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Abstract. We prove that the two-loop function in the planar random surface
(PRS) model has Ornstein-Zernike decay for all noncritical values of the
temperature. A notion of breathing is introduced and it is shown that surfaces
do not breathe at noncritical temperatures. With the aid of a simple
assumption, supported by mean field theory and numerical calculations, we
prove that the scaling limit of the PRS-model exists and equals that of a free
field.

1. Introduction and Results

Lattice gauge theories, string theory and various problems in statistical mechanics
have recently stimulated interest in random surface theories, see [8-10] for review
of some of the recent work. By now a considerable amount of information about a
few models of lattice surfaces has been obtained. One of these is the model of SOS-
tubes, studied by Abraham, Chayes and Chayes (ACC) [1-3]. Another one is the
PRS-model studied by Eguchi, Kawai and Okamoto [12,13] and in more detail
by Durhuus, Frόhlich and Jonsson (DFJ) [4-7].

ACC have developed powerful methods, based on earlier work on the theory of
classical fluids [14,15], that enable them to analyze completely the noncritical
behaviour of SOS-tubes. DFJ have calculated all the critical exponents in the PRS-
model [6] with the aid of a simple plausible hypothesis which is consistent with
numerical simulations [11,12] and mean field theory [6,12]. For other recent
work on random surface models, see [10] and references therein.

The purpose of this paper is to show that the methods of ACC apply to the
PRS-model. In particular, one can calculate power corrections to the exponential
decay of the loop-loop correlation function and show that it has Ornstein-Zernike
decay. Bricmont and Frόhlich have established Ornstein-Zernike decay for
correlations in the self-avoiding surface model by different methods [16].
Furthermore, it is shown that the scaling limit of the two-loop function exists if the
aforementioned hypothesis of [6] is true. The scaling limit equals that of simple
random walk. This behaviour was strongly suggested by the results of [6]. Finally,



680 T. Jonsson

we prove that typical surfaces contributing to the two-loop function of the PRS-
model are "thin" in a certain sense (absence of breathing) above the critical point.
The absence of breathing persists at the critical point if the simple hypothesis of [6]
is valid.

Before stating the results more precisely we establish our notation and recall,
for the reader's convenience a few results from [4, 6]. By a surface S we mean a
collection of plaquettes in TLd some of whose edges are pairwise identified (glued
together) in such a way that the result is a connected orientable two dimensional
surface. The boundary of 5, δS, is the collection of edges of plaquettes in S that are
not identified with any other edge. Sometimes the edges will be called links.

Let y1? y2> •••>?« be loops in TLά. Denote by «^(y l 5y2> •••5?«) the family of all
surfaces S with planar topology (no handles) and 35 = y 1uy 2^ '̂7« The rc-loop
function is defined by

Gβ(yι,...,yn)= Σ e-'W, (1.1)
Se^(yι,...,yn)

where \S\ is the number of plaquettes in S counted with multiplicity. There exists a
constant j3c, which depends only on d such that all the loop functions are finite for
β>βC9 but infinite for β<βc. We call βc the critical point.

The mass m(β) is defined by

lim — faGβ(y9f) = m(β)9 (1.2)
α-»oo a

where y is a fixed loop and γa its translate by a lattice spacings along a coordinate
axis. In [4] the limit (1.2) is shown to exist. Furthermore, it is independent of y, has
the usual thermodynamic properties of mass (inverse correlation length) and is
positive for β > βc.

Let γL>M be a square loop with side of length L and M lying in a coordinate
plane. The potential Vβ(M) is defined by

L-+OO

and the string tension τ(β) by

(1.3)

τ(β)= lim ~Vβ(M). (1.4)
M^oo M

These limits were shown to exist in [4]; they are positive and concave in β.
In Sects. 2 and 3 we prove the following two theorems.

