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Abstract. We use Quillen's theorem and algebraic geometry to investigate the
modular transformation properties of some quantities of interest in string
theory. In particular, we show that the spin structure dependence of the chiral
Dirac determinant on a Riemann surface is given by Riemann's theta function.
We use this result to investigate the modular invariance of multiloop heterotic
string amplitudes.

1. Introduction

Two-dimensional quantum field theories have served as toy models in attempts to
understand more complicated four-dimensional theories. The two dimensional
theories capture many essential features of higher dimensions, without sharing the
complexities of higher dimensions. Certain features of Id QFT's such as Bose-
Fermi equivalence have led to a large number of exactly solvable theories.

In string theories, two-dimensional conformal QFT plays an even more
important role [1-3]. The string sweeps out a surface as it moves through space-
time, and therefore, the first quantized theory corresponds to a two dimensional
QFT. The string can sweep out a surface with any number of handles. Whereas in
most well known results one considers the underlying space to be JR2 (or R x S1, or
S1 x S1 corresponding to periodic boundary conditions in space or time), for string
theories one must consider the space to be an arbitrary Riemann surface. Thus,
understanding multiloop string amplitudes requires an understanding of QFT on
a Riemann surface. In the general case, few explicit facts are known.

Many questions remain unanswered in string theory. For instance, how can we
prove the vanishing of the cosmological constant in superstring theories? This has
been shown explicitly at 1-loop. For higher loops, even though there is an indirect
argument for the vanishing of the cosmological constant [3, 4], one would like to
show this important fact more directly.

There are other issues: What happens to the string amplitude in the limit of a
degenerating Riemann surface? Are superstring theories finite? Is the perturbation
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expansion valid? Can one develop an operator formalism for surfaces with more
than one handle? How does the bosonization work at higher loops? etc.

Motivated by these questions, we address below some issues regarding the
determinant of some operators, in particular the chiral Dirac operator, defined on
a Riemann surface. We will discuss in some detail the spin structure dependence of
the determinant of the Dirac operator. Our main tools are Quillen's holomorphic
anomaly, algebraic geometry, and bosonization. We feel that the algebraic
geometric techniques are very powerful and well suited for applications to a better
understanding of string theories. This viewpoint has also been advocated recently
by several groups.

In Sect. 2 we illustrate some of the issues which will be discussed in this paper,
in the context of the simple case of the torus. In Sect. 3 we discuss the mathematical
concepts which will be used. Many of them, for example, modular transformations,
generalized theta functions and spin structures appear as natural generalizations
of the concepts already appearing in the case of the torus. Yet others, such as
divisors of theta functions and their relation to spin structures, although important
for higher loops, do not play a central role in the genus one case.

In Sect. 4 we discuss Quillen's holomorphic anomaly, and a slight general-
ization of it. This anomaly is the obstruction to expressing as a holomorphic
function the determinant of a family of operators depending holomorphically on
some complex parameter.

In Sect. 5 we show that the spin dependence of the determinant of the chiral
Dirac operator is given by theta functions. In Sect. 6 we discuss these results from
the viewpoint of bosonization. In Sect. 7 we apply the results obtained to address
some questions related to the modular invariance of the measure for heterotic
strings [5]. Finally, in Sect. 8 we present our conclusions.

2. Fermions on a Torus

In this section we will consider fermions on a torus. We label the points of the torus
by the complex quantity σ1 + τσ2, where σx and σ2 are periodic variables with
period 2π. This means that

x ~ x + 2π ~ x 4- 2πτ.

For bosonic fields defined on the torus one requires the periodic boundary
conditions:

X(σ1 + 2π, σ2) = X(σu σ2 + 2π) = X(σl9 σ2)

For fermions, we have the option of choosing periodic or antiperiodic boundary
conditions in each direction. Therefore we have four different possible boundary
conditions: (A, A), (P,A), (A,P), and (P,P)9 where P(A) stands for periodic
(antiperiodic). These are called the spin structures. So for genus 1 we have four
different spin structures.

For the torus we have chosen 2π and 2πτ to generate the lattice defining it. We
could have chosen a different basis for the same lattice, thereby obtaining the same
torus. For example the tori defined by 2π(l,τ) and 2π(l,τ + l) differ from one
another by a global diffeomorphism. To see this we simply cut the torus along the
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σx cycle and rotate the two boundary circles relative to one another by 2π and glue
them back together. (This is called a Dehn twist, and its general form will be
discussed in Sect. 3.)

Different choices of the lattice defining the torus could be obtained by means of
2x2, invertible (unit determinant) and integral matrices acting on a basis. This is
the group SL(2, Z) which is referred to as the modular group. Under an element of
SL(2, Z), with entries α, b, c, d,

aτ + b
T~* cτ + d'

The Dehn twists about the σx and σ2 cycles correspond respectively to

Ί l\ (\
)17 Vi

and they generate SL(25Z).
Under SL(2, Z) it is easy to see that three spin structures mix, in the sense that

The (P, P) spin structure is invariant under the action of SL(2, Z). So in a sense we
have only two inequivalent spin structures. There is a simple way to characterize
each class. We consider the Dirac operator for each of the spin structures which we
label by α. Let n(ct) denote the number of zero modes of the Dirac operator for spin
structure α. Since the Dirac operator is real, there is no chiral index in two
dimensions and therefore π(α) is even. We call a spin structure even (odd) if jn(μ) is
even (odd). It is easy to see in our example of the torus that there are three even spin
structures [with n(α) = 0] (A, P), (P, A), (A, A) and one odd spin structure [with
w(α) = 2] (P,P). Under the action of global diffeomorphisms the two different
classes of spin structures cannot mix because they have different number of zero
modes for the Dirac operator. In fact more is true: All the spin structures in each
class mix under the action of global diffeomorphisms. This is true in the above
example and, as we will discuss, it continues to be true for higher genus Riemann
surfaces.

Modular transformations are important for string theories. In a string theory
we have to divide the path integral measure by the action of diffeomorphisms, and
this includes global diffeomorphisms which cannot be reached from identity.
Therefore it is necessary for the path integral measure to be invariant under global
diffeomorphisms, i.e., modular transformations (For each spin structure it should
be invariant under diffeomorphisms preserving that spin structure.)

Note that each spin structure is simply related to a particular one by changing
boundary conditions by ± 1 . We can in fact continuously interpolate between
various spin structures if we consider arbitrary twistings of the boundary
conditions by a phase. (For this we should allow the spinor to be complex.) So we
get a two parameter family of complex spinors on the torus defined by θ, φ:

ψ(σ1 +2π, σ2)= -e2πίθψ(σu σ2),
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The four spin structures (A, A), (P, A), (A, P) and (P, P) correspond respectively to
the twistings {θ,φ) = (O,O)9 φ θ ) , (0,i) and &£). (Even though we have used the
twistings of boundary conditions as a formal technique to interpolate between
various spin structures, they in fact appear naturally when considering string
amplitudes on orbifolds [6].)

Let us denote by Det(0, φ) the determinant of the chiral Dirac operator with the
above twisted boundary conditions. The Hamiltonian for the twisted fermion
can be expressed as

H= Σ [n + θ--):bl+β-1/2bn+β-ll2:-
-00 \ ^ /

where the constant term comes from normal ordering, and

We define g (up to a phase) by gbn + θ^1J2g~1 = — e~2nιφbn + θ_lj2, and also let
q = e2πιτ, then the determinant can be computed up to a phase using the partition
function

Όet(θ,φ) = TτgqH = e2πiθφqΎ~J* Π (1 + « " + β " 2e2πiφ)(l Λ-q~"~Ί e~2πiφ). (2.1)
n = l

(The phase in front has been chosen for convenience.) The argument for the
equality between the determinant and partition function is the usual one based on
the equivalence between path-integral formulation of quantum field theories and
the operator formulation, when τ is purely imaginary. One simply views 2πτ2 as the
time variable. In the case when τ also has a real part τ = τ1 + h2, the torus is slightly
skewed and so the trace should be taken after multiplying by the operator which
takes σλ ~^σ1 + 2πτ1. The operator which accomplishes this is e

2πiτ^H~θ\ where H
denotes the Hamiltonian for the other chirality. So altogether, we get
^2πtτ1(iϊ-iϊ)-2πτ2(H+iί)=:^H^ Keeping one of the chiralities, we obtain the above
result (multiplied by the g twist operator).

In the above example, rather than changing the boundary conditions, we could
fix the boundary conditions and instead introduce flat gauge fields which couple to
the fermions. If we take the gauge field A = Qάσγ — φdσ2, the chiral Dirac operator
depends on the twistings only through the combination φ + τθ. So, defining the
complex quantity u by u = φ + τθ, we naively expect the determinant to be a
function only of u and not of its complex conjugate ΰ. In fact the explicit expression
(2.1) for the Det(0, φ) is almost of that form. The terms in the infinite product are
only functions of w, but the quadratic term in the exponent of the q term in front
prevents us from writing the determinant solely as a function of u:

So it seems that there is some sort of anomaly. In fact this is an example of a
holomorphic anomaly which will be discussed in detail in Sect. 4.
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It is possible to write the (θ,φ) dependence of Det(#,< )̂ in a way which
generalizes to higher genus. For this purpose consider the function:

(κ + 0)2

(Oil) __ y eίπ(n + θ)2τ + 2iπ{n + θ)φ _ y „ 2 ^2πi(n + θ)φ rχ 2)

n

Using the product representation of theta functions (2.1) becomes

(0|τ)
Det(β,^)=-^γ-—, (2.3)

where η(τ), is the Dedekind eta function:

1

n

Therefore the twist dependence of the determinant is given by a theta function.
Theta functions arise naturally in string theories as sums over winding sectors and
internal momenta. The same is true here, and the right-hand side of (2.3) is in fact
the twisted partition function of a single boson allowed to have momenta on a
shifted lattice. The above identity is a statement about bosonization. To see this,
note that the chiral fermionic current is replaced by the translation operator in the
bosonized theory. The twist operator g turns out to be given by g = e2πiφP, where P
is the translation operator, and we should require the bosonic momenta to lie on
the shifted lattice (n + θ), where n is any integer. The partition function TvgqH,

P2

where H = — + Σ nalan with obvious commutation relations, is easily seen to be
the expression (2.3). We will explore the analog of this argument for the higher
genus case in Sect. 6.

