/2,1/2) and Pn will denote h%(P0). Note that P _ j lies on x = 0; it is the
point (0,1/2-fc/4).

Lemma 4.1. For each integer n^2 there is a unique value klfnofk such that the orbit
of PO under hk extends to a periodic invariant circle of rotation number 1/n.

Proof of 4.1. When k = 4β the orbit of P0 is homoclinic, of rotation number 0, as
illustrated in Fig. 5. As k is reduced to 1 we pass through values of k where each
Pn _ l in turn (n decreasing) lies on x = 1. We'claim that when Pn _ ί lies on x = 1 then
P Π _ 1 = P_ 1. This follows from the following symmetry argument:

hk = S1S2 where Sl:(x9y)-^(y-x + ί/2,y)

and S2:(x,y)-+(l/2-x,y + g(x))

with Si — $2 = identity, and furthermore SίhkSl = hk* and S2hkS2 = hk * (that is St

and S2 are both involutions sending forward orbits to backward ones). This is true
for any g(x) satisfying g(x) = —g(ί/2 — x) and not just our piecewise linear func-
tion g.

The point P0 lies on the Si-symmetry line y = 2x—1/2. Hence P_l=S2P0.
Given odd n = 2m +1 we choose k (uniquely) such that Pm lies on the S2-symmetry
line x = 3/4. Then P2m = S2Po = P-ι Given even n = 2m we choose k (again
uniquely) such that Pm lies on the S1-symmetry line y = 2x — 3/2. Then P2m = SiP0

and soP 2 m _ 1 = S2P0 = -P-ι

0.5

0.25

-1

0 0.25 0.5

Fig. 5. fe = 4/3; the orbit of (1/2, 1/2)

0.75
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Examples. It is an easy computation that while Pπ_ x has x-coordinate rg 1 we have
the following values for Pπ:

P2 = (3/2 - fc/4 - /c2/4, 1/2 - fc2/4) .

It follows that fc1/3 = l, fc1/4 = j/5-l, and fc1/5 = (|/Ϊ3~l)/2.
Numerical experiments suggest that there exist arbitrarily close values of k

above fc1/π for which the orbit of P0 extends to an invariant circle, but for any fe just
below k1/n the orbit of P0 is disordered. However if we further decrease k we reach a
value k\jn where P0 again lies on an invariant circle, surprisingly of the same
rotation number ί/n but non-periodic. In the next two lemmas we shall explain this
phenomenon by showing that throughout the range kl/(n _ 1} ̂  k ̂  kί/n there exists a
well-behaved periodic orbit {QJ of rotation number ί/n, and that at k\jn the orbit
of P0 is homoclinic to this periodic orbit. The existence of a periodic orbit of any
given rational rotation number is of course guaranteed by the famous results of
Poincare and Birkhoff for twist maps; however we demand some special properties
of these orbits for later use in the inductive proof of Proposition 2.

Lemma 4.2. For each integer n>2 and k in the range fe1/(/l_ ̂  ̂  k ̂  /c1/M there exists a
unique point QQ on the line x = l/4 satisfying

(I) <20 is periodic of period n and rotation number ί/n, and
(II) Qι=hk(QQ)9...,Qn-ι = ki-l(Q0) are all in 1/2^x^1 and in that order

(with respect to x-coordinates).

Proof of 4.2. For fc = fe1/fl, Q0 *
s the mid-point of the segment P_ιP0 of periodic

circle. We shall show that that as k is decreased from kί/n there continues to be a
periodic point on the S2-symmetry line x = l/4, though its orbit will no longer
extend to an invariant circle. Our construction of Q0 will be continuous in k.

We let L! andLi denote the S^-symmetry lines y = 2(x — 1/4) and y = 2(x — 3/4)
and L2 and L2 denote the Sί

2-symmetry lines x = l/4 and x = 3/4 (see Fig. 6).

Q.25 0.75

Fig. 6
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Case (i) : n Even. Let n = 2m, let Q ± be the intersection of hk(L2) and hi ~ m(L2),
let Qo = hk

1(Qί). It is immediate from S2-symmetry that Q0 has period n and
rotation number ί/n. See Fig. 6 for an illustration in the case n = 4. Since in the
range of k in question P0 lies between /ϊfc~

m(L/

1) and hk~
m(L2)9 (̂  lies to the right of

x = 1/2, and since λk rotates L£ clockwise about (3/4, 0) the points {QJ He in the
order claimed in (II). Finally observe that Q0 is unique since S2-symmetry an<i the
ordering of β l9 ..., Qn-ι require Q1 to be the point constructed above.

Case (ii) : n Odd. Let n = 2m + 1 . Set Qt to be the point where ftk(L2) meets hk

m(L'^.
Then <2m+ 1 lies onL^, so Qm+ i =S2(βm) and this implies by S2-symmetry that Q0

has period n = 2m + ί and rotation number ί/n. The remainder of the proof is
analogous to that in the even case.

Lemma 4.3. For each integer n>2 there is a value k'1/n of k such that the orbit of P0

extends to a non-periodic invariant circle of rotation number ί/n.

