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Abstract. In this paper we specialize the results obtained in [BF1] to the case of
a family of Dirac operators. We first calculate the curvature of the unitary
connection on the determinant bundle which we introduced in [BF1].

We also calculate the odd Chern forms of Quillen for a family of self-adjoint
Dirac operators and give a simple proof of certain results of Atiyah-Patodi-
Singer on eta invariants.

We finally give a heat equation proof of the holonomy theorem, in the form
suggested by Witten [Wl,2].
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Introduction

Let M-^B be a submersion of the manifold M on the manifold B, with compact
even dimensional fibers Z. Let D be a family of first order differential elliptic
operators acting along the fibers Z.

In [BF1], we have shown how to construct a metric and a unitary connection
on the determinant bundle λ associated with the family D, thus extending earlier
results of Quillen [Q 2], who considered the case of a family of 3 operators on a
Riemann surface. In [BF1], the connection ιV on λ was constructed using the
superconnection formalism of Quillen [Q 1], which was extended in [B 5] to an
infinite dimensional situation. The curvature of 1V on λ was also computed in
[BF 1] in terms of asymptotic expansions of certain heat kernels.

Our first purpose in this paper is to specialize the results of [BF 1] to the family
of Dirac operators considered in [B 5].

Our first main result, which is proved in Theorem 1.21, is that in the setting of
[B 5], the curvature of λ is the term of degree 2 in the differential form on B,

where (0.1) is exactly the differential form which was constructed in [B5] to
represent the Chern character of the difference bundle KerD+ — KerZ)_ naturally
associated to D. The proof of this result relies on a surprising link between the
natural geometric superconnection considered in [BF1] and the Levi-Civita
superconnection introduced in [B 5].

Our second series of results is related to self-adjoint Dirac operators on odd
dimensional manifolds. Let us recall that in [APS1, 3], Atiyah-Patodi-Singer
introduced the eta function η(s) associated with a self-adjoint operator D on an
odd dimensional manifold M'. They showed that η is holomorphic at 0. When D is
a Dirac operator, they proved in [APS 1] that η is holomorphic for s^ — \, by
showing how (̂0) is related to an index problem on a manifold M" whose
boundary is M\ and by using local cancellation properties in the heat equation
formula for the index on even dimensional manifolds [Gil], [ABP]. An
alternative proof of this result has been given in [APS 3, p. 84] using Gilkey's
theory of invariants [Gil], [ABP] for odd dimensional manifolds.

In Sect. 2, we show how a direct approach to the eta invariants of Dirac
operators is possible. By using the periodicity of Clifford algebras [ABS] in an
elementary form, we show that the local invariant eta function η(s, x) is pointwise
holomorphic at 5 = 0. This is done by introducing a supplementary Grassmann
variable z and by a formal transfer of the results of [B 5] in this situation.

Also in [Q 2], Quillen has given a natural candidate to represent the odd Chern
classes associated with a family D of self-adjoint operators. We prove that these
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forms represent the Chern classes when D is a family of Dirac operators. Using the
results of [B 5], we calculate the asymptotics of such forms which depend on t > 0.
We exactly obtain again formula (0.1), where Z is now odd dimensional. By noting
that the form of degree 1 in (0.1) is the variation of the eta invariant of the family, we
thereby obtain a simple proof of the results of Atiyah-Patodi-Singer [APS 3] on
the spectral flow of a family of Dirac operators.

Our major concern in this paper is to give a proof of the Witten holonomy
theorem [W1, 2]. Let us recall that in [W1, 2], Witten has considered the case of a
manifold X endowed with a metric g0. If xp is a diffeomorphism of X, sQtg1 = ψ*g0'
Witten considers the family of metrics

Gt = (1 - t)g0 + tgl9 teSx=R/Z (0.2)

and the corresponding family of Dirac operators Dt. He thus constructs the
manifold MxψSu where (x, 0) and (tp(x), 1) are identified. In [W1], Witten gives
an argument showing that if the family Dt has index 0, if η(0) is the eta invariant
associated with a Dirac operator Όr on MxψSl9 then in certain situations, the
variation over S1 of the determinant of the family Dt is given by the formula

<SLogdetDt = exp{-iτn7(0)}. (0.3)

In [Wl,2], Witten was interested in calculating global anomalies in the case
where the curvature of the determinant bundle vanishes.

In Sect. 3, we give a rigorous proof of Witten's theorem in the case of the
family of Dirac operators considered in [B5] and in Sect. 1. More precisely, we
prove in Theorem 3.16 that if [if] is the limit in R/Z of certain refined eta invariants
[APS 1, 3] which are obtained by blowing up the metric of B, then the holonomy τ
of a loop c is given by

τ = (_l)indD+ e X p{-2iπR]} . (0.4)

When λ has a curvature equal to 0, it is in general unnecessary to blow up the
metric of B. Blowing up the metric of B is equivalent to what Witten calls adiabatic
approximation in [Wl].

Again using the periodicity of Clifford algebras, our proof of the holonomy
theorem is essentially equivalent to the second proof in [B 5] of the Index Theorem
for families of Dirac operators, where the metric of the base B was also blown up.
At a technical level, we prove that the imaginary part of our connection * V on λ -
which is defined via heat equation - exhibits remarkable cancellations, which
match the local cancellations of [B 5] and Sect. 1. Also we have to establish in the
course of the proof certain large time estimates on heat kernels. These estimates, as
well as certain localization estimates, are obtained using probabilistic methods.
More specifically, we use the partial Malliavin calculus of [BM].

The main steps of our proof of the holonomy theorem are closely related to the
ideas used in Atiyah-Donelly-Singer [ADS].

Note that our proofs of local cancellations are systematically based on
generalized Lichnerowicz formulas with anticommuting variables, which are
derived from [B 5, Theorem 3.6].

For an introduction to probability and the Malliavin calculus, we refer to [B 3,
BM], and the references therein.

The results which are given here were announced in [BF2].
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I. A Connection on the Determinant Bundle of a Family of Dirac Operators

In [BF1], we constructed a metric and a unitary connection on the determinant
bundle of a family of first order elliptic differential operators. In this section, we will
apply this construction to the family of Dirac operators D considered in [B 5]. In
particular we prove that the curvature of our connection coincides with the
differential form which was obtained in [B 5] to represent the first Chern class of
K e r D + - K e r D _ .

This results generalizes the results obtained by Quillen [Q1] for the
determinant bundle of a family of d operators over a Riemann surface.

We use the superconnection formalism of Quillen [Q1] which was extended in
[B 5] to an infinite dimensional setting. This permits us to obtain the critical link
between the natural geometric superconnection used in [BF 1] to construct a
connection on the determinant bundle, and the Levi-Civita superconnection of
IBS].

This section is organized as follows. In a) and b), we recall some well-known
results on Clifford algebras and the spin representation [ABS]. In c) and d), we
briefly describe the geometric setting of [B5] and [BF1]. In e)9 we calculate a
unitary connection on certain infinite dimensional bundles in the setting of [B 5].
This unitary connection plays a key role in [BF 1]. In f), we recall the results of
[BF 1]. Finally in g), we compute the curvature of the determinant bundle for a
family of Dirac operators.

a) Clifford Algebras: The Even Dimensional Case

Rn denotes the canonical oriented Euclidean space of dimension n. eu ..., en is the
canonical oriented orthonormal base of Rn, dx1, ...,dxn the corresponding dual
base.

The Clifford algebra c(Rn) is generated over R by ί,el9...,en and the
commutation relations

-lδ.j. (1.1)

Let stf(n) be the set of in, n) antisymmetric real matrices. If A = (a{) e s/(n), we
identify A with the element of c(Rn),

ΪΦiβj, (1.2)

and with the element of A2(Rn),

\a)dxιAdxj. (1.3)

Assume first that n is even, so that n — 21. Set

τ = i V . e B . (1.4)

Then τ2 = 1. By [ABS], c(Rn)(g)R<£ identifies with EndSπ, where Sn is a complex
Hermitian space of spinors, of dimension 2ι. Set S± tH = {s; τs = ± s}. Then S±tn has
dimension 2 1" 1, and Sn = S + >ΛΘS_>Λ.

If aec(Rn), let Tr[α] be the trace of a as an element of EndSM. Set

T r β M = T r [ τ α ] . (1.5)
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Then Tr s is determined as follows [AB, p. 484]: for 1 <^i1<i2... <ip^n, then

Tr J [e l ι β ί 2 . . . β | p ] = 0 if p<n, Tr,[β 1...βJ = ( - 2 0 I . (1.6)

The double cover Spin(rc) of SO(n) is naturally embedded in c(Rn). Spin(n) acts
unitarily and irreducibly on S + ?M and S_>n [ABS, H].

b) Clifford Algebras: The Odd Dimensional Case

Assume now that n is odd, so that n = 21 + 1 . Let φ be the algebra homomorphism
from c(Rn) into ceven(.RM + x) defined by the relation φ{e^ = e{en + li\^i%n. Under φ,
c(Rn) is isomorphic to c e v e %R n + 1 ) . Then c(Λ")®ΛC identifies with
End(S+ f I I + 1 )ΘEnd(S_ i l l + 1 ) .

By definition, the space of spinors Sn is identified with S+ > n + x. c(i^") acts on Sn.
One verifies easily that if Ύra is the trace of aec(Rn) acting on Sn, then

Tr[ l ] = 2<, Tr[e 1 . . .βJ = 2 I ( - 0 I + 1 , (1.7)

and that the trace of the other monomials in c(Rn) is 0.
Since ί / + 1e 1e 2...ew acts like the identity on Sn, the two formulas in (1.7) are

equivalent.
Another construction of Sn is as follows. Set

Let ψ be the homomorphism of c(Rn)®R(E into c(Λ I I" 1)® j RC defined by

1, tp(O=-^»-i . (1.8)

If aGc(Kw)(8)u<C, ip(a) acts naturally on SΛ_! = S + j Λ _ 1 0 S _ > Λ _ 1 . We can then
identify Sn and SB_! as representation spaces for c(JRw)(χ)R(C. In particular

i I + 1 φ ( ^ i . . . O = τB

2-1 = l , (1.9)

which fits with (1.7). Spin(n), which double covers SO(π), is naturally embedded in
c(Rn) and acts unitarily and irreducibly on Sn.

Remark 1. For nodd, the trace Tr behaves on the odd elements of c(Rn) in exactly
the same way as the supertrace Tr s on the even elements of c(Rn) for n even, i.e. we
must saturate all the elements eu ..., en to get a non-zero trace or supertrace. This
fact, which is a simple consequence of the periodicity of the Clifford algebras
[ABS], will be of utmost importance in the sequel.

c) Description of the Fibered Manifold

We now briefly recall the main results in [B5, Sect. 1]. B denotes a connected
manifold of dimension m. We assume that TB is endowed with a smooth Euclidean
scalar product gB. However the results in [B 5] and in our paper do not depend
ongB.

n = 2lis an even integer. X is a connected compact manifold of dimension n. We
assume that X is orientable and spin. M is a n-\-m dimensional connected
manifold, π is a submersion of M onto B, which defines a fibering Z by fibers
Zy = π~ ι{y) which are diffeomorphic to X. TZ is the n dimensional subbundle of



108 J.-M. Bismut and D. S. Freed

TM whose fiber at x e M is TxZπ{x). We assume that TZ is oriented. THM is a
smooth subbundle of TM such that TM = THM® TZ. THM is the horizontal part
of TM, and TZ the vertical part of TM.

Under π^, T^M and Tn{x)B are isomorphic. We lift the scalar product of TB in
THM.

We also assume that TZ is endowed with an Euclidean scalar product gz. By
assuming that THM and TZ are orthogonal, TM is endowed with a metric which
we note gB®gz. Let <, > be the corresponding scalar product.

Let 0 be the SO(n) bundle of oriented orthonormal frames in TZ. We assume
that TZ is spin, i.e. the SO(n) bundle 0-ρ>M lifts to a Spin(w) bundle
O'-^O-Q+M such that σ induces the covering projection Spin(rc) ->SO(ή) on each
fiber.

F, F+ denote the Hermitian bundles of spinors

d) Connections on TM

Let VB be the Levi-Civita connection of TB. VB lifts into a Euclidean connection on
THM, which we still note Vκ VL denotes the Levi-Civita connection of TM for the
metric gB®gz. Pz (respectively PH) denotes the orthogonal projection operators
from TM on TZ (respectively THM). Vz denotes the connection on TZ defined by
the relation UeTM, Ve TZ, V§V=PZV^V. Vz preserves the metric gz

V denotes the connection on TM = THM@TZ, which coincides with VB on
THM and with Vz on TZ. We will write V = VB® Vz. V preserves the metric gB@gz.

Definition 1.1. T denotes the torsion of V, R the curvature tensor of V. Rz is the
curvature of TZ. S is the tensor defined by

yL=y + S. (1.11)

Clearly Rz is the restriction of R to TZ.
For U E TM, S(U) is antisymmetric in End TM. Given U,V,We TM, we have

the well-known relation

2(S(U)V, W) + (T(U, V), W) + (T(W, U), V)-<T(V, W), £/> = 0. (1.12)

Let us now recall some results of [B 5, Theorem 1.9].
T takes its values in TZ.
lϊU, VeTZ, T(U,V) = 0.
Vz, T, and the (3,0) tensor <S( ) , > do not depend on gB.
For any UeTM, S(U) sends TZ in THM.
For any U, Ve THM, S(U)Ve TZ.
lϊUeTHM, S(I/)l/ = 0.

Only the last statement is not explicitly proved in [B 5, Theorem 1.9]. However
it immediately follows from (1.12), from the relation T(U, U) = 0 and from the fact
that T takes its values in TZ.

In the sequel, we will write V instead of VB, Vz.
The connection V on 0 lifts into a connection on 0'. F, F± are then naturally

endowed with a unitary connection, which we still note V.
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ξ is a /c-dimensional complex Hermitian bundle on M. We assume that ξ is
endowed with a unitary connection Vξ, whose curvature tensor is L. The
Hermitian bundle F®ξ is naturally endowed with a unitary connection which we
note V.

e) Connections on Infinite Dimensional Bundles

i ί 0 0, H% denote the set of C00 sections of F®ξ, F + ®ξ over M. As in [B 5, Sect. 2],
we will regard ί/00, H% as being the sets of C00 sections over B of infinite
dimensional bundles which we still note iί 0 0 , H%. For yeB, H™, H+y are the sets
of C00 sections over Zy oϊ F®ξ, F + ®ξ.

Let dx be the Riemannian volume element of Zy. H™ is naturally endowed with
the Hermitian product

<M'>y= ί <Kh'}(x)dx. (1.13)
zy

For 7 E TΈ, let YH be the horizontal lift of Y in T H M. Γ f f is characterized by

YHeTHM; n^YH = Y.

Definition 1.2. V denotes the connection on H00 which is such that if Ye TB,

Vyh=VγHh. (1.14)

By [B5, Proposition 1.11], the curvature tensor R of V is a first order
differential operator acting fiberwise on iϊ 0 0 .