Theorem 1.1. For any β>βc there is a constant Cβ>Q such that

-m(β)a

(1.5)

Theorem 1.2. For any β>βc and L, M>0 there exists ε>0 and a constant
such that

(1.6)
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If lim m(β) = 0, one may try to construct the scaling limit of the two-loop
βlβc

function as follows: Choose β(λ) such that β(λ)[βc as λ-κx> and lim λm(β(λ))
= m*>0. Define Λ"°°

GΪ(y) = GβW(γ,γλy)9 (1.7)

where y e IR and λ is chosen such that λy e TL. If there is a function α(λ) such that

!();) = :G*(y) (1.8)

exists in the sense of distributions for yφO, and is nontrivial we call G*(y) the
scaling limit of the two-loop function. It is for technical convenience that we
choose to separate the loops in a coordinate direction. In general one can separate
the loops in any direction and the scaling limit of the two-loop function is a
function on Rd, so G*(y) is in fact the scaling limit at (0, . . ., 0, y, 0, . . . , 0). If α(/l)2

~λd~2+η, then η is the anomalous dimension of the two point function of the
continuum theory. Note that aside from a finite multiplicative factor, G*(y) is
independent of y. If, however, we want to scale up the size of the loops as Λ-κx), we
have to introduce loop-dependent renormalization unless τ(β)~m2(β) as β-+βc.

In the next section we introduce a modification of the PRS-model where
surfaces are not allowed to contain certain "short intermediate loops," defined in
Sect. 2. The modified model has a mass mx(/?) and ml(β)> m(β) for β > βc. In Sect. 4
we prove

Theorem 1.3. // m1(βc)>m(βc) = Q, then the scaling limit (1.8) exists and equals

"xα (i.9)
where ξ = (Q, ...,0,y,0, ...,0) and A is the Laplacian on IRA

For a discussion of the meaning of the above theorem in terms of surfaces, see
[6], where two distinct heuristic arguments were given for its validity. The
hypothesis of Theorem (1.3) implies all the results on critical exponents in [6]. A
new idea seems to be required in order to prove that mί(βc)>m(βc) = Q.

In Sect. 5 we introduce a simple criterion for breathing which amounts to the
suppression of "short intermediate loops." We prove the absence of breathing
whenever mί(β)>m(β).

2. The Two-Loop Function

In this section we study the two-loop function and prove Theorem 1.1. The
formalism introduced here is also used in the subsequent sections.

If y is a loop, let yx denote its translate by a lattice vector x e ZA The Fourier-
Laplace transform of the two-loop function Gβ(y, y') is defined by

Gβ(y,y';p)= χΣ/p'xGβ(y,y'x), (2.1)

whenever the sum is convergent, peCd. For β>βc the sum is absolutely
convergent for all p e IRA The inverse of the Fourier-Laplace transform is given by

Gβ(y, y/x)=$e~ip'xfy(y> /; P^P > (2 2)
where the integration is over [ — π, π]dc!RA
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We recall the result

Gβ(y,y/x)^ const e'
m(β)Ml , (2.3)

proven in [6, Lemma B3], where

||x|| = m a x W . (2.4)

It follows that Gβ(y, y'\ p) is well-defined when β > βc9 provided the imaginary part
of each pί9 i = l, ...,d, is sufficiently small.

Notation. If fc = (fe1? ...,/cd)e(Cd, we write fc = (fc1 ?fc), where fc = (fc2, ...,fcd).

Lemma 2.1. For any β > βc arcd /oops y, y', ί/ze function

is analytic in the strip \lrnp l\<m(β).
For any pί e(C wiίίi llmp^mOS), the function

m analytic on a neighbourhood of ΊR.d " 1 C Cd ~ x .

Proo/. The lemma follows from (2.3).

Notation. Let S1 and S2 be two surfaces with 5S1rvdS2=t=0. Let / denote a
nonempty collection of links in 5S1n5S2. We denote by S1l^[lS2 the surface
obtained by gluing Sx to S2 along the links in /. Note that SΊLLS2 may not be
uniquely determined if / occurs more than once in δS^nδS^ This ambiguity will
not cause any complications in the sequel.

Let S be a surface. The edges of plaquettes in Sί that do not belong to the
boundary we call internal edges. An internal edge belongs to exactly two plaquettes
in S. A loop y is an internal loop of S if it is made of a connected sequence of internal
edges. If γ is an internal loop of S, we can "cut S along y" (i.e. remove identifications
of links in y) and thereby obtain two surfaces S1 and S2 both of which contain y in
their boundaries.