Proof of 4.3. Let Q0 be the point given by 4.2 for k in the range k1/(n _ 1} ̂  k ̂  k1/n.
When fe = /c1/M, Q0 is the mid-point of Pn^^PQ and Qn-ι that of Pn_2Pn-ι> so

P_ ι( = Pn_ i) is below the straight line βn_ ̂ Q^. We shall show that at k = fc1/(n_ 1}

the point P_ j is above βn- ιβ0

 and deduce there is a value fc'1/n, where P_ t lies on

β»-lβ(>

If n is even, say n = 2m, let F0 denote the intersection of hv

 m(L£) with x = 1/2,
and let W^0 denote the intersection of hk

m~ 1(L'1) with x = 1/2. Thus V0 = P0 when
fc = fc1/(Λ_1)5 FF0 — PO when k = k1/n, and P0 is above PF0 and below F0 when k is
between these values. Vn _ 2 and F ,̂ _ j are on Λ; = 1 (being S2-symmetric with V0 and
WQ). It follows that, for k between fc1/(n_ υ and fc1/n, P M _ 2 lies to the left of x = 1 and
P n _ x to the right. The same is true for n odd by a similar argument. As a
consequence, in this range of k the image under hi of the "bent" line Qn- ιP_ ιβ0 i

s

the "bent" line βπ_ XPΠ_ jQo, still with a single bend. Now consider the circle made
up of βn_1P_1β0 and its images under the first n — 1 iterates of hk. The map hk

sends this circle to itself, with the exception of βπ_ 2Pw_ 2βπ_ 1, which is sent to
Qn-ιPn-ιQo rather than to βM_ 1P_ 1Q 0. As hk transfers a net area of zero across
any circle it follows that P_ 1 P M _ 1 is parallel to βn_ιβ0 At fe = fe1/(fl_1}, P W _ 1 =P 0

and P_ ιPw_ι forms part of an invariant circle of rotation number l/(n — 1), but as
<20 has rotation number 1/n, and hk is a twist map, it follows that P_ XPM_ x is now
above Q0 and hence P_ x is now above βπ- ιβ0 Hence at some value of /c between

&ι/(n-i) and ^ι/ι»5 ^-i and -Pn-ι both lie on Qn-^Q^ furthermore P n _ x then lies
between Qn_i and β0 since βn_ 1Pπ_ 1Q 0 is the homeomorphic image of
Qn- iP- 120 under /zk. The circle made up of the straight line Qn- 160 and its images
is then invariant under hk\ it is non-periodic but contains the periodic orbit {Qt}
and so it has rotation number ί/n. See Fig. 7 for an example with v = l/3; this
occurs for fc the root of /c3 + 4/c2 + /c-4 = 0, that is k approximately 0.814.

Remark. It is not hard to sharpen the proof of 4.3 to obtain uniqueness of k\ln for
each w however our techniques for this do not easily generalise to k'v for v with
longer continued fraction expansions, so we omit details here.

Lemma 4.4. For each rational v of the form ί/(n — ί/n'), n>2,n'>ί, there exists a
value fev of k such that the orbit of P0 extends to a periodic invariant circle of rotation
number v.
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Proo/ #/ 4.4. We restrict attention to k in the range /q^^k^/c^ and let Q0

denote the point on L2 (x = l/4) of period π constructed in 4.2.

(ίj: ri Even. Let n' = 2m'. Consider the images under hi, hln of a
segment of L2 immediately above β0. When k = kf1/n the invariance of the direction
(20P0 and the twist condition ensure that these images form an ordered "fan" of
lines through Q0 between L2 and Q0P0. We claim that as k is decreased from k'ί/n to
/CI/^-D this fan turns forward so that each line in it in turn passes through P0. It
suffices to show that for k = k1/(n _ 1} the image hl(L2) of L2 crosses x = 1/2 below P0.
But at /Cι/(/J- 1) the line segment P_ιP0 and its images under hk form an invariant
circle of period n — 1, and thus hi maps the mid-point of P_ 1P0 (on L2) to the mid-
point of P0Pi hence ΛJ(L2) crosses x = 1/2 below P0. By continuity we deduce that
there is an intervening value /c1 / ( / J_1 / π / ) of k, where h™'n(L2) passes through P0. At
this value of fc, P-m>n lies on L2 and hence by S2-symmetry P_2 m 'Λ = S2Po = -P-ι
Thus PO has period 2mfn — \=rin — \. Note also that for this value of k the points
on the orbit of P0 which lie between x = 1/4 and x = 1/2 are P_ m,n, P-(m>- 1)π, . . ., P0

in that order (with respect to x-coordinates) since h^n acts linearly on Q0P0,
bringing it back to the vertical L2 after m' iterations. Thus the orbit of P0 can be
joined by straight line segments to give an invariant circle of rotation number