In general, although V is unitary on F®ξ, V does not preserve the Hermitian
product (1.13) on 77°°. However an elementary modification of V permits us to
construct a unitary connection on H+.

e1 ? ...,en denotes an orthonormal base of TZ.

Definition 1.3. k is the vector in THM

β i. (1.15)
1

Vu is the connection on Z/00 defined by the relation

YeTB, VΪ=VY + (KYH), (1.16)

If Y is a vector field on B, the vector field 7 H on M preserves the fibration Z. In
particular the divergence div z(7H) - which is the infinitesimal action of YH on the
volume element dx of Z - is well defined at each XEM. One verifies easily that
7->divz(YH) is a tensor.

We first have the technical result.

Proposition 1.4. For any Ye TB, x e M ,

(k,YH}(x)=±divz(YH)(x). (1.17)

connection Vu is unitary on i/00. PM does not depend on the metric gB.
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Proof. By (1.12), we have

B e d 9 e t > (1.18)
1

eί9 ...,en can be extended locally into a C00 section of 0. Clearly

T(YH,e)= V Hβ-— V YH — [YH,el = V He — [YH,el (1.19)

Since (eh ei

s) = l, we have

(VγHei,ei) = 0. (1.20)

If LγHgz is the infinitesimal action of YH on gz, we have

0 = YH(eh e,} = LγHgz{eb e,) + 2<[7", eβ, et) . (1.21)

Ffom (1.18), (1.21), we find

(1.22)
1

Also, if h, Λ'eJϊ0 0,

Yf <Λ, Λ'> (x)Λc- ί [<Fy«Λ, Λ'> + <Λ, F^/z^ + d i v z ( 7 H
>] ( )

(1.23)
It is then clear that Vu is unitary. Also by Sect. Id), Ye TM-+(k, Y} does not
depend on gB. The proposition is proved. D

f) A Connection on the Determinant Bundle of a Family
of First Order Elliptic Differential Operators

We now briefly summarize the main results of Bismut and Freed [BF 1] on the
construction of a unitary connection on the determinant bundle of a family of first
order differential operators.

We will constantly use the superconnection formalism of Quillen [Q1] which
was extended in [B5] to infinite dimensions. In particular F®ξ
= (F+®ξ)®(F_®ξ\ HC" = HG?®H™ are Z 2 graded vector bundles over M and
B. End(F®£), Endi ί 0 0 are then naturally Z 2 graded.

For a given y e B, we will always do our computations in the graded tensor
product EndH?®Λ(Ty*B). Locally, we work in End x(F® ξ)® Λπx(T*B). The sign
® will be always omitted.

If A is trace class in Endiί 0 0 ®A(T*B\ its trace Tr and its supertrace T r s ^ are
elements of A(T*B). As in [Q 1], we use the convention that if ω e A(T*B),

Trω^ = ωTr^, TrsωA = ωTrsA. (1.24)

For y E B, D+ y is an elliptic first order differential operator which sends iJΐ>3,
into H°2ty. We assume that D+ y depends smoothly on yeB. D_ y denotes the
adjoint of D+ y with respect to the Hermitian product (1.13). Set

[ V ]
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D is a smooth family of elliptic self-adjoint first order differential operators, which
is odd in Endiϊ00.

Definition 1.5. λ denotes the complex line bundle over B,

Λ = det(KerD+)*®det(KerD_). (1.26)

As shown in [Q 2, BF1], λ is a well-defined smooth bundle on B, even if B is
non-compact. This will be briefly proved in the sequel.

If ω E Λ(T*B), ω(ί) denotes the component of ω in A\T*B). All the asymptotic
expansions which we will consider are uniform on the compact subsets of B.

Take ί>0. Vu + \/tD is a superconnection on H™. By [B5, Sect. 2],

Trs[exp — (FM-f-]/ίD)2] is a C00 closed form on B. When B is compact, it represents
the (normalized) Chern character c/ι1(KerD + — KerD_).

As 4JA for any Zee JV, we have the asymptotic expansion,

Trs [exp - ( ^ + |/ίD)2] = £ φ)tj + o(t\ y). (1.27)

-f-[f]

The following result is proved in [BF 1, Theorem 1.5].

Proposition 1.6. The aψ are C00 closed purely imaginary 2 forms on B. Forj Φ 0, aψ
is exact.

In [BF 1], a metric and a connection are constructed on λ. We briefly recall the
results of [BF 1].

We have the asymptotic expansion as ίjJΛ

y), (1.28)

where the Aj are real Cx functions on B. Also

ί£>2] = -ίTr[exp(-ίD2)F"Dί>], (1.29)

and as ί | |0,

Tr[exp-(tD2)F"ί)D] = - Σ dΛ/~1 + o(t*-1,y). (1.30)

Similarly as

Trs[exp(-iZ)2)F"Z)Z>] = - Σ β j ί ^ ' + o ^ - 1 , ^ . (1.31)
;=-!

The following result in proved in [BF 1, Theorem 1.7].

Proposition 1.7. 77z£ Bj are C00 purely imaginary 1 forms on B. Also dBj= —Ijaψ.
In particular Bo is closed.

Take y0 e B, a > 0 which is not an eigenvalue of £>2

0. Then a is not an eigenvalue
of D2 on a neighborhood £/ of y0. We now follow Quillen [Q 2] and Bismut-Freed
[BFl].
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Definition 1.8. Ka

y is the subspace of H±ty which is the direct sum of the
eigenspaces of Dy corresponding to eigenvalues < a.

Ka is a smooth subbundle of if00 on U. Ka splits into

. (1.32)

Also Ka is stable under D. Let Pa be the orthogonal projection operator on Ka. Pa is
a smooth family of regularizing operators which is well defined on U. Set

Qa = j_pa ( t 33)

We also define
. (1.34)

λ identifies canonically with λa on U. λa being a smooth line bundle on U, λ
becomes itself a smooth line bundle on B. Ka inherits the Hermitian product (1.13)
of iί0 0. So λa is naturally endowed with a metric | \a.

In [BF1], we modify the metric | \a as in [Q 2] and we simultaneously construct
a connection on λ.

Definition 1.9. For se C, the zeta function ζa(s) is defined by

ζ " ( s ) = - ί - 7 f-1τrle-">ίQ?]dt. (1.35)
11 (S) o

Equivalently
C"(s)=iTr[(I)2Γsβ«]. (1.36)

ζa(s) is a meromorphic function, which is holomorphic at s = 0. μ is a fixed real
constant.

Definition 1.10. || ||α denotes the metric on Afl which is such that iϊ leλa,

For ί > 0 , ya

t> δ
a

t are the C00 1-forms on B,

+ 00 +00

tf= J Tr[exp(-sD2)(F"£>)^ea]i/s, (5?= J
(1.38)

or equivalently

7?= -Tr[exp(-ίD2)ir1(l7 ί ui>)δα] , δ?=Tr,[exp(-ίD 2)D- 1(^)Q< I]
(1.39)

ya

t and δ" are C00 1-forms on U, which are respectively real and purely imaginary.
As f | |0, we have the expansions

ft= Σ dAj- +dA0Logt+γa

0
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where γa

0, δ
a

0 are C00 1-forms on [/, which are respectively real and purely
imaginary.

The following identities are proved in [BF1, Theorem 1.15].

Proposition 1.11. The following identities hold:

= -d\jsζ%0)\

-1fuDQtr]Yφ)9 (1.41)

δa

0 + Γ'(1)BO = (s Ίv£(D2ysD ~ι PΌQβ])'(0).

dA0 (respectively —Bo) is the residue at s = 0 of the meromorphic function
Trl(D2ysD~1VuDQa'] (respectively TrKD^'D'^^Q^).

Definition 1.12. °Va denotes the unitary connection on the bundle Ka over U
which is such that if k is a section of Ka,

°Vak = PaVuk. (1.42)

°Va induces a connection on λa, which is unitary for the metric | |α.

Definition 1.13. 1Va is the connection on λa,

iVa = °V + ±(ya

o-δa

o)+±(n\)-μ)(dAo-Bo). (1.43)

The main result of Bismut-Freed [BF 1, Theorems 1.11 and 1.18] is as follows.

Theorem 1.14. Using the canonical identification of λa with λ over U, the metrics
|| ||a patch into a smooth metric || || on λ over the manifold B. The connections 1Va

patch into a smooth connection ιV on λ over B, which is unitary for the metric \\ ||.
The curvature of ιV is the purely imaginary 2-form α(

0

2).

Remark 2. The rationale for introducing the constant μ in the definition of || || and
1V is the following: Take b^R%. Assume that the family D is replaced by the family
bD. Both D and bD have the same determinant bundle λ. However the canonical
identifications of λ with λa are different. One verifies that I e λa should be identified

dim(Kα)

with b~~ϊ leλa.
The metric associated with bD is now bAo\\ ||. The new connection 1Vb on λ is

g i V e Π b y Ψb = Ψ + (dA0-B0)Logb. (1.44)

In general 1Vb and γV do not coincide. This is a scaling discrepancy of the
connection which we consider.

The introduction of the parameter μ permits us to construct simultaneously all
the scaled metrics and connections.

g) The Case of a Family of Dirac Operators: Explicit Computation
of the Curvature of the Determinant Bundle

We now assume that D is the family of Dirac operators considered in [B 5]. We
briefly recall the definition of D. Remember that the elements of TZ act by Clifford
multiplication on F®ξ.

eu ...,en is an orthonormal base of TZ.
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Definition 1.15. D is the family of Dirac operators acting on if00

D=ΣetVei9 (1.45)

D± denotes the restriction of D to //+.

The family D verifies all the assumptions of Sect. 1 f).
We now briefly recall the definition of the Levi-Civita superconnection [B 5,

Definition 3.2]. As pointed out in Sect. 1 f), we use the formalism of Quillen [Q1]
at a local level. In particular all our computations are done in cx{TZ)®Λπx{T*B).
fί9 ...,fm is a base of TB, dyi...dym the corresponding dual base. We identify
/i> •••j/m with their horizontal lifts //*, . . . ,/^. Also we use i,j,... as indices for
vertical variables like ei9ej9 ...,α,/? for horizontal variables like fa9 fβ....

Definition 1.16. For ί>0, the Levi-Civita superconnection VL'tjrγtD associated

with the metric gB® — is given by

By [B5, Proposition 3.3] (see also Sect. Id)), VLtt + γtD does not depend on gB.

We first compare VLj + \/tD with Vu + ]/tD.

Definition 1.17. A denotes the odd element in cx(TZ)®Λπ{x)(Ύ *B)

A = - i Σ <T(fa,fβle^e^fd/. (1.46)
<β

Proposition 1.18. The following identity holds:

A ( 1 # 4 7 )
Vt

Proof. Since VL has zero torsion, for U, V e TM,

S(U)V-S(V)U+T(U,V) = O. (1.48)

Also T(ehej) = 0. We get

Σ Wefofoefij- - i Σ < Γ f e ^ y ) , / β > ^ = 0. (1.49)
*j

Using (1.12) and the fact that T takes its values in TZ, we have

KSWv fβ> - i < S ( / α K fβ> = - i<T(/ α ,/ ,) , e,} . (1.50)

Equation (1.47) follows from (1.49) and (1.50). D

As shown in [B5, Sect. 2], (VLJ + \/tD)2 and (Vu + γΊD)2 are second order
elliptic operators acting fiberwise in Z. For £>0, s>0, let P^t(x9x

r)9 P"5ί(x,x')
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(XjX'eZy) be the C00 kernels associated with the operators exp — 5(FL'ί

+ |/ίD)2.
We have the obvious formulas.

F ^ + j/ίβ) 2 ] = j Tr s[P^(x, x)ldx,
z

^ + |/tD)2] = J Tr,[/T(x, *)]<** ( 1 ' 5 1 )

z
Also if £ is a complex vector bundle over B, endowed with a connection whose
curvature is C, set

ch!£ = Tr[exp-C]. (1.52)

ch1E represents in cohomology the scaled Chern character of E.

Theorem 1.19. For anyt>0, Tr s[exρ-(FL ' ί +j/ίD)2] andTrs[exp-(PM + ]/ί£)2]
are C00 closed forms on B whose common cohomology class does not depend on t. If B
is compact, they represent in cohomology chjL(KerD+ — KerD_). Moreover

[Tr .exp- ί r + j / ί D ^ l ^ ^ C T r . e x p - ί F ^ + j / ί l ) ) 2 ] ^ . (1.53)

Proof The first part of the Theorem is proved in [B 5, Theorem 2.6, Proposition
2.10]. We now prove (1.53).

By proceeding as in [B 5, Proposition 2.6 and Remark 2.3] - i.e. by using
ί~ r IΛ\

explicitly the C00 kernel of exp- Pu + ]/ίD-}- —f-1 , and the vanishing of
\ ytJ

supertraces on supercommutators in finite dimensions [Q1] - it is not difficult to
prove that

(1.54)

Equation (1.54) is the fundamental equality which proves that in cohomology,

Trsexp— ί F" + |/ ίD+ —= \ does not change with /. Also A is of degree 2 in the

variables dya. Since (1.54) is of even degree, the right-hand side of (1.54) is at least of
degree 4. We then find that

L4\ 2Ί ( 2 )

— J J = 0 . (1.55)
Equation (1.53) is proved. D

Remark 3. Equation (1.53) is equivalent to the relation

ί Trs[Pf f(x, x)~\{2)dx = j ΎvlPu{\x, x)](2)dx. (1.56)
z z

The expressions Trs[P^!i(x,x)] and Trs[P"fi(x,:x;)] may well be completely
different. Their integrals on Z are in the same cohomology class. Moreover in
degree 0 and 2, these integrals coincide.



116 J.-M. Bismut and D. S. Freed

We now will calculate explicitly the curvature of the determinant bundle λ for
the connection 1V.

Definition 1.20. A is the ad O(ri) invariant polynomial on j/(w) which is such that if

Bestfiή) has diagonal entries ι L then

l-χi °J

(1.57)

We now have the crucial result.

Theorem 1.21. For - ^ - 1 ^jS - 1 , 4 2 ) = 0. Also

z\ T Ί ( 2 )

|^-JTrexp--J . (1.58)

curvature of the connection ιV is equal to a^\

Proof. Let dxι...dxn be the oriented volume element in Z. Let φ be the

homomorphism on Λeven(Γ*£) which to dyadyβ associates -^ΓT^- By [B5,
Lin

Theorems 4.12 and 4.16], we know that as ίJ,J,O, φ[Trs[Pί"f(x,x)]]dx1...dxΠ

converges uniformly to the term of maximal degree n in the variables dxι ...dxn in
the expression 4 ( ) L έ J (1 59)

As in [B 5, Theorem 4.17], we immediately deduce from (1.59) that as t[[0

φ(Tr s[exp-(^ f + l / Ϊ D ) 2 ] ) ^ ί i ( ^ T r | ^ e x p - - ^ ] . (1.60)

Using (1.53), we find

^ [u(^ ^ J ^ . (1.61)

Using (1.27) and Theorem 1.14, our theorem is now obvious. D

Remark 4. In general, the local cancellations which explain (1.60) occur in
Trs[ί>ί"ί(x5 x)] and not in Trs[P"!i(x, x)]. The computation of the curvature a^ is
then done rather indirectly.