In Sect. 7 we will discuss the transformation properties of theta functions and
the modular invariance of multiloop string amplitudes. These matters are easily
understood for the torus. It is straightforward to check, for example, that under

modular transformations, 9 L θ L , and 9 r mix with each other, corre-

sponding to the fact that all the even spin structures mix under global

diffeomorphisms. θ H is zero, corresponding to the fact that the Dirac operator

has zero modes. (If we delete the zero mode, the odd theta function is seen to
transform to itself under modular transformations.)

The one-loop vacuum to vacuum amplitudes for superstrings are well-known.
The contribution of the right-moving spinors is proportional to:

-ra-ra-ia
We have five complex spin \ fermions and one complex spin | ghost, which cancels
the determinant of one of the fermions, to leave us with the power 4 for the theta
function. This expression is modular covariant, i.e., under modular transfor-
mations it transforms to itself, up to a prefactor. In fact the above combination is
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equal to zero, and it implies that the cosmological constant vanishes, at one-loop
order.

This concludes our discussion of fermions on a torus. We will see that many of
these concepts are easily generalized to higher loops.

3. Mathematical Background

In this section we summarize some aspects of the theory of Riemann surfaces which
are useful in the computation of higher loop string amplitudes. Since we only
consider closed strings we will be concerned with compact Riemann surfaces. We
will consider the topology, differential geometry, line bundles, and theta functions
associated with a surface.

a) The Mapping Class Group

Topologically, orientable two-dimensional surfaces Σ are completely classified by
the Euler, number χ(Σ) = 2 — 2g, where g, the genus of Σ, is the number of handles
(see Fig. 1). We describe first the homology of Σ.

When Σ is compact the homology groups are free groups with dimensions

dimH0(Σ) = 1, dimH^Σ) = 2g, dimH2(Σ) = 1.

We can identify a canonical homology basis ab bu 1 ̂  j ^ g for H^Σ) as in Fig. 1.
Then any closed curve on Σ generates a homology class which can be uniquely
decomposed in terms of the classes generated by au fef. The reason for calling ab bt a
canonical basis is the following. If we define the intersection number J(y, /)
between two curves γ and /, as the number of points at which they intersect
counting orientation, then, since the number J(y,y') only depends on the
homology classes generated by y and y\ J defines a quadratic form on H^Σ). In
terms of the ai9 bt cycles, J takes the canonical form

J(ai9aj) = J(bt9bj) = O9 J(ai9bj)= -J(bi9aj) = δij9 (3.1)

or, as a matrix,

Once we have chosen a canonical homology basis, we can represent Σ by a
4#-sided polygon with appropriate identifications on the boundary. To do this,
choose a point on Σ1, and cut the surface along 2g curves homologous to the
canonical basis (this is depicted in Fig. 2 for the case of g = 2). If in Fig. 2 we glue
together the sides aμlι and btb^ι we get back the original surface. Thus each
handle is represented by the symbol α^αf 1^" 1 .

We will often use the basis dual to the canonical homology basis. In terms of
differential forms, we may use the Hodge-De Rham theory to set up a one to one

Fig. 1
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Fig. 2

correspondence between elements in H^Σ) and harmonic 1-forms on Σ. Thus
there are 2g harmonic 1-forms αί9 βb l^ί^g normalized so that

\β}=δ
b

(3.3)

i}.

The representation of Σ in terms of a polygon is very helpful in proving some
useful identities. For example, if θ, η are closed 1-forms then one can easily show
[7]

(3.4)
i=ί \_ai

This completes our discussion of the homology and cohomology of Σ.
When we discuss global anomalies on the string world sheet and modular

invariance of the string path integral we will need some facts about the nontrivial
diffeomorphisms of Σ which we now outline [8]. Even though the proofs of the
statements which follow are nontrivial, the results themselves are easily described.
Let Diff(I') be the group of diffeomorphisms of Σ, and let Diffo(Σ) be the normal
subgroup of diffeomorphisms homotopic to the identity. Then the mapping class
group is defined by

We first describe the generators of Ω(Σ). These can be taken to be Dehn twists
around closed curves γ. In general, a Dehn twist is defined by excising a small
tubular neighborhood of 7, twisting one boundary of the tube by 2π, and glueing
the tube back into the surface. This sequence of operations defines an active
transformation of the surface to itself (see Fig. 3). A useful result is that a set of

Fig. 3
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Fig. 4

generators of Ω(Σ) is provided by the Dehn twists about the curves illustrated in
Fig. 4. (This is not, in fact, the minimal set.) Thus we have two generators for each
handle (as on the torus) and a generator for the curve linking the holes of two
consecutive handles. Thus, using the labeling of the homology basis in Fig. 1, the
generators of Ω(Σ) are twists around

aubuά[λa2,a2,b2,a2

 1 a 3 , . . . , a g 9 b g .

Thus it suffices to check modular invariance of the string integrand by checking
modular invariance under these diffeomorphisms. We will apply this remark to
obtain nontrivial restrictions on heterotic string theories in Sect. 7.

A useful representation of nontrivial diffeomorphisms is provided by their
action on the homology of Σ. If the curve γ generates a nontrivial homology class,
then a Dehn twist around y acts nontrivially on the homology basis. For instance,
in Fig. 3 the Dehn twist around ax induces the following transformation on the
homology: a1-^ai,b1-^bί + aί. Let Dγ be the diffeomorphism defined by the twist
around y. The intersection matrix is manifestly invariant under diffeomorphisms,
so the action of Ω(Σ) on the homology group H^Σ, Z) must necessarily preserve
(3.2). Thus, the matrix M(Dγ) representing the action of Dγ on i3Ί(Σ, Z) is a non-
singular 2g x 2g matrix with integer entries, leaving the symplectic form (3.2)
invariant, i.e. M(Dy) is an element of Sp(2g,Z), the group of integer symplectic
matrices, also known as the symplectic modular group. An important result is that
the set of matrices M(Dy) in fact generate all of Sp(2g, Z) [9].

As an example we construct an explicit representation of the generators of Ω(Σ)
for g = 2. They are given by the following 4x4 matrices:

1 0 0 0

0 1 0 0

1 0 1 0

0 0 0 1

f 1 0 1
0 1 0 0
0 0 1 0

\θ 0 0 1

An explicit construction of the action of DaΓ ifl2 on the homology is illustrated in
Fig. 5.
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Fig. 5

b) Differential Geometry and Spin Structures

In this section we will define spin structures and review some of the elementary
differential geometry of Riemann surfaces. Thus far we have considered l a s a
topological surface. The surfaces relevant to string theory are also endowed with a
complex structure, which always exists if Σ is orientable. We will view the complex
structure of Σ as that defined by a Riemannian metric g. Locally, we can always
write any metric on Σ in the form

ds2 = e2φl(dxΌ)2 + (dx 1) 2] =2gwS,dw dw (3.5)

with w = x° + ixί, w = x° — ixί. When we cover Σ with such complex coordinate
patches <W, the transition functions on the overlaps are holomorphic, and thus
define a complex structure. Using this complex structure we can divide the 1-forms

T*Σ=T*{1'0)Σ®T*{0Λ)Σ

according to whether they are locally of the form f(w, w)dw or f(w,w)dw. In
particular, there are #(1,0)- forms ωt which are holomorphic, i. e., are locally of the
form fi(w)dw where f is holomorphic. A convenient way of normalizing the ωt

(also known as abelian differentials of the first kind) is to require

\ω} = δi}. (3.6)

This completely specifies the ωt [7]. One then finds for the bt cycles

(3.7)
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Using (3.4) with θ = ωb η = cθp it follows that Ω^—Ω ,̂ and if one uses again (3.4)
with θ = ή, and η holomorphic, then

^$θΛθ ImΣTθiθ>Q, (3.8)
2Λ i di bi

and we see that ImΩ>0. The matrix Ω is thus a g x g complex symmetric matrix
with positive imaginary part, known as the period matrix of the Riemann surface.
The space of all matrices satisfying these conditions is known as the Siegel upper
half plane JΊfg (in analogy with the g = 1 case where Ω is the standard modular
parameter of the torus).

Tensor algebra and analysis are particularly simple on a two-dimensional
surface. By raising and lowering indices with the metric (3.5) any tensor can be
decomposed into higher order differentials ψ(dw)n, neZ. The transformation
properties of ψ in going from a patch with complex coordinate w to another with
coordinate u are obtained by requiring

xp'(w)(dwγ = ψ(u)(du)n => ψ'(w)=

In order to introduce spinors we choose local frames

ds2 = δabe
a(g)eb.

If %v %β are two overlapping coordinate patches, the frames e(α), e{β) are related by
a local SO(2) rotation:

then the spinor bundles have transition functions K(0/2), so that {R(θ/2))2 = R(Θ).
If we consider three overlapping patches °Ua, %β, tfίγ the cocycle condition
RaβRβγRγa = 1, imposes a nontrivial constraint on R, namely,

is a two-cocyle with Z 2 coefficients (i.e. for any three overlapping patches α, β, γ,
w 2= ±1), w2 is the second Stieffel-Whitney class. If w2 is not cohomologous to
zero, then the surface does not admit a spin structure. Since w2 is the reduction
modulo two of the Euler character [10], which is even for a compact Riemann
surface, we know that w2 is a coboundary: w2 = δη. Hence spinor structures always
exist. The number of inequivalent spin structures is then the number of solutions to
the equation δ(η — r\/) = 0, i.e., the number of Z 2 — 1-cocycles. These span the space
HX(Σ, Z2). Thus, even though describing a spin structure explicitly may in general
be awkward, the difference between two spin structures is simply a question of
assigning plus or minus signs to the generators of the homology of Σ. This implies
in particular that Σ has 22g inequivalent spin structures.