Figure 8 illustrates an example with v = 2/5 = l/(3 — 1/2). This occurs for
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Case (ii)a: ri Odd, n Even. Let n' = 2m'-\-l and n = 2m. The orbit of P0 we are
seeking is to have n' — 1 points in 0 < x < 1/2 and nnf — ri — 2 points in 1/2 < x < 1 .
As nn' — n/—2 is odd and the orbit is to be symmetric it will have a point on L£
(x = 3/4), but as n'— 1 is even it will have no point on L2 (x = 1/4). The point Qm

also lies on Z^ (by symmetry) and our strategy is to seek a value of k such that the
image under h^n'm+1 of a segment of ί̂  immediately above Qm is a line from Qi
cutting x = 1/2 at P0 = (1/2, 1/2). To show that such a value of k exists we consider
a "fan" at Qm consisting of a segment of L£ and its images under h^n,
hk 2π, . . ., h^m>n; the image of this fan under h^m+ ΐ is a fan at Qί9 and we examine
the intersection of the latter fan with x = 1/2. By a similar argument to that in Case
(i) one can prove that as k is decreased from k'ljn the fan turns anticlockwise and
thus that there exists a value of k at which h^n'm+ ί(L£) meets x = 1/2 at P0. For this
value of k, Pn>m- 1 lies on L^ and thus by S2-symmetry P2n'm-2 = P- 1 so that ^o has
period 2rim — \=nri—\. Joining the orbit by straight line segments gives the
required invariant circle of rotation number l/(n — l/ft')

(ίij ft: n' Odd, n Odd. Let n' = 2m' + 1 and n = 2m + l. Our difficulty now is that
no point of the sought orbit of P0 is to lie on L2 or L^ and no point of the orbit of Q0

lies onL.2 However βm+i lies on the Si-symmetry line L{ (y = 2 (x — 3/4)) since
61 =S1(2o)> and also the orbit of P0 we seek is to have P(nn>- 1)/2 onLJ. We find a
value of k for which P(mj'_ 1)/2 lies onL^ as follows. Consider a "fan" at 2m+ 1 made
up of a segment of L\ and its images under /zfc~

 M, . . . , /zk~
 m'n, ... we can move this fan

to Qi by applying h^m and consider the intersection of this new fan with x = 1/2. As
in the previous cases we can find a value of k such that h^m '" passes through P0, and
hence Pm+m>n lies onL^. Then by symmetry P2(m+m'«) — ̂ o and so P0 has period
2m + 2m'n = nri—\. Joining up the points on this orbit gives an invariant circle of
period nn'—l and rotation number ί/(n — l/n')

Remark. We conjecture the kv given by 4.4 to be unique but we have not proved
this to be the case. It would not be sufficient to prove that the "fans" discussed in
the proof turn monotonically with k, since the centres of these fans also vary in
position as k changes. In the rest of this section we make the following convention.
Wherever we discuss an interval of values of k, such as

*l/(n- l/(ιΓ - 1)) = & = kll(n-l/n')

we shall assume the interval to be minimal, that is no intervening point could be
given the same label fcv as one of the end-points. For the values kv of fc at the ends of
such an interval, P0 lies on a certain "spoke" of a fan at Q1 (by the proof of 4.4). The
effect of our convention is to ensure that for values of k within the interval P0 lies
between the spokes it meets at the ends of the interval.

Lemma 4.5. For each rational of the form ί/(n — l/n'), n>2,n'>i, and each k in the
range kί/(n _ 1/(ll, _ 1)} g k ̂  k1/(π _ 1/V) there exists a unique point QΌ on either x = 1/4 or
x = 3/4 (depending on the parity of n and n') satisfying.

(I) (2ό is periodic of period nri — 1 ana rotation number \/(n—\/ri\ and
(II) the points of the orbit of QQ are arranged in the same order, and lie on the

same sides of x = l/2, as the mid-point orbit of the invariant circle for kl^n -!/„').
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Proof of 4.5. For k = fc1/(n_ 1/n^ the orbit of P0 either misses x = 1/4 or x = 3/4 since
either ri — 1 or nri—ri—2 is even. We take {{λj } to be the corresponding mid-point
orbit; by symmetry this hits x = 1/4 or x = 3/4. We must show that {β }̂ continues
to exist while k is decreased to fcι/(Π-ι/(M'-i))

The range of k in question lies within kί/(n^ί}^k^k1/n so by 4.2 there is a
periodic orbit {Qt} of period n and rotation number 1/n, hitting x = 1/4. Centred on
these {Qt} we may take "fans" as in 4.4 and appropriate intersections of "spokes"
will give the desired orbit {Q}}. Note that in the range fe1/(n_ 1/(n/ _ 1}) ̂  k ̂  fc1/(n_ 1/n>}

(chosen as in the remark preceding this lemma if there is any ambiguity) P0 lies
between spokes in such a way as to ensure that the {Qfi satisfy (II). We omit details,
which are analogous to 4.2 except that there are various cases to consider for the
various parities of n and ri .

Lemma 4.6. For each rational v of the form l/(n — I/ft7), n > 2, n' > 1 , there exists a
value k( of k such that the orbit of P0 extends to a non-periodic invariant circle of
rotation number v.

