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Abstract. This work concerns the nature of chaotic dynamical processes.
Sheldon Newhouse wrote on dynamical processes (depending on a parameter
μ) xn + ί = T(xn; μ\ where x is in the plane, such as might arise when studying
Poincare return maps for autonomous differential equations in R3. He proved
that if the system is chaotic there will very often be existing parameter values
for which there are infinitely many periodic attractors coexisting in a bounded
region of the plane, and that such parameter values μ would be dense in some
interval. The fact that infinitely many coexisting sinks can occur brings into
question the very nature of the foundations of chaotic dynamical processes. We
prove, for an apparently typical situation, that Newhouse's construction yields
only a set of parameter values μ of measure zero.

1. Posing the Problem

Sheldon Newhouse made some amazing discoveries about dissipative dynamical
processes. His discoveries have raised questions about the nature of systems that
behave chaotically. The objective of this paper is to make computations that
interpret his results, and to help re-establish the foundation of chaotic dynamical
processes.

We are accustomed to thinking of dynamical systems with one or several
basins of attraction. For our purposes a periodic point p of period k for a map Γis
called attracting if all the eigenvalues of D(Tk(p)) are inside the unit circle in the
complex plane, where the operator D is the matrix of partial derivatives and Tk is
the feth iterate of T. Newhouse has shown it is possible for T to have infinitely many
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attracting periodic orbits coexisting in a bounded set (Newhouse, 1974). His results
suggest this may be a very common phenomenon (Newhouse, 1979). A detailed
discussion of this topic along with a large related literature survey can be found in
(Guckenheimer, Holmes, 1983).

In this paper, we discuss the theory of two-dimensional maps. Such maps form
the basis for the understanding of low dimensional dynamical processes. For
example the forced pendulum

θ"(t) + αθ'(ί) + b sin (θ(i)) = ε cos (2πί)

can be studied using the time-one map which takes (0, θ') at time n to the
corresponding point at time n -f1.

Throughout this paper we will let

Γ( , ;μ):R2->R2, μeR,

be a one-parameter family of area-contracting maps, where T is a C3 function, that
is, T is three times continuously differentiable.

Definitions. We will call values of μ for which T admits infinitely many periodic
attractors Newhouse values.

The attracting orbits shown to exist in Newhouse's theory are all of a special
type that we call "simple." Initially (Sect. 2) orbits are called simple if for n — 1
consecutive iterates they are near a hyperbolic fixed point. So the map is nearly
linear for n — 1 iterates and the orbit is in the region where the nonlinearity is
important for the remaining 1 iterate (or perhaps a block of k iterates, with fe fixed,
k<ζn). In Sect. 5 the concept is generalized replacing the fixed point with a more
general hyperbolic invariant set. Correspondingly we will call μ a simple Newhouse
value when T( -, μ) admits infinitely many simple attracting orbits. These values
are shown to exist in (Robinson, 1983). We argue that the set of simple Newhouse
values has measure zero. At least this is true in the case presented in Sect. 5. This
case appears typical. A more general derivation of this measure zero result would
be desirable.

Let p E R2 be an attracting periodic orbit of T( -, μj. We say pμ e R2 is the
continuation of p, if pμ is an attracting periodic orbit of T( -, μ), pμ depends
continuously on μ, and pμi = p. Note that according to our definition, necessarily
pμ has the same (minimum) period as p. We will define the stability range J(p) to be
the largest interval (in μ) on which the continuation pμ of p is defined and is an
attractor. If p and /?* are attracting orbits for μi and μ2, respectively, and if they are
on the same path pμ of attractors, then we refer to them as being the same periodic
attractor.

We assume the origin 0 is a saddle fixed point for Γ, T(0 μ) = 0, and we denote
the smooth invariant one-dimensional manifolds of 0 as follows:

Sμ = {x e R2: Tn(x μ) -» Q as n -> oo}, the stable manifold of Q

Uμ = {x E ]R2: T ~ n(x μ) -> 0 as n -»oo }, the unstable manifold of 0.

Sμ and Uμ can be tangent of each other at some point, for some value of μ. We will
assume (see Fig. 1.1)
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Fig. 1.1. As μ varies the stable and unstable manifolds of the saddle 0 move toward each other
creating a tangency at μ = μ0

i) Sμo is tangent to I7μo at p0;
ii) the tangency is quadratic;

iii) the tangency is reached smoothly as μ varies, as detailed later. (Loosely
speaking, the rate of approach of the two manifolds is bounded away from zero.)
Then we say that Sμ and Uμ have a tangency at (pQ μ0) that is nondegenerate in both
p0 and μ0, and will call μ0 a nondegenerate tangency value. Throughout the
discussion we will assume that 0 = T(Q μ) is a saddle point, i.e. the eigenvalues v
and λ of DT(0 μ) are real and |v| < 1 < \λ\ and |v| >0. Recall the map was assumed
to be area contracting, so |vΛ|<l. The following theorem was independently
discovered by Newhouse (1974) and Gavrilov and Shilnikov (1972).

Theorem 1.1. Assume that Sμ and Uμ have a nondegenerate tangency at (p0; μ0).
Then, for all n sufficiently large there is an attracting periodic point pn of minimum
period n at some μn such that pn-+p0 and μn-»μ0 as «->oo, i.e. there is a family of
periodic attractors approaching the tangency (p0, μ0).

Newhouse (1974) linked this result to the existence of diffeomorphisms with
infinitely many coexisting periodic attractors, and to the abundance of such
diffeomorphisms (Newhouse, 1979) by means of the following important and
delicate result. We state a version from Robinson (1983).

Lemma 1.2. Let μ0 be a nondegenerate tangency value for T. Then for every ε > 0
there is a nontrivial interval IC (μ0 — ε? μo + ε) such that I contains a dense set of
nondegenerate tangency values.

Once it is granted, as with this lemma, that nondegenerate tangency values are
dense in an interval, Theorem 1.1 applies to each of them, and the next result
follows.

Theorem 1.3. / contains a residual set of Newhouse values.

A residual set is the countable intersection of open dense sets; it is therefore, in
particular, dense in /.