One of the pleasant features of Riemann surfaces is that we can describe spinors
in terms of half-order differentials. This is most easily done by choosing frames:

eg = e° + ie1=έ*dw for Γ* ( 1 '0 ),

e" = eo-ie1=eφdw for
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where φ is the factor in (3.5). Then across patches %a9 °ίίβ with coordinates wα, wβ

which implies

so we have

1 Γ>CT

ciθ-

dwβ

dwa

dwa

dwβ

dw

dwa

and the left and right spinors ψeS± transform as

Ψ±d~e 1ΊaβΨ±β'

Here again the cocycle η gives the spin structure relative to one particular choice of
square roots of eiθ. When we refer the spinors ψ+ to the frames (ez)1/2, (ez)1/2 the
transition functions are one-by-one unitary matrices. It is occasionally more
convenient to consider the bundles S± as holomorphic line bundles. These will have
transition functions η^βidwjdwβ)112 for S+ and ηaβ(dwjdwβ)~112 for S~. In the
holomorphic category more appropriate local sections are the holomorphic half-
order differentials (dwα)

1/2. The relation between the standard and holomorphic
descriptions of spinors is given by

The holomorphic line bundle defined by S+ will be denoted by L. As suggested by
the notation, this bundle can be interpreted as a holomorphic square root of the
bundle of (l,0)-forms:

T*<1 Ό)Σ = K = Ll, (3.9)

here α labels the spin structure. Since there are 22g spin structures K will admit 22g

inequivalent holomorphic square roots.
Once we have introduced the spinor bundle Lα, we can define tensor powers L£

corresponding to differentials t/;(dwα)"
/2. In the local coordinates (3.5) the covariant

derivative for fields in L" is:

where 3
Kψ=(g^T12 -^ (gw*Γnl2ψ (3.10)

We can introduce a scalar product in L":

^)"lψxp. (3.11)

The operator Vn

w is just the unique holomorphic connection on L" compatible with
the metric (3.11). With respect to (3.11) the adjoint of (3.10) is

_ / Π 7 H \ f . τn + 2 jn
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With (3.10) and (3.12) we can construct two Laplacians:

nn ~ y n + 2y w>

Λ(-)— Un- 2 Γ7\v
^n γ w γ n '

It is easy to show that A(

n

+) and Δ\^}2 have the same spectrum of non-vanishing
eigenvalues. For the zero-modes, the Riemann-Roch theorem states

ind VI = dimker Vn

w - dimker V™+ 2 = - (n +1) (g - 1 ) .

When g > 1 any Riemann surface admits a natural metric with constant negative
curvature. Since

where

and since zl^±) are both positive definite operators, we conclude that for R < 0, and
π ^ l , the dimension of kerPJ] is zero, and

dimker F J + 2 =

c) Divisors and Line Bundles

We now describe some aspects of the general theory of holomorphic line bundles
on Σ. In the next section we will outline their relationship to Riemann's theta
function. A holomorphic line bundle can be defined by its transition functions:
ψOL = gaβψβ. (The transition functions gaβ are nowhere vanishing holomorphic
functions on the overlaps ^ α n ^ . ) There is an alternative description of Lin terms
of so-called divisors. Given a meromorphic section, ψ, of L we can consider the set
of points where ψ vanishes or blows up: {PJ. Since nb the order of the zero or pole
of ψ at Pi is independent of the trivialization of L, we can define the divisor of ψ as
the formal sum div(tp)= Σ M V Another section of the same line bundle L is
obtained if we multiply ψ by any meromorphic function on Σ (recall that a
meromorphic function / has the same number of zeroes and poles, and that / is
determined up to a constant by its divisor). Given this ambiguity in the
construction of a section, we define an equivalence relation between two divisors
D± and D2 by Dx ~D2 if Dx — D2 is the divisor of a meromorphic function. Thus, to
a given line bundle L, we can associate a divisor class (L). Conversely, given a
divisor class (D), we can construct a line bundle L, as follows. Choose a
representative divisor D of the class (D). On any patch °UΦ we can find a
meromorphic function fa whose divisor on ̂ α coincides with the restriction of D to
^α. Then, on the overlap %an^β, fa and fβ represent the same divisor, so gaβ = fjfβ

is a nowhere vanishing holomorphic function, and it trivially satisfies the cocycle
condition. Hence D defines a line bundle L. This construction shows that there is a
one-to-one correspondence between divisor classes and holomorphic line bundles
on a Riemann surface. The degree of a divisor D = Σ fyP,- is defined as degD = Σ nt.
The degree only depends on the divisor class, and coincides with the first Chern
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class of L. For example, the first Chern class of the spinor bundle Lα can be found
by noting that L2 — K, and recalling that the first Chern class of K is minus the
Euler class. Hence c1(Lα) = gf —1.

The concept of a divisor generalizes to higher dimensions. A divisor on a
complex manifold is a formal sum Σ n ^ , where Vt are complex codimension one
analytic subvarieties. (A variety is a generalization of a manifold which allows
certain singularities.) The equivalence between divisor classes and line bundles
described above continues to hold in the higher dimensional case. Technical
details can be found in standard texts [11]. This concludes our introduction to
divisors.

Differentiable complex line bundles are completely classified by their first
Chern class, but the space of holomorphic line bundles has more structure. We will
now briefly outline the classification of holomorphic complex line bundles [12].
The difference Lι(g)L^1 of two line bundles on a Riemann surface with the same
Chern class is a holomorphic line bundle which admits a flat connection. It can be
shown that the group of flat line bundles is a torus, known as the Picard variety of
Σ, and denoted by Pic(Σ). We can describe this space intuitively as follows. We cut
Σ along a basis ab b( for Ht(Σ, Z) as in Fig. 2. The sections of a flat bundle are then
characterized by their transition functions around at and bb which can be taken to
be constant phases. Thus we identify the section ψ along at with e~2πiφi times ψ
along af1, and ψ along bt with e2πίθί times ψ along bf1. In other words, flat
holomorphic line bundles are completely classified by their twists on the
homology, and these twists are parametrized by the torus R2g/Z2β. Therefore a
holomorphic line bundle is completely characterized by an integer (its first Chern
class) and a point on the Picard variety which determines the twists on the
homology. For example, if we denote by F(θ, φ) the flat line bundle with twists
e2πiΘk, e~2πί(pk, then the line bundles of degree 1-g can be parametrized by
L~ι (x) F(θ, φ), where L~1 is some fixed spin structure. From (3.9) we see that twice
the difference of spin bundles is trivial. Thus, in this parametrization of degree 1 — g
line bundles the points corresponding to spin structures are the half-points of the
torus, that is, the points where (θ, φ) e $Z/Z)2g.

In Sect. 5 we will compute the spin-structure dependence of the determinant of
the Dirac operator. One important ingredient will be a trick which we now
discuss. Recall that the chiral Dirac operator is the holomorphic connection on
L~ι compatible with the metric (3.11). Therefore, we consider the holomorphic
connections o n L ' 1 ® F(θ, φ). Again considering Σ cut along its homology basis,
we see that eigenfunctions of Jt> in L~ * ® F(θ, φ) are related by the unitary
transformation

v
\ A

to eigenfunctions of the coupled Dirac operator Jj)A in L~x, where the gauge field A
can be constructed in terms of the harmonic one-forms on Σ:

i iΣ^ j8 i . (3.13)
1 1
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Locally, Aφ, φ) is pure gauge, but it cannot be gauged away because it has
nontrivial holonomy. The advantage of introducing the gauge field (3.13) is that if
we compute dQt0A as a function of A for a given spin structure, then evaluating the
answer for the points (θ, φ) in (^Z/Z)2g we have effectively computed the spin-
structure dependence of det$. Thus there are two equivalent procedures for
computing the determinant of the Dirac operator on all line bundles of degree
1—g. The first is to keep the operator F " 1 "fixed" and vary the line bundle
L~ι ® F(θ, φ), and the second is to keep the line bundle L~1 fixed and vary the
operator by including the flat U(ί) gauge field A. We will usually adopt the second
point of view.

We can write A in a more useful way in terms of the abelian differentials. It is
easy to show that the ab βt and the ωb ώt are related by

QCi = Ai ;ω , + cplx. conj.,
1 lJ J F (3.14)

βι = Bijωj + cplx. conj.,

where

A=-Ω(Ω-Ω)~ί, B = (Ω-Ω)-1,

so that

A = 2πί(ή> + ΩΘ) (Ω-Ωy1'ώ + h.c. (3.15)

Thus the chiral Dirac operator F " 1 : L~ι-±La when coupled to A becomes

Ω-Ωyίω, (3.16)
where V~ι is the operator introduced in (3.10). Thus we have a family of Dirac
operators parametrized by u = φ + ΩΘ. Since φ->φ + m, θ-»θ + n for n,m integral
vectors defines the same point on Pic (I1), the family is parametrized by another
complex torus known as the Jacobian variety of Σ, denoted by J(Σ), and defined by
J(Σ) = C9/LΩ, where LΩ is the lattice generated by Zd + ΩZ9. Since Ω (the period
matrix) is a non-singular g x g complex matrix, there is a 1 — 1 correspondence
between Pic(I) and J(Σ).

d) Theta Functions

In this section we define the theta functions and explain their relation to spin
structures. We follow the notation and treatment of Mumford [13]. Another
excellent reference is the book of Fay [14]. In analogy with the genus one case,
once we have introduced the Jacobian J{Σ), we can introduce the Riemann theta
function by the series expansion:

3(z|Ω)= Σ
neZε

We also define theta functions with characteristics a, b for a, b e JR̂  by the sum

9 Π (z|Ω) = Σ exp(iπ(n + a) • Ω (n + a) + 2πi(n + a) (z + b))

(3 17)
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if we shift z by the lattice LΩ, θ transforms by

9 L (z + Ωn + m\Ω) = e-inn Ω'n-2πin^z + b)e2πίa m9 * (z|Ω). (3.18)

[b] (Z|Ω)'

Another useful transformation law is:

