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Large-Time Behavior
of Discrete Velocity Boltzmann Equations

J. Thomas Beale1
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Abstract. We study the asymptotic behavior of equations representing one-
dimensional motions in a fictitious gas with a discrete set of velocities. The
solutions considered have finite mass but arbitrary amplitude. With certain
assumptions, every solution approaches a state in which each component is a
traveling wave without interaction. The techniques are similar to those in an
earlier treatment of the Broadwell model [1].

1. Introduction

The purpose of this paper is to describe the evolution at large times of solutions to
certain systems of semilinear hyperbolic equations. These equations represent one-
dimensional motions in a fictitious gas consisting of particles with a discrete set of
possible velocities. The study of such model gases began with Maxwell. The
systems studied here have the form

n

W i f t + Citt ί > J C= Σ c^UjU^Fi, ί = l , . . . ,n, (1.1)
M = ι

where u^x^f) is the density of particles with speed cf, and the interaction
coefficients a{k, as well as the speeds, are constant. We suppose that the speeds are
distinct:

Ciϊcj if i = K / . (1.2)

With certain assumptions on the system, we show that each solution of finite total
mass, but arbitrary amplitude, evolves toward a state in which the interaction is
negligible; i.e., there are limiting wave forms uf so that

ut(x, t)~u™(x — cti) as ί-κx), z = l , . . . , n .

1 Partially supported by N.S.F. Grant No. NSF-DMS-84-08393
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If for some i the i-equation contains a decay term proportional to —uf, then
uf = 0. Thus the exchange of mass through the nonlinear terms may cause local
growth in some components for intermediate times, but the ultimate character of
the solution is determined by the transport at different speeds. Results of this type
have been derived for general systems of equations for solutions of small amplitude
by Tartar [14] and for the three-component Broadwell system with arbitrary
amplitude by the author [1]. The Broadwell system is a primary example of the
class of equations considered here.

We will make several assumptions on the system (1.1). The Boltzmann-type
equations for a multi-dimensional discrete velocity gas reduce in the case of one-
dimensional motions to a system satisfying these assumptions, provided certain
natural conditions are satisfied by the collisions in the model gas. This reduction is
discussed in detail in Sect. 2. First, we assume sign conditions on the interaction
coefficients:

αf^O if φi and fcφi, (1.3)

αf^O if j = l or k = i. (1.4)

Thus i-particles may only be created in an interaction in which they do not enter,
and otherwise, they may only be lost. We may as well suppose the coefficients are
symmetric in j, k:

α/* = α?Λ (1.5)

We will assume that mass is conserved in the individual interactions, so that for
each j, fe, the sum of coefficients of terms u uk is zero. We allow weight coefficients
v f>0; they arise in identifying different particles with speed cί5 as explained in
Sect. 2. Thus with fixed constants v, our conservation of mass condition is

Σv^O, Λ f c = l , . . . , n . (1.6)
i= 1

We also assume conservation of momentum:

Σ vΛα/* = 0, j,k = l,...,n. (1.7)
i = l

We further assume an entropy condition, which is a consequence of reversibility of
the collisions:

ΣvjFjlogM^O when w1 ? . . . ,w n>0. (1.8)
i

Finally we will need a more technical condition concerning the occurrence of terms
uf, which will always be satisfied for the gas models described in Sect. 2. We note
that for given i, either no square terms occur, i.e., α}1' = 0 for all j; or otherwise αf < 0,
because of the sign conditions and conservation of mass. Our assumption is

If tf"<0, then there is a sequence of indices i = ii9 i2, . . . 5z' r>
r^2, so that for fc = l, ...,r-l, <^>0, and α|̂  = 0. (1.9)

The main results of this paper are summarized in the following theorems. It is
supposed that u(x, f) is a solution of the system (1.1) with conditions (1.2)-(1.9)
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satisfied. We assume initial condition ut(x, 0) = u0i(x), /=!,...,«, with w0 ί^0
prescribed in L1 nL°° . The solution is in the class C(0, T; LP(R)) for 1 <; p < oo, with
T>0 arbitrary; the existence theory is discussed in Sect. 3. In particular,
discontinuities are allowed.

Theorem 1 (L1 Asymptotics). There exist functions u™ eL*(]R), i= 1, ..., n so that
ut( + ciί,ί)->"Γ in L^R) as ί->oo. // for some ΐ, αf <0,

Theorem 2 (Boundedness and If Asymptotics). The solution iφc, t) is uniformly
bounded for x e R, t > 0, and each u™ is in L°°(1R.). The convergence to u™ takes place

for l^

Theorem 3 (Uniform Asymptotics). Assume that the u0i tend to zero as x-+ + 00.
Then uf tends to zero as x-> ± oo. The convergence of ut(- + qί, 1) to u™ as £-»oo
takes place in LGO(R). // the initial state is C1, then uf is continuous.

The solution is nonnegative provided the initial data are. Because of (1.6), the
total mass

m (1.10)
- oo i = 1

is conserved in time, and similarly (1.7) implies the conservation of total
momentum

I ivfrufcrfdx. (1.11)
— oo i= 1

Equation (1.10) means that the L1 norm is constant, but it seems that no natural
higher norm is nonincreasing. For this reason the approach to describing the
large-time behavior must be somewhat indirect. The method used here is similar to
that in [1] but there are important differences. In fact, one significant aspect of the
present treatment is that the asymptotic description holds with only two assumed
conservation laws, those of mass and momentum, although the number of
components may be large. In contrast to [1], we first derive the asymptotic limit in
L1 (Theorem 1) without estimates in higher norms. We then use this result to
advantage in proving Theorem 2.