Remark 5. From Proposition 1.7 and Theorem 1.21, we already know that

dfl,. = 0, 7^0. (1.62)

We will prove in Theorem 3.4 that we have the much stronger result

(1.63)
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II. Dirac Operators on Odd Dimensional Manifolds

In this section, we establish certain properties of self-adjoint Dirac operators on
odd dimensional manifolds. Families of self-adjoint Dirac operators are also
considered.

Our first result concerns the local regularity of the eta function of Dirac
operators. Using their results on the index of elliptic operators on manifolds with
boundary, Atiyah-Patodi-Singer [APS 1, Theorem 4.2] proved that the eta func-
tion η(s) of a Dirac operator D is holomorphic for Res>— \. In [APS3,
p. 85] a cancellation mechanism was described in dimension 3 to explain that
the pole at s = 0 of the meromorphic matrix Ts(x, x) - which is the kernel of
£)|β|-s-i o n ^g d i a g 0 n a i - disappears when calculating Tr[7](x, x)], thereby
proving the local regularity of η(s) at s = Q in dimension 3.

An alternative proof of this result has been given in [APS 3, p. 84] using
Gilkey's theory of invariants [Gil, ABP] for odd dimensional manifolds.

In Sects. a)-d), we prove that the local eta function η(s, x) is holomorphic at
s = 0 by a method which is formally identical to the proof given in [B 5] of the
Index Theorem for families. By introducing as an auxiliary Grassman variable z,

tD2

we establish in b) a Lichnerowicz formula for — z]/tD. In c), and implicitly

using the periodicity of Clifford algebras, we show that Tr[D exp — tD2~\ is locally
O(ί1/2) as t[ J,0. In d), we prove the local regularity oϊη(s, x) at s = 0. In e), we briefly
calculate the variation of η(0) by a heat equation formula [APS 3, p. 75], [ADS,
p. 138]. In f), we consider a family of self-adjoint Dirac operators D in odd
dimensions. We calculate the odd Chern forms associated with the family D
introduced by Quillen [Q 1], by using formally the computations of [B 5]. The
formula for these odd Chern forms is strictly identical to the formula obtained in
[B 5] for the Chern character of the difference bundle associated with a family of
Dirac operators in even dimensions. We thus obtain a simple proof of the result of
Atiyah-Patodi-Singer [APS 3] on the spectral flow of a family of Dirac operators,
which does not rely on the Index Theorem for manifolds with boundary.

The results obtained in this section will be used in Sect. 3.

a) Assumptions and Notations

Mf is a compact connected Riemannian manifold of odd dimension n = 2l-\-l,
which is oriented and spin. N is the SO(n) bundle of oriented orthonormal frames
in TM\ N' is a Spin(rc) bundle over M' which lifts N so that: N'^N^M, and σ
induces the covering projection Spin(n)-^SO(n) on each fiber. F' is the Hermitian
bundle over M

F' = N'xSpin{n)Sn. (2.1)

V denotes the Levi-Civita connection on JV, which lifts into a connection on N'.
TM\ F are then naturally endowed with a connection V. K is the scalar curvature
of M'. ξ is a fc-dimensional Hermitian vector bundle, endowed with a unitary
connection Vξ, whose curvature is L. F'®ξ is a Hermitian bundle, which is
naturally endowed with a unitary connection, which we still note V. H00 is the set of
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C00 sections of F'(g)ξ. eu ...,en is an orthonormal base of TM'. D is the Dirac
operator acting on if00,

D=ΣetVei. (2.2)
1

b) An Auxiliary Grassmann Variable

z denotes a Grassmann variable which anticommutes with eu...,en considered as
elements of c(TM'). lϊA(X) is a tensor which depends linearly o n l e TM\ we use
the convention that if eu ..., en is a locally defined C0 0 orthonormal base of TM\
then

(Vei + A(ed)2 = Σ (Kάx) + Aielx)))2 - V^ y ^ - A ( Σ Veje)j. (2.3)

We first prove an elementary identity which extends Lichnerowicz's formula
[L, B4].

Proposition 2.1. For any t>0, the following identity holds:

^ - 4 ^ = 4 ( ^ l ^ ) 2 + f + tψ®L(ei,ej). (2.4)

Proof. Clearly

^fψj ^-{vl-zftD. (2.5)

The theorem now obviously follows from Lichnerowicz's formula [L, B4]. D

Remark 1. As we shall see in Remark 5, Formula (2.4) is a special case of the
formula proved in Bismut [B 5, Theorem 3.6], which calculates the curvature of
the Levi-Civita superconnection.

c) The Asymptotics of Certain Heat Kernels

dx denotes the volume element of M\ All the considered kernels will be calculated
with respect to dx. Let R(z) be the Grassmann algebra generated by 1 and z. All our
local computations are done in (c(TM/)®Endξ)®R(z).

Definition 2.2. For t>0, Pt(x, x') denotes the C00 kernel associated with the

operator exp( — +zγtD ).

Clearly

/ tD2

 Γ \ ( tD2\ r ( tD2\
e x P τr +zVtD = e x P ^r) +z]/tDexp[ — . (2.6)

\ 2 / \ 2 / \ 2 /
Also we can write
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P°(x9x') is the kernel associated with expί — I and P/(x,x') the kernel

/ tD2

associated with D exp ( —

For any x e M\ Pt(x9 x) is even in (c(TW)® Endξ)®R(z). P?(x9 x) is then even
in c(TM')(x)Endξ, and P}(x,x) is odd in c(TM')®End£.

Definition 23. For 4, £ e c( ΓM')® End £, set

(2.8)

In the right-hand side of (2.8), ΊvB is the trace of B acting on F ® ξ.
Clearly

Tr,[Pf(x, x)] = z]/ί Tr[pi(x, x)] . (2.9)

Another description of Trz[Pf(x, x)] is as follows. We can write Pt(x, x) in the
form

PM= Σ βiΓ^®Λ...i, + z Σ eireip®Bilm.mip. (2.10)
i i < i 2 < . . . < i P i i < i 2 < . . . < i P

p even p odd

By (1.7), we know that

Tr,[Pf(x,x)] = 2 z (-0 ί + 1^TrB1... l l. (2.11)

We now prove the following result.

Theorem 2.4. As ί | iθ,

Trz[Pf(x,x)]-^0 uniformly on M. (2.12)

There is a C00 function bί/2(x) on Mf such that as ί | |0

ΎτlPKx, x)] = b1/2(x)]/t + O(ί3/2, x), (2.13)

O(ί3/2, x) is uniform on Mf.

Proof. As pointed out in Remark 1, the right-hand side of (2.4) has the same
structure as the formula proved in [B 5, Theorem 3.6]. More precisely (2.4)
coincides with the formula of [B 5], when assuming that there is one single dya — z
and that if / is the formal vector whose dual variable is z, then

(S(edejJ}=-(S(ei)f,ejy=-2δί. (2.14)

In this context, it follows from (2.14) that

<F S(^,/> = 0. (2.15)

Now (2.11) shows that Trz[Pf(x, x)] is obtained by saturating the Clifford variables
el9...9en9 i.e. by doing in odd dimensions what is done in [B 5, Sect. 4] in even
dimensions.

We can then apply in this context [B 5, Theorem 4.12] which guarantees that
as tliθ9 Trz[Pf(x, x)] has a limit and calculates this limit explicitly in terms of a
Brownian bridge w'1 in TXM\ constructed on a probability space (W9 P J . In [B 5,
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Theorem 4.12], we find that the term containing z appears in an expression of the
type

\ ^ l \ P 1 ( w ' 1 ) . (2.16)
j / π o

Using (2.15), we find that the term containing z vanishes. We have proved that as

410,

Tr,[i\(x,x)]-0. (2.17)

Note that

(D2 \ ( tD2\ ( tD2\ f Λ

exp-fl —--zZ))=expl - — J+ztDexpl - — J. (2.18)

By using the results of Greiner [Gr, Theorem 1.6.1] on the small time asymptotics
(D2 \

of the kernel of the operator exp — 11 — — zD ], and using also (2.18), we find that

C00 functions b_«__ , . . . ,b_ 1 / 2 , bί/2 exist such that as ί | | 0 ,

and O(ί3/2, x) is uniform on M\
Using (2.17), we find that

fc-n/2-i = ...=&-i/2 = 0. (2.20)

Equation (2.13) is proved. D

Remark 2. As we shall see in Remark 5, Theorem 2.4 can be viewed as a direct
consequence of [B 5, Theorem 4.12].

d) Local Regularity of the Eta Invariant

We now closely follow Atiyah-Patodi-Singer [APS 1].
Since D is elliptic and self-adjoint, D has a discrete family of real eigenvalues λ.

For seC, set

Φ)= Σ f^ (2.21)

For Res>n, the series defining η(s) is absolutely convergent. Also the

following identity is easily verified

Λ + o o s ~ 1

η{s)=—~, pr- ί ί 2 Tr[Z)exp-ίD2]ίZί. (2.22)

r(s+ί) °

We now define the local eta function.



Eta Invariants and Holonomy Theorem 121

Definition 2.5. For Res>w, xeM, set

1 +oo s ~ 1

η(s,x)= , + ί s ί t 2 Ίτ[_P\t{x,x)-]dx. (2.23)

One verifies easily that as ί| + co, Tr[P\t(x,x)~\ decays exponentially and
uniformly on M'. Also.

η(s)=ίη(s,x)dx. (2.24)
M'

In their proof of the Index Theorem for manifolds with boundary, Atiyah-
Patodi-Singer [APS 1, Theorem 4.2] showed that η(s) extends into a holomorphic
function for Res > —1/2.

We now refine their result into a local statement on η(s, x) [APS 3, p. 84].

Theorem 2.6. For Res> — 2, η(s, x) is C00 in (s, x) and holomorphic in s.

Proof. By Theorem 2.4, for Re s > — 2,

} t ~ T r [ P | f ( x , x ) ] Λ , (2.25)
o

is well defined and holomorphic in s, as well as — γ -y. The theorem is

r(s+1

proved. D

Remark 3. In [APS 3, p. 85], Atiyah-Patodi-Singer noted that in dimension 3, the
kernel Ts(x, x) of D|D|~ s~ ί has a pole at s = 0, but that this pole disappears when
considering Tr[Ts(x, x)]. Noting that

*/(5,x) = Tr[Γβ(x,x)], (2.26)

this phenomenon should now be fully explained. It is in fact of the same nature as
the cancellations observed in the heat equation proof of the Index Theorem. In
[APS 3, p. 84], an alternative proof of this result was given using Gilkey's theory of
invariants [Gil, ABP].

Remark4. In [Gil, 2], Gilkey studied various cases where η(s,x) is not
holomorphic at 5 = 0. Not unexpectedly, some of his examples involve Dirac
operators calculated with a connection which is different from the Levi-Civita
connection.

e) The Variation of the Eta Invariant

We now make exactly the same assumptions as in Sect, lc), d), e), g) except that the
compact fibers Z have now the odd dimension n = 21 +1. F is instead the bundle of
spinors over TZ, H™ is the set of C00 section over M of F®ξ. D is the family of
Dirac operators which is still defined as in Definition 1.15. Of course the
vector bundles which we consider are no longer Z2-graded.
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Definition2.7. For yeB, ηy(s) is the eta function associated with Dr hy is the
integer

y y (2.27)

ήy(s) is the function.

If deR, [ £ ] denotes the image of d in R/Z. As noted in [APS 1, 3], ήy(ΰ) has
integer jumps, and so [f/y(0)] is a C00 function of y e B with values in R/Z. We now
briefly compute d[tj(O)'] using a heat equation formula instead of the zeta function
formula of [APS 3, Proposition 2.10].

Using again the results of Greiner [Gr, Sect. 1] (see [Gr, Lemma 1.5.5])
which permits us to differentiate the parametrix of the heat kernel, we
have the asymptotic expansion

^ ^ , y ) , (2.29)

where C_n / 2, . . . , C _ 1 / 2 are C°° 1-forms on B.

Proposition 2.8. The following identity holds:

(2.30)

Proof. As in [APS 3, p. 75 and Proposition 2.11] we can assume that D is invertible
on a neighborhood U of y e B. For Re(s) large enough, using integration by parts,
we have

/ c _ j _ i \ +00 s - 1

Γ\-—)dη(s)= J ί 2 Ύr[VuDexp(-tD2)-2tD2VuDexp(-tD2)ldt
\ 2 / o

= T f2" Tr(P"Dexp(-ίD 2)) + 2ί |-Tr(P"/)exp(-ίD 2 )) \dt

o L dt J
= - s ί t 2 Tr[P"£)exp-ίi)2]dt. (2.31)

o
The proposition now follows from (2.29). •

f) Odd Chern Forms, Eta Invariant and the Spectral Flow

Although the fibers of Z are now odd dimensional, we entirely adopt the
superconnection formalism of Sect. If), g). In particular, although End(F® £) is no
longer Z 2 graded, we will use instead the Z 2 grading of
(c{TxZ)®Έndξ)®Λnx{T*B). We still have

Q. (2.32)

We also use the convention (1.24).
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The superconnection Vu + λftD is still defined as in Sect. If), and the Levi-
Civita superconnection as in Definition 1.16 and Proposition 1.18.

[ T r e x p - ( r + |/7/))2]o d d and [ T r e x p - ^ + j/ ίD) 2 ] 0 ^

are then well-defined C00 odd forms on B.
The construction of such odd forms is directly inspired from Quillen [Q 1,

Sect. 5]. However in the formalism of [Q 1], D, A should be considered as even,
and so ei9 D, A commute with dya. An extra Clifford variable σ is introduced in
[Q 1] - with σ2 = 1 - which commutes with D, A and anticommutes with dya. In
the formalism of [Q1, Sect. 5], Vu + ]/tD, V^ + yΊϋ should be replaced by

Vu + l/tDσ, Vu+(l/tD+4=)σ'
V \ΓtJ

Following [Q1], if B, C are trace class in End#°°(x).4(Γ*£), set

(2.33)

Note that since elements of Λ(T*B) and End#°° now commute, (2.33) is
unambiguously defined.

We claim that

Trσ exp - {Vu + ]/tDσ)2 = [Tr exp - (Vu + ]/tD)2γdά,

A\ V Γ / Ά\2Ί0dά

—JσJ = j^Trexp- ί Vu + ftD+ j=) I .

The key point is to note that (ep)2 = — 1 and that ep anticommutes with dγ*9 so that
the rules of commutation on the left-hand side of (2.34) become ultimately identical
to our rules for the right-hand side. Note that formula (2.34) is not equivalent to
Quillen's final formula in [Q 1, Sect. 5], since there, Quillen again assumes that D
and dy* commute.