Let 7i be the loop that consists of two copies of the link joining the points
(0,0, ...,0) and (1,0, ...,0). We define ^(y,/) to be the collection of all surfaces
Se 5^(y,yO with the following two properties:

(i) There does not exist any translate y^oϊy^ such that y* is an internal loop of
S and if S is cut along y* then we obtain two surfaces S1 and S2 with 3St = yuy ^ and

(ii) It is not possible to decompose S

where S1 e &*(y, /)> ' i§ a connected set of links in yx, ί + y', and dS2 = yι, where yl is
the loop obtained by going back and forth along the links in /.

Remark. The condition (ii) is for technical convenience only. In the terminology of
[4] this condition amounts to the absence of pockets at y'.



Ornstein-Zernike Theory for Planar Random Surface Model 683

We call surfaces that satisfy condition (i) above irreducible and define the
irreducible two-loop function by

Fβ(y,7/)= Σ e-'W. (2.6)
Se<?ι(γ,γ')

Let ̂ 0(y, yO be the collection of all surfaces in ̂ (y, yO that have no pockets at y', i.e.
satisfy condition (ii) above. Define

G'β(y,Ύ')= Σ e-'W. (2.7)

Lemma 2.2. Let e be a unit vector along a coordinate axis. Then, for any β>βc,

lim— lnG£(y,/ββ) = mC8) (2.8)
«-> oo β

77ιe liraiί

lim— InfX?, /"*): = mι(|S) (2-9)
fl-»00 #

exists and is a positive concave increasing function of β. Furthermore, m^β) is
independent of y, y' and

ml(β)>m(β) (2.10)

for all β>βc.

Proof. The first statement is obvious because G'β(y, y'ae) and Gβ(y, y'ae) differ by a
finite multiple which is independent of α. The existence and properties of m^(β) are
verified exactly as the corresponding results for m(β) in [4]. The inequality (2.10)
can be proven by the methods of [3].

Let us consider a surface Se5^0(y,y/). Either Se&'1(y,y') or there exists a
smallest subsurface S1 of S with Si eί^(y, yϊ) for some x and

S = SιII,fS2, (2.11)

where 52 e 5^0(yί, y"). Note that S^ and S2 are uniquely determined by S. It follows
that

^(y,yO-^(7,/)+ Σ ^(y,yϊ)^(yί,yO (2.12)
xeZ d

A convolution identity similar to (2.12) was one of the main technical tools in [6] as
well as in [1-3, 14, 15].

Fourier-Laplace transforming (2.12) we obtain

β(yι, /; p) (2.1 3)
Taking y = / = y l J (2.13) becomes

where

G/ι(p): = <%(yι,yι;p), f^ ^f^y^p). (2.15)



684 T. Jonsson

Let e be a unit vector along the first coordinate axis. Define

Gί(fl): = Gί(yι,rf), (2-16)

where αe5Z + . Inverting (2.14) we have

G * > = ί β ~ ' ' ' (2 17)

The remainder of this section is concerned with an analysis of the integral (2.17)
along the lines of [2]. We fix a value of β>βc so mί(β)>m(β)>0 and divide the
region of integration in (2.17) in two parts: \p\^δ and \p\<δ. As 0-»oo, we will
show that the contribution from the first region is exponentially small relative to
the second one. For \p\ < δ the dominant contribution comes from a pole in the
complex p, -plane and this leads to Theorem 1.

Lemma 2.3. The function

has simple poles at p1 = ± im(β) and extends meromorphically to the larger region
\lmpί\<m1(β).

Proof. This follows from the subadditivity bounds

Gβ(a)^ const e~m(β}a (2.18)

Fβ(y^y\e}^ const <rmι(*)β (2.19)

and (2.14).

Lemma 2.4. For any <5>0, there exist ε>0 and εx>0, such that

|l-^((Pι,P))l>β', (2.20)

whenever \p\>δ and \Irnp 1\<m(β) + ε.