The results here include the asymptotic description of the Broadwell system in
[1] as a special case, except that we considered only smooth solutions in the earlier
work. In the Broadwell case we were able to show that the limiting state depends
continuously on the initial data (Theorem 3 of [1]), but we have not been able to
show this for general systems. Our approach here uses ideas from Tartar's work
[14] and extends the results on asymptotics to arbitrary amplitude, although there
are slightly different assumptions on the system (1.1). Other work on systems like
(1.1) may be found in [2-13] and in the references listed in [1].

In Sect. 2, we discuss the Boltzmann equation of the model gas and describe
conditions leading to one-dimensional solutions governed by the system (1.1) with
assumptions (1.2)-{1.9). We then summarize in Sect. 3 the existence theory for (1.1)
following an argument of Crandall and Tartar. In Sect. 4 we prove (Lemma 4.1)
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that the interaction terms are integrable in spacetime; as noted in [14], this easily
implies the L1 convergence of Theorem 1 . We use weight functions in the equations
analogous to those of [1] for the Broadwell system, but they are used in a different
way. In Sect. 5 we use related weight functions to show that the If norm remains
bounded at large time; Theorem 2 follows by letting p->oo. Finally in Sect. 5 we
derive the uniform convergence to the limiting state with slightly more assumed
about the initial data.

It is not apparent whether methods such as these would apply to solutions
confined to an interval with appropriate boundary conditions. We would not
expect the interaction terms to be integrable in space-time in this case. Except for
the Carleman model, asymptotic results for large data have not been given. In
higher space dimensions there are no existence results for all time except for small
data. The weight functions used here involve one-dimensional integrals which are
automatically bounded by the total mass; this would not be the case in more
than one space dimension. R. Illner has shown that for the two-dimensional
Broadwell system, solutions of finite mass may grow indefinitely in maximum
norm. The description of solutions in higher dimensions will therefore have to
be somewhat different from that of the one-dimensional case treated here.

2. The Discrete Velocity Boltzmann Equation

We now describe the equations of the discrete velocity gas and verify that one-
dimensional motions reduce to the system (1.1) with assumptions (1.2)-(1.9)
satisfied. For a fuller discussion of model gases of this type, see the lecture notes by
Gatignol [5] and Cabannes [3] and the survey [6].

We suppose that the gas consists of particles of identical mass with vector
velocities Vl9...,VN.A pair of particles with velocities Vκ, VL may collide and result
in a new pair of particles with velocities Vl9 V3 provided momentum and energy are
conserved:

V!+VJ=VK+VL, (2.1)

. (2.2)

The particles with velocity Vl have density Uj(x, y, z, f). The amount of mass of
each component gained or lost in a volume element dxdydz in time at is
AffUKULdxdydzdt , where Aff is a nonnegative constant specifying the transition
rate of the reaction. If (2.1), (2.2) are not satisfied, then Aff = 0. From the definition
the coefficients are symmetric in each pair of indices,

ΛKL_ ΛKL_ ΛLK /9 o\
Λ/i — Λu —Λu \Z J)

We make the assumption that the reverse reaction is equally likely,

A& = A%. (2.4)

It is simple to check that if J = I, then (2.1), (2.2) can be satisfied only in the trivial
case K = L = L Furthermore, if K = /, (2.1) implies L = J. Using these remarks, the
equations of evolution for the density functions can be written as

Σ A?J

L(UκUL-UIUj) = ΦI(U1...UN). (2.5)
J,K,L
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(see Sect. LA of [5]). For simplicity we will replace A\ j = A\] by zero this obviously
has no effect on the equations.

We consider solutions of (2.5) which are independent of y, z. Let C,= Vl - x,
where x is the unit vector in the x-direction. Then (2.5) becomes

UI,t+CIUl,x = ΦI(Ul,...,UN). (2.6)

It is not hard to see that this system satisfies the sign conditions (1 .3), (1 .4), the mass
and momentum conservation (1.6), (1.7), and the entropy condition (1.8); for the
last see Sect. I.D. of [5] or Sect. 2.1 of [3]. We wish to reduce this system however,
by combining densities /', / for which CΓ = CI? and to do this we need a further
structural assumption.

We introduce an equivalence relation on the indices 1,...,7V, viz. Γ~I if
CΓ = Cj. We will need a symmetry condition for the coefficients in (2.5):

If Γ~I, there is a bijection on (1, ..., N} preserving equiva-
lence classes and taking J-»Γ so that for all J, K, L we have
Af:jL: = AfjL, where J', K\ L are the images of J, K, L. (2.7)

A simple consequence of (2.7) will allow us to combine densities in the same
equivalence class:

If C7 l5 ..., UN have the property that J'~ J implies UJI = UJ,
then I'~I implies ΦΓ(U19 ..., UN) = Φ,(U19 ..., UN). (2.8)

Next we number the equivalence classes 1, . . ., n in some fashion, n^N, and write
i = [/] when / is in the equivalence class i. Let vf be the number of elements in
the ith class and cί = CI with i = [/]. We now consider density functions
M X (X, i)9 ..., M/ι(X 0 an(i associate Uί9...9UN by defining [// — um Also let
Ft(ul9 ...9un) = Φ,(M[i]5 . . ., w[N]), with / any member of class i. We now compare the
system

= ί'i(w1,...,Mn) (2.9)

with (2.6). If M!(X, f)9 ...,un(x, f) solve (2.9), then because of (2.8) the corresponding
UI9 as defined above, satisfy (2.6). As shown by an argument in Sect. 3, the solutions
of (2.6) are uniquely determined by initial data. Thus if E701(x), ..., UON(x) are
prescribed data for (2.6) with UQJ> = UOJ for J'~ J, we may find the solution by
solving the reduced system (2.9) with u0[J] = UOJ and then setting 17, = u[I}.