Proof of 4.6. This follows from 4.5 in the same way that 4.3 follows from 4.2; we
may just repeat the proof of 4.3 but with a pair of adjacent points from the orbit

(constructed in 4.5) in place of β n_! and β0.

Proof of Proposition 2(i). Our strategy is to repeat the method of 4.1-4.3 and
4.4-4.6 for v with an increasing length of continued fraction expansion. Write
[n1? w2, ..., nm~] for the continued fraction

1

We remark that using an expansion with subtraction at each stage, rather than the
more conventional addition, has the advantage that truncations give approxi-
mations all from the same side.

Let v be the continued fraction above and μ be its (m — l)th approximant, that is
μ = [n1,...,nm-1']. Write rm/sm for v as an ordinary rational and r m _ 1 /s m _ 1 for μ.
We first state some useful relations.

Claim. (1) rmsm_1-rm_1sm = l .
(2) rm + rm_2 = nmrm_1 and sm + sm_ 2 = nmsw_ 1 .
(3) // nm is even then (rm_2,sm_2) = (rm,sm)mod2. // nm is odd then

Om-2,sm-2), (rm-ι,sm-ι) and (rm,sm) are all different mod2.

Property (1) is proved by induction on m. It is true for m = 2, and if we assume it
for rm/sm it follows easily for Rm/Sm = l/(n — rm/sm) for any n. Then (2) follows by a
similar induction and (3) is an elementary consequence of (1) and (2). Note that (1)
shows that approximants approach v from one side.

We now attack the inductive step in the proof of Proposition 2(i). Let μ and v be
as above and let ρ = [n^ ...,nm_1-l]. Our inductive hypothesis is that atk = kμ
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the orbit of P0 can be joined by straight line segments to give a periodic invariant
circle of rotation number μ, that the "mid-point" orbit {βjm~ 1}} of these segments
continues to exist as a periodic orbit as k is reduced to kρ, and that at some
intervening value k'μ the orbit of P0 extends to a non-periodic invariant circle of
rotation number μ. For the inductive step we must deduce results corresponding to
4.4, 4.5, and 4.6 for v. For the first we must show that for some parameter value fev in
[fcρ, k'μ] the orbit of P0 extends to a periodic invariant circle of rotation number v.
As in 4.4 there are three cases.

Case (i) : (rw, sm) = (0, 1) mod 2. For the value of k we are seeking, the orbit of P0 is
to have rm — 1 points in 0 < x < 1/2 (since P_ ^ lies on x = 0 and P0 lies on x = 1/2).
By symmetry it will hit L2; indeed the point on L2 will be PΛ, where n = (sm — 1)/2.
The periodic orbit {Qfl~1}} of rotation number μ = rm^1/sm-1 has rm_l points in
0 < x < 1/2, and since rm_ ί is odd (by part (1) of the Claim) this orbit also hits L2.
We next note that since rwsm_ ^ = 1 modsm, the orbit {PJ is to have the property
that each point on it is obtained from the adjacent one to the left by an application
of /ι|, where s = sm _ ί . However if we construct a "fan" at Q(

0

m ~ 1} (on L2) consisting
of a segment of L2 and its images under iterates ofhk9s = sm-i9 then the "spokes" of
the fan have exactly this property. It remains only to move this fan to the point
βf " 1} of {Qim~ υ} nearest to x = 1/2 on the left, by applying hi for a suitable q, and
then to adjust k until the appropriate spoke passes through P0, just as in the proof
of 4.4 (Case (i)). Explicitly q = sm_ 2(rm_ i — 1)/2 reduced modsm_ 15 since there are
(rm_!-l)/2 points of the orbit {Qf~1}} in l/4<x<l/2 and Wk9 ί = sm_ 2 moves
each to the next on the right. The "appropriate spoke" of the fan to pass through P0

is hl+Ns(L2), where s = s m _ 1 and JVs = (,sm-hl)/2 — q, since we wish P_π,
n = (sm + l)/29 to lie on L2. Note that (sm + l)/2 — q (for q as above) is indeed
divisible by s m _ x since

= (5m + 5m_ 2-5m_ 1rm_ 2)/2 (by (1) of Claim)

= («« + rm-2)sm-ι/2 (by (2) of Claim)

and nm + r m _ 2 is even (by (3) of Claim) when (rm, sm) = (0, 1) mod 2.

Case (ii) a: (rm, sm) = (1 , 1) mod 2. Then sm — rm - 1 is odd, so the orbit of P0 is to hit
L£, indeed Pn is to lie on L£ for n = (sm — 1)/2. But by the Claim s m _ 1 — r m _ 1 is odd
and so {Qf~V}} also hits ί̂ . We may therefore proceed as in 4.4 Case (ii)a.

Case (ii)b: (rm, sm) = (1 , 0) mod 2. Then (pj is to have an even number of points,
and as P0 lies on L1(y = 2(x — 1/4)) the point Pn9 n = sm/2, is to lie on the other
SΊ-symmetry line Li. But by the Claim {Q(f~ 1}} has an odd number of points and
so it too has a point on Li by its construction [as in 4.2, case (ii)]. Hence we may
proceed as in 4.4 Case (ii)b.