We now go back to our initial formalism, i.e. assume that e{ and dy*
anticommute. In an infinite dimensional context, the differential forms (2.34) are
natural candidates to be representatives in cohomology of the odd Chern classes
associated with the index of the family DeK^iB). This statement is the analogue of
Quillen's formula for a family of Fredholm operators D e K°(B), which was proved
in [B 5, Sect. 2], when D is a family of Dirac operators.

Definition 2.9. A is the ad O(ή) invariant polynomial on stf(n), which is such that if

B has diagonal entries ' and 0, then
l-Xi 0J

(2.35)

(ι)1/2 is one square root of i, which is fixed once and for all. ψ is the homomor-
phism of A(T*B\ which to dya associates dya/(2iπ)1/2.
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Since the fibers Z are odd dimensional, we must make precise our sign
conventions, when integrating differential forms along the fiber. If α is a differential
form on M which in local coordinates is given by

oc = df1...df«β(x)dx1...dxn,
we set

h = dyUCl...dya^ β(x)dxK..dxn. (2.36)
z z

This sign convention will be compatible with the sign convention (1.24).
We now have the following result.

Theorem 2.10. For any ί > 0 , (2ϊ) 1 / 2φ[Trexp-(PM + | / ί ί ) ) 2 ] o d d and {2i)1/2xp

•Tr[exp-(PL ' ί + | / ί D ) 2 ] o d d are C00 differential forms which are closed, whose

common cohomology class is independent of ί, and which both represent the

odd Chern classes associated with the family D. Also

(20 1 / 2 φ[Trexp-(F" + ] / 7 £ ^
(2.37)

and the 1-forms in (2.37) are cohomologous to d[^(0)]. As ί | | 0 , (2i)1 / 2[φ(Trexp

— (P L ' f + | / ί£)) 2 ] o d d converges uniformly on the compact subsets of B to

which also represents the odd Chern classes of the family D. In particular for j g — §,
C/ = 0, and moreover

Proof By proceeding as in [B5, Propositions 2.9 and 2.10], and by using the
formalism of [Q1] the proof of the first part of the theorem is easy. We now will
prove that

(2i)1 / 2φ [Tr exp - (?+j/ίD)2]odd (2.40)

represents the odd Chern classes for the family D. This will of course imply the
corresponding result for the odd forms considered in the theorem.

We first assume that B is compact. Set B/ = BxS1, M' = M xSί xSί. The
mapping (x9s,v)eM'-j>(πx,v)eB/ defines a fibration of M' over B\ with even
dimensional oriented fibers SίxZ. On S1 x Sί, we consider the Hermitian line
bundle which is obtained by identifying (0,v,X)eS1xS1x(C and
(l,t;,exp — (2iπv)X). This line bundle obviously extends into a Hermitian line
bundle T on M. T is naturally endowed with the Hermitian connection
d + 2iπsdv. For ε>0, (y,v)eB/, we consider the first order differential operator
D%tV) acting on JF®£®T(X)<C 2 ,
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D/ε is a family of Dirac operators over Bf acting on sections of twisted spinors over
the fibers Z x Sγ. By [B 5, Theorem 2.6], we know that the differential forms over

Trs exp- [V + dv — + 2iπsdv + D/ε) L (2.41)
i \ dv ) \

are closed and represent in cohomology the normalized Chern classes associated
with the family D/ε. Moreover these forms are in the same cohomology class
as ε varies.

We claim that as 4 I A the forms (2.41) converge uniformly to the forms

| o d ddv. (2.42)

In fact set

0 l\ (0 1

-i oj' σ = l i o
Then (2.41) is equal to

Tr Qxp\-(V + D®a)2-s^~2in]/sl®e0dv>

= -TrJ expj -{V + D®σ)2-ε—Λ(2ίπ]/εί(g)eodv) .] (2.43)

Using (1.7), we have the relations

By proceeding as in [B 5, Theorem 5.3] in a much simpler situation (or by using the
same arguments as in Theorem 3.12, in a very simple situation) and also the sign
conventions (1.24), it is very easy to obtain the convergence result (2.42).

Equation (2.42) still represents in cohomology the normalized even Chern
classes associated with the family D/ε. Since even and odd Chern classes correspond
under suspension by integration along the fiber (see [APS 3, p. 82]), by integrating
(2.42) in the variable v, and with the adequate normalization, we have proved that
(2.40) represents the odd Chern classes associated with the family D.

When B is non-compact, the same result is still true by restriction to compact
pieces in B.

Equality (2.37) is trivial. Since {VUt + γtD)2 is even, if P[ t(x9x
r) is the C°°

kernel of e x p - ^ + j/ίί)) 2, P[>\x,x) is even in {c(TZ)®Endξ)®Λ(T*B).
Ίτ[_P^\x9 x)] o d d only involves the odd part of P\*\x, x) in c(TZ)®Endξ. Also by
(1.7), e1...en is the only odd monomial in c(TZ) whose trace is non-zero.

This shows that formally, we can use the method and the results of [B 5, Sect. 4]
to calculate the asymptotics of Tr[P['%x, x)] as tl[0. In particular using [B5,
Theorems 4.13 and 4.17] and keeping track of the constants, we obtain (2.38). Also
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We then find that

Using DuhameΓs formula, we get

. (2.44)

) - - $ exp{-stD2}]/tVuDexp{-{l-s)tD2}ds. (2.45)
o v

0

Iterating (2.44), we find immediately that

}.
o

Using (2.45), we get
[Trexp-(P" + |/ίD) 2 ] { 1 ) = -]/ί Tr[F"2)exp(-ίD2)] . (2.46)

From (2.30), (2.37), (2.46), we immediately deduce that for jS -f> Cj = ®-> a n d

also (2.39). The statement following (2.37) is now obvious. D

Remark 5. Proposition 2.1 and Theorem 2.4 can be directly derived from [B 5,
Theorem 3.6] and from the local convergence result associated with (2.39). In fact
let us go back to the assumptions of Sect. 2c). M' x R* fibers over jR+ with the
fibers M'. For ε>0, we endow the fiber Mε with the metricgM jε2 (where gM> is the
metric on TMf). The corresponding family of Dirac operators will be εD. The
natural connection V on TM' which is constructed as in Sect. 1 c) is defined by the
relation

XeΊMf

ε, V'±X=-X/ε9
dε

the covariant differentiation in vertical directions being still given by the Levi-
Civita connection of M'. One verifies trivially that the curvature tensor RM' of TM'
is such that for X e TM\

/ Λ \

(2.47)

If S is defined as in Definition 1.1, for X, Ye TM'e, we have

<χ,

Using [B 5, Theorem 3.6], we find that if ξ=<C

HlAβl)) = tU^^eΆ +tε2K/4. (2.48)
dε 2 ε v ) V 2J/7 ε /

The reader will easily check that (2.4) and (2.48) are equivalent. Also using (2.39)
and (2.47), we find that in this case d\β(ϋ)~\ = 0. Now Theorem 2.4 is exactly the
local version of this result, and this local version also follows from Theorem 2.10.
Ultimately we find that in our context, the more natural way of proving that η is
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holomorphic at s = 0 is to prove that [τ/(0)] is invariant under the scaling of D by
using formula (2.39).

We now deduce from Theorem 2.10 the result of Atiyah-Patodi-Singer [APS 3,
p. 95] on the spectral flow of a family of Dirac operators.

Let seSi = R/Z->cseB be a C00 loop in B. Set

ίdc
Mf is a compact manifold. If et.. .en is an oriented base of TZ, we orient M' by I —,

) \as

. M' is obviously spin and carries a vector bundle of spinors
F' = F'+@F'_. The Dirac operator D' acting on sections of F'®ξ over M' is well-
defined. IndD+ denotes the index of D'+ (which is the restriction of Dr to the
sections of F+®< )̂.

We now prove again the result of [APS 3, p. 95].

Theorem 2.11. The following identity holds:

IndD'+ = J dR(0)] = I A ( Ώ Trexp- ±-. (2.49)
c M' \2πJ liπ

Proof. Using (2.39), and the orientation convention on M\ it is clear that

ί dW(0)] = ί A (—) Tr exp- - ^ . (2.50)

Also ΓM7 splits into TMf = THM'@ TZ, and THMr is trivial. The A genus for
coincides with A ——

\2π
The Atiyah-Singer Index Theorem shows that

IndD'+= J A(ψ- T r e x p - - ^ .

M' \2π/ 2ιπ

The theorem is proved. •

Remark 6. If (̂0) has a finite number of jumps on Sί9 then clearly

(2.51)

The spectral flow Σ ~ ^ — ^s t n e n eq^al to — IndD'+ In this respect, our sign

conventions differ from [APS 3, p. 95] where M' is oriented by I el9...,en, — I.
V dsj

Also note that the explicit expression (2.39) is not needed to prove
Theorem 2.11. It is enough to know that the forms (2.37) are in the same
cohomology class as rf[^(0)] and to do a trivial asymptotics as ί j | 0 , similar to what
we did in the proof of Theorem 2.10, on the heat equation formula for
Ind/y+. Ultimately the equality of the spectral flow and of IndD^ is a simple con-
sequence of the superconnection algebra.
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III. The Holonomy Theorem: A Heat Equation Proof

The purpose of this section is to give a proof of the holonomy Theorem which was
suggested by Witten in [Wl,2]. Namely we calculate the holonomy of the
determinant bundle λ over a loop c in B in terms of the limit in R/Z of refined eta
invariants of the odd dimensional manifold M/ = π~1(c), which are obtained by
blowing up the metric of B. Formally, the situation is very close to what is done in
Bismut [B 5, Sect. 5] in a second proof of the Index Theorem for families. The
proof is also closely related to Atiyah-Donelly-Singer [ADS].

The section is organized as follows. After introducing notations in a), we
establish in b) a generalized Lichnerowicz formula, which still follows from [B 5,
Theorem 3.6]. In c), we construct certain heat kernels along the fibers Z, in order to
prove in d) that the differential form δa

t introduced in (1.38) converges to δa

0 as ί j | 0 .
The proof is obtained by a local cancellation process which matches the local
cancellations of [B 5, Sect. 4] and also the local regularity of the eta function
proved in Theorems 2.4 and 2.6. In e), if c is a loop in B, we consider the n +1
dimensional manifold M/ = π~1(c) and the Dirac operator Dε on M' associated

with the metric— ®gz. In f), we give a simple geometric proof that if [?f (0)] is the
ε

modified eta invariant of Atiyah-Patodi-Singer [APS 1, 3], which takes its values
in R/Z, then as ε|jθ, [/f(0)] has a limit [fβ.

In g), we prove that as ε j JO, for t bounded, the local trace of the kernel which is
used in formula (2.23) to define [/f (0)] converges to the local supertrace in the heat
kernel formula for δa

t in (1.38). The proof of Theorem 3.12 uses three ingredients:
• The local cancellations obtained in Theorem 2.4 and 3.4 to obtain

uniformity as ίJ,J,O. Incidentally, the proof shows how Theorem 3.4 could be
deduced from Theorem 2.4.

• Certain probabilistic estimates, which are obtained by the partial Malliavin
calculus [BM] and the techniques of [B 2] in order to localize the problem in an
arbitrary small neighborhood of a given fiber Zyo.

Φ A technique due to Getzler [Ge] which is used to ultimately obtain the
required convergence result.

In certain aspects, the proof of Theorem 3.12 should be considered as an
expanded treatment of [B 5, Sect. 5].

In h), we prove in Theorem 3.14 that if the family D has index 0 and is invertible
over c, we have a uniform exponential decay of the traces of the corresponding heat
kernels as εjjO. This result is technically difficult to prove since it does not follow
from trivial bounds on the traces. We use a probabilistic technique, which
overcomes the lack of uniform ellipticity in the directions of c, by instead
controlling a time depending parabolic equation along the fibers which exhibits
a.s. exponential decay in the sense of bounded operators acting on L2 sections. The
exponential decay of the traces is obtained by using the partial Malliavin calculus
[BM, B 2] on a finite time interval.

In i), we prove the holonomy Theorem in the form indicated in the
introduction. The main difficulty lies in the elimination of zero modes which are
unavoidable if IndD+ +0. The idea is to deform continuously the family D into a
family of pseudo-differential operators, which verifies the assumptions of
Theorem 3.14.
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Finally, in j), we briefly interpret the process of blowing up the metric of B in
terms of the local geometry of the fibered manifold M.

a) Assumptions and Notations

We now go back to the assumptions of Sects. 1 c), 1 g). In particular in the sequel,

will be the family of Dirac operators considered in Sect. 1 g).

b) A Generalized Lichnerowicz Formula

eu ..., en is an orthonormal oriented base of TZ. fu ...,/w, dy1, ...,dym are chosen
as in Sect. 1 g). z is an extra Grassmann variable which anticommutes with the
Clifford variables eu...,en and with the Grassmann variables dy1,. ..,dym. We will
use the notation K(0Λ) to select the terms in K whose degree in the Grassmann
variables dya is 0 or 1.

We now prove an extension of the generalized Lichnerowicz formula in Bismut
[B 5, Theorem 3.6]. By proceeding as in Sect. 2, Remark 5, the reader will easily
check that this formula is in fact a direct consequence of [B 5, Theorem 3.6].

Theorem 3.1. For any f>0, the following identity holds

K t Hi0* 1)
+ tj + -eiej®L{ei,eJ) + ]/~teidya®L{eiJa) . (3.1)

Proof. A defined in Definition 1.17 is of degree 2 in the variables dya. Using
Proposition 1.18, the first part of the identity is obvious. Let IL'Uz be the final
expression in (3.1), JL > ί the corresponding expression with z = 0. Clearly

| j ^f). (3.2)

By (1.49), we have

(3.3)

Also

eiΛyazei + ze^df = - dyaz - zdf - 0, (3.4)

and so

IL^z = ILj-2z]/tD. (3.5)

Now by [B 5, Theorem 3.6]

[ ( F ί + | /?D) 2 ] ( 0 1 ) = /L t . (3.6)

Using (3.2)-(3.6), the theorem is proved. D
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c) Construction of Certain Heat Kernels

As in Sect. 2c), we construct certain heat kernels using the Grassmann variable z,
with the same ultimate purpose of proving local cancellation results.

Definition 3.2. For t >0, Rt(x, x*) denotes the C00 kernel on Z associated with the

^ + l/ίZ))2

-* —
f ( F ^ + l/ίZ))2

 r \
operator exp < - -* — + zytD >.

By Theorem 3.1, 2^0)1)(:x, x') is also the kernel for the operator

f (Vu + ]/tD)2

 Γ l ( 0 ' υ

e x p { *• YzytΌ > . Rt(x, x*) has the natural decomposition

(x, xθ . (3.7)

For x e M , JR^X,X) (respectively ^(x,x)) is even (respectively odd) in
End(F®ξ)x®Λnix)(T*B).

The linear functional Trs, which is well defined on trace class operators in
End//°°(§)/l(Γ*J5) can be naturally extended to trace class operators in
EndHco®Λ(T*B)®R(z) in the obvious way. At a local level, the same is true
for elements of ^

End(F®ξ)x®Λπ{x)(T*B)®R(z).