It remains to check that the system (2.9) satisfies all the conditions (1.2)-(1 9)
under our present assumptions. To put (2.9) in the form (1.1), we combine terms in
Fi as defined above from Φj. The sum in (2.5) may contain terms with K=£I but
K~I; then Cκ = CI9 and from (2.1), CL = Cj as well. Thus L- J, and UKUL = 17,17,,
so that the (J, K, L)-term in the sum is zero. After canceling such terms we have
only positive terms ukUι with feφ[J] and /φ[/], and negative terms u[I}Uj.
Therefore (2.9) has the form (1.1) with the sign conditions (1.3), (1.4) satisfied. The
conservation laws (1.6), (1.7) and the entropy condition (1.8) are direct conse-
quences of those for (2.6).

Finally we verify condition (1 .9) for the square terms. Suppose af < 0 for some i.
Then for some /, J, K with [I] = [J] - i, (2.1) is satisfied. With k - [X], / = [L], we
have 2ci = ck + ct. Since the c's are distinct, one oϊck9 cl9 is strictly greater than ci9 say
ck. Set i 1=i, i2 = fe. If α f 2 = 0, we set r = 2, and (1.9) is satisfied. If terms with uf
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occur, we repeat the above argument to find i3 with cί3>cίz. If αjf'3 = 0, we stop;
otherwise we continue. This process eventually terminates since there are only
finitely many speeds. If cir is the maximal speed, there are no nontrivial choice of fc, /
so that 2cίr = ck + cl9 and therefore no terms with ufr appear.

The Broadwell system, treated in [1], serves as an example of the general
development above. In this case the velocity Vl is the unit vector in the 7th

coordinate direction, 7 = 1,2,3, and VI + 3= — Vf. Equations (2.6) are

with the same right-hand sides for UI + 3 as for C/j. Here / = 2, 3, 5, 6 are combined
in one equivalence class, with I7l5 1/4 each remaining separate. The condition (2.7)
holds for each pair /, Γ from {2, 3, 5, 6}. For example, if / = 2, Γ = 5, the mapping
interchanges 2, 5. The case / = 3, Γ = 6 is analogous. For 7 = 2, 7' = 3, we
interchange 2,3 and also 5, 6. Other cases can be regarded as composites of these.
Note that it is not true that Afifi = Aff whenever corresponding indices are in the
same equivalence class.

3. Existence Theory

We now discuss existence and basic properties for the system (1.1). The existence
theory needed is essentially that of Tartar [14] but some remarks are necessary
because of slightly different hypotheses. Our fundamental result is the following.

Existence Theorem. Suppose the system (1.1) satisfies conditions (1.2)-(1.8), and
suppose nonnegative initial data woί, i = l, ..., w, are given in I/nL00. Then there
exists a unique nonnegative solution of (1.1) for all time in the class C(0, oo; LP(IR))
for 1 <j p < oo, with the prescribed initial value. There is a function G(T, X0) so that if
\uQi\Loo ̂  K0, then IM^ , ί)|LOO ̂  G(T, KQ) for t^TIfu0 is C1 in x, then u is C1 in (x, ί).

We outline the proof of this theorem, assuming first that the data are C1. A
solution can be constructed for short time by writing the equations in integral form
along the characteristics and using the contraction mapping principle. The length
of time depends only on the maximum of the initial data. A domain of dependence
property is evident from this construction: the solution at (x0, ί0) depends only on
the initial data on the interval |x - x0| ̂  cmaxί, cmax = maxf \ct\. As noted in [14] it is
also evident that nonnegative data lead to a nonnegative solution provided we
define the contraction mapping as u-+Su,

(Sιι)<fί + cf(Sιι)ίf,= Σ tfuft+ΣV-δtjWWiUj.
j . fc + i J

Uniqueness is easily checked in the class C1. From (1.6), (1.7) we have the laws of
mass and momentum conservation:

ΣVA-^+ΣV/A ^-O, (3.1)j j
ΣwA t+ΣvA

2«A» = 0. (3.2)
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Next we check that solutions of small mass remain uniformly bounded
independent of time, using an argument like that of Nishida and Mimura for the
Broadwell system. (Cabannes [4] has recently given a boundedness argument for
small data related to this one.) Integrating the ίth equation along its characteristic,
we have

Ui(x, f) = uio(x) + } Ft(x + φ' - ί), 0 dt'
o

(3.3)
j . f c φ i 0

We now apply the divergence theorem to each conservation law (3.1), (3.2) on the
region {(*', t'):x'<x + φ' — t), 0<t'<t} to obtain, with α = 0 or 1,

f Σ v/X (*', ί)dx'- *T Σ vjC«uQj(x'}dxf

0 j

Taking the momentum identity minus ct times the mass identity, we get

Σ ί vj(cj - c^Uj(x + ct(t' - ί), t')dt' ^ Cm ,
j o

since the integrals on the left above represent part of the mass. Therefore by (1.2)

Σ ί Uj(x + φf - 0, t'}άt' ^ Cm .
j*i 0

We use this in (3.3); if K0 is the maximum of the initial data, and K the maximum
up to time T, then K ̂  K0 + C0Km, where C0 is a constant depending only on the
coefficients in the equations. Finally, we have K ̂  K0/(ί — C0m) provided
m < CQ 1, a bound independent of the time interval. Thus if mrg 1/2C0, the short-
time existence argument can be repeated to obtain a solution for all time which is
uniformly bounded.

