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Abstract. Existence and completeness of the wave operators is shown for the
Stark effect Hamiltonian in one dimension with a potential V= W'\ where W is a
bounded function with four bounded derivatives. This class of potentials include
some almost periodic functions and periodic functions with average zero over a
period (Stark-Wannier Hamiltonians). In the last section we discuss classical
particle scattering for the same class of potentials.

1. Introduction. Statement of Result

In this paper unitary equivalence of a class of one-dimensional Stark effect
Hamiltonians with bounded potentials is shown. The new results are that no decay
of the potential in the direction of the field is required and that the wave operators
exist and are complete.

Let Ho= - d2/dx2 + x denote the free Stark effect Hamiltonian in L2(R). Let
B4(U) denote the four times differentiable functions on R which are bounded with all
derivatives bounded. The main result of this paper is

Theorem 1.1. Let V= W\ WeB\U\ a real-valued function, and let H = H0 + V.
Then the wave operators

W± = lim eitHe-itHo

ί-> + OO

exist and are unitary.
The wave operators give a unitary equivalence between H and H0. Ho has purely

absolutely continuous spectrum equal to R, hence the same holds for H. Absence of
singular continuous spectrum has been shown for a larger class of potentials in
[3,4,11]. Absence of eigenvalues is a classical result from the theory of ordinary
differential equations, see e.g. [5].
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There is a large literature on the existence and completeness of the wave
operators for Stark effect Hamiltonians, see e.g. [2,6,10,12,14]. These authors all
require a decay V(x) = O(\x\~1/2~ε) as x-> — oo, i.e. in the direction of the electric
field, to show existence and completeness of the wave operators. The class of
potentials considered here include some almost period functions and sums of
periodic functions with average zero over a period (Stark-Wannier Hamiltonians),
see Sect, three. For recent results on the resonances in case V is a trigonometric
polynomial, see [1].

The proof is based on Mourre's version of the Enss method [8], and uses as a
conjugate operator A = id/dx, see [9]. The central part of our proof is to show that
the class of V considered here is short range with respect to the conjugate operator A.
This result is obtained by a commutator method.

2. Proofs

Let ^(IR) denote the Schwartz space of rapidly decaying functions. In configuration
space L2(U)

(2.1)
dx2

is essentially self-adjoint on £f(M). The operator

A = i±=-p (2.2)

is essentially self-adjoint on 6f(U) and is conjugate to Ho at any point EeU according
to Mourre's definition [9], since we have

ίlH09A]=I (2.3)

on ίf(U). The propagation properties of Ho with respect to A can then be obtained
from [7]. But since Ho and A satisfy the canonical commutation relation (2.3), the
propagation estimates follow by an elementary computation. To state the results,
let PA(PA) denote the spectral projections for A corresponding to (0, oo)((— oo,0)).

Proposition 2.1. For s ̂  0 the following estimates hold:

\\{A2 + iysl2e'ίtHo(A2 + l p / 2 | | g c ( l + | £ | p , teU, (2.4)

||{A2 + \y^e-
itHop± || g C(i + μi)-^ ±t>0. (2.5)

Proof. We note that e~itHύ maps ^(U) into ^{U). Using (2.3) we find

eίtH°Ae-itHo = A + t,

from which the results easily follow. •
Mourre's version of the Enss method is based on the estimates (2.4) and (2.5). The

result we need here is a special case and can be stated as follows. The proof can be
found in [8,10]. See also [7], where an abstract short range scattering theory using a
conjugate operator was given.

Proposition 2.2. Let V be multiplication by a bounded real-valued function. Let
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H = Ho + V. Assume that V satisfies
(A.I) (H + i)~x - (Ho + 0" 1 is compact.
(A.2) There exist an integer k ̂  0 and a real number δ > 1, such that the operator

(H + i)-kV(H0 + i)-k(A2 + l)δ/2

extends to a bounded operator on L2(M). Then the wave operators

W± = s-limeitHe~itHo

f-> ± 00

exist and are complete, i.e. the ranges of W± are equal to the subspace of absolute
continuity of H. Furthermore, the singular continuous spectrum of H is empty, and the
point spectrum of H is discrete in U.

The proof of Theorem 1.1 is thus reduced to verifying (A.I) and (A.2). The key is
the following lemma, whose proof is an elementary commutator computation. We
let Bk(U) denote the fc-times continuously differentiable functions with all k
derivatives bounded on U.