The remaining parts of the inductive step in the proof of Proposition 2(i) are the
analogues of 4.5 and 4.6. The first is to show that the "mid-point orbit" {βjm)} of the
invariant circle for kv continues to exist for a appropriate range of k, and the second
is to show that there is a value fc'v, where P0 is on a non-periodic circle of rotation
number v. Since these proofs follow similar lines to those of 4.5 and 4.6 (indeed to
4.2 and 4.3) we omit further details.
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Proof of Proposition 2(ii). Any irrational v can be expressed uniquely as a
continued fraction (of our "subtraction" form) [nl9 n2,..., nm,...], where the nm are
all ^2 and infinitely many of them are φ2. Let Km denote the interval [fcρ, fcσ],
where ρ = [w l5..., nm — 1] and σ = [nl5..., nm], with feρ and fcσ given by Proposition
2(i) and, if there is any ambiguity, chosen so that [/cρ, kσ~\ satisfies the convention in
the remark preceding Lemma 4.5. Let kv denote the limit of the sequence of upper
ends of these nested intervals {Km}. Since kv lies in K^ the points P_ l 5 P 0 5 ...,Pn_2

(n = Hi) of the orbit of P0 lie in the correct order for an invariant circle of rotation
number v. This is because for k in K^ the point P0 lies between appropriate spokes
of fans centred at the fixed points (1/4,0) and (3/4,0). Next, since kv lies in K2 there
are nin2 — ί points of the orbit of P0 in the correct order for an invariant circle of
rotation number v. This is because for k in K2 the point P0 is between appropriate
spokes of fans centred on the periodic orbit {Q7 } of period n1. Repeating the same
argument for increasing m we deduce that for k = kv all the points of the orbit of P0

are in the correct order for an invariant circle of rotation number v. The closure of
this orbit is either an invariant circle or a Cantor set. In the latter case (which we
conjecture does not occur) we can fill all the gaps with straight line segments (since
hk is linear away from x = 0 and x = 1/2). Either way we obtain an invariant circle of
rotation number v.

Remarks. 1. We have not yet explained all the features of Fig. 2. For example, why
is PO on an invariant circle for certain k arbitrarily close to kί/n and above it but not
for k just below it? Observation suggests the following explanation. The
symmetric orbit (βj of period n and rotation number ί/n constructed in 4.2
appears to be elliptic for k > k1/n and hyperbolic ϊork<k1/n (clearly it is neutral for
k = ki/n). When it is elliptic we can use the "rotating fan" argument to produce
values of k just above fc1/π for which P0 is periodic and has rotation number
l/(w + 1/ΛΓ) (N large). However for fc'1/fl <k< k1/n the orbit {QJ is hyperbolic and P0

is below the contracting eigenvector of the nearest Q7 to its right, with the result
that the orbit of P0 is disordered. For k<k'1/n, while {QJ is still hyperbolic, P0 is
above this contracting eigenvector and its orbit is ordered, at least to a first
approximation (there may disorder on a smaller scale).

2. Note that the hierarchy of symmetric periodic orbits {βjm)} m = 1,2,... used
in the proof of Proposition 2 was constructed using symmetry arguments. This
suggests such hierarchies might be proved to exist for appropriate parameter
ranges for more general families of twist maps.

5. Other Families of Invariant Circles

So far we have only considered orbits passing through (1/2,1/2), that is cancellation
orbits taking one step from x = 0 to x = 1/2. In this section we look at some other
families of cancellation orbits; they are illustrated in Fig. 3.

Two steps from x = 0 to x = l/2.
These orbits pass through P0 = (1/4,1/4) since then P _ 1 = (0,1/4 - fc/4) lies on

x = 0 and P^l/2,1/4) lies on x = l/2.
The largest fe for which there is an invariant circle containing this orbit is

k = 1/2, when the orbit is homoclinic to the fixed point (3/4,0) and so extends to an
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invariant circle of rotation number 0. As we decrease k from 1/2 we obtain
invariant circles for all 0^ v^ 1/4, just as in Sect. 4.

Examples, (i) A periodic circle of rotation number 1/5 occurs when P3 is on the

symmetry line y = 2x — 3/2. This happens for fe = (|/Ϊ3 — 3)/2.
(ii) A non-periodic circle of rotation number 1/5 occurs for k the root of

k4-7k2-2k + l = 0, that is k = 0.262 approximately.
(iii) A periodic circle of rotation number 1/6 occurs when P3 lies on x = 3/4,

that is for fc = j/2-l.

Two steps from x = 1/2 to x = 1. These orbits pass through (3/4,1/4). The simplest
example is that for k = 1, v = 1/3 already considered (Fig. 1). For this family as we
reduce k the rotation number of invariant circles through P0 = (3/4, 1/4) is reduced.
The family runs from v = l/4 (at k = 0) to v = l/2 (at fc = 4/3).