Now following an argument of Crandall and Tartar [13, 14] we consider the
initial value problem for data of arbitrary mass. Let K0 be the maximum for the
initial data. We choose T and x0 and construct a solution in the region

Since the solution in this region is determined by the data for \x — XQ\ ^ 2cmaxT, we
may modify the data outside this interval to have compact support without
affecting the solution in our region. This can be done so that m and K0 are not
increased. We now consider the initial value problem for the modified data of
compact support. Since the solution has compact support for each ί, the entropy
function

00

ί Σvj
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is defined and is nonincreasing (see Sect. I.D of [5] or Sect. 2.1 of [3]). Since
^i —1/e for y^O, it follows that

for ίrg T, with log+ υ the positive part of log?;. It can be seen as a consequence (see
the proof of Theorem 4 in [14]) that there exists a number r, depending only on K0,
T, so that

for every interval / of length ^ r with / x {t} in the region. The small mass existence
result can now be applied to continue the solution for time steps of length r/3cmax.
By varying x0, we construct a C1 solution of the original problem on R x (0, T).
Since the choice of r can be made independent of x0, the maximum of the solution
is bounded by a number G(T, K0). By conservation of mass the solution is in L1,
and therefore Lp, 1 ̂ /?<oo, for each t. Since T was arbitrary, we have such a
solution for all time.

It remains to extend the existence theorem to the case of nonsmooth data. For
MO e L1 nL°° we can obtain the solution as the limit of smooth solutions by a process
which will also be useful later. Let φ(x) be a test function with

φeC?(R), φ^O, J φ(x)dx = ί 9
— oo

and let φk(x) = kφ(kx). We replace u0 by the convolution υ$ = UQ* φk, ana check
that the solutions converge as fc->oo:

Lemma 3.1. With u0 e L1 nL°° and T>0 arbitrary, define u^ = u0*φk as above. Let
u(k} be the solution of (1.1) with w(fc)(0) = w(

0

fe). Then the u(k} are uniformly bounded on
Rx [0, T], and for 1 ̂ p<oo, u(k} converges in C(0, Γ; L17) to a solution u of (1.1)
with M(()) = MO T7us solution is uniformly bounded on Rx [0, T] by G(T, |WO|L°°)

Proo/. Since \U(^\LOO ^ |w0|LOo, we have |w(k)(x,ί)I^G(Γ5|M0lL«)Ξ^ where G is the
function obtained in the above argument. Now if v = u(k} — u(k'\ then

f i f t + Cit? ί t x = hi(x9 1) , |Λ{(x, 01 u C\v(x9 ί)l ,

where C depends on X, but not on fc, fex. Define /„ E CX(R) by /n(y) - \y\ - l/(2n) for
M^l/n, /M(j;)-Wy2/2 for |y|^l/n. Then 0£fn(y)^\y\9 and /B(y)^|y| as π^oo.
Multiplying the above equation by fifa), we have fn(vί)t+cifn(vί)x = f,;(vi)h(x, t).
Integrating in x and ί, and then letting n-+oo, we find

ϊ κ*,ί)l<fc^ J |^-4k'V^+cJ J \υ(x9t)\dxdt.
— oo — oo O — o o

Thus from GronwalΓs inequality we have \υ( , i)Lι^eCt\u$ — u(QΊ\Lι. Since u^^u^
in L^R), it follows that u(k) converges in C(0, T; I>(R)) to a function M(X, t). In fact,
since the u(k) are uniformly bounded, the convergence takes place in C(0, T; Z/(R)),
1 ̂  p < oo. It is easily seen that the limit function is a distributional solution of the
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equation. Finally we check the uniform boundedness of u. For each fc, ί, p we have

p-i
lι/fcV Λ l < ί ΐCp~1\ιλk)(. t\\ \^IP — f KP~I\Ή^\\u v5 Γ J lLp = tA lw V ϊ ^ l L 1 / — 1A lwo I

and thus w( , ί) has the same bound. Letting p-»oo, we have |w( , t)\L

To complete the proof of the Existence Theorem it remains only to verify the
uniqueness property. For solutions in the prescribed regularity class we can easily
check that for arbitrary φ e C^(IR) and ί>0,

00 00

ί ui(x-{'Cit9t)φ(x)dx- J U0i(x9t)φ(x)dx
— oo

'it, t)φ(x)dtdx.
-oo 0

Therefore

ί
Uf(x + Cfί, ί) - M0ί(x) = J jFf(x + Cjί', ί^ίίί7

0

for almost all (x, ί). If there are two solutions with the same initial data and y(t) is
the L°°-norm of the difference at time ί, we can obtain from this representation and
the uniform boundedness an estimate

and this implies y = Q.