Lemma 2.3. Let V be a real-valued function such that V= W", WsB\U). Then we
have:

(i) The operator (H + i)~x Vp(H0 + i)~1 extends to a bounded operator on L2(U).
(ii) The operator (H + i)~2 Vp2(H0 + i)"2 extends to a bounded operator on L2(U).

Proof Let UeB2{M). As a quadratic form on Sf(U) x Sf{R) we have

and thus in the quadratic form sense on ^(U) x

disHjJe-isHo = ίeisH(HU _ U H )

ds
= eisH{iVU + i[H0,

= eisίI(iVU + lU'p - iU")e~isHo. (2.6)
From this relation we get

2{H + iy^^U'pe'^iHQ + i)~1

= {H + i)~ιeisH{iHU - iUH0 - iVU + iU"}e-isHo(H0 4- i)'1.

Since the right-hand side is a bounded operator on L2(U), the left-hand side extends
to a bounded operator on L2(U). To get the first part of the lemma, we set s = 0 and
take U=W such that Uf = W" = V.

For the second part we compute the second derivative in (2.6), again as a
quadratic form on Sf(U) x ̂ {U\ this time for U=W.

= eisH{iV(iVW+2W'p - iW")

+ i[H0, iVW+2W'p - zW " D ^ - ^ 0

= eisH{4W"p2 - 4iWi3)p + 2 i F ^ p + 2i{VW)'p

+ (7H0" - K2P^+ VW" - W{4) - 2Wf}e~isHo.
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To repeat the above argument we need to know that the coefficients to p above are of
the form U\ as required in (2.6). By assumption V= W". If we note

2VW = 2W"W = ((W')2)',

we see that all coefficients to p are of the required form, and we can repeat our
argument to get part (ii). •

Lemma 2.4. Assume V= W\ WGB\U). Then the operator (H + i)~1V{H0 + i)'1 is
compact.

Proof. We note (see [2]) that the unitary operator U = eip3/3 has the property

UH0U~1=x,

where x is the multiplication operator on L2(U). Using this result, Lemma 2.3 (i), and
complex interpolation, we find that the operator

(#+o~ * n # o + i r s / v + i)s/2

is bounded on L2((R) for 0 ^ s ^ 1. Now write

+ 0 " 1 =((H + iί'xV(Hl + l Γ 1 / 4 ( p 2

The first and last term are both bounded operators. The middle term is unitarily
equivalent to (p2 + l)~1 / 4(x2 + 1)~1 / 4 and is thus compact on L2(U), see e.g.
[13]. •

Proof of Theorem 1.1. Existence and completeness of the wave operators follows
from Proposition 2.2 and Lemmas 2.3,2.4. Absence of eigenvalues is well known, see
e.g. [5]. •

Remark 2.5. (i) The result can be extended to the class V=VX + V2, where Vx =
W\ WeB*(M\ and V2 satisfies V2{x) = O(\x\~ 1/2~ε) as x-> - oo, V2{x) = Oflxl1-*)
as x-> + oo, see [6,14] for precise statements of such conditions.

(ii) The slightly complicated proof of Lemma 2.3 (ii) is needed due to a domain
problem. We clearly have <3(H) = @(H0\ since V is bounded, but in general for the
class of V considered here @(H2) Φ @{HQ). This can be seen explicitly by taking
V(x) = sin x.

3. Examples of Potentials

We give some examples of potentials satisfying our assumptions. Let V be a real-
valued function, which can be represented as

V(χ)= J ei(OXdμ(ω), (3.1)
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where μ is a complex Borel measure which satisfies

00

J (ω2 + ω~2)d\μ\(ω)< oo.
— oo

Then it suffices to take

W{x)= J (-ω2)eiωxdμ(ω).
— oo

We get a large class of almost periodic functions, if we take μ to be a sum of point
measures.

Another class is
N

v= y v

where Vj is real-valued and periodic with average over a period P 7 equal zero, and
VjeC2(U). This follows by taking

W£x) = ]F{y)dy-CjX9 Fj(x) = ] Vj(y)dy, Cj = ΠF^dyXpj.
0 0 \ 0 /

For V periodic H = Ho + V is called a Stark-Wannier Hamiltonian. We note
that the class of Hamiltonians discussed in [1] is covered by our results.