Example. We compute kx

1/3 for this family. From the proof of 4.2 there is a period 3
orbit {QfrQ\,Q2} with 6o = (l/45d) where d = (k + 2)/(2k + 6); Q± has the same
y-coordinate. P2 = (l/2, l/4 + k/4), and so it is an easy calculation that P2 lies on

β06ι when k = ]/2 — 1. This gives us the non-periodic circle of rotation number 1/3

in this family. Note that we now have two invariant circles for k = J/2—1, one
periodic of rotation number 1/6, and one non-periodic of rotation number 1/3.

Four steps and 3/2 circuits of S1 from x = 1/2 to x = 1. Recall the circle through

(1/2,1/2) for fc = (]/5-l)/2, periodic with v = 2/5 (Fig. 8). We considered P0 as
having an orbit taking one step from x = 0 to x = l/2 but we could equally well
regard it as taking 4 steps and 3/2 circuits of S1 to get from x = 1/2 to x = 1. We now
consider orbits of the latter type. By an elementary computation these all pass
through P0 = (l/2,e), where

e — -

Examples. For k = 0 we obtain a periodic circle of rotation number 3/8. At the
other extreme in this family we have a non-periodic invariant circle with v = 1/2 as
illustrated in Fig. 9. We can compute the value of k for which this occurs, by finding
when P2P0 cuts the symmetry line y = 2(x —1/2) at a point β0 of period 2. The
slope of P2P0 is

k + 2

and P2P0 therefore cuts the symmetry line at Q0 = (ί/2 + b, 1/2 + 2&), where
2 -

~

For (1/2 + i>, 1/2 + 25) to have period 2 requires
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0.75

0.5

0.25

0 Q.£5 0*5 0.75

Fig. 9. /c = 0.918; non-periodic circle with v = l/2

and thus the circle occurs for k the solution of 2/c3 + 4k2 — k — 4 = 0, that is for k
approximately 0.918.

Other Families. For any m and n ̂  2m we can consider the family taking n steps and
w-h 1/2 circuits of the annulus to go from x = 0 to x = 1/2, or equally the family
taking rc steps and m +1/2 circuits to go from x = 1/2 to x = 1. Families of the first
kind have a downward slope on their (fc, v) diagram and those of the second kind
have an upward slope.

Remarks. 1. By Proposition 1 every periodic circle occurs at the intersection of a
family of the first kind and a family of the second kind. At the corresponding point
on the (fc, v) diagram there is a bifurcation to the right and a gap in both branches
to the left.

2. The individual families all start at k = 0 but may end at k = 4/3 or elsewhere.
For example the family taking 4 steps and 3/2 circuits from x = 1/2 to x = 1 ends at
fc = 0.918, as we have just seen.

3. An individual rational v will occur in several ways for periodic orbits. For

example v = 2/5 occurs for k = (j/5 —1)/2 (one step from x = 0 to x = 1/2) and also

for fc = (J/Ϊ3-l)/2 (two steps from x = l/2 to x = l).
4. The (fe, v) diagram can be continued to the range outside 0 rg v ̂  1/2 simply

by reflection about v = 0 and reflection about v = l/2.
5. We conjecture that invariant circles with irrational v occur precisely at the

accumulation points of the full (fc, v) diagram of circles of rational v. We have
already seen in Sect. 4 that accumulation points on individual families give circles
with irrational v. In Sect. 6 we shall see examples of accumulation points not lying
on a single family of rational circles.
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6. The Special Case fc = 4/3

In this section we prove Proposition 3.
In 0<x<l/2, h4/3 is a linear map with fixed point (1/4,0). Let L denote the

matrix of this map (with respect to origin the fixed point) and let R denote the
corresponding matrix for A4/3 in l/2<x<l (with origin the other fixed point
(3/4,0)). Formally L and .R are the derivative of /ι4/3 on the two halves of the
annulus.

1/3 1\ /7/3

,-4/3 \)9 W3

The eigenvectors of R are ( I (eigenvalue 3) and ( I (eigenvalues 1/3). The

key property of Λ4/3 is that L applied to I 1 gives I 1. This is the reason for the

existence of the homoclinic circle illustrated in Fig. lOa; each straight line segment
/„ is mapped by ^4/3 t o / Λ + 1.

Given any rational number v = p/q we can take the same collection of line
segments {/„} and rearrange them in the order we would get on a non-periodic

(c)

(b)

Fig. lϋa-c
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invariant circle of rotation number v containing a single periodic orbit. In fact for
each rational there are two such orders, one corresponding to a "drift forward" and
the other to a "drift backward" between adjacent points of the periodic orbit. The
orders for v = 1/3 are illustrated in Fig. lOb and c; they differ in that in one 73 comes
just after 70 and in the other it comes just before. In making these rearrangements
we have simply translated each In of Fig. lOa to a parallel new position, without
changing its length, and so the rearranged segments still make up a closed circle on
the annulus. In the new order we keep 70 with its ends on x = 0 and x = 1/2 and we
adjust the height above the x-axis as follows. Let {Ij}jeJ be the segments between 70

and /i in the new circle. If j e J then so does 1 —j since the cyclic order on the circle
is reversed by the involution //-»/! _7 . As Ij and It _j have the same length in the
vertical direction, but 7X _ j goes up whereas 77 goes down, we deduce that 70 and 7X