4. Asymptotίcs in L1

In this section we prove Theorem 1. Here and subsequently we wll write Dt for

We begin by introducing functions /f(x, ί) related to mass and momentum,
analogous to those used in [1], so that D^ is a negative linear combination of the
M;. We assume for now that the solution under consideration is smooth. Define

Applying the divergence theorem to the mass conservation law (3.1) on the region
{(X, O —oo<x'<x, 0<ί/<ί}, we get

l(0)(x, 0 - /(0)(x, 0) + J Σ v Aw/x, Odί7 = 0 .
o j

It is evident from the definition and from the above identity that

Thus
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In just the same way we set

/(1)(χ,0 = f ΣwXχ',t)dχ',
-co j

and use the conservation of momentum (3.2) to find

j

Thus if l—lM-cf0*, we have

for some constant 7i>0, using (1.2).
We use the ίf's in the proof of the lemma below. The asymptotic description in

L1 will follow from this lemma.

Lemma 4.1. For each choice of i,j, k so that αf φO, we have

00 00

J j UjUkdxdt^M,
0 -oo

where M is a constant depending only on the mass m and the coefficients in the
equations.

Proof. We first assume the solution is smooth. Suppose for now that i is chosen and
0" = 0. We write the zth equation as

D/M.= Σ aikujuk-Σtήujuί (4.1)
M*Ϊ ./*'•

with b{ = — 2αp', so that all coefficients in (4.1) are nonnegative. Let ί(χ, t) = /f(x, t)/yt

with /j as above; then

and (/(^Ol^Cmsyl for all (x,ί). We will multiply (4.1) by /(/), where / is a
smooth function to be determined. Assuming /x>0 we have

and writing Dl<>ί)-(/)ί/X

We wish the coefficients of the terms on the right to be strictly less than they would
be i f/ were replaced by 1. For this reason we will choose / so that for |/| ̂ /L, and
some δ > 0,

δ£f£l-δ, f>0, f'+bίfebKl + δ). (4.2)

Let β = maxbl and define /(/)-! +δ-Ae~βl with δ, A to be determined. With
A>Q,f will be increasing. We specify f(A) = 1 — δ, or ^4 = 2δeβΛ. To ensure / ^ (5,
we choose δ so that f( — A) = δ. With ^4 as above, this means that δ = e~ 2βΛ/2. The
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first two conditions of (4.2) are now satisfied, and for the third we have

As a consequence of (4.2) we can write

or

Dlfu^DM-vΣ'UjUk, (4.3)
Λ f c

for some α > 0, where the prime denotes the sum over pairs 7, k with a{k φ 0. Next we
multiply by v / 5 add together vΓZ)ΓwΓ for i'Φi, and use the conservation of mass
relation (3.1) to obtain

vA(/«/)+ Σ v,Dt.u,
i ' Φ i j,k "

Finally, integrating over x and from time 0 to T gives

r
ί (vίfuί + Σ vi / wiA dx + α Σ' ί ί UjUkdxdt1 ί 'Φί / y,/c o

i ' Φ i / ~~

The assertion follows since T is arbitrary.
The above argument applies to each ί for which a? = 0. If af < 0, then there is a

sequence i = i l 5 ...,i, as in assumption (1.9). Since α£lr = 0, the above argument
applies to the ^-equation, and since a term ufr_ί appears in this equation, it is
integrable,

ί $uf dxdt^m/u. (4.5)
o

We may argue as before for the ir_l -equation, except that the term ufr_ί must be
treated differently. Inequality (4.3) is replaced by

and (4.4) by
T T

Juί ,+ Σ Vi'uλdx + aΣΊSujUkdxdt^m+Clluf ,dxdt, (4.6)
" r i ' Φ ί r - i / M 0 0

for some constant C. Because of (4.5), we may conclude that the interaction terms
in the ir_ί -equation are integrable. Now by assumption, the ir_l -equation
contains a term M ? _ 2 , and we may repeat this argument for the z'r_2-equation.
Continuing this process, we finally obtain the same conclusion for the i-equation.

If the solution is not smooth, we can approximate by solutions corresponding
to mollified initial data as in Lemma 3.1. The modified data will converge in L1 and
be uniformly bounded in L°°. It follows from Lemma 3.1 that for any fixed T the
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solutions converge in C(0, T; i/nL2). The Γs then converge uniformly. Conse-
quently the estimates (4.4), (4.6), which hold for the smooth approximations, also
hold for arbitrary solutions by passage to the limit. Once again, since T was
arbitrary, we may conclude that the interaction terms are integrable.

As observed in [14], the asymptotic description of solutions in L^IR) is a simple
consequence of the above result :

Proof of Theorem 1. As in [14], we define uf (x, t) = ut(x + ctt, t) and Ff(x, t)
= Fί(x + cί£, ί). Then Dtuf = Ff. By the above lemma we can regard Ff as an
element of 1 (̂0, oo; L ÎR)), and write

o

Since the integral converges as ί->oo, it is evident that uf( , t) approaches a limit
u?° el/ίR), or equivalently,

$\ui(x9t)-Uj°(x-cit,t)\dx-+Q as ί^oo.

It remains to show that if a? = 0, then w?° - 0, i.e., uf( 9 ί)-»0 in L^ΊR}. We know
that uf ( , £)->M?° in L1 and from the lemma that

In particular this holds on any finite interval / on the x-axis. We can choose a
sequence tn-+oo so that

jw*(x, ίw)2dx->0 as n-κx) ,
/

and by the Cauchy-Schwarz inequality

also. Since uf-+u™ in !/(/) and w?°^0, we must have u^=0 on /. Since / was
arbitrary, u™ = 0.

5. Estimates and Asymptotics in Higher Norms

In this section our main task is to estimate solutions in Lp, and thereby establish
Theorem 2. We assume for now that the solutions are C1.