Of course we still use the obvious extension of (1.24) in this situation.
We first prove some useful identities.

Theorem 3.3. The following identities hold

= \ΎτlRt(x,x)]dx
z

Tr sDexp- ( > 7 L ' '+

2^"- j = - γ τ r ^ e x p ^ - ~) PDDj . (3.8)

Proof Using DuhameΓs formula, and the fact that z2 = 0, we find that

(VL '+]/tD)2 i f s(VL '
= exp f + ίexp|

zj/ίDexp j -(1 - s ) - ^-—->ds. (3.9)
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s(VL>t -\-]/tD)2

When taking supertraces in (3.9), we can commute exp —*̂  and so

obtain the first equality in (3.8). The final equality in this first line is obvious. Also
clearly

= [τr,ί>exp-

By DuhameΓs formula we find easily that

Γ (tD2 + ]/tPuD)Ύ» } ( stD2\γt~ ( {\-s)tD2\j
e x p - - 1 =-jexp( --y-lγΓαDexp( I d s .

(3.11)

The second line of (3.8) immediately follows from (3.10), (3.11). D

d) Local Cancellation Properties of the Connection x V

Recall that the differential forms Bj were defined in (1.31). We now prove a
cancellation result for the Bj which matches the corresponding result for the aψ
proved in Theorem 1.21.

Theorem 3.4. There is a C00 function C'1/2(x) defined on M with values in A\T*B)
(with Cll2(x)eΛ%{x){T*B)) which is such that as ί | | 0 ,

ΐTτsR}(x9 x)T] = C'1/2(x)|/ί + O(t3 '2, x) (3.12)

and O(ί3 / 2,x) is uniform on the compact sets of M. In particular for j^O, Bj = 0.

Proof We first study the asymptotics of Tr s [R f (x,x)] ( O i l ) . Set

/ jt\

Let JRί(x,x/) be the C00 kernel associated with exρ( — — J. By Theorem 3.1, we
know that ^ '

Λ<o 1)(x,x/) = Λt

/(O 1 )(x,x0. (3.14)

Equation (3.13) has the same structure as the generalized Lichnerowicz formula of
[B 5, Theorem 3.6]. There is a supplementary Grassmann variable z formally
associated with a vector / and here

<S(edej, /> = - <S(ei)f, ej) = - 2δ{,

o
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We now use [B 5, Theorem 4.12] in this situation. We then already know that
as ίj, J,0, Tτs[Rt(x, x)] has a limit if (x). Also we know that this limit is expressed as
an expectation over the probability space W of a Brownian bridge w'1 in TXZ.
More precisely

if(x)= J

Now by (3.15), we find that ( F S ^ ) ^ , / ) = 0. Using [B 5, Theorem 4.12], we
find that the Grassmann variable z only appear in K(wn) in the form

} iPzS(wn)fa9 PzS(dwn)f)dy^z, (3.16)
o

or in the expression obtained by interchanging fa and J, which coincides, up to
sign, with (3.16).

Now using (3.15), we get

= Σ
j = 1 0

( α
0

Integrating by parts and using (1.48), we find

2 J S(wn)dwn = j S(wn)dwn -S{dwΛ)wΛ = - J T{W\ dw'1). (3.17)
0 0 0

Since w'1 e TZ, T(w'\dw/i) = 0, and so (3.17) vanishes.
So we find that JSf(x) does not contain z. Using (3.7) and (3.14), we see that

lim j / ί T r ^ j R ^ ^ x ^ ^ ^ O . (3.18)

Let φ\ be the homomorphism of Λ(T*B)®R(z) which to dya, z associates

]/tdya, ]/tz. In Sect. 3c), we saw that JR|°'1) is the kernel of the operator

(p« + l/ίD)2 r Ί ( 0 > 1 )

exp ^ YzytΌ . φ'tRfΛ) is then the kernel of the operator
2 v J

/ ( r + /))ΛΊ(o,i)
By Greiner [Gr, Theorem 1.6.1], we have the asymptotic expansion

^β 0(x) + E1(x)t+E2(x)t

We then find that

E'^\(X) +... + E'1(x)t+0(t2,x),

and O(t2,x) is uniform on compact sets in M. Using (3.18), we find that for j^O,
£j = 0. Equation (3.12) is proved.
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Also, by Theorem 3.3, we know that

Γ ^ J (3.19)

Using (3.12), (3.19), and comparing with (1.31), we find that for j^O, B — 0. D

Remark 1. By proceeding as in Sect. 2, Remark 5, we could have proved (3.12) as a
direct consequence of [B 5, Sect. 4], by using the results of [B 5] on the Index
Theorem for families with a new parameter ε included. This is in fact what we
implicitly do in (3.15)—(3.17). Equation (3.12) is in fact equivalent to the vanishing
of part of a curvature tensor as in (2.47).

Remark 2. The scaling anomaly described in Remark 2 of Sect. 1 has almost
disappeared. In (1.44), the connection 1Vb is obtained from XV by the gauge
transformation leλ-*bAol In particular the holonomy of the determinant bundle
λ over loops in B does not depend on the real constant μ introduced in Sect. 1 f),
when defining the connection * V.

e) The Dirac Operator Over a Lifted Loop

seS1=R/Z-+cs is a C 0 0 loop in B. O u r purpose will now be to calculate the
holonomy of the determinant bundle λ over c.

By eventually changing the parametr izat ion of c, and by scaling the metric gB,
we may and we will assume that

dc_

Ts

Note that ultimately, all our results will not depend on the metric gB.
c is naturally oriented by the natural orientation of Sί. M' denotes the manifold

M' = π ~ 1(c). The dimension of M' is n' = 21 + 1 . Since TZ is even dimensional and
oriented, M' is unambiguously oriented.

Let V'L be the Levi-Civita connection on TM'. V'L is obtained by projecting
orthogonally VL on TM'. Since the connection V on TZ is the orthogonal
projection of VL on TZ, V is also the orthogonal projection of V'L on TZ. This
means that the construction of V can in fact be done directly on the manifold M'.

As a consequence, we will temporarily assume that the base manifold B is
exactly the loop c. We will still use the notation M'. We otherwise use the same
notations as in the previous sections in this new situation, i.e. VL is the Levi-Civita
connection on TM', S the tensor defined by the relation VL = V + S, where S acts on
TM' etc.... TB is now trivial and spanned by

fί = J- ( 3 2 °)

dy1 is the Grassmann variable dual to fλ. We also identity fγ with f^. Clearly
Vfιf1=0 and more generally

V A=0. (3.21)
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By Sect. 1 d), we know that

S(/i)/i=0, (3.22)

and so

1^/1 = 0. (3.23)

This simply reflects the fact that the integral curves of j γ in M' are geodesies.
Consider on M' the differential equation

dx
^ = /iW, x(0) = x o ? (3.24)

and set
(3-25)

Take y0eB. Then (s,x)eRxZyo-+ψs(x)eM' is a local diffeomorphism. M'
can be identified with [0, l]xZy 0 and the relation (0,x) = (l,ψί(x)). In the
coordinates (s, x), the metric of M' is given by

ds2-\-gij{s9 x)dxl®dxj. (3.26)

Also since B is now of dimension 1, by Proposition 1.18, we have VU=VLJ.
d'x is the volume element of M\ Since dx is the volume element in Z, if dy is the

length element of c, we have d'x = dydx. The kernels on M' will be calculated with
respect to d'x.

0 still denotes the SO(n) bundle of oriented orthonormal frames in TZ. M' is
obviously spin. Using the convention of Sect. 1 b), the bundle of spinors on M' can
be identified with F = F + ®F_. By (1.8), fx acts on

like — iτ, where τ is the involution defining the grading. In matrix form, fγ acts on
as the matrix φ(fι),

[-; I] (3.27)
This permits us to define the action of fγ when more general Z 2 graded bundles
than F®ξ are considered. This will be the case in the proof of Theorem 3.16.

Any element A of End//00®c(TB) has a unique decomposition

. (3.28)

One verifies trivially that φ defined by

is a homomorphism of ungraded algebras.
Let δ be the graded algebra $ = ΈnάH^®c(TB)®R(z). Any aeS has a

unique decomposition

a = ao + aίf1, ao,a1 eEndi ί®^),

α^α^ e End if*® (ΓB)
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If a e $ is trace class, set

) ] . (3.30)

If a e <ίeven is trace class, α0 does not contribute to Trzα, since in α0, z factors an
odd element of Endiί0 0. If ax is of the form

aγ=a\+za\\ α^αfeEndff0 0, (3.31)

then

Trza = zΎra2

ίφ(f1)=-izΊτsal (3.32)

Also α} is odd in Endfί0 0, and so Tr s α| =0. We can also define Tr and Trs on
(z) by using the convention

= zΎvsb. (3.33)

Now in (3.31), a\ is odd and a\ is even in EndH0 0. Equation (3.32) implies

Ίτza=-iττsa1. (3.34)

In the sequel we will write f, A instead of φ(fx), φ(A). This will have to be done
with some care since φ does not respect the grading. However most of our
computations are done in the graded algebra S.

Using the results of Sect. 1 d) and (1.2), we know that when acting on sections of
F®ξ, V and VL are related by

K= KMWedejJiyejA, V^ = Vfι. (3.35)

Also </£,/*!> is unambiguously defined on M7. This is of course confirmed
by Proposition 1.4.

Set

i>- (3.36)

We drop the ~ sign in Vu

Sx to indicate that Vu

fl is a local operator.

Definition 3.5. For ε>0, Dε denotes the operator acting on f/00

D ^ j / ^ Λ ^ + D. (3.37)

D£ is given in matrix form by

We first prove the elementary result.

Proposition 3.6. Dε is the self-adjoint Dirac operator associated with the Levi-Civita

connection ΨL on TM' for the metric — ®gz.

Proof. We only prove the Proposition for ε = 1. The Dirac operator Df on M' is
given by
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Using (3.35), we find

The proof finishes as the proof of Proposition 1.18. D

Definition 3.7. ηε(s) denotes the eta function for the operator Dε. hε is the integer

ftε = dimKerZ)ε. (3.39)

ήε(s) is defined by

f) Variation of [ f (0)]

We will now calculate 1 / 2 [?f(0)]. RL is the curvature tensor of TM' for the

Levi-Civita connection VL. Similarly RLε is the curvature tensor of TM' for
the connection εVL.

We will consider S as a one form on TM' with values in antisymmetric tensors
on TM'. Using (3.22), we know that

) = 0. (3.41)

We now have the following result:

Theorem 3.8. The following identity holds:

^ ( ^ ) μ ] (,42)
Also

As 4 JO, If (0)] converges in R/Z to [if]. [ήε(0)] is a C00 function of ε1 / 2 on [0,1].

Proof. To prove (3.42), we will use formula (2.39). Let PH, Pz be the orthogonal
projection operators from TM' on TZ, THM'. M'xR+ fibers over R+ with fiber
M'. For ε e R+, we will note M'ε the corresponding fiber. We endow TM'ε with the

m e t r i c ^ ®gz. Recall that ΎL is the Levi-Civita connection of TM'ε. On M' x R + ,

we consider the connection V on TM' which is defined in the following way:

IfX, YeTM'ε, VχY=ΨjίY9
x (3.44)

If YeTM'ε, V'd_Y=-PHY/2ε.
dε

M'xR+ is naturally endowed with the horizontal subbundle of T(M' xR+)

which is spanned by — . One verifies easily that the connection V on TM' -
Co
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considered as a vector bundle on M' x R+ - preserves the metric of TM' and that
V is exactly the connection on TMf which was constructed in Sects. Id) and 2e)
(where TM' was instead TZ).

By proceeding as in [B 5, Eq. (3.10)] it is not difficult to see that if Sε = ΎL - V,
then

PzS
ε = PzS; PHSε = εPHS. (3.45)

Let R' be the curvature tensor of V. Take X, Ye TM'ε. Clearly

R'(X, Y) = RL'8(X, Y). (3.46)

Also, using (3.45), we find

'i^r, x) y= V^
\0ε J dε

dε

x
dε

= - PBrxY/2ε + PHS(X)Y-PHS(X) 7/2 + PH7xY/2e

+ S°(X)(PHY)/2ε

= PHS%X)Y/2ε + S%X) (PHY)βε. (3.47)

Since Sε(X) is antisymmetric, it interchanges THM' (which is one dimensional) and
TZ. From (3.45), we obtain

R \ Ίk.'

Using formula (2.39), we find that

and so

d ε 1 1 2

Formula (3.42) is proved.
Clearly, if D is the horizontal differentiation operator associated with V,

Sε~]. (3.51)

If we express RLε on the base (el9 ...,en, ]/ε/i), using (3.45), we find

S 0

On the same base, Sε/γε can be represented in the form

Λ pf\ <3 53)
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We then find that as εjJO,

Equation (3.43) immediately follows from (3.50) and (3.54). Using (3.50), (3.52) and
(3.53), it is obvious that [if (0)] is a smooth function of ε1/2 for ε e [0,1]. D

Remark 3. Theorem 3.8 makes clear that in general [ff (0)] depends on ε. More
precisely [/f (0)] depends explicitly on the tensor T. T vanishes if and only if for

e e T Z ' Vue = U»e\, (3-55)

or equivalently if ft acts isometrically on the fibers Z. M' is then locally and
metrically a product. As is clear from (3.52), as εjjO, we get closer and closer to a
product situation.

Remark 4. The general considerations of Atiyah-Patodi-Singer [APS1, p. 61]
show that (3.42) can vanish for purely algebraic reasons. This is for instance the
case if ξ is the trivial line bundle and if / is even: the top degree form in the right-
hand side of (3.42) vanishes locally. [?f (0)] is then independent of ε. More generally,
by using Index Theory with boundary, it is shown in [APS 1] that [ff (0)] is in this
case a spin cobordism invariant. Note that we could use instead Theorem 2.10 to
obtain the results of [APS 1] on eta invariants.

g) Convergence of Heat Kernels on Mf as εj, J,0

Recall that our ultimate goal is to prove a formula relating the holonomy of the
connection 1V on c to [fβ. The idea is to use the representation (2.22), (2.23) for ηε(0)
and to prove that as ε | |0 , the integrand in (2.22) converges to the corresponding
integrand which appears in the formula (1.38) defining <50.

We first prove two simple identities, which are still special cases of [B5,
Theorem 3.6].

Proposition 3.9. The following identities hold:

+ ^+tk,/^3,
V* (3.56)

Proof The right-hand side of the first line of (3.56) is given by

^(>7/1 + < ^ / i > 2 + Ϊ / 1 ' 7 / 1 + <f7/Λ/i> + 2<fc,/i>f7/1+^<
A l/e 1/ε

V V (3.57)

Also

(3.58)
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Comparing (3.57) and (3.58), the first line of (3.56) is proved. Since Df1+f1D = 0,
the second line is obvious. D

Definition3.10. For ε>0, ί>0, P[\x,x% Pε'°(x,x% Pε

t

Λ(x,x') denote the C00

/ t(Dε)2 \ t(Dε)2

kernels on Mf associated with the operators exp I — -f tzDε j , exp — - — — ,
t(Dε)2 \ 2 J 2

D ε e x p - ^ ^ .