Proof. The proof is very similar to the proof of Lemma B.I in [2] so we omit it.

Lemma 2.5. Given δ > 0, there exists ε" > 0 and a constant C such that

ί dp, J dpGβ(p)e~^
-π \p\>δ

for any

Proof. By Lemma 2.4 there is an ε">0 such that 2ε// + m(/J)<w1(β) and the
integrand in (2.21) is analytic in p, in the region \Impί\<m(β) + 2ε". We can
therefore move the p,-integration to the line segment in the complex p, -plane
connecting — π — i(m(β) + ε") and π — i(m(β) -f ε"). Thus, the left-hand side of (2.21)
equals

π

J dp, J dp(jo(\p,—ι(rn{p)-j-ε )^p))e ^const^ .
-π \p\>δ ~

(2.22)
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Lemma 2.6. // δ > 0 is sufficiently small, and \p\ < δ, there is μ e (m(β\ mv(β)\ such
that 1 — ̂ ((Pι,p)) has only one simple zero as a function of pl in the region —μ
<Imp1 <0. This zero is a real analytic function of p.

Proof The lemma follows from Lemma 2.3, Rouche's Theorem and the analytic
implicit function theorem in the same way as in [2, Lemma B.2].

Proof of Theorem 1.1. By Lemma 2.5 it suffices to show that

g(ά):=]dpι f dp <?,((?!, p))£Γ*lβ (2.23)
\p\<δ -

has the desired asymptotic decay when δ > 0 is sufficiently small. Choose <3 so that
Lemma 2.6 holds. Let —ιM(p) be the pole of G^((p1?p)) in the region

i < 0. Looking at the explicit formula for Fβ((pl,p)) it is easy to see that

, (2.24)

where α > 0.
To evaluate g(a) we integrate the function

f(Pΐ):= J dpe-^'G^p)) (2.25)
\p\<δ

along a contour Γ which is defined to be the boundary of the rectangle

{ze(C| — π<Rez<π, 0>Imz> — μ} .

The contribution to

coming from the sides RepL = — π and Rep t = π cancel. The contribution from the
side with Imp1 = — μ is 0(e~aμ) so g(a) is essentially given by the residue at the
simple pole. Hence, up to exponentially small corrections,

g(d)= j h(p)e~ (&dp, (2.26)
\p\<δ

where h(p) is a bounded continuous function independent of a. Making use of
(2.24), the desired result

e~m(β)a

follows easily.

3. The One Loop-Function

In this section we prove Theorem 1.2. As in Sect. 2 the essential step is the
derivation of a convolution identity.

Let &"(yL,M) be the collection of all surfaces Se^(yL M) with the following
property: The plaquettes adjacent to one of the M-sides, the left one say, lie in the
interior of the loop yL M in its plane. We clearly have

M):= Σ e'"^=e-lIMG(n.ltM). (3.1)
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Let &"'(γLtM) be the subset oί ^\yL M) consisting of those surfaces that cannot be
decomposed into two surfaces St e &"(yLltM)> $2 e ^(JL^M) with Lί+L2 = Lby
cutting along M internal links. Defining

G"β(jL,M):= Σ e-W, (3.2)
Se^"(γL>M)

we have, for L ̂  2,

L-l

G0(yL,M) = G0(yL,M) + Σ G0(ytf f^G0(yL_N f M). (3.3)

We define the Laplace-transform of G'β(yL M) by

GXz):=LΣzLG^L,M), (3-4)

ze(C. The Laplace-transform Gβ(z) is defined by an analogous formula. Clearly
όβ(z) and ό'β(z) are well defined and analytic for |z| < T^(M) and |z| < F/(M),
respectively, where

L,M). (3.5)

The limit (3.5) exists and is finite by standard arguments for any β>βc [4].
Laplace-transforming (3.3) we obtain

^)= (3 6)
By an adaptation the methods developed in [3] one can show that
Vβ(M)>Vβ(M) whenever β>βc. Equation (3.6) therefore gives a mero-
morphic extension of G'β(z). The proof can now be completed as in [2, Theorem
2.4].