We will estimate in space-time regions moving approximately with one of the
speeds Cj. To localize we introduce numbers r0, ...,rn, c1 + , ...,cn + , c^, ...,cn_, so
that

ci<ri<ci + l , r ί _ 1 <c ί _<c ί , ci<cί+<ri,

wherever defined. We partition the real line into intervals 1—^^^ rj,
i = 2, . . ., n — 1 and I± = ( — oo, rx], In = (rn_ 19 oo). We will also use cut-off functions
oϊx/t. For 1 ̂ z5Ξ«, let ζr, ζf be functions in C°°(]R) with values in [0, 1] so that
ζf - 1 on (-00, r f _ J, CΓ =0 on [q_, oo), C =0 on (- oo, cί+], C/+ = 1 on [ri9 oo).
Thus ζf~ is supported on speeds below cί? and <^+ above.
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We will use integral quantities like the lt of the last section but modified with the
cut-offs so that they are small for large ί. Let S be the set of indices i so that uf terms
occur in the equations, i.e. af <0. Define first

Ut(x,i)= ί ζΐ(x'/t)uk(x',t)dx'- ί ζf(x7t)uk(x',t)dx'
- oo x

for k φ S and

17*0*, ί)= f Mft(x',ί)dx', he S.
— oo

The analogue of /,- will be

Lemma 5.1. The hj have the following two properties: (i) /z/x, ί)->0 as ί->oo,
uniformly in x.

(ii) D /Z; = - Σ (c* - Cj)2 (C/Γ + C K - Σ (ck - c/% + 0/x, ί) /or certain
k£S fceS

functions gfa, f). There are functions G7 (ί), and a constant M1 depending only on m,
so that

Proo/. For fe e 5, κk( , ί)->0 in L^IR) and thus [7k(x, ί)->0 uniformly in x. For fc φ S,

Now for large ί, uk(x,t) is close in I/(R) to uk°(x — ckt), and the first integral is
therefore close to

Cfc-ί (Clc--Cfc)f

f u^ίv r Λ Λ v — f ιy°°^v^/7v
J ί/ί^ ^Λ — C^t^tiΛ — J ί-ί̂  ^Λ^CiΛ .

— oo — oo

Since ck_ <cfe, the last integral goes to zero at ί-»oo. The second term can be
estimated in the same way, showing that ί/fc->0 uniformly in ί. Conclusion (i)
follows.

Let Uk be the first term in the definition of Uk for kφS. Writing the equation
for uh as Dhuh = Fk, we have

Integrating over the region {(x^t^'.x^x, 0<t'<t} gives

0 O - o o

Evidently DxUk =ζkuk, and

tUk- = -ckζk-uk+ J [Cfê k + (DfcCfe-K]^. (5.1)
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Now Dkζk = (ζk)'(x/i) - (ckt — x)/t2, which is bounded by C/t. Thus the last term in
(5.1) is bounded by a constant times

00 \ βt

J \Fk(x,i)\dx+-ϊuk(x,i)dx,
— oo £ αί

where α = rfc _ ! , β = ck _ . The first of these is integrable in t by Lemma 4. 1 . We need
to estimate

00 βt \

J S-uk(x,t)dxdt.
0 at t

Let x = (l—θ)at + θβt. We change the variables to (0,ί). The Jacobian is (/? — α)f,
and the integral becomes

0 0

It will be enough to estimate the ί-integral with θ fixed. With c* = (l -θ)a + θβ,
u%(x,i) = uk(x + c*t,i), and the same for Fjf, we have M*,ί + (Cfc — c*)w*,x = -F* and
Cfc>c*. Integrating over {(x'^Oix^O, 0 <£'<£}, we find

f W*(x?0^ + fe-^)ί%*(0,0^- ί t/ fc*(x,0)dx+i J Ftdxdt'.
— oo 0 — oo O — o o

As ί-KX), the integral in the second term approaches our integral above, while the
other terms are bounded by constants depending on m. It follows that the last term
in (5.1) is integrable in ί. We have essentially verified conclusion (ii) for the ζk

terms, k φ S. The ζk terms may be treated in the same way, and the terms k E S are of
course simpler.

We now begin the estimates in If. We choose i and estimate for x/telt,
assuming at first that i φ S. With the/h equation in the form D UJ = Fp we introduce
a weight function μfa, t) to be chosen and write

Dfyjiju?) = (Djμj)u?+pμju? ~ ̂  . (5.2)

We define

μ/x, ί) - exp{yp(Λ/x, t) + η)} ,

with y and η constants to be chosen later. Thus

In Lemma 5. 1 we found an expression for Dfy. For k φ i, one of ζk , ζk is 1 and the
other 0 for x/ί e It. Therefore

Djμj^-pδyμj Σ % + PyG^ (5.3)
fcφίj

for some δ>0, x/ίe/ f, using (1.2).
The last term in (5.2) is

k . Z Φ j
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where b] = — 2af for fe φj, bj = — αj 7. We estimate the growth terms using Young's
inequality:

and thus

Since we have assumed that iφS, one of fe, / is not i\ take fcΦi.
Combining inequalities, we can write

Dfau^-pyδμj Σ uku]+ Σ Σp^l(μj)p~luku^
f e φ i , j k φ i , j ί φ j

+ Σ Σtfurf-Σptfμjutf + PVGjμtf. (5.4)