4. A Result in Classical Particle Scattering Theory

In this section we discuss classical particle scattering theory for Hamiltonians with
the class of potentials considered above. Our result shows that the condition
imposed is quite natural. Actually we can handle slightly more general potentials.
We assume

V(x) = U'(x), UeC2Λ(U)nB2(U)9 (4.1)

where UeC2Λ(U) means that UeC2(U) and U" is Lipschitz continuous.
We consider solutions to Newton's equation

where we for simplicity take the mass m = 1. (In the quantum case we took m = \)
A solution x(i) to (4.2) exists globally in t. It is called a bound state, if

sup(|x(ί)| + |x(ί)l)<oo. (4.3)
teU

It is called a scattering state, if there exist ξ±

9 v±, such that with

we have

lim (Ix(t) - y±(ί)I + | x(t) - y*(t)|) = 0, (4.4)
f->±00

i.e. if the solution is asymptotic to a free solution for t-> ± oo.
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The main result is that asymptotic completeness holds for the class of potentials
satisfying (4.1).

Theorem 4.1. Let Vbe a real-valued function satisfying (4.1). Then there is a disjoint
decomposition

such that Mo has Lebesgue measure zero, and such that (xo,vo)e
M b o u n d((x 0,ι; 0)eM s c a t) implies that the solution x(t) to (4.2) is a bound state
(scattering state).

Proof We define

M b o u n d = {(x0?ί;0)|The solution x(t) to (4.2) is a bound state}

and

A^scat^ {(^O'^IThe solution x(t) to (4.2) is a scattering state}.

We also need

]V+ = {(xo,ϋo)|The solution x(t) to (4.2) satisfies liminfx(ί) > — oo}.

A well known argument due to Littlewood (see [15;XI.2]) can be applied to show
that N + \N- and N_\N+ both have Lebesgue measure zero. Let Mo =
N+\N_uN_\N+. It remains to show that

R 2 \ ( M 0 u M b o u n d ) = M s c a ,

We consider only t -• + oo. The arguments for ί -^ — oo are entirely analogous. We
assume that x(t) is a solution to (4.2) which is not bound, i.e.

lim sup (I x(ί) I +
t-» + 00

Energy is conserved, i.e.

E = \χ} + x + V(x) (4.5)

is constant. V(x) bounded then implies

liminfx(ί)= — oo,
ί-> + oo

and

limsup|x(ί)| = + oo.
ί-> + oo

I t is n o w easy t o see t h a t t h e r e exists t1 > 0 w i t h x(t) < 0 for all t ^ tλ. T h e r e f o r e

l im x(t) = — oo
t~* + 00

and (4.5) then implies

lim x(ί)= — oo.
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Condition (4.1) implies the existence of c1 > 0 such that

for all xsR. We can then find t0 such that

V'(x(ή)

x(t)2

for all t ^ ί0.
Integrating x = - 1 - V'{x) over [ί0, t] we get

ί

x(ί) - x(ί0) = - (t- ί0) - J K'(x(s))x(s)(x(s))- ^ s
to

= - (t - ίo) - F(x(t))(x(t)Γx + F(x(ίo))(x(ίo))-

We chose t0 such that the last integral is bounded by %[t - ί0). We then get an
estimate

and then by iteration we see that x(t) + ί has a limit as t -» + oo. Explicitly we have

00

x(ί) + t = to+ VWίoίJWίo))"1 - ί t^Ws))(l
ί

ϊ rfs. (4.6)
t

Thus

lim (x(

with ι?0 given by the constant term in (4.6).
Integrating once more we find

x(t) + ψ = x(t0) + \tl + vo(t -to)-$ F(x(s))(x(s))" Ms
to

+ } ί V(x(τ)){ί + F'(x(τ)))(x(τ)Γ 2dτds. (4.7)
ίo s

The first integral in (4.7) is rewritten, using V=Uf

] V(x(s))x(s)(x(s)Γ2ds=U(x(t))(x(t)Γ2

ίo

- l/(x(ίo))(x(ίo)Γ2 + 2J U(x(s))x(s)(x(s)Γ3ds.
to

Thus this term tends to a constant as t -• + oo.
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We rewrite the inner integral in the last term of (4.7)

CO

+ 3 I (U(x{τ)) + iK(x(τ))2)x(τ)(x(τ))-^τ.
5

Thus this integral is of order 0(s ~3) as s -» oo, and therefore the double integral has a
limit as t-+ + oo. We have then shown that

lim (x(ή + ±t2-tv0) = x0
t-* + αθ

exists.
This proves that any state which is not bound as t -> + oo is asymptotic to a free

state. With the remarks above this concludes the proof. •

Remark 4.2. Classical particle scattering theory for V with V(x) = 0(\x\ ~ 1 / 2~ε) as
x -• — oo has been discussed in [2].
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