Clearly

Pίε(x, xθ = Pε'°(x, xθ + tzPε

t> \x, xθ . (3.59)

Also by Theorem 2.4, for ε > 0, uniformly on M'

lim Tr[Pf'1(^^:)] = 0. (3.60)
ί||O

So we can define by continuity the function Tr[Pε>1(x,x)] at ί = 0.

Definition 3.11. For t > 0, i?f'(x, x7) denotes the C00 kernel on Z associated with the
f 1f ί(P + D) 1

operator exp < \- tzD >.

Recall that now Vu = VUt. Also since B is of dimension 1, (PM)2 = 0. Iφc, xx) is

the kernel of exp< - - (D2 + PMD) + ίzD >.

Λί(x, xθ can be written as

Iφc, xθ - ^ ( x , XO + ίzJR ^x, xθ . (3.61)

Comparing with Definition 3.2, we find that

[Λί 1 (^^0] ( 1 ) = l/ί[Λ f

1(^^0] ( 1 ) . (3-62)

Also by Theorem 3.4, we know that

lim Tr s[R f

1(x,x)] (1) = 0 uniformly on M. (3.63)

So Tr s[R f

1(x,x)] (1) can also be defined by continuity at ί = 0.

We now prove the first critical step in the proof of the holonomy theorem.

Theorem 3.12. Take T such that 0< T< + oo. Then as ε | |0 ,

Tr[Pε ' \x, x)]-> - - L , <Tr s [^(x, x)]^), / ,>, (3.64)

uniformly on [0, T] x M'.

Proo/. The proof is divided into two main steps, which we first briefly explain.
9 The first step consists in proving that as εj, JO, the kernel P ε ' 1(x, x') localizes

in an arbitrary small neighborhood of the fiber Zπx. This is done by using a
probabilistic representation of the kernel P\ and the partial Malliavin calculus
[BM].
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• Once localization is proved, we can now replace M' by R x Zyo and assume
that out of a small neighborhood of Zyo, we are metrically in a product situation.
We then use a technique of Getzler [Ge] to prove the convergence.

The probabilistic representation of P't in the first part of the proof will be
essential in the proof of Theorem 3.14, where uniform estimates have to be
obtained for arbitrary large t.

Our computation will be done in the graded algebra <feven defined in Sect. 3 e).
This means that we work locally in [c(TM0®#(z)] e v e n .

(Dε)2

Step n° 1. Localization of the Convergence. Proposition 3.9 shows that —

4- zDε is the sum of two operators.

• — 7)(f\V}^2Λ-z]fzfχVu

ϊι acts horizontally, i.e. in the directions of fv

Φ ~ ^yfι{Vu

flD)--γ +zD acts vertically, i.e. along the fibers Z.

We now use the idea of [B 5, Sect. 5]. We first construct the semi-group

exps — tί ~ (/iP/1)
2 + zp /ε/iF/1 If using a Brownian motion y in B. The semi-

ί t(D) )
group exp < f- tzDε > is then obtained by using a subordination procedure.

Since B identifies with S l 5 these constructions will be very simple.

a) Construction of exp ( - ~ (fγ V})2 + z]βfι V}1

Take y0 e B. Using the differential equation (3.24), the corresponding group of
diffeomorphisms ψ defines the parallel transport of the fiber Zyo into Zys, where y.
is any continuous path in B with y(0) = y0. Since B has dimension 1, the holonomy
group of this connection is the discrete group generated by the diffeomorphism ψί

acting on Zyo. Similarly, we can parallel transport elements of H™0 into H™ using
the connection V or the connection Vu. τ°, "τ^ will denote the corresponding
parallel transport operators, τs

0,
 uτs

0 their inverse. If x0 e Zyo, we will note τ®x0 e Zys

the parallel transport of x 0 along y..
Using Proposition 1.4, we find that if heH^ " ΐ J l i e H * , and moreover if

Cτ?fc) (x) = [Jacτ s

0(x)]1 / 2τ s°/ί(τ^), (3.65)

where Jacτs

0(x) is the Jacobian of τs

0 at x.
Let w be a one dimensional Brownian motion with wo = 0. Let Q be the

probability law of w on ^(R + ;R). Identifying B and S^^—R/Z, consider the
differential equation

) yo. (3.66)

Clearly

Λ = [)Ό + l/cwJ. (3.67)
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Take x e Z y o . Consider the stochastic differential equation

Yzf Ί
dU=U\ -^+<fe(τ?x),/ 1> \]/εdw, 17(0) = / . (3.68)

£7S is given by the formula

(s ,_ i

(3.69)
1°

By Proposition 1.4, using the relation z2 = 0, we have

We claim that if /ze/ί00, for s > 0 ,

] (3.71)

Equation (3.71) is in fact a direct consequence of the first line of formula (3.56), of
(3.68H3.70) and of Itό's formula [B 3].

In the sequel, we will always assume that t ^ T, ε ̂  1. The various constants -
which in general depend on T - will often be denoted C.

Let Qyo be the law of w conditional on yt = y0. Equivalently, Qyo is the law of w
k

conditional on wt = —=, keZ. Let βt be a standard Brownian motion, with β0 = 0.

k s
Conditionally on wt=—•?=, ws(0rgs:gί) has the same law as βs — βt

+ - Λ Csi

? P 41]. Now for k e Z,
t]/ε

(3.72)

Also for any η>0 by [IMK, p. 27]

^ ^ ^ j (3.73)

Using (3.72), (3.73), it is clear that

] ( ^ Y (3.74)

b) Construction of exp \ — - (Dε)2 + tzD1

Take x e Z y o . In order to prove that as εjjO, Tr[P^' 1(x, x)] converges, we will first
prove that the kernel Pίε(x, •) concentrates in a small neighborhood of Zyo, in order
to replace the base B = Sί by JR.
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Let Ay be the Laplace-Beltrami operator in the fiber Zy. We first study the

scalar heat kernel p't on M' associated with exp-(ε/1

2-l-zlz) and prove the

corresponding concentration result. The proof that P't
ε(x, 0) concentrates will

follow by a subordination procedure.
Recall that 0 is the SO(n) bundle of oriented orthonormal frames in TZ. 0 is

endowed with the connection V. Let Xf,..., X* be the standard horizontal vector
fields on 0 along the fibers Z. Along each fiber Zy, X*, ...,X* restrict to the
standard horizontal fields of 0 in the sense of [KN, IV]. /f is the horizontal lift of
fx in TO for the connection V. Let w' = (w'1,..., wm) be a Brownian motion in jR",
which is independent of w. The probability law of w' on ̂ (R+ Rn) will be noted P.

Take xoeZyo, u0e0X0. Consider the stochastic differential equation on
{V(R+;R")xV(R+;R),P®Q)9

du = Xf{u)dwd + \fεf*(u)dw, κ(0) = u0 . (3.75)

Set xs = ρ(us). xs is a Markov diffusion in M\ whose infinitesimal generator is
exactly \\_Δz + £f?~\. p't(x0, x)dfx is exactly the law of xv

We now assume that the law of w is Qyo. Of course we still suppose that w and w'
are independent. Let p[{x)dx be the law of xt in Zyo conditional on ys(0^s^t).
Using the partial Malliavin calculus of Bismut-Michel [BM], we know that Qyo

a.s., p[{x) is C00 on Zyo.
For given keN, q^l, we want to establish a uniform bound as εjjO of

£β5>< [|ptΊW,0,κ)] ( 3 7 6 )

To do this, we will explicitly use the method of [BM].
Let vs be a bounded process taking values in Rn, which is adapted to the

filtration &{wh,w'h\h^s). For leR, consider the stochastic differential equation

v, u(0) = uo. (3.77)

As in [B 2, Chap. 2], we calculate —- . Let ω be the connection 1 form on

0. Similarly let θ be the Rn valued one form on 0

XeTO,

Let τ, Ω be the 2 forms on 0 which are the equivariant representations of T, Rz.
The equation of the connection V on 0 are given by [KN, IV]

(3.78)

1 •*-»(#
Using (3.77), (3.78) and proceeding as in [B 2, Theorem 2.2], we find that

dθ = vds + τ{yΊf?dw, iuβ)*) + ωdw'; 0(0) = 0,

dω = Ωftu.dw')*+]A/i*dw, (wsθ)*) ω(0) = 0.
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We can then use the rotational invariance of w' under infinitesimal rotations as
in [B 2, Theorem 2.2]. We ultimately find that \{Rιc is the Ricci tensor of Z, if σ is its
equivariant representation, the relevant equation to be considered in establishing
an integration by parts formula conditional on y. is given by

w,(usΘT); 0'(O) = O,

άω' = Ω((usdw')* + ]/e/i*dw, (uβT) \ ω'(0) = 0.

In particular by proceeding as in [BM, Sect. 3] and [B 2, Theorem 2.2], we find
that for a n y / e Cb°° (MO,

x t)ί <ι>,δw'}).oΓ/(xt)ί <ι>,δw'}). (3.81)

Observe the critical fact that since ut maps isometrically Rn into TXZ, Eqs.
(3.80) and (3.81) incorporate the variation of the metric in Z. This is reflected in the
fact that τ exactly measures to what extent fx does not act isometrically on Z.

Let As be the solution of the stochastic differential equation,

dAs= -^σAds + τ(]/εf*dw,(usA)*); A(ϋ) = I. (3.82)

Fix keN. To bound uniformly (3.76), by using the Malliavin calculus, it is
essentially equivalent to dominate

o Γ sup μ / Ί (3.83)

with q large enough. Note at this stage that it is essential that Eqs. (3.80), (3.81)
incorporate the change of metric on Z, so that the size of the variation of xt in Zyo is
adequately controlled.

Under Qyo, w is a Brownian bridge, and this creates some difficulties in the semi-
martingale description of w under Qyo [IW, p. 229] since the stochastic differential
equation which drives w under Qyo has singular coefficients as sjfi.

Let qs be the heat kernel oϊS1 (for its standard metric). Then note the following
facts:

0 ̂  s ̂  - I, and moreover

(3.84)

Qyo and Q are equivalent on $ I yί

dQ V ~ -2J qjyo,yo)

It is trivial to verify that (3.84) is uniformly bounded as εj, j.0. Also it is standard that

(3.85)sup \AS\"1
^ ί J

is uniformly bounded, and so as

Ep®Q*o[ sup \As\
q~\ (3.86)»oΓ sup |Λ/Ί

is uniformly bounded.
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• To estimate (3.83), it is then natural to use time reversal. In fact Qyo is
invariant under time reversal. If we time reverse equation (3.75), we get a stochastic
differential equation with a random starting point ut. However if we write Au

s°
instead of As (to note the explicit dependence of Λs on u0), the Kolmogorov type
estimates of [B 1, Chap. I—III] show that

sup \A?\<
2

« 0 e0, ρuoeZyo

(3.87)

is uniformly bounded as εJjO. The estimates in (3.87) can be obviously time
reversed, and so we can uniformly bound EQyo Γ sup \As\

q~]. A uniform bound on
(3.83) immediately follows. |_2=s=° J

More generally, as we shall see in more detail in the proof of Theorem 3.16, for
x, x' e Zyo, we can express P[%x, x) in the form

P;ε(x, x') = qεt(y0, yo)EQyotCt(x, τUΊX expz/> f] , (3.88)

where Ct is a C00 kernel on Zyo. The kernel Ctτ% can be constructed by solving a
matrix valued stochastic differential equation "subordinated" to xs(0^s^t), i.e.
calculated over the paths of x. The same estimates as after (3.80) permit us to prove
that for qZί, ^ £ f l y , ^ ^ ^ ^ π ( 3 . 8 9 )

(3.90)

L*'eZy0

is uniformly bounded as εJ,J,O. Also we have

yet

Note the trivial bound for x e Zyo.

sup ]/ε\

By [IM p. 27], under P, sup ws has the same law as \wt\ and so

EpΓexpC sup l/c|ws |]^2expCεί. (3.91)
L O^s^ί J

By proceeding as after (3.84), we find easily that

EQ"oΓexpC sup ]/ε|ws|l ^cexpCεί. (3.92)

Using (3.74), (3.88)-(3.92), we find that for any η>0,

»o Γ s u p \Ct(xΌ9 τ?ox)\

l
x l sup , ^ - ^ ^ J ^ c e x p - - . (3.93)

By (3.88), (3.93), we find that as ε | |0, P't%x,xf) can be adequately evaluated by
neglecting the paths y0 which go to a distance ^η of y0.
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This permits us to trivialize the situation out of a neighborhood of y0. Namely
we can assume that B is replaced by R, that Mf is replaced by R x Zyo, and that if
0 G R is identified with y0, and if \y\ ^ η, the fibers Zy are endowed with a constant
metric.

We now will use dydxyo instead of dydxy as the base measure on R x Zyo. This
changes the kernel P/ε. However P't

ε(x0, x0) is unchanged.

Step n° 2. The asymptotics of ΊrP[ε{xQ, x0). The computations which follow will be
done in the algebra <?even. In particular zD\ {Dεf and the kernel P[ε should be
viewed as elements of $even. P't

ε(x0>
χ) i s the solution of the partial differential

equation

[ (3 94)

For x e R x Zyo5 with πx = y e R, set

4j£) =P't%x)(ί - ̂ j . (3.95)

P'ε is the solution of the equation

Clearly zfx commutes with —D2 + zD. Also if a is odd in c(TZ), we have

zfifia~fiazf\ — —za + az= —2za.

Since F^D does not act on the variable y e R, we have

). (3.97)
|/ε L Δ Δ |/ε Δ

Also

7.f. V I 7~f. \ vf. V

(3.98)
'ε \ |/β / yε

Using (3.56), (3.94H3.98), we find that P't%x) is the solution of the equation,

(3.99)

Also since πxo = 0, we have

P?(xo) = P?(xo>Xo)' (3.100)

We will now transform equation (3.99) according to a procedure due to Getzler
[Ge]. Of course, the algebraic situation is much simpler than in [Ge], since we only
have one Clifford variable fx.
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We consider P[%x) as an element of Hom((F(g)ξ)x, {F®ξ)Xf)®c(TB)®R(z).
P't%x) has a unique decomposition,

x)f1, (3.101)

where

Q&x), Q't%x) e Hom((F® α , (f® O J ® K(z)

By (3.34), we have

Trz[Pίε(x0)] - - /[Trsβίε(x0)] . (3.102)

The Grassmann algebra Λ(T*B) is spanned by 1, dy1. The operators dy1 Λ , ifί

both act on Λ(T*B), and also

/J-1. (3.103)

In the sequel, we assume that dy1 A , ifί are odd operators, which anticommute
with odd element in ΈndHco(S)R(z). It is then feasible to replace in (3.101) fx by

—γr A —γεifl. For (y,x')eRxZyo, set
1/β

?(γzy, χθ (^y1 A - είfί). (3.104)

In the coordinates (y, x'), the operator Vfί can be written in the form

where Γ is a smooth matrix.
Let ifε be the differential operator

Y, x')Y-

J'ε is the solution of the equation

dt x '

Set
τr;[p;-(o, x0)] = -ίTr s[ρ;ε(o, * 0)] (3.106)

By (3.106), we see that Tΐz[P"εφ, x0)] is calculated by selecting the term which
is a factor of dy1 A in (3.104).