We will use the first term on the right to dominate the second and, after summing in
7, the first and fourth to control the third. For the first case we will choose the
constants in μ, so that for each fe Φ z, 7,

P

It will be sufficient to replace this by

where A/2 is an upper bound for the coefficient sum, or for p ̂  2 by

(5.6)

To satisfy this condition, we first choose y = eA/δ. Now according to Lemma 5.1,
there is a T sufficiently large so that |/z/x, ί)| g l/4y for t > T. We take η = l/4y then
for t> T (5.6), and therefore (5.5), is satisfied. In addition we have ensured that

μ^lNext we bound the third term in (5.4). Suppose af > 0 with k φ z, j and / φ j. We
consider two cases : (i) k φ /, (ii) fe = /. In case (i), since fe φ z, the version of (5.4) with j
replaced by / contains a term -pyδμtukuf. Because μl ̂  1 and because of the factor
of p, this term dominates the term ahjlukuf from the j-equation for sufficiently large
p; in fact it dominates any number of such terms. In case (ii), we have α">0 with
/φ/. By the conservation of mass relation (1.6), there is a negative uf term in the
/-equation. Thus fej>0, and (5.4) with j replaced by / contains a term — pb|μzwf + 1.
This dominates the growth term aljUf + 1 for the same reasons as in case (i). Finally
we multiply (5.4) by vj} sum over j, and combine terms using the results of the last
two paragraphs to obtain for t ̂  Γ, x/t e /ί5 and sufficiently large p,

Σ D/v^jf) ̂  pyG(t) Σ vA Hl . (5.7)
J J

Here G(ί) = maxG_/(ί).
We check that (5.7) holds also in the case i e S. Now (5.5) can be strengthened to

include the term fe = /, assuming; Φ i. The first three terms on the right in (5.4) now
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have fcΦj rather than kή=i,j. Otherwise the argument proceeds as before. Thus
(5.7) holds for all (x, ί) with t ̂  T.

Now let

00

X0= ί Σ
-oo j

Integrating (5.7) over x, we have

and integrating in ί,

/ 00

'ί
T

for t^ T. From the definition of hj and μp μ/x, ί)^ C\epC*m with some constants
C l 5 C2. Let K0 be the maximum of the uj for ({x, ί): 0^ t^ T}; then

and

Since ty^l, |M/.,i)lwSXi)1/p, and

|M/ ,ί)L^Cέ/pC1e
M24^m1/<', ί^T. (5.8)

Finally, we let p->co. The Lp norm converges to the L°° norm, and we obtain

, ί^T. (5.9)

Thus the MJ are uniformly bounded for all ί^O.
We have proved uniform boundedness for C1 solutions. For initial data in

Z^nL00 we can modify the above argument to obtain the same conclusion. We
approximate by smooth solutions as in Sect. 3. Repeating the above argument for
the approximants, but without combining the first and second terms in (5.4), we
can establish the following estimate for all T, t and sufficiently large p:

Vjμtfdx^l ] R(x,t)dxdt+\pyG(t) ]
T — oo T — co j

with

Z,p j k j k,l

where the primes on the sums denote the previous exceptions. There is no difficulty
in passing to the limit in this expression since the hj and μ7 converge uniformly.
After doing so, we can show as before that R ̂  0 for sufficiently large ί, and we may
use GronwalΓs inequality to estimate as earlier.

We have already proved in Sect. 4 that uf( , f) = Uj(- + c/, ί) converges in L1 to
MJ°. Since uj is uniformly bounded, it also converges in Lp for 1 rgp<oo. The LP
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norms of the u* are bounded uniformly in t as in (5.8), and therefore uf satisfies the
same estimate in U. Letting p->oo, we find that uf is uniformly bounded in x as in
(5.9). This completes the proof of Theorem 2.

6. Uniform Asymptotics

In this section we prove Theorem 3. We assume throughout that u0 e L1 nL°° and
w0j (x)-»0 as x->±oo. K will denote an upper bound for the solution, which is
known to exist from the results of Sect. 5. We make use of ideas of Tartar [14].

We can express the solution of D u^ = Fp integrating along characteristics, as

uj(ξ + Cjt, 0 - uQj(ξ) + ί Fj(ξ + cfr s)ds .
0

Since Fj e L*(R x (0, oo)), the integral on the right remains bounded as f-κx) for
almost all ξ, and therefore this expression is valid for all t for a.a.ξ. (The exceptional
set of ξ is independent of ί.) Letting x = ξ + cf, we have

t
Uj(x, t) = u0j(x - Cjt) + I Fj(x - Cjt + op, s)ds ,

0

so that Uj(x,t)^gj(x — Cjt), where as in [14] we define

0X£) = w0χ£ί) + T \Fj(ξ + cjS,s)\ds. (6.1)

Then gj e ί/(R) since uQj e L^R), Fj e i/(R x (0, oo)).

Lemma 6.1. For each ε > 0 there exists A > 0 so that for all ί, \ut(x, t)\ :g ε for a.a.x
with \x-ctt\^A.