The above result is essentially due to Newhouse, but we state it here in
Robinson's setting (Robinson, 1983) since Newhouse speaks in terms of open sets
of diffeomorphisms, while Robinson speaks about one-parameter families of
diffeomorphisms. The proof of Lemma 1.2 uses a construction which produces a
residual set of simple Newhouse values, that is, parameter values at which there are
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infinitely many coexisting simple periodic attractors. We believe that this method
of construction can produce only a set of parameters of measure zero, and we show
this is true in a special case that appears quite representative.

Lemma 1.2 above is obtained by proving that there is a "hyperbolic basic set,"
which we can take to be the invariant set H of a horseshoe map, for which every
saddle 5 e H has a nondegenerate tangency for some μ = μ(s). We will provide a
picture of the phenomenon in Sect. 5 (Fig. 5.2). Each saddle's tangency is
associated with a horde of simple orbits.

We will write \J(p)\ for the length of the stability range of each simple
Newhouse orbit p. To show that the set of simple Newhouse values N has measure
zero, it is sufficient to prove:

(l.l)

where the sum is taken over all the simple attracting periodic orbits that arise from
the tangencies of all the saddles in the horseshoe. In fact, let p1? p2? •? P/c> t>e any
ordering of the simple periodic sinks appearing in (1.1). The set N of simple
Newhouse values, by definition is contained in

0 J(pk)
k = n

CO

for every n. In particular, for every n, measure(N)^ Σ \J(Pk)\> which can be
fc = n

made as small as desired if (1.1) is true, by making n large. Therefore the measure
of N is zero. (This argument is also known as Borel-Cantelli lemma.) Our main
result is that (1.1) holds in the typical cases. We show it in Sect. 5 by proving
that asymptotically, as n->oo, the duration \J(p)\ is of length proportional to
λ~2n, where n is the period and λ is the expanding eigenvalue of 0. A further
implication of this asymptotic relation is that if a simple attracting orbit exists
at a randomly chosen parameter value, it is most likely to have a rather short
period, since the long periods taken together have every little measure.

We emphasize that each saddle p in the horseshoe H gives rise to an infinity of
simple attractors, and there are infinitely many saddles in a horseshoe; consider-
ation of these attractors alone is sufficient to prove Newhouse's Theorem 1.3.

In order to obtain estimates of the stability ranges, in Sect. 2 we give an
alternative proof of Theorem 1.1, which enables us to estimate the stability ranges
of the family of simple periodic attractors created with this mechanism.

We found that a sequence of rescaled maps converging smoothly to the
quadratic map of the interval describes the dynamics in a neighborhood of the
simple attractors. The rescaling factors are linked to the eigenvalue of the saddle 0
and to the geometry of its manifolds at the tangency. In Sect. 3 we discuss this
approach, which allows one to estimate a priori, by means of rescaling, the
qualitative and quantitative behavior of each simple attractor. What information
can be inferred from that of the limiting behavior is assessed in the next section.

Section 4 is devoted to a study of planar maps that are close to the scalar
quadratic map, and of the conditions under which these maps have an attractor.

In Sect. 5 we describe a horseshoe that appears to be typical of the situations
described by Newhouse, and we prove our conjecture that the simple Newhouse
set has measure 0 in this case.
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The rigorous results of Sects. 2-4 are visualized in numerical experiments on
the Henon model, which seem to go beyond the regularity foreseen in those
sections. The results of these experiments are summarized in the Appendix.

2. An Implicit Function Theorem Proof of Theorem 1.1

If p is an attracting periodic orbit of period m, then for every μ in the stability range
J(p), each eigenvalue θ of the Jacobian DTm( , μ) satisfies \θ\ < 1. When μ is a
boundary point of J(p\ the orbit p still exists but has an eigenvalue θ = ± 1 that is,

Tm(pμ;μ) = pμ, det(DTm(pμ;μ)-ΘΊd) = 0, (2.1)

where Id is the identity matrix, and θ= ± 1. Note that since we assume T to be
area-contracting for each μ, θ = ± 1 are the only possibilities for an eigenvalue of
DTm to be norm one. We are interested in periodic attractors which are intimately
connected with the creation of a "tangency" of the stable and unstable manifolds.

Let T( - μ): IR2-»IR2 be our C3 area-contracting map (triply differentiable also
with respect to the parameter μ), and let 0 = T(0; μ) be a saddle point, with
eigenvalues 0 < v < 1 < λ, and \vλ\ < 1. We assume the eigenvalues are positive only
to simplify the notation. Then we can choose coordinates so that the map is linear
in a neighborhood of 0, and assume the change of coordinates is C3.1 More
specifically, we choose coordinates so that T(x,y; μ) = (vx, λy) when |x|^l, |y|^l

We will assume that for some μ0 and some iterate of T, say fc, Tk( , μ0) maps
some point (0, Y0) of the unstable manifold of 0, to some point (x0,0) of its stable
manifold, (0<x0<l, 0<Y0<1). Then (0, Y0) and (x0,0) are called homodίnίc
points (see Fig. 2.1). We will write

T"(X, Y; μ) = (F(X, Y; μ), G(X, Y; μ)).

The map (F, G) is also C3 in X, Y and μ, and will be studied for (X, Y; μ) in a
neighborhood of (0, Y0; μ0). Points written (x, y) will be near (x0,0) while points
written (X, Y) will be near (0, Y0) and in particular we write (X, Y) = (v"x, λny)9

when X>Q, y>0.
We will assume T has a tangency at (0, Y0) for μ = μ0, that is

i) F(0, Y0; μ0) = x0 and G(0, Y0; μ0) = 0 (intersection of Uμo and Sμo);
ii) Gy(0, Y0; μ0) = 0 (tangency of Uμo and SJ.