Let JS? be the differential operator

>,x')-l:dy1ΛV}ίD(0,x'). (3.107)
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Clearly as ε|jθ, ^ converges to ^£ in the sense that the smooth coefficients of
^£z converge to the coefficients of 5£ as well as their derivatives, uniformly on the
compact subsets of JR X Zyo. Let F[ be the solution of the equation

^-=F't<£\ JPS = <W8)/. (3.108)

Fί is trivially given by

Pt(y, χθ = e-τ^= K(*o, χθ (3.109)

In particular, using (3.61) and (3.109), we find that

Tri[PΓ(0,xo)]= ~ " 7

Equivalently using (3.62), we find that

^ (

? / i > . (3.110)

We claim that for any γ such that 0 < γ < T.

o) uniformly on ly, T]xZyo. (3.111)

The proof of (3.111) can be done using the convergence of ifε to if and two sorts of
arguments.

• One can use the Malliavin calculus as suggested in [B 5, Sect. 5], using" a
probabilistic representation of P"ε similar to (3.88). We can then directly prove that
Pfε and its derivatives remain bounded for t^γ on compact sets, and then obtain
(3.111).

• Another possibility is to use DuhameΓs formula as in Getzler [Ge] in
combination with adequate estimates on the vertical part of the kernel.

From (3.100), (3.102), (3.106), (3.110), (3.111), we find that as ε | |0,

^ L P ί

1 ( ^ o ^ o ) ] ( 1 )

? / i > (3.112)

uniformly on [7, Γ] x Zyo.
Also by Greiner [Gr, Theorem 1.6.1], for ε>0, we have the asymptotic

expansion as ί | |0

TX[Pί'ε(0, X o ) ] = -2_ +. . . + K\l2(x0y
2 + Kll2(x0)t^2 + O{t5>\ x 0),n + 1

t (3.113)

where the K)[ — ^ ^ 3 / 2 1 are bounded smooth functions on Zyo and

O(ί5/2,x0) is uniform on Zyo. Also since 5£z^<£ while staying uniformly elliptic,
O(ί5/2,x0) i s a l s o uniform in ε>0, and the K) are uniformly bounded as εjjO.
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By (2.13), (3.59), (3.100), (3.102), (3.106) we know that

.=K ε

1 / 2 = 0, (3.114)_ i 1 / 2

and so

Tr[Pί 1(xo,Xo)]=«3/2(^o)ί1/2 + 0(ί3/2,Xo)> (3.115)

Tr[Pt> : L(x0 5x0)] then converges to 0 as ίjJ,O, uniformly in x0 and ε. The
theorem is proved. D

Remark 5. Incidentally, it should be pointed out that when proving Theorem 3.12,
we have proved again Theorem 3.4, by simply using (3.113), (3.114) and the
continuous dependence of the KJ on ε [Gr, Se].

Using Theorem 3.12, we now prove a first fundamental result.

Theorem 3.13. For any Γ>0, as εJ,J,0

4 ^ ] (-tD2)VuDD]dt. (3.116)

Proof. By Theorem 3.12, we know that

1 [ dί , x z , [ dί , r

| / π o |/ί M>
 2t ' | / 2 π c o |/7 z

Using (3.19), we find that (3.116) holds. D

Remark 6. The proof of Theorem 3.12 also shows that if D is instead a general
family of first order differential elliptic operators of the type considered in [BF1]
and in Sect. 1 f), Bo which was defined in (1.31) is not only closed, but is also exact.
To see this, note that if D\ η\ ... are still defined as before, by Atiyah-Patodi-Singer
[APS 3], ηε(s) is holomorphic at s = 0. This shows that if for ε>0, we have the
expansion

^ / l - - . ? (3.H7)

then

M'
(3.118)

Now from the fact that $£E^<£ and that from Seeley [Se], Greiner [Gr],
the coefficients which appear in the small time asymptotics are smooth functions of
the local symbol of the considered operators, it is not difficult to find that

J Klί/2(x0,x0)dx0^--^=SB0. (3.119)

So we find from (3.118), (3.119) that

jBo = 0, (3.120)
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and so Bo is exact. This is a satisfactory result since in full generality, the scaling
anomaly described in Sect. 1, Remark 2 is simply equivalent to a gauge
transformation.

h) Control of the Integrand of the Eta Invariant as iff + oo

The right-hand side of (3.116) is obviously related to the differential forms δa

0

defined in Sect. If). However we must be able to make T= +oo in Theorem 3.13.
We prove that this is possible under a special assumption on D.

Theorem 3.14. Assume that the family of operators D+ has index 0, and that for
every yec, KerDy = {0}. Then for ε>0 small enough, hε = 0. There exists C and
μ>0 such that for ε > 0 small enough and any t^ 1

\ΊrDεexp-t(Dε)2\SCexp-μt. (3.121)

Proof. Let us first point out that (3.121) is not obvious, since we must take
into account the convergence result of Theorem 3.12 - otherwise (3.121)
would explode as εjJ,0 - while noting that the estimates of Theorem 3.12 are not
uniform in T The idea is to use again the probabilistic construction in the proof of
Theorem 3.12 in order to control a time dependent parabolic equation along the
fiber whose coefficients are random functions of the Brownian motion y. on B.

It is then possible to obtain a pointwise exponential decay of the solution in the
space of bounded operators on the Hubert space Hyo of L2 sections of F®ξ
over Zyo. The decay of the corresponding trace is obtained by a method very
similar to what is done for deterministic elliptic partial differential equations.

a) /zε = 0 for ε small enough. Recall that dfx is the volume element in Mf. fχV}γ

is clearly a self-adjoint operator. Using Proposition 3.9 with z = 0, we have
for h e i ί 0 0 ,

f |DβΛ|Vx= J (|Dfc|2d'x + ε J \fγV}xh\2\d'x + }β J <ifγV}xϋ)h,Kyd'x
M' M'\ M' ) M'

^ ί \Dh\2d'x + γϊ ί (HfiΓf&Khyd'x. (3.122)
W M'

Vu

flD is a first order differential operator which acts fiberwise. If || \\ι

y is a norm in
the Sobolev space of order 1 of sections of F® ξ over Zy, we have

(3.123)
\zy

Since for every yec, Dy is invertible, there is a constant C">0 such that for any
yec,

j |Dft|2ί/x^C'(||ft||£ ) 2 . (3.124)

So if ]/figC72C,

j \D°h\2d'x^(C'-C]/ε) J |/z(x) | 2^x^^ J \h\2d'x. (3.125)
M' M' 2 M'

ftε is then equal to 0.
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b) The Asymptotics of TrD εexp — t(Dε)2. We now concentrate on the proof that

zii. (3.126)

We use the notations of the proof of Theorem 3.12. y0 eB,xoe Zyo are fixed. Us is
still defined by (3.68), (3.70).

Set

If Ay is a family of operators acting on H™, we note UAS the operator acting on H

U Λ —USA U 0

^ s — τ0/iys

 τs

M s is unitarily equivalent to Ays. By proceeding as in (3.97), we find that

l L (3.127)

Consider the partial differential equation

(3.128)

In (3.128), the operator Cs acts on H^. Note that since ys is nowhere
differentiate as a function of s, the coefficients of (3.128) are continuous in s, but
not smooth. However, by using the method of Treves [T, Chap. Ill, Sect. 1.3], one

UD2

finds that since - — is elliptic, (3.128) has a unique solution, and that for s > 0, Cs is a

regularizing operator or equivalently that Cs is given by a C°° kernel (with
respect to dxyo). Also by using Itδ's calculus, Proposition 3.9 and (3.127), one
immediately verifies that if *

e X p I _ t&L + tz]/rεfl p ^ j Λ ( X o ) = £ Q [ C ί exp(z/iwf)Voft] (x0) (3.129)

We now disintegrate (3.129). Let St be the C00 lernel on M' associated with the

ί )operator exp < -t^~- + ίzj/ε/i F7^ >. Using (3.129) and the fact that as proved by

the method of [B 2, Theorem 2.14], a smooth disintegration of the right-hand side
of (3.129) is possible, we obtain in particular

SXxo,xo) = ̂ } ;o 9 yo)^<C/x o ,τ ί oXo)exp(z/ 1 wX[Jacτy 1 / 2 (x o )]^ (3.130)

The right-hand side of (3.130) should be interpreted in the following way:
• τ'o is an element oϊΐlom{(F®ξ)xo9(F<g>ξ)τtoXo).
Φ Under Qyo, τ*oxo e Zyo. So Ct(xθ9 TQX0) is well defined as an element of

Hom((F® £) τ U ), (F®ξ)J®cyo(TB)®R(z).

So C f(x0, τoXo)τo should be considered as an element of
End(F®ξ)Xo®cyo(TB)®R(z).
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By proceeding as in (3.9), we have the identity

ίzTr l/ε/iF/^exp — = TrJ exp< Vtz\fzfγV
u

u > . (3.131)

Also

TrJ expί \-tz]/zf\V}i I = ί Trz[Sf(x,x)]d'x

— ί f\v f Ύr ΓVίx YY\/1Y Π 1^9^

Using (3.130), we find that

t )] . (3.133)

In (3.133), Trz[Cί"τί

0 expz/ΊwJ is the trace in the sense of (3.30) of the trace class
CΛόexp^ΛwJeί^.Set

| |w||= sup |ws|.

In order to estimate (3.133), we do two transformations on Eq. (3.128):

• We replace z by -==. so that the coefficient of uVu

fD becomes

1+lAlMIl
bounded. We note Cs the solution of the new Eq. (3.128).

• We also do Getzler's transformation [Ge]. Cs has a unique decomposition

CS = C° + Clh Cs°, Cl ε EndHyo®R(z). (3.134)

As in the proof of Theorem 3.12, we replace fγ by —-^ |/ε ίfl. Set

(3.135)

C's is the solution of the equation

+ ^ (3.136)

Take α, b which are trace class in Endi/°°(g).R(z). As in (3.106), we now set

By adequately scaling formula (3.133), we get

J Tr z[S t(x0, x 0)] dx0 = ]/εqεt(y0, yo)EQy°

'(K^~ -]ίsif}) wt/(l +lAl|w||)JJJ, (3.138)
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where in the right-hand side of (3.138), Tr^ selects terms which contain both z and

The idea will now be to control adequately Eq. (3.136) defining Cs. Set

Also we will assume that ί^2.

For x E Zyo, let C"s be the solution of

d-^=σsJίs Cl = δ{x)®l s^ί. (3.139)

Clearly

C't = C\C"t. (3.140)

Set

ί . (3.141)We can then write (3.138) in the form

^ (3.142)

If a is a linear operator acting on the Hubert space #° 0 , let | |α| | ( o o ), denote the
norm of a in the set of bounded operators and | |α | | ( 1 ) the norm of a in the set of trace
class operators.

We can expand C\ in the form

C\ = a0 + axz + fliC^y1 - εi/i) + ^ β ^ ^ 1 " ~ ε z / i ) '

where the αt are C°° kernels on Zyo. Set

I|C/

1||(1)=ΣIIM(D
0

We can define || C^||(oo) in exactly the same way. Since Vo acts unitarily on HyQ,

W 6 h a V e I |VO |U ) = 1. (3.143)

From (3.140H3.143), we find that

( / i l l -+- " ^ ) J - (3 144)

We now estimate the various terms in the right-hand side of (3.144).
• Estimation of ||Cχ ||(1)

By proceedings as in (3.140), we can write C\ in the form

C[ = C1/2C[. (3.145)
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where both C'1/2, C1 have C00 kernels. Since C'1/2, C[ are Hilbert-Schmidt
operators, if || | | ( 2 ) denotes the Hilbert-Schmidt norm, we have

lie;II (1)^\\c i /2\\ {2)ιιc[ιι i2)^c( sup |c;/ 2(x,xoiV sup |C;(x,xθ
\x,x'eZyQ J\x,x'eZy0

(3.146)

We claim that for any p^t 1,

sup |Ci / 2(x,x0|^+ sup \Cx(x9 xψ] (3-147)
) Z J

is uniformly bounded as εJ,J,O. This cannot be seen directly on Eq. (3.136) since its
coefficients can be pointwise very large because of uτs

0.
If we instead estimate the kernel of C'1/2V0, the methods of the Malliavin

calculus described in the proof of Theorem 3.12 — and specifically Eqs. (3.80), (3.81),
as indicated before (3.83), we can obtain a uniform bound for

EQ»o\ sup \Cll2τy\x,xψ\ (3.148)\ sup \Cll2τ
L(x,x')eZyoxZyi/2

Note that since t ̂  2, Qyo and Q are equivalent on Si = 3%(yβ ^ s ̂  1), and that

yo % = Ut-i)(yi>yo) i s u n i f o r m l y bounded as ε | | 0 and t e [2, + oo[, so that in
ί ί y JO)2 ίείίyo* JO)

the estimates analogous to (3.83), the problems related to the fact that the
stochastic differential equation for ys is singular at s = t disappear. Also note that
with respect to (3.85), we also allow x e Zyo to vary. However, the Kolmogorov type
estimates of [B1, Chap. I—III] permit us to include x as a varying parameter. Also
we have the trivial bound,

sup |Jac[τ s

0](x)|^cexρΓCl/ε sup K l ] ; s ^ l . (3.149)
xeZyQ |_ O^Λ^l J

The right-hand side of (3.149) is trivially in all the Lp(Qyo). Using Holder's
inequality, we get the required uniform bound on the first term of (3.147). The
second term is estimated in the same way.