are at the same height above the x-axis. We may now alter the height of the whole
circle above the axis until /z4/3(70) — 7X (in its new position). We claim that the circle
is now invariant. It clearly suffices to prove that h4/3(In) = 7n+1 for all the In in their
new positions. Consider the segment Iq (attached to 70 on one side or the other, as
v = p/q); h4/3(Iq) is an interval parallel to Iq+1 and equal in length to it (being the
vector RIq\ but it is also attached to ̂  (by continuity, since h4/3(I0) = I1) and
hence it is 7α+1. Repeating the argument with Iq in place of 70 we deduce that
^4/3(^24) — Iiq+i and so on We can continue around the circle and deduce for all n
that h4/3(In) = In+1. The only difficulty is at accumulation points of intervals 7Π,
that is at periodic points on the circle, and we deal with these by the argument
given below for irrational rotation numbers.

An irrational rotation number v determines uniquely the order in which the
segments In must be arranged. The order is that of a single orbit for a rigid rotation
of a circle through an angle 2πv. Once again we may arrange the height of our
candidate invariant circle above the x-axis so that /ι4/3(70) = 71, but this time we
cannot argue directly by continuity around the circle since no In is directly
attached to 70 (if it were then it is easily seen that the circle would have rational
rotation number, the rational having n as denominator). Instead each end of 70 is
an accumulation point of smaller intervals 7Π. However, as before let {Ij}jeJ be the
segments between 70 and 7^ Each h4/3(Ij) is a segment of the same vertical and
horizontal lengths as Ij+1. Thus by continuity h4j5(I^) has horizontal and vertical
distances from h4/3(I0) = I1 the sums of those for {Ij+ί}jeJ'9 but so does 72 by our
construction of the circle. Hence h4/3(Il) = I2 We can continue around the circle
and deduce /z4/3(7M) = In + l for all n. Note that in the irrational case the ends of 70

are on separate orbits (else 70 would be attached to an 7M) so these circles give our
first examples not containing cancellation orbits. Note also that the orbit of an
end-point of 70 is not dense in the circle (it is a Cantor set) so h4/3 is not conjugate to
a rotation on the circle.

It remains to prove (iii) of Proposition 3, that the rational island chains occupy
full measure for k = 4/3. The two invariant circles for v = p/q differ in that one has Iq

just before 70 and the other has Iq just after it. Thus one of the parallelogram
islands trapped between these circles has sides 70 u7_^ ul^2qu... and
I u^ u J U ••• The vertical width of this island where it crosses x = 0 is
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and an elementary calculation shows that the area of the island is

(3β -I)2'

Since Λ4/3 is area-preserving, the total area of the island chain is

(3β-I)2 '

To find the total area of all the island chains we sum this over all p/q between 0 and
1/2. Such sums are easier to compute over all p/q between 0 and 1, so we do this
first. Let φ(q) denote Euler's function, namely the number of integers m with

and m coprime to q. Then

2 qy =2 v qφ(q)y = 2 ^ ^ qφ(q)m

3 Q<p/q<l (3q — 1)

-I Σ i( Σ « € > ) - ? Σ•3 !<«<oo J 1 0|n I J K w </

4 1_
27ι<r<oo 3"~2 27(1 -1/3)3 2'

Since the area of the chain corresponding to p/q = 1/2 is 3/16, we deduce that
the total area of island chains for 0<p/q<l/2 is

2 \2 16/ 32

However it is an easy exercise to check that the area between the circle for v = 0 and
the lower circle for v = 1/2 is also 5/32, completing the proof of Proposition 3(iii).

The motion for k = 4/3 is not completely regular. There are integrable zones
around the centres of islands (indeed the map is a linear one there) but near the
edges of islands there are hierarchies of smaller island chains generated by the
overlapping of x = 0 and x = 1/2 by the large islands. However for fc = 4/3 we do
have the remarkable situation that every orbit has a well-defined rotation number
and that those with rational rotation number occupy full measure.

I am indebted to Dr. M. Shirvani for showing me how to perform summations
of the type in this section.

7. Parameter Ranges where there are no Invariant Circles

We are concerned here with Proposition 4. We code each orbit by a bi-infinite
word ... /m ιrπ ι . . . lmprnp..., where the mi and nt are positive integers, listing whether
successive iterates land in the left-hand half or right-hand half of 0 ̂  x ̂  1. Several
orbits may have the same word. We ignore difficulties concerning orbits which hit
either x = 0 or x = l/2; in practice we can avoid these.
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Let L denote the derivative of hk in 0<x<l/2 and R that in l/2<x<l (as
before). Then

~ RR=

Corresponding to the orbit . . ./ mιrwι... lmprnp... the tangent map has matrix
...JR"pLmp...KnιLmι..., since we have adopted the usual conventions of listing an
orbit from left to right and writing matrices as acting on the left, that is on column
vectors.

Lemma 7.1. For k>4β there are no invariant circles.

Proof of 7.1. This result is well-known [6] but we include a proof here as the
method motivates our other proofs.