We also assume the tangency is nondegenerate, i.e. G also satisfies:
iii) G y y(0,Y0;μ0)ΦO;
iv) Gμ(0,Y0;μ0)φO.
Of course, Gy, Gyy, Gμ are the partial derivatives of first and second order.
We can now phrase Theorem 1.1 in terms of bifurcations. We investigate the

existence of attracting periodic points (x, y) of period n + k for large n, where the
first n iterates of (x, y) are in the unit square and the next block of k are described

1 Such changes of coordinate may not exist when — is an integer, so we are implicitly assuming that

this is not the case. See, for instance (Belitskii, 1978) or (Guckenheimer and Holmes, 1983, Chap. 5)
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Fig. 2.1. The points (x0,0) and (0, 70) are points of tangency of the stable and unstable manifolds
of 0 when μ = μQ. For some k > 0, Tk(0, 70 μ<>) = (*o> 0)

more generally using (F, G), so that

T(x9 y;μ) = (vwx, λ"y), Tn+fe(x, y;μ) = (F(v«x, λ»yι μ), G(v"x, λny; μ)) .

Definition. We will call periodic points of this kind simple periodic orbits.
Rewriting Eq. (2.1) with m = n + k gives

(vnFx - θ)(λnGγ -θ)- vnλnFγGx = 0. (2.2)

To study the behavior near x0, we will investigate x + x0 for small x. Let α = v",
= λ~n, X = ax0 + ax, and y = βY. Then,

T" +\XQ + x,βY',μ) = (F(αx0 + αx, 7; μ), G(αx0 + αx, 7; μ)) .

Attracting fixed points of this map for α and β sufficiently small, are simple
attracting periodic points for Γ, of period n + k where n is large. Such points are
zeroes of the system

Φ = (Φ1,Φ2,Φ3) = 0, (2.3)

where

Φi(x, 7, μ; α,jS) = F(αx0 + αx, F; μ)-(x0-hx),

Φ2(x, y, μ; α, β) = G(αx0 + αx, 7; μ)-)8y,

Φ3 = (αF^(αx0 + αx, 7; μ) - 0)(Gy(αx0 + αx, 7; μ) - θβ) - αFyGx .

The conditions Φ1 = Φ2 = 0 correspond to the requirement that there is a fixed
point. The condition Φ3 = 0 is equivalent to condition (2.2) when /?>0. While the
case β = 0 has no meaning for (2.2) since β = λ ~ " > 0 for each n, it is useful to permit
β to be 0 in the above equation. While we are interested in θ = — 1 and θ = + 1, the
existence of solutions will follow for all θ φ 0.
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Let θ be non-zero. The existence of solutions of Φ = 0, denoted

is guaranteed by the Implicit Function Theorem which is applied to Φ = 0 at the
trivial solution (0, 70,μ0) for parameters a = β = Q. To see this let
P0 = (0, y0, μ0; 0, 0). The matrix of partial derivatives of Φ with respect to (x, 7, μ)
has full rank at that point. In particular at P0 (where α = 0)

^
-£ = a2Fxx (Gγ - θβ) - *GYX(aFx -θ)- *2(FYXGX + FYGXX) = 0 .

Therefore the Jacobian of Φ with respect to (x, Y, μ) at P0 is

/-I Fr Ff

DΦ= 0 Gy Gμ

\ 0 -ΘCγγ -ΘGγμ/

where the partials are evaluated at (0, Y0 μ0). The determinant

-θ(Gμ'GYY-Gγ'GYμ)

is non-zero if θ φ 0, by the assumption of a nondegenerate tangency at P0 : GY — 0,
G^ φ 0, and GYY φ 0. Notice the solution is on a periodic orbit only when α = v" and
β = λ~n are non-zero and sufficiently small, that is, for n large enough. It is also
clear that as n-> oo, i.e. as α->0, jS-^O, the periodic solutions and their critical values
(that is μ for which θ = ± 1, and more generally any value of μ for which they are
attractors), approach the trivial solution (0, yo, μ0) which is by assumption one of
the tangency points. Since there is a tangency at (x0, 0, μ0), there is also one at
(0, y0,μ0). Theorem 1.1 is thus proved.

Estimate of the Length of the Stability Range

For α and β small the function μ^(α, β) is a component of a solution of (2.3) so it is
C3. The Implicit Function Theorem approach yields an estimate2 for the function

Length (α, β) = \μθ = + ̂ α, β) - μθ = _ x(α, β)\ .

The critical estimate we need for the stability range is of the form

\Jn\<Cλ~2n (2.4)

for all n sufficiently large for some constant C. More precisely we will prove the
following proposition.

2 In Sect. 4 we will see that, as one expects, a saddle-node bifurcation occurs at μθ with 0 = 1 and a
period-doubling occurs at μθ with θ = — 1
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Proposition 2.1. There is some β*>0 and a constant C for which

Length (κ,β)<C β2 for \u\<\β\<β*.

Proof. We claim

£ t aι ωwo o)

are independent of θ. Notice Length = 0 at (0, 0) since then μθ is μ0 (independently
of θ). Therefore in computing Length we will be left with second order terms in
(α,jβ), that is

Length (α, β) ̂  Const - (a2 + aβ + β2) .

Observing that α<β for our case (i.e. an area contracting map), this will then
complete the proof.

To compute the derivatives of μθ(α, β) and show they are independent of θ,
consider the second equation Φ2 = 0 of problem (2.1) along a solution

Φ2(xθ, Yθ,μθ; α, jB) = G(αxβ, Yθ; μθ)-βYθ = 0.

Differentiating with respect to α yields

We want to solve for -^- at (α, β) = (0,0) and this is possible because Gμ φ 0. Since

Gy = 0 and xθ = Q at P0, it follows that

dμθ = GX XQ

da Gμ '

and therefore -—- is independent of θ. Analogously,
Ott

Since Yθ = Y0 at (0,0) we have for each θ

%-% a« (0,0,,

thus demonstrating the claim.
Translating back to the original question our calculations now give

^θ= C — V"Gx - XQ + λ ~n Yo]/Gμ + higher order terms,

where the derivatives Gx and Gμ are evaluated at (0, Y0 μ0). The higher order terms
depend on λ2n, v2n, λnvn, and still higher products and might depend upon θ.
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3. The Evolution of the Period n Attractor as /ι0

In the preceding analysis we raised the question of how long it takes for the
attractor of the period (n + k) saddle-node pair to lose stability as μ approaches μ0.
Of course, there is still an attractor for some further range in μ, only now the
attractor has period 2(n -f k). As μ continues, a period-doubling cascade can be
expected followed by a range of generally chaotic behavior, where the chaotic
orbits (Yorke and Alligood, 1983, 1985) never wander far from where the
saddle-node was. The "true" interval of stability should perhaps include this entire
range; we will call the length of this longer interval the "duration" of the attractor.
In fact, it only increases Length by a factor of 9/4 as we shall show by rescaling.3