9 [b + m] (Z|Ω) = e2π

Thus the theta function is not strictly a function on J(Σ); rather, it is a section of a
holomorphic line bundle on J(Σ) called the 9—line bundle, if. From the transition
functions (3.18) one can compute the first Chern class of <£. Alternatively we can
define the hermitian norm on sections of JS? by

| | s | |2 = ei«(«-fiK«-fi)-1-(«-fl)|s|2 ( 3 >20)

and compute the curvature

cά&) = ~ ^δlog||5||2 = Σ dφ* A dθ1. (3.21)
2π i

We can now apply the Kodaira vanishing theorem [11] and the index theorem for
the δ-complex coupled to if to show that if admits only one holomorphic section
which is represented by the theta function.1

The relation between spinor bundles and theta functions is based on Riemann's
vanishing theorem. To state this fundamental theorem we first introduce the
Jacobian map of Σ into J(Σ). Given a canonical homology basis, and a point P o on
Σ, we can associate to any point F o n Σ a point in J(Σ) by

Φt(P)= ί ωi9 (3.22)
Po

where the ωt are the holomorphic differentials. As a map from Σ into C9, Φ is
multivalued, but, considered as a map into J(Σ) it is single-valued since if we move
P around one of the cycles at or bh then (3.22) changes by an element of the
Jacobian lattice. Similarly, the function on Σ defined by

+ f ω|Ω) (3.23)
Po /

for z in C9 is multivalued. However, / is a well-defined function on the interior of
the region in Fig. 2. By repeatedly applying Green's theorem to the one-form df/f
on this region one can prove the

Riemann Vanishing Theorem. The function f(P) either vanishes identically for all
PsΣ or f(P) has exactly g zeroes Pu ...,PgonΣ. Furthermore, in the latter case,
there exists a vector Δ depending only on Po and the canonical homology basis so that
the points {PJ satisfy g P.

z+ £ ί ω = Δ. (3.24)
i=l Po

1 We thank Dan Freed for explaining this to us
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Conversely, forallPu ...,PgeΣJfwedefinezaccording to(3.24) then f(Pt) = 0 for
alli = l,...,g.

Δ is known as the vector of Riemann constants. Since we will not need the
explicit form of Δ we refer to [13,14] for details, and the proof of this result.

The set of points z ε J(Σ), where 5(z|Ω) = 0, known as the Θ-divisor, is a variety
of complex codimension one. Θ will be important to us in Sect. 5. The Riemann
vanishing theorem leads to the following description of Θ\

Corollary. θ(e |Ω) = 0 iff there exist g — \ points Pl9 ....P^^εΣ so that

e = Δ-V?ω. (3.25)
1 Po

One direction of the proof of the corollary is simple. If e is given by (3.25) then
we choose any point PgeΣ and set

g Pj

z = Δ-Σ ί ω.
1 Po

Then the Riemann vanishing theorem implies:

V Po

With a little more work one can show the converse [13].
The sums which arise in the above theorems are clearly related to divisors. In

particular, the divisor Σ i " 1 Λ defines a (possibly twisted) spin bundle. Thus the
connection with spinors begins to emerge. The relation can be made more precise
by generalizing the Jacobian map (3.22) to a map / from divisors of degree zero to
J(Σ) as follows. If D is a degree zero divisor, we choose a 1-cycle σ on Σ whose
boundary is D, i.e. dσ = D. Then the Jacobian map is just

J(D)=JωeJ(Σ). (3.26)
σ

Note that the choice of cycle does not matter in (3.26). Two important properties of
/ are,

i) Abel's Theorem. I(D) = 0if and only if D is the divisor of a meromorphic function.
Thus I is defined on divisor classes.

ii) Jacobi Inversion Theorem. The set of points I [Σ \ Λ — gPol forPl9...9PgeΣis
all of J(Σ).

We are finally in a position to relate spin structures to Θ. We begin with the
remark that, by the index theorem, a degree g — ί bundle E (that is, a twisted spin
bundle) will have a holomorphic section if and only if the bundle K~1(g)E has a
zero-mode of Vw. We can take the complex conjugate of the zero-mode equation
[considering K~ι®E as a [7(1) bundle] and translate back into holomorphic
language to see that E has a holomorphic section if and only if K0E"1 has a
holomorphic section. That is, E has a divisor of the form P1 + ...Pg_1iϊ and only if
K®E~X has a divisor of the form β x +. . .β g_ v Since a spin structure Lα satisfies
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L2. = K, one can show that the set of points

...,Pβ-1eΣ}, (3.27)

where Da is a divisor of Lα, is a symmetric subset of J(Σ). However, from the
Riemann vanishing theorem we see that the set Sα is just a translate of Θ by
Δ — J[Dα — (g — 1)Λ)] Thus, to any spin structure we may associate a symmetric
translate of Θ. That is, if e is in Sa9 then so is - e .

On the other hand, since # is an even function of z, Θ is itself symmetric.
Therefore, a translate Θ + e of Θ is symmetric if Θ + 2e = Θ. An application of
Liouville's theorem to the function

on C9 shows that 2e e LΩ. Thus the symmetric translates of Θ are the translates by
points of order two.

Finally, recall that the difference of two spin structures Dί -D2 is a point of
order two in the Picard variety, hence I[D1—D2] is of order two in J(Σ). Thus
each of the 2lg spin structures corresponds to one of the 22g half-points in J(Σ). In
particular, some spin structure must correspond to the symmetric translate of Θ
given by Θ itself. We call this spin structure Do, i.e.

Δ = /[Do-(0-l)Λ)] (3 2 8 )

The vector of Riemann constants depends on Po, but Do does not. Both A and Do

depend on the choice of canonical homology basis.2

The correspondences we have just outlined allow a division of spin structures
into two classes known as even and odd spin structures. Note that if

Γε Ί
(εuε2) e (%Z/Z)29 is a half-point then the divisor of θ (z|Ω) is a symmetric

Lε2j
translate of Θ. Also, it is straightforward to show that

Therefore, we call a spin structure with characteristics [_εί ε2] even or odd
depending on whether 4ε1-ε2 is even or odd. As we will see in Sect. 5, the parity of a
spin structure is related to the existence of zero-modes of the Dirac operator. A
simple induction argument shows that there are 2fif~1(2Sί — 1) odd spin structures
and 29~ ί(29 +1) even ones. For example, in the one loop case, there is a single odd

spin structure corresponding to θ MM (0|Ω), and three even spin structures with

associated theta functions S (0|Ω), 9 r (0|Ω), S L (0|Ω). In the two-loop

2 Under a change of homology basis A shifts by an even half point, defined below
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case there are six odd spin structures associated to the theta functions

ioj

(0|Q)

(θ|fl)

a "0

0
" i

2
πu

2
i

i~
2
1
2_

(0|fl)

(0|β) a

1

1

~o
i

0"
1

1"
2
1

(3.29)

and ten even ones with theta functions

9 ΓHΊ
LooJ

f o
0 0

0 0]

(0|β)

(0|β)

0 0"

.2 0 .

•* o"

( 0 | Ω ) ( 0 | Ω )

(0|fl) 9

(0|β) 9

LooJ

Of
0 0

of

(0|β)

(0|β) (3.30)

Finally, we will see in Sect. 7 that modular transformations permute all the even
and odd spin structures separately among themselves. This rather mathematical
section will prove to be quite useful in our discussion of the Dirac determinant and
of modular invariance.

4. Holomorphic Factorization

Quillen [15] has recently pointed out that functional determinants of operators on
Riemann surfaces have interesting holomorphic properties. We will use these
properties to investigate the Dirac determinant. However, holomorphic factoriza-
tion has other important applications. For example, as pointed out in [16,17,18]
the very existence of chiral string theories relies on the existence of such
holomorphic square roots.

In this section we will review the statement of Quillen's theorem and its relation
to the geometry of determinant line bundles. We first give an heuristic Feynman-
diagram proof of the theorem, and then proceed to the heat kernel proof of a slight
generalization of the theorem. This generalization can also be understood in the
context of determinant line bundles. In a beautiful recent paper [18] Belavin and
Knizhnik have used similar methods to investigate the holomorphic properties of
functional determinants on Teichmϋller space. For completeness we extend the
heuristic discussion of Quillen's theorem to rederive their results at the end of this
section.

Abstractly, we will consider families of operators Dy:L
n->Ln + 2. If the

parameter space Y is a complex manifold, the Dy can vary holomorphically with y.
Quillen showed that in this case the determinant line bundle i?-» Fcan be given a
holomorphic structure, and, if Dy has no index, then the ζ-regulated determinant
satisfies n t π _ -«u +π I2 (ά u

Here detDy is a holomorphic function on Y. The "counterterm" q is defined by
choosing an operator Do to define the origin on Y and setting

2π
(4.2)
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The notation means that the family of operators is chosen so that any two differ by
a one form. The trace is a finite dimensional trace over the fiber indices. Note that
detD also depends on the choice of Do.

More concretely, we can give a simple proof of Quillen's theorem using
Feynman diagrams. Locally, Dy looks like d + A, so we can interpret A as a gauge
field. Since the obstruction to holomorphic factorization is local in A we should be
able to rederive (4.2) from perturbation theory. In perturbation theory

W=logdetζ/)ti> (4.3)

is simply given by a sum of Feynman diagrams

Λ/\Λ/ J\f\f\s

All diagrams but the first are convergent without regularization. Since the fields
are massless their sum is a functional of the form / [ Λ J + / D 4 J . Thus their
contribution to the determinant is gauge invariant and factorizes holomorphically
as a functional of Az. The situation is rather different for the vacuum polarization
graph, which must be regulated. One can use Pauli-Villars regularization to
maintain gauge invariance. Then as the PV mass goes to infinity one finds the
nonholomorphic residue

q=±-ld2zAgAs. (4.4)
2π Σ

It is more illuminating, however, to follow the two-dimensional calculation in
[19]. From the axial anomaly we know that to order A2 the contribution of a Weyl
fermion to the vacuum functional is (in momentum space)

§kϊ-'y <45)

If we are computing detDfD we must add the other chirality. The result

continues to satisfy holomorphic factorization, but is not gauge invariant. We can
restore gauge invariance - at the cost of factorization - by adding the counterterm

2π J (2π)2 '

which is Quillen's counterterm [20].
In applications to string theory we will need to generalize (4.1)-(4.2) to the case

when D has an index, in order to handle the ghost operators. Therefore, we now
give a heat kernel proof of the Quillen theorem in the case that Dy has a nonzero
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index. We will simplify our calculation by assuming that k e r D ^ O so that the
cokernel has constant dimension. This is true for the ghost operators on higher
loop Riemann surfaces. In any case the following analysis is easily generalized to
the case when D has a kernel [21].