Let C be an invariant circle and let S be any point on it in 0 < x < 1/2. Let T be a
point on C just to the right of 5. Let v be the vector ST. Since any invariant circle C
projects (1 — 1) onto the x-axis the iterates of v must all have a positive
x-component. We shall show this to be impossible for fc>4/3.

Note that the matrix L is elliptic (it turns all vectors clockwise) and that jR is

hyperbolic with contracting eigenvector of slope — fe/2 — j/fc + k2/4 and expanding

eigenvector of slope — /c/2-f-]/fc-h/c2/4. If the direction of Lv is below the
contracting eigenvector for R then any sequence of R's and L's applied to Lv will
eventually turn the x-component negative since each matrix will twist it further
clockwise. Similarly if v is above the expanding eigenvector for R any inverse
sequence of ,R's and L's will eventually turn the x-component negative. Thus for an
invariant circle to exist L must not turn the expanding eigenvector of R below the
contracting one. It is elementary to check that this condition corresponds to

Remark. The same argument shows that no invariant Cantor set can have a point
i n O < x < l / 2 f o r f c > 4 / 3 .

Lemma 7.2. For fe>l/2 any invariant circle crosses x = l/2 at or above y — \j2.

Proof of 7.2. For fe>l/2, L2 turns the expanding eigenvector of R below the
contracting one (an easy calculation). Hence no invariant circle can contain an
orbit with I2 in its word. Thus any invariant circle crosses x = l/2 at or above
y = l/2.

Lemma 7.3. For 0.918</c<l there is no invariant circle.

Proof of 7.3. For /c>0.918 (to be precise the root of 2fc3 + 4fc2-fc-4 = 0) the
matrix LRL turns the expanding eigenvector of R below the contracting one.
Hence no invariant circle can contain an orbit with Irl in its word. But by 7.2 any
invariant circle crosses x = 1/2 above y = 1/2 and an easy check shows that if k < 1
then a point just to the left of this crossing has Irl as its first three iterates.

Remark. The limit 0.918 is achieved by a circle with rotation number 1/2 (Fig. 9)
and the limit 1 is achieved by a circle of rotation number 1/3 (Fig. 1).
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We conjecture that there are "windows" in the range of k with no circles (like
that of 7.3) arbitrarily close to k = 0. These are likely to be short and therefore
difficult to detect numerically. Indeed there seem to be conspiracies to block
windows; for example the window below k = }/2 — 1 in the "2 steps from x = 0 to
x = l/2" family is blocked by the "2 steps from x = l/2 to x = l" family.

8. Generalisation to Other Piecewise Linear Maps

We first consider the case where g(x) is still made up of two linear segments, but
this time of unequal length. Explicitly

with

2a(x-ί/2~a)~~ 2a<x<\

hk(x, y) = (χ + y + kg(x)9 y + kg(x)) .

Note that a—1/4 is the piece wise linear standard map already considered.
This time the discontinuity lines are x = 0 and x = 2α. An orbit taking one step

from the first line to the second passes through P0 = (2α, Id). The image of P0 is
Pl — ((4 — fc)α, (2 — k)a). This orbit is homoclinic to the fixed point (and thus can be
joined up to form an invariant circle of rotation number 0) if and only if

ka 2a

(2-k)α (1/2-α)
that is k =

4a

The arguments of Sect. 6 show that for this value of k we obtain invariant circles of
all v and those of Sect. 7 show that for k greater than this value we have no invariant
circles. For each fixed a one can make an analysis of all the invariant circles, just
as we did in Sects. 4 and 5, and obtain a similar overall picture. We can also find a
sequence of functions with both a and k tending to zero all with no invariant
circles; such a sequence, suitably smoothed, is used by Herman for his
C1-topology counterexample in [6].

Finally we consider what happens when g(x) is the piecewise linear function
illustrated in Fig. 11 with 4 points where the derivative is discontinuous. For this

g(χ)

1/8

1/8 3/8 7/8

Fig. 11. Piecewise linear g with four segments
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family we still find many invariant circles of irrational v but those of rational v are
rare. They still occasionally exist; for example for fe = l, P0 = (l/2, 1/2) is on a
periodic circle of rotation number 3/7. However they are rare because by the
method of Sect. 3 they would have to contain a cancellation orbit hitting all four
discontinuity lines or else a pair of cancellation orbits of the same v. To recover
periodic circles for all rational v we must allow the discontinuity lines to move and
consider a two parameter family of twist homeomorphisms hkta with discontinuity
lines at x = a, 1/2 — a, 1/2 +a and I—a. Then irrational circles should occur
precisely at the closure points of the (/c, α, v) diagram of rational circles. In principle
one should be able to repeat the analysis with increasing numbers of linear
segments in g, but the details would be complicated.

Concluding Remark. The methods of Sects. 3-5 also apply to cancellation orbits for
piecewise smooth maps such as that corresponding to the oval billiard of Henon
and Wisdom [5]. The method provides orbits rather than circles for rational v, but
the accumulation points of individual families should give invariant circles of
irrational v just as in Sect. 4.
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