The idea of rescaling is implicit in the standard analysis (Newhouse, 1979;
Robinson, 1983), and here we investigate that idea more closely. We rescale the
process using the change of variables

m = bncn(μn-μ)λ2n

u = (x-xn)λn

v = cn(y-yn)λ2\

where bn = G,, and cn = jGYY are evaluated at the saddle-node values

(3.1)

that is, they only depend on n. We showed in the previous section that as n-+ao,
SW->P0, with PO the nondegenerate tangency it follows that bn and cn converge to
the corresponding derivatives computed at P0, and are therefore bounded away
from zero. Applying the coordinate changes to domain and range of the map Tn+k

gives the rescaled maps

vn v m[
gn(u, v, m) = cnλ

2n G (v"xn +
V-u, λnyn + -̂  μn - ~^-Λ -yn\.

[_ \ A Cnλ OnCnλ J J

Under change of coordinates (3.1), the map (x, y)->Tn+k(x, y\ μ) becomes
(u,υ)-+(fn,gn), where

fn(u, v, m) = av + εn(u, v, m) , (3.2)

gn(u, v,m) = v + v2-m + ηn(u, v, m) . (3.3)

Notice that a fixed point of the /„, gn map is a periodic orbit of period n + k for the T
map and that /„ and gn are independent of u except through terms εn and ηn; we
show these terms are small in the following proposition.

3 Our original objective in this study was to examine numerically a family of simple Newhouse
orbits to see in what parameter range they occurred. The bifurcation figures in the Appendix
resulted from this study. These figures made it clear to us that some kind of rescaling was going on,
and in short this paper is the result
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Proposition 3.1. If the original map T(x, y μ) is Cr with r ̂  3, then εn, ηn-*Q in Cr as
n-+ oo . In other words on any bounded set in the (u, v, m) space fn-+av. Furthermore
all partial derivatives of f (up to order r) converge 0 on that bounded set as rc->oo

rlf \

except -^- which converges to a — 2FY/GYY φ 0 ) . Similarly gn and its partials

converge to v + v2 — m and its partials.

Proof. Equation (2.1) for the saddle-node values (χn, yn, μn) (i.e. for θ = + 1) may be
rewritten as:

xn = Q, (3.4)

yn = 0, (3.5)

(v"Fx(Sn) - 1) (λ*Gγ(SJ - 1) - vnλnFγ(Sn)Gx(Sn) = 0 , (3.6)

so that (/„, gn) has a saddle-node at u = 0, v = 0, m = 0 for each n sufficiently large, as
proved in Theorem 1.1. First notice

The first partials satisfy :

uv CM \jγγ

where these estimates are uniform on bounded (u, v, m) sets. Hence the first partial
derivatives of fn(u, v, m) tend to constants as n-^oo, therefore (3.2) is satisfied.

The situation for the partials of g is more delicate.

— gn(u, v, m) = 0(λnvn) and λnvn + 0 as n-> oo ,
ou

d _ Gμ __ d

dm bn dv y'

where Gμ and Gy are evaluated at

Therefore

λ"Gγ = λnGγ(Sn) + vGYY(X, F; μ) + 0(vnλ~n)

for some (X, 7, μ) near Sn9 and of course, Gγγ is uniformly Lipschitz near Sn under
our assumption that G and F are in C3. Recalling that vA< 1 by hypothesis, and
letting 7?->oo in (3.6) gives:

(VFx(Sn) - l)(A"Gr(Sn) -1) = v"λ"Fγ(Sn)Gx(Sn).
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We see that the right-hand side is going to 0 and vnFx(Sn)-^0 so

λnGγ(Sn)-+\ as rc-+oo. (3.7)

Using (3.7) we obtain

as rc->oo
dv

uniformly in (u,v,m), P0.
Knowing /π(0, 0, 0), 0Π(0, 0, 0) and the first partial derivatives at (u, v, m) yields

(3.2) and (3.3).
The error terms (εw and ηn) are Cr small. In fact, in computing each higher order

partial derivative of / and g at (w, v, m) there are multiplicative factors, powers of
v"/λn that guarantee that these functions all tend to 0, except that
(d2/dv2)gn(u,v,m)-+2.

Remark. We chose the change of coordinates (3.1) so that the limit quadratic map
would have the form q(v) = v + υ2 — m, which is particularly easy to study in terms
of the critical values of m. We could have done away with the constants cn, bn in the
change of variable formulas by using the change of coordinates

u = (x - xn)λn , v = (y - yn)λ2n , m = (μn- μ)λ2" ,

which is somewhat more transparent as to the role of the expanding eigenvalue λ in
the rescaling. In this case the quadratic limit map would have the form q(v)
= v + cv2 — bm with c = iθyr(P0), b = Gμ(P0). In this case the critical values of m are
proportional to those for q(v).

In the Appendix this rescaling is applied to the Henon map.

4. Planar Maps that are Nearly One-Dimensional Quadratics

In this section we study maps of the plane which are C3 perturbations of the one-
dimensional quadratic map and the conditions under which they have an
attractor. This will yield, in particular, the information we want about the
evolution of simple periodic attractors that are created in the neighborhood of a
nondegenerate tangency such attractors, in fact, are described by (3.2), (3.3) via the
change of coordinates (3.1).

Let a map M of the (u, ι;)-plane be defined by

M(w, υ; ε, m) = Q(v; m) + P(u, υ;ε,m), (4.1)

where Q(v m) is the often studied quadratic map Q(υ ;m) = (v,v + v2 — m). Note the
lack of dependence on M; of course, the dynamics of Q are exactly those of
υ->q(v; m) where q(v; m) = v + v2 — m.