• Estimation of \\C"\\{a0)
Let Hy^ be the set of linear combinations

Also for heH™, set

|Λ|2

Cs acts on H™0 in the obvious way. Let C£* be the adjoint of Cζ. For h e H™0, set

Since Vo is unitary and D 2 , V}fi are self adjoint, UD2 and uVu

flD are self-adjoint.
Clearly

(3.150)
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Since uτs

0 is unitary, using (3.124), we have

<uD2h,h}dx = ^C f \uτ°sh\2dx = C J \h\2dx.
z y 0

z y 0

(3.151)

Moreover by (3.123), (3.124), we also have

^C" ί CD2h,h}dx. (3.152)

CC
Replacing D by fc£> (k>0), we can always assume that C " ^ — . So using

(3.150M3.152), we get

d_

ds ;

By GronwalΓs lemma, we find

(3-153)

(3.154)

and so

Cs
' 4

or equivalently

WC'X^Ce"^ (3.155)

Using (3.144), (3.147), (3.155) and Schwarz's inequality, we finally obtain

. (3.156)

2 \ Ί 1 / 2

• Some Estimates on Brownian Motion
Let β be a standard Brownian motion in R, with βo = 0. Under Qyo, and

/c s

conditionally on w f = — p , by [Si, p. 41], ws has the same law as βs — βt

s k vε ι

+ - - p . Using (3.156), we find that

. (3.157)
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Using Poisson's formula, we have

^ A 2 π 2 ε ί f c 2 ) . (3.158)

It follows from (3.158) that for t ^ 2, j/εgεί(j/0, y0) is uniformly bounded as ε | | 0 .
Also by scaling /?, we find that EQ\\β\\2 = ct. We then find that

k2 k2

(3.159)

By (3.158), the first sum in (3.159) grows at most like ί1/2.
x2

• If ε ί^ l/2, the function x 2exp— — is decreasing on [1, +oo[. Then

2 ί 3 / 2 f ( y2\ 2.
ε (εt)~1/2 \ £

Ίrt3/2

' ^ U C ' ε 1 / 2 ί 5 / 2 . (3.160)

• If βί^l/2, since /c2^exp2|/c|,

). (3.161)
/

Using Poisson's summation formula, we find

1 k2 r—
-y Σ k2 exp - — ^ cί2 exp(2εί)|/eί Σ exp( - 2π2εtk2)

^ ct512 exp(2εί) Σ exp( - π2fe2). (3.162)
k

From (3.159H3.162) we find that

(3.163)

Using (3.131), (3.132), (3.126) is proved.
The fact that

can be proved along the same lines. This is left to the reader. D
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i) The Holonomy Theorem

We still assume that B = c.

Definition 3.15. For 0 ̂  s ̂  1, τ° is the parallel transport operator from λCo into λCs

for the connection * V.

τ? is a complex number τ such that |τ| = 1. It does not depend on the origin c0.
Also IndD+ will denote the constant integer which is the index of D+ r

We now prove the holonomy theorem.

Theorem 3.16. The following identity holds

yd (3.164)

Proof. The proof is divided into two steps. In the first step, we suppose the
assumptions of Theorem 3.14 are verified. The proof is then a straightforward
application of Theorems 3.13 and 3.14.

The second step of the proof is to show that the family D can be continuously
modified into a family of pseudodifferential operators D' which verifies the
assumptions of Theorem 3.14. Rather unhappily, j/β/iF^+I)' is no longer a
pseudodifferential operator on M'. However the probabilistic constructions of the
previous sections still apply to the family D\

We then prove that neither τ nor [Ϋf] change under the continuous deformation
of D into D'. The holonomy theorem holding for Df also holds for D.

Step n° 1. We first prove the theorem under the assumptions of Theorem 3.14. In
this case, by Theorems 3.13 and 3.14, we have

1 Y 1

V* ° ]β " / c c υ (3.165)

The left-hand side of (3.165) is exactly ηε{0).
Also by Theorem 3.14, for ε small enough, hε = 0, and so as εHO

ψ(0) -> ~ ί f Trs[exp( - tD2)FΦD] dt. (3.166)
4π c o

Moreover there is a>0 such that for any yec, Dy has no eigenvalue in [0, a].
With the notations of Definition 1.8, over c, Ka

y = {0} and so λa = C Over c, λ has a
canonical section σ which is identified with 1 e λa. Clearly, in the sense of
Definition 1.12, °F/iσ = 0, and so, since by Theorem 3.4 Bo = 0, we find that

fiyσ. (3.167)

Also by Proposition 1.11, yg is exact on c. We then find that

^ (3.168)
c σ

Also since on c Ka = {0}, it is clear that on c

δa

0=
 +fTrslexp(-tD2)VuDD]dt. (3.169)

o
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Finally note the straightforward relation

f̂ J (3.170)

Using (3.166M3.170) and the fact that IndD + =0, we find that (3.164) holds.

Step n° 2. The General Case

a) Construction of a Family of Index 0. We here use the notations of [B 5, Sect. 2],
but the roles of D+ and D_ are interchanged. By [AS 3, Proposition 2.2], we know
that q E N and C00 sections s1?..., sq of F + (g) ξ over M exist such that if δ e R, if
D'-y δ is the operator

then if <5φO, DLy δ is onto.
We endow (C* with its canonical Hermitian product. The formal adjoint D+y><5

of D'-ytδ is the operator
[. (3.172)

For <5 + 0, KerD+ = {0}, and KerD'_ is a C00 bundle over B x î /{0}. Also

D'+y>oh = (D + > y h , 0 , . . . , 0 ) , D'_y9θh = D_>yh,

and so

Set

D'=[_D'+

 DQ~]' (3J73)

We can then define the determinant bundle λ' of the family D\ which is a line
bundle on BxR. Clearly

λ' = λ on βχ{0}. (3.174)

Also if q'= -IndD+, then

g / = - I n d D + + ί , (3.175)

and also q'^0.
If q'>0, we allow D\ to act on ff?φ<Cβ' by the formula

(3.176)

We endow <C€' with its canonical Hermitian product.
The adjoint D^ of D+ is given by

eC i ' . (3.177)

Now IndD+ =0. If λ' is the determinant bundle of D', we still have

λ' = λ on JBX{0} . (3.178)
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Also for (3Φ0, KerZX+ =<tX and Ker/y_ is a C00 bundle.

b) Construction of a Family of Invertible Operators. The parameter space of the
family IXis B x R. On B x £/{0}, KerZ)'+ = <C«' and Ker/X_ is a smooth subbundle
of H^0(C^ of dimension q\

Complex bundles over S1 are trivial. We can then find a smooth trivialization
E+ oϊKerD'^yΛ over the loop B = c.

For y e B, E + y is a linear isomorphism from ί X in KerD'_ y> x. We allow E + to
act on i f? by setting E+ =0 on # ? . E + then acts linearly on ίf°°0C«'.

If £ _ is the adjoint of £ +, E _ sends if ™ ® (C* into C β ' and is 0 on the orthogonal

For (y,θ)eBxR, set

" n~ y Λ + ~'y' (3.179)

Let λ" be the determinant bundle of the family D". Clearly

and so

λ;f0=λ;Λ. (3.180)

c) Extension of the Results of Sects, i, 2, and 3 to the Families Όf and D''. We will
show how to extend the results of Sects. 1, 2, and the previous results of Sect. 3 to
the family D'. The same arguments hold for the family D".

We endow <C* and <£q' with the trivial connections. So H^®<Eq' and H™(B<Eq

9

considered as bundles over BxR, are naturally endowed with a unitary
connection.

Let A be a family of linear operators sending H+ ©flX into H™ φ C * . We write
A in matrix form

" - • A .

We will say that A is regularizing if A1 is regularizing in the usual sense [T] and if
A2 is given by a C00 distribution. Since A3 sends Cq> in H™, A3 is given by a family of
C00 functions along the fiber Z.

The pseudodifferential calculus can be extended to H+ φ Cq' and H™ φ C9

? with
this new definition of regularizing operators. Set

Aytδ = D'ytδ-D'yt0. (3.181)

Then Ayδ is a smooth family of regularizing operators over BxR.
We first briefly show how to extend the results of [BF 1] described in Sect. 1 f).

By using formally DuhameΓs formula, we find that

e x p ( - W'lb) = exp-( tD ' y

2

> 0 )- }exp(-sD' y

2 J ((/>;, δ ) 2 -(£»;, 0 ) 2 )
o

(ί-s)D;%))ds. (3.182)
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Now exp — t(Dy 0 ) 2 can be evaluated in terms of exp( — tD2) in an obvious way.
Also

( D ; , , ) 2 - ( D ; , 0 ) 2 = ^ , + D ; , 0 ^ , + ^ , D ; , 0 ? (3.183)

and so (Dy>δ)
2-(Dyi0)

2 is regularizing.
This permits us to use an iteration procedure in (3.182) to calculate

Qxp(-tDy2

δ). In particular using (3.183), we find that if P? δ is the C00 kernel
associated with exρ( — tDy

2

δ), then for any xeM,

Trs[P? '(x, x)] -Tr a [P? °(x, x)-] = O(ί, x). (3.184)

It is then not difficult to extend the results of [BF1] which we described in Sect. 1 f)
to the family D\

The determinant bundle λ' is endowed with a metric and unitary connection,
which of course restricts to the metric and the connection of λ on B x {0}.

We claim that the cancellation result of Theorem 3.4 still holds for the family
D'. In fact let Qy>δ be the operator

By DuhameΓs formula, we have

0

^s)ds. (3.185)

As ίjjO, we find that (Q$tδ — Qt'°)/t converges to a regularizing operator, which is of
course trace class. In Theorem 3.4, the left-hand side of (3.12) is a quantity where the
factors zdy1 should appear. By iterating (3.185), we find that zdy1 appears in (3.185)
with the factor t2 and before a regularizing operator. This is just what we need to
guarantee that Theorem 3.4 still holds for the family D'.

As indicated in (3.27), we now assume that φ(fι) acts like — i on H + © Cq\ like

For ε>0 and over the loop seR/Z-+c's
δ = (cs,δ)eB x R, we consider the

operator

D'! = fBfxV}l + D'y^. (3.186)

Similarly over the loop seR/Z^cf = (cs,θ) eB x R, we consider the operator:

. (3.187)

D/ε and D"ε are not pseudodifferential operators, since Ay^ δ and E are only fiberwise
smooth. A priori such operators do not have eta invariants in the sense of
[APS 1,3].

Still, by using the procedure indicated in the proof of Theorem 3.14, to
construct the semi-groups exp{ — t(Dδ

ε)2}, exp{ — t{Dγ)2}, we can use a Brownian
motion y. on S1 and integrate a parabolic equation with time depending
coefficients in a given fiber, in which the considered operators are truly
pseudodifferential operators.
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Theorem 3.12 then extends to the families D' and D". The more difficult point is
to obtain the uniform convergence of (3.64) as ί JIO However when taking the
expansion as ίjjO of the trace of the kernel of Dδ

εQxp{ — t(Dδ)
2}, by proceeding as

in (3.185) and using Theorem 3.12 for D\ we find that it starts with

Since Aδ is odd, Ύτ[Aδ(x9 x)~] = 0, and so we get the required uniformity.
It is then not difficult to adapt the proofs of Theorem 3.13 and 3.14. In

particular Theorem 3.14 holds for the family Ό"yQ over the curve c"1.
Since D'δ\ DQ& are not pseudodifferential operators, we directly define their eta

functions by formulas (2.22), (2.23). Let ηδ(s), r\l\s) be the corresponding eta
functions, which are well defined at s = 0.

Since for t > 0, exp{ - t(Dδ

ε)2}, exp{ - t{D^)2} are regularizing, Ker Dδ

ε, Ker D ^
are finite dimensional. We can define ήf(s)9 ήeε(s).

Let τδ9 τ'g be the holonomy of λ\ λ" over the curves c/δ

9 c"θ.
The key step to finish the proof of the theorem is as follows.

Proposition3.17. [fjδ(θy], τδ (respectively [^(O)], τ%) do not depend on δ
(respectively on θ).

Proof. We only prove the Proposition for K ε (0)], τδ. By Proposition 2.8,

- [ ί J ( 0 ) ] is proportional to the finite part as ίjjO of
do

dDΊ
A = —— is a smooth family of odd fiberwise regularizing operators.

do
We can then use the technique of the proof of Theorem 3.14 to describe the

t(D/ε)2

semi-group exp ^ — in conditional form, i.e. by consider first a Brownian

motion in c, and by constructing a partial differential equation with random
coefficients in the vertical directions. We then find easily that

lim ]/ίTr ^ e x p i - t^p-\ = -jt= f Tr[4(x,x)]dx. (3.188)
tiiov \_oo I 2 J J |/2πεM'

Since A is odd, Tr[,4(x, x)] = 0, and so

—aϊ ° (3 189)

K ε (0)] is then independent of δ and so coincides with [/?o(0)].
Let rf be the curvature of λ'. One has the obvious relation

dτ'δ

/ Pί\

(3.190)
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Also by Theorem 1.14, r' is the finite part of [Trs exp - (Vu + j/ίD0 2] ( 2 ). τ h e part of
Trs[exρ — (Vu + yίtD/)2~\{2\ which contains the Grassmann variable dδ is exactly

| | ( 1 ) . (3.191)

Since A is trace class, (3.191) obviously converges to 0 as ί|10 So by (3.190)

The proposition is proved. D

We now finish the proof of Theorem 3.16. By the first part of the proof applied

to the family D", we know that as ε| |0-^-— has a limit ή'[ and that

Using Proposition 3.17, it is then clear that as ε j |0, [^(0)], [^ε(0)] have a limit
[fίi\ ~ which does not depend on θ9 δ, and that in particular

τ = τί, = exp{-2iπ[CT. (3-192)

Now since the family £;> 0 acts on (H™®Cq')®(H™®Cq), one finds immedi-
ately that for any ε[[09

and so
(3.193)

We deduce from (3.193) that

K)] = ra + [l/2(4-4θ]. (3.194)

Since [%] = [fjΐ], (3.164) follows from (3.175) and (3.192). G

j) A Remark on the Metric of B

We now again assume that B is a m dimensional manifold. Let jRL'ε be the
curvature tensor of TM for the Levi-Civita connection associated with the metric

— @gz. lϊRB is the curvature tensor of TB for the Levi-Civita connection of B, as
ε

in (3.52), we can evaluate RLε in terms of Rz, S, and RB. More precisely if f l 9 . . . , fm

is an orthonormal base of TB, el9...9enan orthonormal base of TZ, RLε evaluated
on the base (ei9 ...,en, ]/ε/1? ...,γεfm) is given by

Γ Rz + sPzίS,S-] ^2PzDS + s"2PzlS,S^ 1

lεll2PHDS + ε3/2PH[S, S] RB + εPHDS + εPHS A PZ S + ε2PHS Λ P H S J '

Using (3.195), it is clear that as ε|jθ,
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Since A\ —— only contains forms whose degree is 4g, we find that as εjjO,
\2πJ

( 2 ) Γ ίRz\ L Ί ( 2 )

4 ί έ J (

Now by formula (2.39) the left-hand side of (3.197) is directly related to the
variation of d[ΐjε(O)~] when c is made to vary.

In fact by [APS 1], if the metric of M/ = π~1(c) is product near M\ (3.197)
appears explicitly when computing d[?T(0)].

If we were to compute the variation d[>f (0)] using Theorem 2.10, the proof of
Theorem 2.10 being formally identical to the proof of the Index Theorem for
families in [B 5], we should blow up the metric of B in directions normal to c.

By making εjjO, we also blow up to metric of B in the direction tangent to c.
Using (3.196), (3.197), we find that if c[ is a smooth family of loops in B, then

dl J

c Ύι\ί \2πJ * 2ίπj '

Also if r is the curvature of * V, we have

δτ I - - f

Since τ = ( - l ) I n d D + exp{-2/π[jy]}, we find that

2ίπ^tftt=Udcr (3.199)
01 c m

Of course (3.198) and (3.199) fit whith the formula (1.58) for r.
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