4. The Scaling Limit

In this section we prove Theorem 1.3. For convenience we take y = yv in the scaled
two-loop function Gf(y) defined in (1.7). Then, separating the loops in the first
coordinate direction and using (2.17),

F

where β = β(λ) is chosen such that λm(β(λ))^>mή:>0 as λ-+oo.
Now note that Fβ(p) is uniformly bounded for β ̂  βc and real analytic, so by the

calculations in Sect. 2 [cf. Eq. (2.24)],

4)7 (4.2)
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where k1 and k2 are strictly positive functions of β in the region β^βc. Hence,

1 λπ λn

)]-1. (4.3)

It is straightforward to verify that the limit of (4.3) exists (as a distribution in y Φ 0)
as λ-*oo and equals

const J e~ipιy(ml+p2Γ1dp = comt(-A+mlΓ1(y,^ ι f y , (4.4)

where the constant is positive and depends on k±(β^ and fe2(jSc). This completes the
proof.

5. Absence of Breathing

Let ^"(7ι,yί) be the collection of all surfaces 8 in ^o(7ι>yί) tnat can be
decomposed into exactly n irreducible surfaces:

for some x l 5 . . .,x n_ 1 eZd. Define

G5(7ι,)>ι)= Σ e^|S| (5.1)
Se^"(yι,yϊ)

and

fc(j8) = (MG^1,yί))-1 Σ ^(7l,7ί). (5.2)
71 = 0

The quantity (̂β) has an interpretation as the average density of translates oΐγ1

along surfaces with boundary

Theorem 5.1. // x-»oo in a coordinate direction, then the limit

ρ(β)= lim ρx(β)
jχ-> oo

exists and is positive for any β>βc.

Remark. The above theorem means that surfaces are thin in a certain sense for
β > βc. If ρ(β) were equal to 0, we would say that the surfaces breathe. This notion of
breathing is different from the ones introduced in [2, 7] but we find the simplicity
of this one appealing and expect it to be equivalent to the one introduced by ACC,
at least for the PRS-model. A notion of breathing called "restricted breathing,"
similar to the one used here is briefly discussed in [3].

Proof. We observe that

Gnβ(y,,yl)= Σ Fβ(yι^)Fβ(yl\y^...Fβ(y^yl}, (5.3)
X 1 , . . . , Xn

so the Fourier-Laplace transform of Gn

β is given by

(5.4)
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with Fβ(p) as in Eq. (2.15). Hence,

Σ HGJ(yι,yϊ)=f*- ί p χ Σ n(
n = Q n=0

One can mimick the analysis of Sect. 2 to show that for β > βc,

(56)
' ( }

where the constant is positive. The only difference is that now there is a double pole
in pί9 which changes the power of a by 1. The desired result follows now from
Theorem 1.

Remark. lfm^c) > m(βc) = 0, then it is easily verified, making use of Eq. (5.5), that
ρx(βc) = oo for d = 2, 3,4 (due to infrared divergences) and ρ(βc)>0 for d^5.

6. Concluding Remarks

In this paper the results of [6] have been corroborated, There is still one important
piece missing in the complete solution of the PRS-model, namely to show that
mι(βc) > m(βc)

 = O For this purpose it would suffice to prove that the susceptibility
Fβ(0) is finite and greater than 1 for some β < βc. In principle this could be done on
a computer.

In a recent very interesting paper [17] Baumann and Berg present the results of
a MC simulation of a modified planar random surface model, where any two
plaquettes that are glued together are not allowed to overlap. This model is more
amenable to an efficient simulation than the original PRS-model is. Baumann and
Berg find the critical exponents γ = 1/4 and η = 1 with an accuracy of almost 10%.
This result is rather surprising because naively one would not expect that a local
constraint could change the critical behaviour. As explained in [1 7] the methods of
[6] (and the present paper) do not apply directly to the modified PRS-model.
There is some hope that a suitable modification of those methods will work.

Acknowledgements. I would like to thank B. Durhuus for helpful discussions and Nordita for
hospitality.
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