In our case the perturbation \\P(u,v; ε, m)|| goes to 0 in C3 as ε goes to 0, and in
particular we assume the convergence to 0 is uniform on any bounded disk in the
(M, ι;) plane. We also assume the Jacobian oίM(u, v; ε, m) is nonsingular whenever
εφO.
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Strip

Box

Fig. 4.1. The unperturbed quadratic map Q(w, v) is (u, v + v2 — m), pictured for m in (0,9/4). Box
contains all bounded attractors of Q. All trajectories starting outside Strip diverge monotonically.
Horizontal lines map to points on the parabola

We will prove that the range of parameters m for which M( , ε, m) has an
attractor [i.e. an attractor of the process (M, ϋ)->M (w, v; ε, m)], is approximately the
same as for the map β, when ε is sufficiently small.

There are many ways to define an attractor. For our purposes we will say that a
closed invariant set A is an attractor for the map M if the following conditions are
satisfied :

i) A is "Lyapunov stable," i.e. every open neighborhood D of A contains an
open neighborhood D' of A whose image under M is still in D: D^>M(D/)^)A.

ii) A is "attracting," i.e. there is an open neighborhood B of A whose points are
attracted to A under iteration of M :

dist(M"(p),A)->Z) as n-^co for each pεB.

We restrict attention to the behavior of trajectories on any large bounded
subset of R2. Consider (Fig. 4.1) the square box:

This box contains all the bounded attractors of Q as m varies. Consider now an
arbitrarily large closed square box called Bigbox containing Box in its interior.
Then inside Bigbox the evolution of attractors of M(w, v ε, m) is quite predictable,
as the following results show.

Proposition 4.1. If m < 0 then for ε sufficiently small every trajectory leaves Bigbox.

Proposition 4.2. Ifm> 9/4 then for ε sufficiently small almost every trajectory leaves
Bigbox.
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Therefore when m is not in [0,9/4] and ε is sufficiently small, Bigbox does not
contain any attractors. When m is in (0,9/4) it does; more precisely:

Proposition 4.3. i) // me(0,1), then for s sufficiently small, Box contains an
attracting fixed point;

ii) if me(0,9/4), then for ε sufficiently small, Box contains an attractor, A(ε).
Furthermore for ε sufficiently small, each point in Bigbox either is attracted to A(ε)
or eventually leaves Bigbox.

Proof, of 4.1. If m<0 then q(v; m)>v-\-\m\ for all v; hence for ε = 0, every point
(u, v) in Bigbox is the initial point of an unbounded trajectory, and the
compactness of Bigbox implies every trajectory must leave Bigbox. For ε small
enough (depending on m and on the size of Bigbox), by continuity, every trajectory
must leave Bigbox.

To prove, as in Proposition 4.2, that Bigbox does not contain an attractor for
certain values of m and ε, we rely on properties stemming from the expansiveness of
hyperbolic sets, and in particular of horseshoes and refer to the original articles for
details.

Lemma 4.4. Let m > 9/4, and Im = [ — 1 — j/m, J/m] (see Fig. 4.2). Then there exists
an integer k = k(m) and a bound ξ>ί such that if q\v ;m)elm(i.e., the i'h iterate) for

d t,
Tvq(v'^

all i = 0,l, ...,k, then

Lemma 4.4 implies that q(v; m) is "expanding" for m > 9/4, and that almost all
trajectories leave Im (see Nusse, 1983 Henry, 1973). In fact, for almost every initial
point v in Im, qj(v; m)-»oo asj-xx). We may say heuristically that q(v; m) is a one-
dimensional horseshoe map. We must prove an analogous result for the map
M(u,v, ε, m).

Box

Strip

Fig. 4.2. For m > f the interval Im = [ — (1 + j/m), j/m] is not invariant under q and therefore Strip
is not invariant for Q. Moreover, as before, anything outside Strip goes to infinity under iteration
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Lemma 4.5. Let m>9/4 and let k = k(m) and ξ>l be given by Lemma 4.4. Let

Ω(s) = (p: M"(p; ε,m) is in Bigbox for all n = 0, ±1, ±2, ...)

then the map Mk( -',ε,m) is uniformly hyperbolic on Ω(ε) for ε sufficiently small.

Proof of Lemma 4.5. First observe that Mk( - , β, m) = Qk( , m) + P( , ε, m),
where ||P( , •; ε,m)|| goes to 0 in C3 as ε goes to 0. Let^ = {z;e/m: gj(ι;; w)e/mfor
all 7 = 0, ..., fc}; since Qk is the two-dimensional version of gk, by Lemma 4.4 it is
hyperbolic over the set Ak

m x Ak

m, and in fact over the whole set R x Ak

m, which
contains Ω(0). The image of Qk is a curve, Γk and in T^nBox the expanding direction
is the tangent to the curve Γk. The contracting direction for Qk is the horizontal line
through the given point. To prove that Mk( - ; ε ) i s hyperbolic for β small, it suffices
to construct sectors with sufficiently small size α (see Fig. 4.3) so that the sector
"sides" have slope smaller than Γk. We find DMk maps the vertical sector at a point
(u, v) strictly into the vertical sector of Mk(u, v; ε, m). Furthermore, since by
Lemma 4.4, Qk is expanding vertically at those points of Box that are mapped into
Box, the vertical sectors are elongated vertically by the map DMk. The horizontal
sectors have the analogous property under DM~k. It follows from standard
arguments of perturbations of sectors (Nitecki, 1971, Sects. 4.4 and 4.5) that the
map is hyperbolic on the invariant set in Box.

Proof of 4.2. Lemma 4.5 guarantees that Mk is a horseshoe map on Strip = R x Im.
Bowen and Ruelle (1975) prove that if T: Box x R2 is a C2 horseshoe, then almost
every trajectory leaves Box. More precisely and more generally, they prove that if
Tis a C2 Axiom-v4 diffeomorphism, then each basic set either contains an attractor
(not true in our case because we have a horseshoe map) or the measure of its stable
manifold of its nonwandering set is 0. (In our case the stable manifold of the
nonwandering set is the set of points whose trajectories remain bounded for all
future time.) Bowen (1975) also constructs a "fat" C1 horseshoe showing the
necessity of the C2 condition. In our case Proposition 4.2 follows from their result,
and from observing that for ε small enough Mk( ε) is a horseshoe over Strip, and
that points in Bigbox outside Strip must leave Bigbox. Therefore almost every
point in Bigbox eventually leaves it. So there are no attractors in Bigbox.