We begin with the heat kernel definition of the determinant

logdetί) tD= - ί -Tre-tD^D, (4.8)
ε t

and, following Quillen, we take the second variation:

δδdetD*D = δ J TτδDiDe-tD'D. (4.9)
ε

Since D has no kernel the right-hand side becomes simply

= δΎr(δD^D^e-εDfD) (4.10)

which is / 1

- ε j dsTrδϊ) tD-ί-e-" 1 ) t i )D^De- ( 1- ί ) D t D. (4.11)
o D'D

N o t e t h a t 'i°" ( 4 1 2 »
is the projector onto the kernel of D f . Thus the first trace in (4.11) is finite
dimensional and we can take the limit ε-»0. We can get a better understanding of
this trace if we take a basis χ^y) for kerDj which varies antiholomorphically with y.
(Such a basis exists since Dj varies antiholomorphically.) Then, a simple
application of perturbation theory shows that

χ,|χi> = ΊrPδD ̂  δtf. (4.13)

We can simplify the second trace by using

and applying (4.12). Since a finite dimensional trace is killed by the ε-+0 limit, (4.11)
becomes

]g J I l o g f ] x = - s ] d s Ύ r δ D ^ e - s ε D D ' δ D e - ^ - s ) ε D t D . (4.15)
y det<χί|χJ > o

If Dy has zero-modes we choose a basis φ{ varying holomorphically with y and
multiply det<χί|χJ > by det<^ ί |^J > [21]. In the case considered by Quillen δD = δA
does not involve derivatives and Eq. (4.15) reduces to the simpler statement

l y

 D*D. (4.16)

Then, using the heat kernel expansion one recovers (4.1), (4.2).
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There is a third useful way to understand Quillen's theorem in terms of the
geometry of determinant line bundles. If Dy has no index then one can define a
holomorphic section σ of ££. The Hermitian norm

ζ (4.17)

has a unique holomorphic compatible connection, whose curvature is just

δδlog| |σ | | . (4.18)
In

On the other hand, Bismut and Freed [22] have computed this curvature in terms
of the family index density. Using their formula one easily recovers (4.1) and (4.2).

The holomorphic factorization of determinants of operators with index can
also be understood from the third point of view. We consider again a family with
no kernel so that the index bundle

if = (Λmaκ kerig*® (Λmax cokDy) (4.19)

is well-defined as it stands. We can define a section of 5£ which is holomorphic in
the holomorphic structure defined by Quillen. Choose a point y in some
neighborhood of y0 and take

We define the neighborhood on which (4.20) holds to be the set of points y such

We can extend σ to the rest of Y by taking σ = 0 outside the neighborhood. This is a
holomorphic section of if [22]. The Quillen norm of this section is just

On the other hand, the curvature of (4.7) has been computed by Bismut and Freed
in terms of the family index density. Thus if we choose the basis χ^y) to vary
antiholomorphically, then the obstruction to the holomorphic factorization of

(4.22)

is again just given by the family index density.
In the following section we will apply Quillen's theorem to families of operators

over the Picard variety. For completeness we describe here a recent result of
Belavin and Knizhnik who considered families of operators over moduli space. In
[18] a heat kernel or index bundle approach was used. We show here how the
result can be understood as the gravitational analog of the Feynman diagram
argument we used before. We begin by defining

(4.23)



22 L. Alvarez-Gaume, G. Moore, and C. Vafa

where D is now the operator P"v of (3.10), and ew is the partition function for a pair

of spin ± - particles on the worlds

deformations g + δg which look like

of spin ± - particles on the worldsheet. Following [18], we consider metric

, (4.24)

where η is a (small) Beltrami differential. From the family index theorem or from
the general heat kernel formula (4.15), we know that the obstruction to
holomorphic factorization (in η and ή, i.e. on Teichmuller space) is local so it
suffices to consider Beltrami differentials with support in a coordinate patch, ΰU.
These will not correspond to Teichmuller deformations, but the final result will
apply to such deformations. Using the conformal anomaly we can write

W[g + δg] = Wig\ + 3 ( " ^ 1 SL\_φ, g\

/ d (4.25)
ztπ Σ

where g is just \dz + ηdz\2 in °U, and (4.25) defines the Liouville action SL. Thus g is a
small deviation from a flat metric in °lί, and we can use perturbation theory to find
the part in Wig"] of second order in η. We now use Orlando Alvarez's trick [16] to
write the appropriate perturbation theory by considering the operator D:Ln

-+Ln+2 as a chiral Dirac operator coupled to the vector bundle L"+1. Thus the
effective action W is, to second order in η, just given by the gravitational
contribution computed in [19] and the gauge contribution of (4.6) with

A = ω, where ω is the Riemannian spin connection. That is

( 2 π ) 2 p-z

 zz zz 192π (2π)2 pz

1 " ~Az(p)Az(-p). (4.26)

Substituting for the gauge field and adding the counterterms to restore coordinate
invariance (as described in [19]) we obtain the famous result

( 4 27)
192π W PJ>, '

The coefficient in front of the integral is just that of the usual conformal anomaly in
our conventions. Finally, one computes the curvature for the metric \dz-\-ηdz\2

R = _ d2

zή - din + 2dzδz(ηή) + \[_dznd-zη - dzήδzη-] . (4.28)

Combining (4.25), (4.27), and (4.28) we find

ί d2σίdzηdzή + 2(dzηήdzψ + dzήηdzφ)

- 6ηήdzdsφ-], (4.29)
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and in terms of the original metric deformations δgww this is simply

*)3 ̂ r^^^^^g., - f J ̂
(4.30)

reproducing the result in [18].
The Belavin-Knizhnik obstruction can be rewritten in terms of the Weil-

Petersson Kahler potential on Teichmuller space [23]. Recall that Teichmuller
space T can be represented as the space of constant curvature metrics: namely, for
any metric g there is Weyl transformation so that g = e ~ 2φg is a constant curvature
metric.3 It therefore suffices to consider the holomorphic obstruction on T. In the
standard Bers embedding of T as a bounded domain in C3g~3 the holomorphic
cotangent space of T is identified with the integrable holomorphic quadratic
differentials [24]. For these deformations the first term in (4.30) is zero so

δδW= - 3 ( W ^ ~ 1 <δg, δg}WP (4.31)

where < , >WP is the Weil-Petersson metric. Since the Weil-Petersson metric is
Kahler [24] and the Bers embedding provides globally defined analytic coordi-
nates on T, there must be a globally defined Kahler potential L/WP. It follows that
the complete obstruction to holomorphic factorization of (4.22) is given by

( S L [ ^ ] - f t / W p ) (4.32)

Note that SL and (7WP themselves make no reference to the spin n. Thus the
product of a collection of determinants of spins n{ will have a total obstruction
proportional to Σ; C3(^-f-1)2 — 1]. Therefore, as Belavin and Knizhnik observed,
when the conformal anomaly cancels the string integrand is the square of a
holomorphic function on Teichmuller space (even though the individual determi-
nants are not). We believe this result is very powerful and should allow one to
apply arguments similar to those used in the next section to obtain useful
expressions for the functional determinants appearing in string theory in terms of
"canonical" or "natural" functions associated to a Riemann surface.

5. Chiral Dirac Determinants

In this section we will apply the Quillen theorem to a family of Dirac operators
over the Picard variety, which is essentially the original context considered by
Quillen. Since the Dirac operator has no index the theorem will be especially easy
to apply. We will begin by considering the family of operators in (3.16) with ueC9

(or, if we wish to consider a twisted family of operators we may take u e J(Σ)). A
simple argument using the Quillen theorem and gauge invariance shows that
detD(u) is proportional to a theta function, but the argument is not strong enough

3 In general g will also have to be pulled back by a diffeomorphism, but this complication is
irrelevant for our purposes. Note too that for the torus we can take R — 0. That is why explicit
calculations on the torus do not encounter this obstruction



24 L. Alvarez-Gaume, G. Moore, and C. Vafa

to determine the characteristics. Thus we give a second independent argument
using the methods of Sect. 3d. The idea is simple: Since the Dirac operator has no
index, D(u) generically has no zero-modes. In other words, detD(u) will vanish in
J(Σ) on a subset of complex codimension 1. By choosing the spin structure
judiciously, we will show that the locus of zeroes of detD(u) is the <9-divisor
described in Sect. 3. At the end of this section we comment on the ghost operators.