Proof. We fix i and assume for simplicity that ct = 0. This is no restriction, since we
can rewrite the equations with x — ctt as a new x- variable; the speed c-3 is then
replaced by Cj — c^ Integrating in t and regarding t as fixed, we have

Ui(x9t)^uoi(x)+l Σ aikUj(x,t/}uk(x,tW^ (6.2)
θ 7 , k Φ i

By assumption u0i(x) is small for large |x|. We will estimate the integral terms first
forj 'Φfe. Now for every x, Uj(x, t/}^gj(x — cjt

/) for a.a.f^ί; the exceptional set of
(x, ίx) for this estimate intersects a vertical line only in a set of measure zero since
j=M and c7 φO, cf = 0. Also u^K for a.a.(x, ί7)? and therefore for a.a.x this
inequality holds for a.a.ί'. Then M7 (x, ί^^infl^Xλ; — cf,\ K}, or equivalently,
ufat^^hfo'-x/Cj), where feχs) = inf{gfχ-c/s), K}. Since ^-eLHR), /i;-eL2(R).
With the same considerations applied to uk, the 7, fe-term in (6.2) is now estimated
for a.a.x by

C
— oo

We claim that for j Φ f e this integral is small for sufficiently large |x|. Since c7 φcfc,
this would be obvious iΐhj9 hk had compact support. lϊhj and hk are approximated
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in L2 by functions of compact support with error δ, then the error in the above
integral is 0(δ), uniformly in x by the Cauchy-Schwarz inequality, and thus the
claim holds in general. We conclude that for; φ fc, thej, fe-term in (6.2) is uniformly
small for all (x, ί) with |x| sufficiently large, excepting for each t a set of x of measure
zero.

To complete the proof of the lemma, it remains to derive a similar conclusion
for the case j = k. If a term uj appears, we know that w/ , ί)-»0 in L^R) as ί-»oo.
First we claim that for every ί, for a.a.x,

ί 00 00

Cj$Uj(x,t')dt'= I ιij(x',t)dx'- J ttcy
0 x

(6.3)
0 x

If u were smooth, this would follow from the divergence theorem. In general, we
can approximate u by smooth solutions as in Lemma 3.1. As we pass to the limit.
each side of the equation converges in Ljoc(R), and therefore the two limits are
equal for a.a.x. This verifies the claim. Now since Fj e ί/(R x (0, oo)) we can choose
A so that the last term in (6.3) is ^ δ in magnitude for x ̂  A, where δ is an arbitrary
small number. Similarly, the next to last term is also ^δ for large enough x. Since
Uj( , £)-»0 in L^R), the first term on the right is ^ δ for large enough t. Therefore
the ί'-integral is bounded by 3δ/|cy|. For x near — oo, we can argue in a similar way,
this time using the identity

κ/x,OΛ'=- uj(x\t)dx'+ J t/o/x'Xx'
0 — oo — oo

+ } f F^tyix'df.
0 -oo

We choose A large enough so that the second and third terms on the right are
bounded by δ for x < — A and arrive at the same estimate for the ί'-integral.
Finally, we note again that for each ί, for a.a.x we have w/x, t^^Kfoτ a.a.t'^t.
Therefore

J t*?
0

for a.a.x with |x| ^A. We have now shown that all the terms in (6.2) are small for
large |x|, and the lemma is proved.

We are now ready to prove the uniform convergence of ut. We assume first that
iφS, and again take c~0 for convenience. We will show that for each ε there
exists T sufficiently large so that for t ̂  T,

|ιφ;,ί)-Wi(X T)|^ε for a.a.x. (6.4)

From the lemma we may choose A = A(ε) so that M f(x5 1) ̂  ε/2 for |x| ^> A uniformly
in ί, and thus it suffices to verify (6.4) only for |x|^A

For each T, ί, and a.a.x, we can write
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where for each term on the right, one of j, k is φ i, since i φ S. Again for a.a. x we have
Uj(x9 t') ^gj(x — Cjt') and uk(x, f)^K for a.a.ί'; we suppose jφi here. Then

The last integral is + cj * times
x-CjT

J 0/s)ds or f
- Cj T

depending on whether c/>0 or Cj<Q. In either case the integral goes to zero as
T-κx), uniformly for |x|^A This establishes (6.4) for iφS.

We now consider the case ieS9 again taking cz — 0. We begin by writing for

W;(x, f)2Λ'^ Σ $ 1 UjUkdt' = R(χ, ί1? ί2) (6.5)
ίi M** ίi

with b = — af > 0; in view of our earlier remarks this holds for all (x, tί9 12) except
for x in a set of measure zero. Estimating the terms on the right just as above, we
may find 7\ sufficiently large so that R(x, T1? oo) ̂  β/2 for |x| ̂  A, x outside a set of
measure zero. Then for T2> Tl9 bounding ut(x, ΓJ by K,

If Ui ̂  e/2 on [T1? T2], then the left-hand side is larger than bε2(T2 - ΓJ/4; for large
enough Γ2, this would contradict the above inequality. Therefore for T2 = Tv

+ 4(K + l)fe~ 1ε~ 2, there is some tl depending on x with T1^ί1^T2 so that
ut(x9 ίι)^ε/2. But then from (6.5), ut(x9 t)^ε for all ί^ίl9 and thus for all f ^> T2.
Thus we have shown that, given ε and A9 there exists T2 so that for t^T9

\Ui(x9 01 ̂ β for a.a.x with |x|^^4.

Together with Lemma 6.1 and our earlier conclusion for iφS9 this completes the
proof that the solution converges uniformly as ί-κxx

Finally, since ufai + c t, f) is uniformly close to u™(x) for t large, and since by
Lemma 6.1, ut(x -f ctt, ί) is uniformly small for large |x|, it follows that u™(x) is small
for large |x|; i.e., u^(x) ^0 as x-> + oo. If the woί are C1, the solution is C1 in space-
time, and the uniform convergence as ί-»oo implies that w?° is continuous.
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