Proof of Proposition 4.3. i) For ε = 0, the map Q has an attracting fixed point in
Box, for m in (0, 1). At m = 0 the point appears via a saddle-node bifurcation, and it
loses stability at m=i with a period-doubling bifurcation. A generic period-
doubling bifurcation cannot be destroyed by small C3 perturbations. The

bifurcation condition det — — (p(ε, m)) ± Id = 0 (as at beginning of Sect. 1) is said
l_dp

Fig. 4.3. The horizontal sector of size α is mapped strictly inside the horizontal sector of size α at p'
under DMk
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to be generic if some conditions of transversality with respect to the parameters m
and ε are met. Such conditions are met by the map Q at m = 0 and m = l. The
transversality conditions with respect to m, in turn imply the existence of
(continuous) curves ms(ε) and md(ε) of bifurcation for ε small enough, and thus the
existence of an attracting fixed point for M( - , ε, m) when m is between ms(ε) and
md(ε). For an analytical approach leading to the existence of bifurcation curves, see
(Chow and Hale, 1982), for a more geometrical, and more compact exposition of
the concepts and results about generic saddle-node and period-doubling
bifurcations (see Guckenheimer and Holmes, 1983).

ii) For ε small, M(Box; ε,m) is in the interior of Box. It follows that A(ε)
00

= Π M"(Box;ε,m) is a compact set that is Lyapunov stable and attracts all
n=l

points in Box. In other words it is an attractor. If the second claim in 4.3ii) was false,
there would exist ε^O and points xt in Bigbox for which Mn(xt; e4) remains in
Bigbox and does not converge to A(εt). For ε small A(εt) attracts all points in Strip,
so M"(xί; εt) is never in Box. We may assume without loss of generality that xί has
a limit x0 in Bigbox with x0 not in the interior of Box. Furthermore Mn(xt; εt)
->M"(x0; 0), so Mn(x0; 0) is not in the interior of Box. However there is no such
initial point for ε = 0 and m in (0,9/4); so the result is proved.

Conclusions. We can now apply this study to the sequence of maps (3.2), (3.3) which
for n large enough are C3 close to Q(v; m); in this case ε = λ~n. For n sufficiently
large a simple periodic sink is created via a saddle-node bifurcation at
m1(n) = 01(λ~n), and it loses stability via period-doubling bifurcation at
m2 = 1 4- 02(λ~n). The map continues to have an attractor in Box for values of m up
to mc(ή) = f + 03(/l~n) when the simple attractor is destroyed.

Translating these estimates to our original map Tn+k(x, 7; μ) in the neighbor-
hood of a simple periodic orbit with the change of coordinates inverse of (3.1) we
get

Mc(rc)-MiO) = 9
UιM 4

5. Measure of the Newhouse Set

So far, like Newhouse, we have proved that a nondegenerate tangency value
(p0,μ0) of a saddle is necessarily associated with a family of sinks (pn,μπ)
approaching the tangency, and unlike Newhouse we have estimated their stability
ranges. Note that these sinks do not coexist; that is, their stability ranges do not
overlap.

The argument (Newhouse, 1974; Robinson, 1983) for the existence of
Newhouse values relies on having infinitely many different tangencies in an
interval of the parameter μ near μ0, and thus on having a collection of families of
periodic attractors.

In this section we extend the ideas of Sect. 2 to particular horseshoe maps (for
reference on horseshoe maps see Guckenheimer and Holmes, 1983, Chap. 5). In
this case the unit neighborhood in which the map is essentially linear is replaced by
the rectangle L, as in Fig. 5.1. There are, of course, infinitely many periodic saddles
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A' D' C1

Fixed point

A

Fig. 5.1. A horseshoe map. The dotted region gets mapped to the shaded region, which is outside
of L. A'B'C'D' are the images of A, B, C, D, respectively

lying wholly within L. Each of these can play the role of the saddle fixed point in
Sects. 2 and 3. For each period n saddle in L we will see there can be a periodic sink
of period n + k (where, as before, k is fixed and n is sufficiently large); the trajectory
of the periodic sink is in L for (at least) n consecutive iterates. We will call such
orbits simple orbits of the horseshoe. "Simple" refers to the fact that they lie outside
L only for a single block of at most k iterates in each period. In Sect. 2 we showed
there is a simple attractor of period n 4- fc, arising from the tangency of one saddle
fixed point; here there can be many simple attractors of the horseshoe, all with
period n + k. The precise description of simple orbits in this more general case will
become clearer as notation is developed.

Our objective is to estimate the durations of the simple attractors of the
horseshoe, for a special map for which the computation is feasible and to show that
the sum of the durations of all these simple attractors is finite. Newhouse uses only
these attractors in constructing the simple Newhouse values. It will follow, as
discussed in Sect. 1, that the resulting simple Newhouse values form a set of
measure 0, because it can be covered by a collection of open intervals the sum of
whose lengths is arbitrarily small. The open sets will be the durations of the
attractors.

Let L be a rectangular region of R2 whose image under Γis horseshoe-shaped
as in Fig. 5.1. Under some assumptions of smoothness and hyperbolicity, one can
show (see Nitecki, 1971, Chap. 4; Bowen and Ruelle, 1975) that almost all points in
L eventually leave L, and that the set of points staying in Lfor all iterates of Tis the
product of two Cantor sets that we will denote

C = {peL: Tn(p; μ) is in Lfor all n = 0, ±1, ±2,...}.

The periodic points for T( μ) whose trajectories lie entirely in the box L are
dense in C (Nitecki, 1971, Chap. 4), they are necessarily all saddles, and for each n
there are 2" points p fixed by Tn in L.

Two examples of systems with a large set of tangencies arising out of a
horseshoe are shown in Fig. 5.2. It is necessary to follow the extension of the
unstable manifolds of the periodic points in C pictured in Fig. 5.2. Newhouse finds
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Upper
branch

Fixed ^
point

PΠ0

/ γ

\ L

π
\

4

Fig. 5.2. a One way in which a horseshoe can yield numerous homoclinic tangencies. b Another
way: if the upper branch of the unstable manifold of the fixed point passes through the box L,
many tangencies may be expected. The orbit P0 -> P!-»... ->P4 illustrates the dynamics of the map

a special horseshoe, whose periodic saddles each have a nondegenerate tangency
value, and taken together these parameter values are dense in some interval (see
Newhouse, 1979; Robinson, 1983 for details).