If we apply (4.1) and (4.2) to the (7(1) gauge field (3.15) parametrized by the
Jacobian, then, using (3.7), (3.8), (3.15) and making a trivial redefinition of q in (4.2),
we find:

detD(π)tD(u) = e i π ( t f" f l H O"Λ )" 1 (α-fi)|flf(π)|2. (5.1)

Notice now that shifts of u by the Jacobian lattice u-m + n + Ωm are equivalent to
well-defined t/(l) gauge transformations on Σ given by

/ p p \

Φ(P) = exp-2πi m J α - n f β . (5.2)
\ Po Po J

Since the determinant (5.1) was computed by means of a gauge-invariant
(-function regulator it must necessarily be gauge invariant under these gauge
transformations. Since the exponent in (5.1) is not gauge invariant we can deduce
the transformation properties of g(u) under lattice shifts,

and since the phases eιφ{n) and eiψ{m) provide a unitary representation of Zg, they
must be of the form ^ ) = e

2 π i n" a, eiv<m) = e-2πim* U s i n g a holomorphic Fourier
decomposition of g(u) we see that (5.3) uniquely defines a θ-function up to a
constant. Hence, by (3.17),

ff(u) = constaΓjΊ(u|ί3) (5.4)

for some real characteristics a, b.
We have not used any information about the spin structure to derive (5.4), so it

is not unreasonable that the characteristics a, b remain undetermined. We now use
the methods of Sect. 3d to compute a, b. Quillen's construction of the chiral Dirac
determinant shows that it is a holomorphic section of a holomorphic line bundle
j£? on J(Σ) (note that detD^D does not blow up for any u). From the family index
theorem and (3.21) we know that ££ is the line bundle of a theta function, and
therefore by the comments following (3.21) that bundle admits a single holo-
morphic section. In order to determine this section, we simply compute its divisor.
The divisor of the determinant consists of those points u in J(Σ) where D(u) has a
zero mode. By the arguments preceding (3.15), D(u) has a zero mode whenever the
line bundle L^φKOi) has a holomorphic section. We can determine those
bundles admitting a holomorphic section by studying the divisor of L^QViu).
Let Aa be a divisor of L~1. If du is the divisor of F(u), then L~x ® V(u) has divisor
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Aa -f du. We can write du explicitly in terms of u as follows. The function

A

P

z+ J ω|β
Po

J ( z + ί ω|Ω
U V Po

(5.5)

is meromorphic and has periodicities

Λ f _ p2πin'Θ f A f _ - Iπim φ f
nn aJu~V Ju, lλm.hJu — V Ju

around the a and b cycles respectively, (z is fixed and arbitrary.) Thus /U(P) is a
meromorphic section of F(u). By the Riemann vanishing theorem /U(P) has poles
at g points (λ satisfying

9 Qi

z + £ J ω = A,
i = l PQ

and zeros at g points Rt such that

g RΛ

Σ J ω = Δ,
i = l Po

hence
9 /Ri Qi \ \~9 9 Ί

n = - Σ ί ω - ] ω = - / Σ Λ I - Σ Q I (5.6)
ί=l \Po Po / L 1 1 J

Now recall that L~1 ® V has a holomorphic section if and only if it has a divisor of
the form

Aa + du=
βΣPi. (5.7)

Choosing an arbitrary point P o on Σ, (5.7) can be rewritten as

dB = ( f l f - l ) P 0 - ^ « + ( V P<-G7-l)Po), (5.8)

and using (5.6) we have:

p l (5.9)
From (3.28) there is a spin structure Do such that the first term on the right-hand
side of (5.9) is just the vector of Riemann constants. Thus

u = Δ-V ίω. (5.10)
i = l Po

Using the characterization (3.25) of the Θ-divisor, we conclude that for the spin
structure Do, the characteristics a, b in (5.4) are equal to zero. It follows that the
determinant is given by

)~1 (M-")|5(u|ί3)|2. (5.11)

The overall positive constant \c\2 is a function only of the metric, not of the twisting.
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In order to define the chiral determinant we must take the square root of (5.11).
There are many ways to define chiral square roots, and we must choose a definition
suitable to the physical problem under study. In the context of string theories we
would like to separate the contributions of left-movers from right-movers. In
Sect. 2 we found that the left- and right-movers contribute holomorphic and
antiholomorphic functions of the moduli. Furthermore, from the formula for
variation of a covariant derivative under a traceless deformation of the metric
[25],

we see that naively we expect det Vn

w to be a holomorphic function on Teichmϋller
space [26]. Therefore, we will proceed with the hypothesis that on higher genus
surfaces the contributions of left- and right-movers can be distinguished by
holomorphy in the moduli. In this context the work of Belavin and Knizhnik
shows that the quantity in (4.32) is the obstruction to the decoupling of left-movers
from right-movers. Since the \c\2 is, up to the obstruction (4.32), the square of a
holomorphic function on moduli space, we sacrifice holomorphy on the Picard
variety and write:

u-ύ-(Ω-Ω)Q,

so that

detflt(u)D(u) = | 1 (u|Ω) 2 = \c\2 S K 1 (O|Ω)e~ 2πW'φ
. (5.12)

Therefore, we have

ΓflΊ
(5.13)

Actually the left-hand side of (5.13) is not purely a function of the moduli because of
conformal and diffeomorphism anomalies. If we represent the metrics by
g = f* e2φg, then the modulus and phase of c will depend on φ and / respectively. In
applications to string theory we may be cavalier about the anomalies since we
know that the combination of determinants in the string path integral is anomaly
free. Thus we can consider c as a function only of the moduli.

As a simple application, (5.12) makes transparent some well-known theorems
on the existence of harmonic spinors. For example from (5.12) we learn that all odd
spin structures have at least one zero-mode while the even spin structures
generically have no zero modes. These results are derived in [27, 28]. Furthermore,
it is known that for genus two the even theta functions do not vanish at z = 0 except
when Ω is diagonal [13]. (This corresponds to a degenerate curve for which the
handles have been pulled off to infinity.) For genus three and larger there are
period matrices and even characteristics such that #(z = 0) = 0 [13], so that the
dimension of the space of harmonic spinors is constant for g = 2 and varies with the
complex structure for g^3. These results were derived by Hitchin in 1974 [29].
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We can also apply the Quillen theorem to the fermionic ghost operator of
string theory, namely

V^:La®V^Ll®V. (5.14)

One finds that if χt is a basis of ker F3 (that is, a basis of supermoduli) varying
holomorphically with ΰ then

^=\cf\e^r\9(uψ, (5.15)

where \cf\2 is independent of u, and g(u) is holomorphic. Unfortunately, there are
many choices of holomorphically varying bases, so gauge invariance is not as
powerful in this case. Therefore we will simply make a few remarks. First, note that
there is no holomorphically varying basis χt which changes by a unitary
transformation under a shift u-m + m + Ώn. For, if there were, gauge invariance
would imply that g(u) is a theta function, which must vanish on a sub variety of
J(Σ). On the other hand, the left-hand side of (5.15) never vanishes. In fact, we
could choose our basis so that g(u) = 1. Alternatively, using the Riemann vanishing
theorem, it is possible to write a choice of basis χt for which the u-dependence is
explicit. One finds in this case that g(u) can be expressed in terms of theta functions
of weight / = 2g — 2 (= the number of supermoduli). However the theta functions of
weight / form a vector space of dimension I9 so that we do not learn much.
Although the combination (5.15) is basis-dependent, the superstring path-integral
measure is in fact basis-independent (see Sect. 7). An astute choice of basis should
lead to important simplifications.

6. Bosonization

Bosonization is an important aspect of two-dimensional field theory. Although the
local theory of bosonization on higher genus Riemann surfaces has been worked
out [3], no complete treatment yet exists. We now show that the results of Sect. 5
can be used to give a prescription for the lattice sum needed in bosonization of
sρin4 particles. In particular we use bosonization to evaluate |c|2, where c is the
function of the metric defined in (5.13). Furthermore, we will see that non-chiral
bosonization involves an interesting subtlety. Since, roughly speaking, a Bose
theory doesn't "know" about a spin structure, it will turn out that a Bose theory
corresponds to an average over spin structures of Fermi theories. We consider first
nonchiral bosonization to avoid subtleties peculiar to left-moving bosons. This is
the reason we only evaluate the absolute square \c\2. Then using the remarks of
Sect. 5, we can separate out the contribution of the left-movers and give a
prescription for the lattice contribution in chiral bosonization.

As we saw in Sect. 2, bosonization on compact spaces involves a sum over
soliton sectors. If we formulate the SO(n) current algebra on the cylinder we will
have n scalar fields which can have shifts by the integral or half-integral vectors in
the weight lattice of SO(ή). Furthermore, on the torus or the cylinder we see that
twisted fermions correspond under bosonization to scalars which shift by a
translate of the SO(ή) weight lattice. We now generalize these notions to higher
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loops, taking n = 2 for simplicity. Therefore, consider a real Bose field x on a
Riemann surface Σ. We can introduce soliton sectors into the theory if we allow x
to have shifts around the nontrivial homology cycles. Therefore we can define the
(n1, ...,nθ, m1,..., m^-soliton sector by requiring

ι) around α ί 5 (6.1)
ι) around bt,

where 0^θ\ φ^l and n\wίe\Z, i = ί,...9g. We can simplify the derivation by
first summing over soliton sectors with n, m integral, and then summing over half-
integral shifts in 0, φ. The soliton solution is given by

dxn, m = Σ(n + 0)'α, + Σ (m + φ)%, (6.2)
1 1

where αf, /Jr are the harmonic forms of Sect. 3. We can express the action for the
soliton:

S[x]=2π\dxΛ *dx, (6.3)

in terms of the matrices

Atj= Jα^Λ * α ; , Btj=iFA *βj, Ctj=W^ *βj (6.4)

Using Sect. 3 one finds that the period matrix is simply given in terms of these
matrices by

1. (6.5)

With the soliton action one can then write the partition function for the theory:

Σ .— . .6.6)

where Snttn is the action for the soliton (6.2). We will now relate this sum to theta
functions, thereby establishing a link with fermionic partition functions.

Holding n fixed, we use (6.3)—(6.5) and apply the Poisson summation formula to
the sum on m to obtain:

Z[* ) liΣe*»--e* ">9 (6.7)

where sίn m is a complex number. Explicitly one finds, using (6.2), (6.4), (6.5), and
(6.7),

j ^ n m = iπ(n + θ + im) Ω (n + θ + im) + 2πϊ(n + θ + im) φ,
(6.8)

i ) φ

(6.9)

We can express the sum (6.7) in terms of theta functions. The result is:

/ det'-Γ* V l

V f l ^ d t l Ω / 2β

 !

I θ + ε i Ί
L-φ+ε2J

(0|β)
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Now we include the full weight lattice, allowing soliton sectors with n\ mι integral
and half-integral. The partition function then becomes

z=\c\2 Σ * (0|Ω) (6.10)

Therefore, this Bose theory corresponds to a sum over all the 22g Fermi theories on
Σ. Weighted sums over subsets of the lattice correspond to particular spin
structures, suggesting the possibility of bosonizing a Fermi theory with a single
spin structure. Comparing the overall normalization of the partition functions we
learn that the function \c\2 of the last section is given by

1/2

(6.11)

up to some numerical constant. This derivation is not rigorous, but (6.11) does pass
two important consistency checks. First, both sides of the equation have the same
conformal anomaly. Second, in the case of the torus one can easily compute both
quantities directly. For the metric \dσ1 + τdσ2\

2 one finds the right-hand side is
given by

1

2\η(τ)\2>

which agrees with (2.3) and (5.13). Thus (6.11) is also consistent with the naive
factorization of determinants in the limit when a handle is pulled off to infinity.

We now turn to the case of chiral bosonization. We see from (6.7) that the
contributions of the various soliton sectors are holomorphic squares. In the
natural complex structure on Teichmuller space the period matrix is a holo-
morphic function of the moduli [24]. Therefore, according to the identification of
Sect. 5, stfnm should be thought of as the action of a right-moving soliton. Thus, the
expression (6.10) allows a separation of the contributions of left-movers and right-
movers, which we identify as holomorphic and anti-holomorphic functions of the
moduli. If we simply drop the contribution of the left- or right-movers we should
obtain the partition function for a chiral boson. Using bosonization arguments
such as these one can verify that the contribution of the left moving E8xE8

solitons to the string path integral is

c8 Σ
ε i ,£2

as expected from the fermionic formulation of the current algebra. In string theory
we also need to consider the ghosts. For these the bosonization is more subtle [3]
and the sum over soliton sectors seems to yield rather awkward expressions.

7. Modular Invariance in the Heterotic String

In the previous sections we have been able to compute the spin-structure
dependence of the determinant of the chiral Dirac operator on Riemann surfaces.
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In this section, we will apply those results to discuss some aspects of the higher loop
heterotic string amplitudes. In particular, as a first application, we will verify some
results of Witten on global anomalies [30]. It has recently been pointed out that
two-dimensional anomaly cancellation does not completely fix the heterotic string
amplitudes [31, 32]. As a second application, we will discuss this ambiguity from
the point of view of modular orbits of theta characteristics.

We begin by presenting an expression for the higher loop vacuum to vacuum
amplitudes in the heterotic string. At #-loops this amplitude can be derived from a
functional integral over two-dimensional supergeometries of a ^-handled
Riemann surface Σ, and over quantum matter fields living on this surface [2]. For
the heterotic string a supergeometry on a Riemann surface is specified by a
Riemannian metric (a background graviton field configuration) together with a
section of L~3 (a background gravitino field configuration) [33]. The matter fields
may be described as follows. There are 10 left- and right-moving bosonic
coordinates describing the embedding of Σ onto the world surface of the string in
10-dimensional spacetime. Spin waves on the world surface are described by the
SO (10) current algebra constructed from the 10 right-moving spinor sections of Lα

familiar from the NSR model.4 In addition, heterotic strings have gauge currents.
In the 0(32) string these currents can be constructed from 32 left-moving spinor
sections of Lβ \ The spin structures α, β are independent. In the E8 x £ 8 string the
32 gauge fermions are split into two sets of 16, each with independent spin
structures β and γ. In Minkowski space the spinors are Majorana-Weyl, but in
Euclidean space they must be Weyl. The Euclidean path integral quantization of a
Majorana-Weyl spinor introduces a Pfaffian of the complex chiral Dirac operator
which results is an extra square root of the relevant functional determinant.

Gauge-fixing the symmetries of the Euclidean heterotic string action reduces
the infinite-dimensional functional integral to a finite-dimensional integral over
the moduli space of Σ which describes gauge-inequivalent graviton field configur-
ations [34-37] together with a finite dimensional Grassmann integral over
supermoduli space which describes gauge-inequivalent background gravitino field
configurations [3, 17, 38]. The integration over moduli space is expressed as an
integration over a fundamental domain F of the Teichmuller space T under the
action of Ω(Σ) [39, 35]. In addition, in order to define a physically reasonable
string theory one must include projections onto sectors with even fermion number
[40]. This is accomplished in the path integral formulation by summing over the
independent spin structures for the two sets of fermions5.

The path-integral measure has been derived in [17] and in a slightly different
language in [3] and in [38]. In [17] it was shown that one can find an acceptable
integrand for the heterotic string given the holomorphic factorization of certain
functional determinants. By the Belavin-Knizhnik theorem we know that the
appropriate holomorphic square roots do, in fact, exist. Furthermore, it can be
shown [41] that there is no obstruction to the holomorphic factorization in the
supermoduli, and that after integration over the supermoduli the measure in [17]

4 Two-dimensional supersymmetry requires that the NSR fermions and the background gravitino
have the same spin structure
5 This is very clearly explained in [31]
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can be cast in the form

7 = f 3π3dfdf* | d e t < y ' T Γ / > '
3 V (detlmΩ)5

Γ/>'2 d e t^+ > ( d^-*7 2 V 5

(detlmΩ) V

/det
x Σ Cβ ί y(det /,F;1)8(det/;1)8(detβFΪ)

<xβγ

[We have chosen the case of E8xE8 in (7.1).] Here we have represented
Teichmuller space by a slice g(i) which has traceless symmetric tangent vectors Tr.
The zero modes Sr and χt form a basis for ker P~4 and ker V~3, respectively. The
quantity Szθ can be most easily expressed in the language of [3] as the ghost
supercurrent:6

where czyθ are the reparametrization and super-reparametrization ghosts and
bzzβzθ are their conjugate fields. Thus the expectation value of the ghost currents
can be expressed via Wick's theorem in terms of the Green's functions for the
operators V\ and V\. Finally, one must choose the (anti)holomorphic square-root
of det ̂  ̂  which exists, by the Belavin-Knizhnik theorem.

As is well-known, (7.1) has no local anomalies. Witten [30] has shown that the
expression also has no global anomalies. His argument proceeds in two steps.
First, it is shown that the terms with a = β = y have no phase change under
diffeomorphisms which preserve the spin structure α.7 We cannot explicitly verify
this because we do not know the modular dependence of the Rarita-Schwinger
determinant. The second step of the proof in [30] proceeds by considering ratios of
Dirac determinants. In particular, it is shown that (7.1) is modular invariant if

(7 2)

is invariant under diffeomorphisms preserving spin structures α and β. We can
explicitly verify this result since we know (7.2) as a function of the moduli, in
particular, as a function of Ω.

We can find the transformation of Ω under a nontrivial diffeomorphism as
follows. Recall that if Ki = {ai9bt) is a canonical homology basis then f^c—T^Kp
where

τ=(D

B

6 After an integration by parts
7 Insertions of the ghost currents lead to Green's functions which at first sight vitiate the argument.
However, the determinant over χ^Wj) suppresses the singular terms so that the correction factor is
finite and does not need to be regularized. Since it needs no regularization, it should have no
anomaly
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To preserve the normalization condition (3.6) we must redefine the basis of
holomorphic differentials

Thus

leads to the modular transformation

It can be shown [42] that the theta functions transform as

l) = s(A)e~iπφ(a' (7.3)

where,

\Ά-
Λ =

D -

A B\

D)'

a\ 1

^(α, i, β) = [a&Ba + fcC^ft] - \2aBtCb + (α/)1 - bC) (AB1)^ .

The phase ε is subtle. It is always an eighth root of unity and, if

(7.4)

then we have

2/ Λ\

εz(A) =
In (7.4), the subscript d means that we are taking the diagonal elements of the
matrix to form a column vector. The above formula for the transformation of 9 is
valid for arbitrary real ^-dimensional vectors a and b. It can be easily verified for a
set of generators of Sp(2g,Z), although the extension to arbitrary symplectic
transformations is more difficult.

We are now in a position to consider the transformation of (7.2). Let [α l 5 b{\
and [a2, b2] be the half-integral characteristics corresponding to spin structures α
and β respectively. The modular transformation fixes spin structures α and β if and
only if for i = l,2

7 = Γ modi. (7.5)

Using the explicit dependence of determinants, we would therefore like to show
that

~a2

βiΛ

(Ω)

(Ω)

(Ω)

α 2

bo

(7.6)
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In the above expression we can shift the α's and b's by integral vectors, without
changing the expression, because such a shift introduces a phase e

2nia'n for the theta
function, where n is an integral vector. This phase disappears when we raise the
theta function to the fourth power. Using the modular transformation rule for the
theta function, it is easy to see that the above equality holds provided

Since a{ and bt are half-integral vectors, and A is an integral matrix, it follows that a
priori the above phase could be +1. To show that it is equal to 1, one has to show
that

4 ( t b t b ( 2 ) ) d

From now on for brevity, when we write an equality, we mean equality mod 2. Note
that in such expressions ± signs play no role since r= — r mod 2 when r is integral.
Let us define integral vectors c and d by

c = 2a1 — 2a2, d = 2b1— 2b2.

The condition we will have to show becomes

(We have used D'B = B*D and CA = A^C. This can be proved by writing the right-
inverse of A and demanding that it be a left-inverse.) The condition that the spin
structures α and β are preserved implies that (modulo two)

{ί+D)c + Cd = 0, (7.7)

Bc + (l+A)d = 0. (7.8)

If we take the transpose of (7.7), multiply it by (7.8), and use DtA — BtC = l, we get

Q + c(Dt+A)d + cBc + dCd = O. (7.9)

Using (7.7) and (7.8) we see that

•X
And so Eq. (7.9) simplifies to 6 = 0, the desired result. Thus, (7.1) is free of global
anomalies. As noted in [30], four is the smallest power for which (7.2) is invariant.
This is important in constraining variations on the heterotic string, as we will see
below.