We will construct a particular horseshoe (the standard horseshoe in fact), for
which the tangencies and their associated attractors can be explicitly described.
We believe that our computations of durations are still true in outline for more
general horseshoes. A horseshoe with features similar to these is thoroughly
described in (Gambaudo and Tresser, 1983).

For each point p in L let V(p) denote the vertical line segment in L containing p,
and H(p) the horizontal segment in L containing p.

We will assume (as in Fig. 5.3a):
i) T( μ) is linear (and independent of μ) on each of the two strips in L whose

image is in L, that is on T(L; μ)nL. On one of these the Jacobian DT( - μ) is
— v Oλ /v 0\

1 on the other it is I 1, where 0 < v < 1 < λ. Notice that for every p
u — λj \(j λj

in C
H(p) lies on the stable manifold of p,

V(p) lies on the unstable manifold of p.
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Image of V ( p )

V ( p )

Image of
H ( p )

H(p)

. (x .φ(x l )

Γ
L

Fig. 53. a Our "linear" horseshoe map. The vertical segment V(p) through p is mapped to a curve
containing the vertical segment through p', where p-»p'. The horizontal segment H(ρ) is mapped
to a horizontal segment contained in H(p'). The image of a vertical strip intersected with L is two
vertical strips, b The dotted regions are the ones mapped in L under one iteration of T. The curve
(x, φ(x)) is mapped outside of L

ii) There is a curve (X, φ(X)) of points in L that maps outside L (and therefore
does not intersect C), whose fcth iterate is again in L (as in Fig. 5.3b). In a
neighborhood of the curve we assume Tk( - μ) has the form

Tk((X, 7); μ) = (F(X, Y\ G(X,

and also

— (X,φ(X)) = 0, (X, φ(X)) Φ 0. (5.1)

Notice the particularly simple dependence of Tk on μ when (X, Y) is near the curve.
It follows that if (X, Y) is a periodic point in C, the point (X, φ(X)) will for some μ
be mapped to the stable manifold H((X, Y)) and, from (5.1), will have a
nondegenerate tangency for that μ.

For each point p for which p, T(p; μ),..., Tπ(p; μ) are all in L, we have

D(T»(p;μ))=±
0
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and Tn is linear on a horizontal strip stretching all the way across L and containing
p; that is, there are constants (x, j;) so that on the thin horizontal strip we can write

where α = ± v" and β=±λn, as in Sect. 2. Notice (x, y) is the fixed point of (5.2) and
must lie in the strip.

We now compose (F, G) with the linear map in (5.2), a procedure mimicking
what we did in Sect. 2. Write Y for β~^y + (\ — β~l)y as in Sect. 2 the Implicit
Function Theorem is applied to:

F(αx + (l-α)x, Y)-x = 0

a(Fx-θ)(Gγ-βθ)-aFγGx=Q

for |θ|^l, #ΦO.
We want to prove (5.3) has solutions (x, Y) (that depend on x, y and α, β). Then

((x, β Y+(1 — β)y) is a periodic point of T for certain choices of x, y, α, β. Notice that
in (5.3) x, y can be viewed as any point in L. When a = vn,β = λ~n and when (x, y) is a
periodic saddle of period n, this solution corresponds to a periodic point for T
which is a sink for some μ. When |0|<1 and $ΦO, the solution would be an
attractor, but we are especially concerned with#= ±1.

Problem (5.3) is satisfied at a = β = Q by the point x = x, Y=φ(x), μ = μ0(x,y)
= y — G(x,φ(x)). The Jacobian of the left-hand side of (5.3) has full rank at this
point, by the assumptions we made on (x, φ(x)), which are analogous to the
nondegeneracy of the tangency in Theorem 1.1. From the Implicit Function
Theorem, for each (x, y) and θ φ 0 there exists a solution of system (5.3) for α and β
sufficiently small. Indeed, α > 0 and β > 0 can be chosen small enough so that there
will be solutions for all (x, y) in L. This follows from the compactness of L and the
smoothness of T. Therefore for n large enough, there is such a sink. Moreover for
every n, if pm in L is a periodic point of period m — n + k, which stays inside L for n
iterates and after k iterates it has come back under the action of (F, G -f μ), then it is
always possible to choose (x, y) to be a periodic saddle of period n whose orbit is
entirely in L, and follows the same + and - pattern for the DT inside L, as holds
for DT(pm). Therefore p = (x9y) satisfies (5.3).

Propositions 4.1 and 4.2 imply that the duration (i.e. the length of the
parameter range) of the attractor for (3.2, 3.3) is 9/4, so using the scale change (3.1)
the duration of our attractor is,

J(pn) — \ λ ~ 2n[Gry(x, φ(x)y] ~1-f 0(λ ~ 3rl), (5.4)

for n large enough, since in this case we have G μ Ξl; the error term 0(λ~3n) is
uniformly small in the choice of pn, due to the regularity of (5.3) and the
compactness of L.

Remark. Newhouse restricts attention to the tangencies of the fixed point's stable
and unstable manifolds. These yield only some simple attractors of period + fc,
those that stay in L for n iterates and approach close to the fixed point while in L.
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For our computational point of view, it is easier for us to sum over all the
simple orbits of the horseshoe, including even those that do not approach the
origin.

Theorem 5.1. Let N be the set of simple Newhouse values in the interval of μ in R so
that T( - μ) is described by our horseshoe on L. Then N has zero Lebesgue measure.

To evaluate the measure of simple Newhouse values, as stated in Sect. 1 we can
sum the durations of all the simple sinks of the horseshoe.