We now study the constants Caβy in (7.1). Naively, one might expect these
constants to factorize for the sums over right- and left-movers, an impression
which might be reinforced by the observation that the gauge fermions would then
contribute a modular covariant sum:

]( )Σ
a,b \_O_\ a,b

In fact, the standard Es x E8 theory corresponds to this choice, but it is not the
most general choice. The correct procedure, which was outlined in [30], involves
modular orbits which we now describe.
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We have explained the one-to-one correspondence between spin structures
and half-integral theta characteristics in Sect. 3. Using the transformation law (7.4)
we can therefore find the orbit of a spin structure under the action of the modular
group. As an example, we show that even and odd spin structures are separately
permuted among themselves. The proof proceeds by induction. For g = 1 the result
is easily checked explicitly. In genus two we must use the nontrivial Dehn twist
Da- iβ2 of Sect. 3a. The action of this twist on the half-integral characteristics is:8

Γo Π Γo l Ί Γl OΊ Γl oΊ

U bΓla b\ la bΓla b]
ΓO 0 1 J 0 0 "I Γl
[_a b\ \_a+ί b + ί] [a

Using this transformation and the Dehn twists for the separate handles one can
easily see that all the odd characcteristics of (3.29) can be transformed to

ί]
while all the even characteristics of (3.30) can be transformed to

ro on
Lo oj

We now assume that at g — 1 loops all odd characteristics can be transformed to

while all even characteristics can be transformed to

"0...0"
(7.12)

Consider any even characteristic at g loops. The first g — ί columns define an even
or odd spin structure depending on whether the final column is even or odd. In the
case that both are even we can use the inductive hypothesis and Dehn twists on the
gth handle to bring the characteristic to the form (7.12). In the case that both are
odd we again use the inductive hypothesis to transform the g-loop characteristic to

Γ0...0 1 11

|_O...O 1 1J

Applying the transformation (7.10) to the last two handles and using two further
torus-Dehn-twists, we can finally bring the g-loop characteristic to the form (7.12).
A similar argument for an arbitrary odd characteristic at #-loops completes the
inductive step. Thus, the set of spin structures decomposes into two distinct
modular orbits.

8 For notational simplicity we have multiplied all the half-integral characteristics by two. They are
therefore specified by zeros and ones, modulo two
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When we consider more than one independent spin structure, the modular
orbits become more intricate. For example, in the E8 x E8 heterotic string we must
consider triplets of spin structures (xβγ. Each such triplet has an associated
modular orbit & obtained by simultaneously transforming all three spin struc-
tures. Denote by S [α/fy] the contribution of the functional determinants in (7.1) for
the triplet of spin structures otβy. It is easy to check that if S is invariant under
diffeomorphisms preserving the triplet of spin structures, then the sum

Σ S[αj8y] (7.13)
[aβγ]sΦ

is modular invariant. This leaves an ambiguity in the definition of the amplitude
(7.1), for if we write the integrand as

/ , = Σ C{Θ) Σ » y ] , (7.14)
orbits Θ [aβy]e&

the coefficients C are not fixed by absence of global anomalies on the world sheet.
The importance of modular invariance and factorization in relating different

terms in the path-integral measure for superstrings has been pointed out in [31].
Similar ideas have been applied in the context of orbifolds in [43] and in
determining inequivalent phases for heterotic strings in [32]. In particular these
ideas have led to new heterotic strings [44, 31, 32]. We will now discuss some
aspects of the new theories using the transformation law (7.3), (7.4) for the theta
characteristics. We will only investigate the possible modifications of the 0(32)
and E8 x E8 strings for simplicity. (One can also consider breaking up the sets of
fermions further into sets in eight, or some multiples of eight, adding up to 32
fermions. This is the furthest one can go: since four is the smallest power for which
(7.2) is invariant, allowing smaller sets of fermions would lead to a measure with
global anomalies [30].)

An amplitude factorizes if, in the corner of Teichmuller space corresponding to
the degeneration of a Riemann surface illustrated in Fig. 6*(that is, when the
handles are pulled apart), the integrand factorizes into a product of gx~ and #2-loop
amplitudes: Ig-+IgιIg2 In this limit the period matrix becomes [14]

- f t : )
so the theta functions also factorize into gr and gr2-l°0P theta functions:

9 ^ J (0|β)-θ |jj J (0|«i)5 ^ J (0|β2).
We will assume that the supersymmetry ghost determinant and the supermoduli
correction (which depend on spin structure) similarly factorize so that

orbits &

Fig. 6
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where [α^yj are any spin structures at genus g{ which combine to give a spin
structure in orbit Θ at genus g. By our assumption that the S's factorize, the choice
C = 1 is consistent with factorization of the amplitude, but this is not the unique
choice. In general the coefficients must satisfy

Cgi+92{Θ [αjϊy]) = Cβl(β> [μ^γ J) Cg2(Θ [α2/?2y2]), (7.16)

where 0 [α/fy] denotes the modular orbit of a triplet of spin structures. Note that if
two choices of coefficients satisfy (7.16) then so does their product. Thus the
solutions of (7.16) form a group. The condition (7.16) is nontrivial because two
triplets of spin structures, otβy and μvρ, in the same modular orbit at (^ + #2)-looρs
can factorize into products of triplets of spin structures

Iφ']-+l<x1β1γ1~] [>2j82y2], ίμvQ]-*lμ1v1ρ1'] [μ2v2ρ2] (7.17)

in different modular orbits at gγ- or #2-loops. Thus we must have

= C(& [μ, v ^ ] ) C(Θ [>2v2ρ2]) (7.18)

for all pairs of triplets factorizing from (gx + #2)-looρ triplets which have the same
modular orbit G. From (7.16) we see that the #-loop coefficients can be written as
products of one-loop coefficients. Since Ω(Σ) is generated by the Dehn twists about
the curves in Fig. 4 we see that the only nontrivial conditions from (7.18) come
from taking gx = g2 = 1, and if these are satisfied then (7.18) holds for all gu g29 and
all triplets of spin structures.

There are always some trivial solutions of (7.18) which we now describe.
Consider either the first, second, or third set of fermions. It is easy to check that if
we take C = +1 when this set has an even spin structure and C = — 1 when the set
has an odd spin structure, then (7.18) is satisfied. These solutions form the group Z 2

x Z 2 for the 0(32) string and Z2xZ2x Z2 for the E8 x E8 string. By comparing
the modified signs in the path integral with the corresponding expressions in the
operator formalism one finds that these solutions correspond to physically
irrelevant redefinitions of the chiralities of the massless ground state spinors in the
spectrum of the theory.

We now search for nontrivial solutions of (7.18) in the specific example of the
0(32) string. In this case the modular orbits are generated by doublets of spin
structures. There are five distinct one-loop modular orbits: Either both spin
structures are even and identical, or both are even and distinct, or one is odd and
the other is even, or both are odd. These may be denoted by ee eef eo oe oo. We may
choose C(ee) = 1 by convention. We can see that C(ee') = 1 by considering the
following example. The genus two doublet of spin structure with characteristics

° ° - - - (7 19)Lip oj2

factorizes into the product of doublets of one-loop spin structures:

Pjl



Theta Functions, Modular Invariance, and Strings 37

which has coefficient C(eer) in the product of one-loop amplitudes (since
C(ee) = 1). On the other hand the doublet of spin structures with characteristics

Γ0 01 Γ0 I"]
(7.21)

Lu u j 2

factorizes into the product of doublets:

(EL ED (EL ED
which has coefficient C(ee')2. Since the orbits of (7.19) and (7.21) are related by the
Dehn twist DaΓ ia2 we must have Ciee")1 = Ciee"), which means C(ee") = 0 or 1. The
first choice leads to a theory with tachyons [31], so we investigate the second
choice. We then have effectively only four distinct modular orbits corresponding to
whether the members of the doublet of spin structures are even or odd. Since a spin

structure with the characteristics is even or odd depending on whether ab = 0

or 1 mod2, we can consider C as a function on Z 2 x Z 2 . Generalizing the above
example of (7.19)-{7.22) to the genus two orbit of

α fl C Ί
we find the condition

C(ab, cd) C(afb\ ddT) = C(ab + aa\ cd + cc") C(a'V + aa\ c'ά' + cc")

which implies

C(0,l)2 = C(l,0)2 = l ,

which corresponds to the trivial solutions found above. A similar but more tedious
analysis of the E8 x E8 case shows that the solutions form the group Z2xZ2x Z2

x Z 2 . The first three Z'2s correspond to the trivial solutions discussed above, but
the fourth Z 2 is nontrivial, and leads to a heterotic string with 0(16) x 0(16) gauge
symmetry [44, 32].

In general we can start with all spin structures identified [31, 32] and take the
quotient by various groups to get the other theories. If we take the quotient with
groups which are direct products of Z 2 , we can get sums over up to five
independent spin structures. For example, using a single Z 2 we can get the 0(32)
heterotic string or a tachyonic 0(16) x E8 string [44, 31], where the latter theory is
obtained by identifying the spin structure of the right moving spacetime fermions
with the spin structure of eight of the left moving gauge fermions. It seems that in
all the known examples identification of the spin structures of some left and right
movers leads to a theory with tachyons.

8. Conclusions

Much work remains to be done. We have seen that theta functions are useful for
understanding spin one-half particles. Can the ghost determinants and zero modes
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also be usefully expressed in theta functions? We have also seen that some pieces of
the string path integral extend as functions of the Siegel upper half plane. Can the
entire string integrand be expressed as a function on this space [45]? If so, what are
the constraints of symplectic modular in variance on physical theories? We have
investigated one simple aspect of bosonization on higher genus surfaces, but a full
treatment is still lacking.

The naive expectation that the determinant of the spin-f operator should be
given in its spin-structure-dependence by a theta function is misguided, as
explained in Sect. 5. Furthermore, although there are identities (known as the
Riemann identities) which are of the form Σ Cαθ4 = 0 [13], they are not (formally)
modular covariant. A direct proof of the vanishing of the cosmological constant
will involve more sophisticated identities, and might point the way to new
Schottky relations on the period matrix. We simply note here that a direct
approach is likely to encounter subtleties, since there must be delicate cancel-
lations between the contributions of the various spin structures. Indeed, merely
changing a few of the coefficients Caβy leads to the 0(16) x 0(16) heterotic string
which is modular invariant and unitary, and yet has a finite nonzero cosmological
constant.
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Similar results on the dependence of the Dirac determinant on spin structure have also been
obtained by D. Freed from the viewpoint of the geometry of index bundles and by J. Fay using the
Szegό kernel.
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