Proof of Theorem 5.1. As shown in Sect. 1, the result will follow from proving

<+oo, (5.5)

where the sum is taken over all the simple sinks arising from all the tangencies of
the horseshoe, that is, the tangencies of the horseshoe, that is, the tangencies of all
the saddles in C. We will write Nn for the number of saddles in C of period n and

where sup is restricted to the x for which (x, φ(x)) is in L. Then (5.5) becomes

κ Σ Nn (λ-

The number of period n points in C is 2" (Nitecki, 1971), therefore since λ > 2 for a
linear horseshoe, the sum of durations satisfies

6. Understanding the Limitations of Our Results

The stable orbits constructed by Newhouse all lie in L for n iterates and are outside
for at most fc; so the orbits he considers include only the ones we study. Both
approaches ignore attractors which are not "simple," and we have not ruled out
the possibility that if the durations of all the attracting periodic orbits were added,
the sum of their durations would be infinite. On the other hand, the only reason for
expecting Newhouse values to be common is Newhouse's proof, and we have
shown here that that proof produces sets of measure zero. While we have done this
only for the standard linear horseshoe, we would be amazed if simple Newhouse
values have positive measure in any other contexts.

We have assumed that the map is linear on each of the two rectangles
containing C. We then show that the simple periodic orbits of period n + k have
duration

3n). (6.1)

The importance of the linearity assumption is not to obtain this formula. In general
GΎΎ/Gμ would, of course, have to be replaced by a related value. The linearity
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allows us to conclude that the 0(λ 3w) error terms are uniformly small for each
large n and that the sum of the terms (6.1) over all simple orbits is finite.

Notice that in our formulas we use the fact that λ>2ί/2. If the expansion rate
along the unstable manifolds varies, we would only require that these rates are
uniformly greater than 21/2. The Newhouse construction in fact gives all these rates
greater than 2.

Appendix: Simple Newhouse Orbits in the Henon Model

The Henon model

Γ(x,j;; μ, B) = (l —μx2 + y,Bx) (7.1)

is well studied in the literature, usually fixing B = Q.3 and letting μ vary.
Homoclinic points (i.e. intersections of the stable and unstable manifolds of a fixed
point) have been proved to exist for μ = 1.4. See Franceschini and Russo (1981),
which also display exhaustive pictures of the two manifolds and see Misiurewicz
(1980). As μ increases, tangencies are created that numerically appear to be
nondegenerate. In particular μ ~ 1.15 is the first tangency value for a fixed point. At
this value a two-piece chaotic attractor merges into a one-piece attractor.

This paper began with a numerical investigation of the family of simple
periodic orbits associated with this tangency. Notice the determinant of the

Table 1. μ0 = 1.153569796 is the first tangency value for a fixed point, μ^ denotes the saddle-node value for the period n orbit,
while μ2 denotes its period-doubling parameter value, and μc is the point at which the associated chaotic attractor and its

basin are destroyed. For the scalar quadratic map = 2.25. While the eigenvalue λ varies with μ,

we use the eigenvalue λ0= —1.732432 calculated at tangency value μ0. The products (μ± — μ0) λ" and
(μc — μ^)-λ2n are shown to converge to constants as n-»oo in Sects. 3 and 4

Pe-
riod

Saddle-node Stability
range

Duration

(μ1-μ0)λn Me "

6
8
10
12
14
16
18
20

19
17
15
13
11
9
7

0.8444863
0.9323534

0.9599796
0.9691552
0.9722041

0.9732169
0.9735537

0.9736657

0.9738187
0.9740123

0.9745936
0.9763339
0.9815535

0.9975391

-1.0471654

0.3906411

0.3903470
0.3898439
0.3896591

0.3895975
0.3895771

0.3895703

0.3895679

0.3895648
0.3895604

0.3895491

0.3895136

0.3894076
0.3890762

0.3870327

0.091197949
0.031734043
0.010687627

0.003562430

0.001185071

0.000394367
0.000131304

0.000043726

0.000075753
0.000227232

0.000681373
0.002042434

0.006134795
0.018814380

0.073047582

-2.4656
-2.5750
-2.6028

-2.6039

-2.5997
-2.5966

-2.5947
-2.5934

-2.5934

-2.5919

-2.5896

-2.5863
-2.5883

-2.6448
-3.4214

0.008699516

0.000884198
0.000102240
0.000011591

0.000001292

0.000000143

0.0000000160
0.0000000020

0.0000000052

0.0000000471

0.000000429
0.000003872

0.000035703
0.000376967

0.027566087

0.018328153
0.00198
0.000230

0.0000261

0.00000292
0.000000323

0.0000000359

-

_

0.0000001068

0.000000966
0.00000873

0.0000804

0.000848
0.045082622

2.107
2.239
2.250

2.252

2.260

2.258
2.244

-

_

2.267

2.253

2.255
2.252

2.249
1.635

13.40
13.04
13.64
13.94
14.05
14.00
14.02

-

_

13.90
13.95
14.00
14.31
16.76
98.90
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Period 16 orbit

Period 14 orbit

Quadratic map

Fig. 7.1 A-C. Bifurcation diagrams of: A 16-piece simple attractor for the Henon model at
5 = 0.3, xe [-0.97323, -0.97320],μe [1.15317543,1.15317579].B 14-piece simple attractor for
the Henon model at B = 0.3, xe [-0.97225, -0.97215],μe [1.1423847,1.1423879]. C Quadratic
map of the interval xn + 1 = μ — x^, xe [3.5, —3.5], μe [ — 0.25,2.25]

Jacobian of (7.1) is negative. For our orientation-reversing situation, the only
simple orbits that can appear before the first tangency are of even period; this
accounts for the interesting order of appearance shown in Table 1. We did not
investigate whether additional simple orbits of even period occur after the
tangency. The family of sinks that we study agrees with our asymptotic (as n-»oo)
quantitative estimates already for relatively small periods as shown in Table 1.
Moreover, the qualitative behavior of the quadratic map of the interval seems to
govern the evolution of simple attractors beyond what one would expect from the
results in Sect. 4 (see Yorke et al., 1985). In Fig. 7.1 we compare the bifurcation
diagrams of two simple attractors for the Henon model, and of the quadratic map,
in a striking qualitative and quantitative resemblance. Analogous pictures are
exhibited by all the attractors listed in Table 1 in the same table we list various
critical values for the attractors. The study was performed on an HP 85, a desk-top
computer. We determined the duration of the w-piece attractor within three
significant digits: more precision in the critical value μc is beyond feasibility for this
particular device.
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